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Abstract
Logarithmic space-bounded complexity classes such as L and NL play a central role
in space-bounded computation. The study of counting versions of these complexity
classes have lead to several interesting insights into the structure of computational
problems such as computing the determinant and counting paths in directed acyclic
graphs. Though parameterised complexity theory was initiated roughly three decades
ago by Downey and Fellows, a satisfactory study of parameterised logarithmic space-
bounded computation was developed only in the last decade by Elberfeld, Stockhusen
and Tantau (IPEC 2013, Algorithmica 2015). In this paper, we introduce a new
framework for parameterised counting in logspace, inspired by the parameterised
space-bounded models developed by Elberfeld, Stockhusen and Tantau. They defined
the operators paraW and paraβ for parameterised space complexity classes by allow-
ing bounded nondeterminism with multiple-read and read-once access, respectively.
Using these operators, they characterised the parameterised complexity of natural
problems on graphs. In the spirit of the operators paraW and paraβ by Stockhusen and
Tantau, we introduce variants based on tail-nondeterminism, paraW[1] and paraβtail.
Then, we consider counting versions of all four operators and apply them to the class
L. We obtain several natural complete problems for the resulting classes: counting of
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paths in digraphs, counting first-order models for formulas, and counting graph homo-
morphisms. Furthermore,we show that the complexity of a parameterised variant of the
determinant function for (0, 1)-matrices is #paraβtailL-hard and can be written as the
difference of two functions in #paraβtailL. These problems exhibit the richness of the
introduced counting classes. Our results further indicate interesting structural charac-
teristics of these classes. For example, we show that the closure of #paraβtailL under
parameterised logspace parsimonious reductions coincides with #paraβL. In other
words, in the setting of read-once access to nondeterministic bits, tail-nondeterminism
coincides with unbounded nondeterminism modulo parameterised reductions. Initiat-
ing the study of closure properties of these parameterised logspace counting classes,
we show that all introduced classes are closed under addition and multiplication, and
those without tail-nondeterminism are closed under parameterised logspace parsi-
monious reductions. Finally, we want to emphasise the significance of this topic by
providing a promising outlook highlighting several open problems and directions for
further research.

Keywords Parameterized complexity · Counting complexity · Logspace

Mathematics Subject Classification 68Q15

1 Introduction

Parameterised complexity theory, introduced by Downey and Fellows [1], takes a two-
dimensional view on the computational complexity of problems and has revolutionised
the algorithmic world. Two-dimensional here refers to the fact that the complexity of
a parameterised problem is analysed with respect to the input size n and a parameter
k associated with the given input as two independent quantities. The notion of fixed-
parameter tractability is the proposed notion of efficient computation. A parameterised
problem is fixed-parameter tractable (fpt, or in the classFPT) if there are a computable
function f and a deterministic algorithm deciding it in time f (k) · nO(1) time for any
input of length n with parameter k. The primary notion of intractability in this setting
is captured by the W-hierarchy.

Since its inception, the focus of parameterised complexity theory has been to iden-
tify parameterisations of NP-hard problems that allow for efficient parameterised
algorithms, and to address structural aspects of the classes in the W-hierarchy and
related complexity classes [2]. This led to the development of machine-based and
logical characterisations of parameterised complexity classes (see the book by Flum
and Grohe [2] for more details). While the structure of classes in hierarchies such as
theW-hierarchy and the relatedA-hierarchy is well understood, a parameterised view
of parallel and space-bounded computation lacked attention.

In 2013, Elberfeld et al. [3, 4] focused on parameterised space complexity classes
and initiated the study of parameterised circuit complexity classes. In fact, they intro-
duced parameterised analogues of deterministic and nondeterministic logarithmic
space-bounded classes. The machine-based characterisation of W[P] (the class of
problems that are fpt-reducible to a certain weighted circuit satisfiability question),
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and the type of access to nondeterministic choices (multi-read or read-once) led to
two different variants of parameterised logspace (para-logspace), namely, paraWL
and paraβL. Elberfeld et al. [4] obtained several natural complete problems for these
classes, such as parameterised variants of reachability in graphs.

Bannach, Stockhusen and Tantau [5] further studied parameterised parallel algo-
rithms. They used colour coding techniques [6] to obtain efficient parameterised
parallel algorithms for several natural problems. A year later, Chen and Flum [7]
proved parameterised lower bounds for AC0 by adapting circuit lower bound tech-
niques.

Apart from decision problems, counting problems have found a prominent place in
complexity theory. Valiant [8] introduced the notion of counting complexity classes
that capture natural counting problems such as counting the number of perfect match-
ings in a graph, or counting the number of satisfying assignments of a CNF formula.
Informally, #P (resp., #L) consists of all functions F : {0, 1}∗ → N such that there
is a nondeterministic Turing machine (NTM) running in polynomial time (resp., log-
arithmic space) in the input length whose number of accepting paths on every input
x ∈ {0, 1}∗ is equal to F(x). Valiant’s theory of #P-completeness led to several struc-
tural insights into complexity classes aroundNP and interactive proof systems, as well
as to the seminal result of Toda [9].

While exact counting problems in #P stayed in the focus of research for long, the
study of the determinant by Damm [10], Vinay [11], and Toda [12] established that the
complexity of computing the determinant of an integer matrix characterises the class
#L up to a closure under subtraction. Allender and Ogihara [13] analysed the structure
of complexity classes based on #L. The importance of counting classes based on
logspace-bounded Turing machines (TMs) was further established by Allender, Beals
and Ogihara [14]. They characterised the complexity of testing feasibility of linear
equations by a class which is based on #L. Beigel and Fu [15] then showed that small
depth circuits built with oracle access to #L functions lead to a hierarchy of classes
which can be seen as the logspace version of the counting hierarchy. In a remarkable
result, Ogihara [16] showed that this hierarchy collapses to the first level. Further down
the complexity hierarchy, Caussinus et al. [17] introduced counting versions of NC1

based on various characterisations ofNC1. The counting and probabilistic analogues of
NC1 exhibit properties similar to their logspace counterparts [18]. Moreover, counting
and gap variants of the class AC0 were defined by Agrawal et al. [19].

The theory of parameterised counting classes was pioneered by Flum and Grohe
[20] as well as McCartin [21]. The class #W[1] is the counting analogue ofW[1] and
consists of all parameterised counting problems that reduce to the problem of counting
k-cliques in a graph. Flum and Grohe [20] proved that counting cycles of length k is
complete for #W[1]. Curticapean [22] further showed that counting matchings with k
edges in a graph is also complete for #W[1]. These results led to several remarkable
completeness results and new techniques (see, e.g., the works of Curticapean [23, 24],
Curticapean, Dell and Marx [25], Jerrum and Meeks [26], Brand and Roth [27], as
well as recent advances [28, 29]).
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Motivation Given the rich structure of logspace-bounded counting complexity
classes, studying parameterised variants of these classes is the next logical step to
obtain a finer classification of counting problems.

A theory of para-logspace counting did not exist before. We wanted to overcome
this defect to understand further the landscape of counting problems with decision
versions in para-logspace-based classes. Our new framework allows us to classify
many of these problems more precisely. In this article, we define counting classes
inspired by the parameterised space complexity classes introduced by Elberfeld et al.
[3, 4].

In the realm of space-bounded computation, different manners in which nonde-
terministic bits are accessed lead to different complexity classes. For example, the
standard definition of NL implicitly gives the corresponding NTMs only read-once
access to their nondeterministic bits [30]: nondeterminism is given only in the form
of choices between different transitions. This means that nondeterministic bits are not
re-accessible by themachine later in the computation.When instead using an auxiliary
read-only tape for these bits and allowing for multiple passes on it, one obtains the
class NP. This is due to the fact that SAT is NP-complete with respect to logspace
many-one reductions [30], and that one can evaluate a CNF formula in deterministic
logspace even when the assignment is given on a read-only tape. However, polynomial
time-bounded NTMs still characterise NP even when the machine is allowed to do
only one pass on the nondeterministic bits as they can simply store all nondeterminis-
tic bits on the work-tape. In consequence, it is very natural to investigate whether the
distinction between read-once and unrestricted access to nondeterministic bits leads
to new insights in our setting.

With parameterisation as a means for a finer classification, Stockhusen and Tan-
tau [3] defined nondeterministic logarithmic space-bounded computation based on
how (unrestricted or read-once) the nondeterministic bits are accessed. Based on
this distinction, they defined two operators: paraW (unrestricted) and paraβ (read-
once). Their study led to many compelling natural problems that characterise the
power of logspace-bounded nondeterministic computations in the parameterised set-
ting. Thereby, a rich structure of computational power based on the restrictions on the
number of reads of the nondeterministic bits was exhibited.

In this article, we additionally differentiate based on when—unrestricted or in
the tail of the computation—the nondeterministic bits are accessed. Intuitively, tail-
nondeterminism means that all nondeterministic bits are read at the end of the
computation, and k-boundedness limits the number of these nondeterministic bits to
f (k) · log |x | many for all inputs (x, k). The concept of tail-nondeterminism allowed
to capture the parameterised complexity class W[1]—via tail-nondeterministic, k-
bounded machines—and thereby relates to many interesting problems such as
searching for cliques [2, Thm. 6.1], independent sets [2, Cor. 6.2], homomorphisms
[2, Ex. 6.4], and evaluating conjunctive queries [2, Ex. 6.9]. Contrarily, the com-
plexity class W[P] is characterised via at most f (k) · log n nondeterministic steps
that can occur anytime during the computation [31]. In this way, the restriction to
tail-nondeterminism makes the difference between W[P] and W[1], the two most
prominent nondeterministic classes in the parameterised world. This motivates our
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study of the impact of tail-nondeterminism in the setting of our comparatively small
classes, leading to the new operators paraW[1] and paraβtail.

Studying counting complexity often improves the understanding of related classical
problems and classes (e.g., Toda’s theorem [9]). With regard to space-bounded com-
plexity, there are several characterisations of logspace-bounded counting classes in
terms of natural problems. For example, counting paths in directed graphs is complete
for #L, and checking if an integer matrix is singular or not is complete for the class
C=L (see Allender et al. [14]). Testing if a system of linear equations is feasible or
not can be done in L with queries to any complete language for C=L.

Moreover, two hierarchies built over counting classes for logarithmic space collapse
either to the first level [16] or to the second level [14]. Apart from this, the separation of
various counting classes defined in terms of logarithmic space computations remains
widely open. For example, it is not known whether the class C=L is closed under
complementation.

We consider different parameterised variants of the logspace-bounded counting
class #L to give a new perspective on its fine structure.

Results We introduce counting variants of parameterised space-bounded com-
putation. More precisely, we define natural counting counterparts for the param-
eterised logspace complexity classes defined by Stockhusen and Tantau [3]. By
also considering tail-nondeterminism in the setting of the resulting classes, we
obtain four different variants of parameterised logspace counting classes, namely,
#paraWL, #paraβL, #paraW[1]L, and #paraβtailL. We show that #paraWL and
#paraβL are closed under para-logspace parsimonious reductions and that all four
of our new classes are closed under addition and multiplication.

Furthermore, we develop a complexity theory in the setting of parameterised space-
bounded counting by obtaining natural complete problems for the new classes. We
introduce variants of the problem of counting walks of parameter-bounded length that
are complete for the classes #paraβL (Theorems 14, 15 and 18) and #paraβtailL
(Theorem 16). Since the same problem is shown to be complete for both #paraβL
and #paraβtailL, we get the somewhat surprising result that the closure of #paraβtailL
under para-logspace parsimonious reductions coincides with #paraβL (Corollary 17).
Also, we show that a parameterised version of the problem of counting homomor-
phisms from coloured path structures to arbitrary structures is complete for #paraβL
with respect to para-logspace parsimonious reductions (Theorem 26).

Afterwards, we study variants of the problem of counting satisfying assignments
to free first-order variables in a quantifier-free FO-formula. We identify complete
problems for the classes #paraβL and #paraW[1]L in this context. More specifi-
cally, counting satisfying assignments to free first-order variables in a quantifier-free
formula with relation symbols of bounded arity and the syntactical locality of the vari-
ables in the formula being restricted (p-#MC(Σr -local

0 )a) is shown to be complete
for the classes #paraβtailL and #paraβL with respect to para-logspace parsimo-
nious reductions (Theorem 21). When there is no restriction on the locality of the
variables, counting the number of satisfying assignments to free first-order variables
in a quantifier-free formula of bounded arity in a given structure (p-#MC(Σ0)a) is
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Fig. 1 Diagram of studied classes with list of complete problems, assuming pair-wise difference between
classes

complete for #paraW[1]Lwith respect to para-logspace parsimonious reductions (The-
orem 22).

Finally, we consider a parameterised variant of the determinant function (p-det)
introduced by Chauhan and Rao [32]. By adapting the arguments of Mahajan and
Vinay [33], we show that p-det on (0, 1)-matrices can be expressed as the difference
of two functions in #paraβL, and is #paraβtailL-hard with respect to para-logspace
many-one reductions (Theorem 31).

Figure 1 shows a class diagram including the complete problems we identified.

Main Techniques Our primary contribution is laying the foundations for the study
of parameterised logspace-bounded counting complexity classes. The completeness
results in Theorems 15 and 22 required a quantised normal form for k-bounded non-
deterministic Turing Machines (NTMs) (Lemma 9). This normal form quantises the
nondeterministic steps of a k-bounded NTM into chunks of log n-many steps such
that the total number of accepting paths remains the same. We believe that the normal
form given in Lemma 9will be useful in the structural study of parameterised counting
classes.

The study of p-det involved definitions of so-called parameterised clow sequences
generalising the classical notion [33]. Besides, a careful assignment of signs to clow
sequences was necessary for our complexity analysis of p-det.

Related Results Dalmau and Johnson [34] investigated the complexity of counting
homomorphisms and provided generalisations of results by Grohe [35] to the counting
setting. Chen and Müller [36] studied the parameterised complexity of evaluating
conjunctive queries, a problem closely related to the homomorphism problem. In both
cases, a classification of the complexity of the respective problem was obtained based
on the structure of the input. A similar classification in our setting could give new
insights into the complexity of the homomorphism problem (Open Problem 3). The
behaviour of our classes with respect to reductions is similar to the one observed for
W[1] by Bottesch [37, 38]. For sub-graph problems a good survey paper exists by
Meeks [39]. Parameterised approximation counting is a related branch of research
[40–45]. Counting answers to conjunctive queries has been studied by Chen, Durand
and Mengel [46, 47].
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Outline In Sect. 2, we introduce the considered machine model, as well as needed
foundations of parameterised complexity theory and logic. Section3 presents struc-
tural results regarding our introduced notions in the parameterised counting context.
Afterwards, in Sect. 4, our main results on counting walks, FO-assignments, homo-
morphisms as well as regarding the determinant are shown. Finally, we conclude in
Sect. 5.

Prior Work This is an extended version of the conference publication [48]. A major
difference to the conference version is incorporating the full proof details of all results.

Compared to the conference version, we made the definition of configurations
and related notions more precise. Furthermore, we corrected inaccuracies in different
proofs of the paper, some of which resulted from imprecisions in the definitions of
configurations and relatednotionswhichhavebeenmade accurate, now.Unfortunately,
two results could not be salvaged and are now open for further research: Namely, the
graph-based problems we claimed to be complete for paraWL do not seem to be
contained in that class. While one could further restrict these problems to arrive at
promise problems complete for the class, these do not seem to be natural problems
anymore. Consequently, we removed these two problems from this version of the
paper.

2 Preliminaries

In this section, we describe the computational models and complexity classes that are
relevant to parameterised complexity theory. We use standard notions and notations
from parameterised complexity theory [1, 2], as well as from graph theory [49]. As we
are working with problems that deal with functions (see Sect. 3), we will use a fraktur
alphabet letter G for a graph to avoid confusions with a function G whenever both
appear simultaneously. Finally, without loss of generality, we only consider binary
inputs for our computation models.

TuringMachines (TMs) with RandomAccess to the Input We consider an intermedi-
atemodel betweenTMsandRandomAccessMachines (RAMs) onwords. Particularly,
we make use of TMs that have random access to the input tape and can query relations
in input structures in constant time. This can be achieved with two additional tapes of
logarithmic size (in the input length), called the random access tape and the relation
query tape. On the former, the machine can write the index of an input position to get
the value of the respective bit of the input. On the relation query tape, the machine can
write a tuple t of the input structure together with a relation identifier R to get the bit
stating whether t is in the relation specified by R. Note that our model achieves linear
speed-up for accessing the input compared to the standard TM model. (This is further
justified by Remark 7.) For convenience, in the following, whenever we speak about
TMs we mean the TM model with random access to the input.

Nondeterministic Turing Machines (NTMs) are a generalisation of TMs where
multiple transitions from a given configuration are allowed. This can be formalised
by allowing the transition to be a relation rather than a function. An NTM N accepts
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a given input x if there is a valid sequence of configurations starting from the initial
configuration that terminate in an accepting configuration. (See, e.g., [30] for more
details.)

Denote by SPACETIME(s, t) (NSPACETIME(s, t)) with s, t : N → N the
class of languages that are accepted by (nondeterministic) TMs with space-bound
O(s) and time-bound O(t). A C-machine for C = SPACETIME(s, t) (C =
NSPACETIME(s, t)) is a (nondeterministic) TM that is O(s) space-bounded and
O(t) time-bounded.

Sometimes, it is helpful to view NTMs as TMs with an additional tape, called the
(nondeterministic) choice tape which is typically read-only. Let M be a deterministic
TM with a choice tape.

The language accepted by M , L(M) is defined as

{
x ∈ {0, 1}∗

∣∣∣∣ ∃y ∈ {0, 1}∗ s.t. M accepts x when
the choice tape is initialised with y

}
.

Notice that in this framework the machine M may have two-way or one-way access
to the choice tape. The power of computation varies depending on the type of access
allowed to the choice tape. Furthermore, in a space-bounded computation, the choice
tape must be read-only and hence the space occupied by the choice tape is not counted
for space bounds. Note that TMs with a read-once choice tape can be simulated by
NTMs with the similar resource bounds. In fact, an NTM can guess the bits in the
choice tape first and then simulate the machine in a deterministic fashion. Conversely,
TMs with read-once choice tape can simulate NTMs as well:

Proposition 1 (Folklore) Let N be a t time-bounded and s space-bounded NTM
accepting a language L. Then, there is an O(t) time-bounded and O(s) space-bounded
TM M with choice tape such that L = L(M). Furthermore, M has read-once access
to the choice tape.

Proof sketch Let δN be the transition relation of N . Without loss of generality, assume
that for any state p and tape symbol a, |{q | δ((p, a), q)}| ∈ {0, 1, 2}. That is, there
will be at most two next configurations from any given configuration. Let M be the
machine that runs N on its input x . At every step, if the current state p is such that
|{q | δ((p, a), q)}| = 2, then M reads the bit on the choice tape under the current
head position, chooses the next state of N based on the value read. Further, M moves
the head of the choice tape to one position right. If |{q | δ((p, a), q)}| = 1, then M
does the simulation without reading from the choice tape. M accepts if and only if N
accepts. From the simulation, we have L(N ) = L(M). The simulation of N by M can
be done in time O(t) and space O(s). (Here we have assumed that M is a multi-tape
TM and can have more tapes compared to N .) Finally, note that M moves the head
of the choice tape only in the rightward direction, and hence M is read-once on the
choice tape. ��

From the above, we can treat NTMs as TMs with a choice tape. In this paper, we
regard nondeterministic TMs as deterministic ones with a choice tape.

Before we proceed to the definition of parameterised complexity classes, a clari-
fication on the choice of the model is due. Note that RAMs and NRAMs are often
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appropriate in the parameterised setting as exhibited by several authors (see, e.g., the
textbook of Flum and Grohe [2]). They allow to define bounded nondeterminism quite
naturally. On the other hand, in the classical setting, branching programs (BPs) are one
of the fundamental models that represent space-bounded computation, in particular
logarithmic space. Since BPs inherently use bit access, this relationship suggests the
use of a bit access model.

Consequently, we consider a hybrid computational model: Turing machines with
random access to the input. While the computational power of this model is the same
as that of Turing machines and RAMs, it seems to be a natural choice to guarantee a
certain robustness, allowing for desirable characterisations of our classes.

Parameterised Complexity Classes Let FPT denote the class of parameterised prob-
lems that can be decided by a deterministic TM running in time f (k) · p(|x |) for any
input (x, k), where f is a computable function and p is a polynomial. Similarly, let
XP be the class obtained by allowing time |x | f (k) instead. Furthermore, naturally lift
the notion of SPACETIME(·, ·)/NSPACETIME(·, ·) to parameterised problems.

Two central classes in parameterised complexity theory areW[1] andW[P] which
were originally defined via special types of circuit satisfiability [2]. Flum, Chen and
Grohe [50] obtained a characterisation of these two classes using the following notion
of k-bounded NTMs.

Definition 2 (k-bounded NTMs) An NTM M , working on inputs of the form (x, k)
with x ∈ {0, 1}∗, k ∈ N, is said to be k-bounded if for all inputs (x, k) it reads at
most f (k) · log |x | bits from the choice tape on input (x, k), where f is a computable
function.

Note that it is irrelevant how k is encoded as the parametric value appears only in
the function f .

Here, we will work with the following characterisation ofW[P]. The characterisa-
tion for W[1] needs another concept that will be defined on the next page.

Proposition 3 ([2, 50])W[P] is the set of all parameterised problems that are accepted
by some k-bounded FPT-machine with a choice tape.

Now, we recall three complexity theoretic operators that define parameterised com-
plexity classes from an arbitrary classical complexity class, namely para,paraW and
paraβ , following the notation of Stockhusen [51].

Definition 4 ([52]) Let C be any complexity class. Then paraC is the class of all
parameterised problems P ⊆ {0, 1}∗ × N for which there is a computable function
π : N → {0, 1}∗ and a language L ∈ C with L ⊆ {0, 1}∗ × {0, 1}∗ such that for all
x ∈ {0, 1}∗, k ∈ N: (x, k) ∈ P ⇔ (x, π(k)) ∈ L.

A paraC-machine for C = SPACETIME(s, t) (C = NSPACETIME(s, t)) is a
(nondeterministic) TM, working on inputs of the form (x, k), that is O(s(|x |+ f (k)))
space-bounded and O(t(|x |+ f (k))) time-bounded where f is a computable function.
Notice that paraP = FPT is the standard precomputation characterisation of FPT
and even more, FPT can equivalently be defined with either running times of the
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form O( f (k) · poly(|x |)) or O( f (k) + poly(|x |)) for some computable function f
[52]. Now, consider the class paraL, which can be seen as the parameterised version
of L. By the above definiton, it is the class of parameterised problems decidable
in space O( f (k) + log |x |) for some computable function f . Here, changing the
definition to allow space O( f (k) · log |x |) instead would likely change the class and
not even yield a subclass of FPT, as such computations may take time O(|x | f (k)),
only showing membership in XP. This further indicates that paraL is the right way
to define parameterised logspace.

The class XP and the W-hierarchy [2] capture intractability of parameterised
problems. Though the W-hierarchy was defined using the weighted satisfiability of
formulas with bounded weft, which is the number of alternations between gates of
high fan-in, Flum and Grohe [52] characterised central classes in this context using
bounded nondeterminism. Stockhusen and Tantau [3, 51] considered space-bounded
and circuit-based parallel complexity classes with bounded nondeterminism.

The following definition is a more formal version of the one given by Stockhusen
and Tantau [3, Def. 2.1]. They use para∃↔

f logC instead of paraWC for a complexity
class C.
Definition 5 Let C = SPACETIME(s, t) for some s, t : N → N. Then, paraWC
is the class of all parameterised problems Q that are accepted by some k-bounded
paraC-machine with a choice tape.

For example, paraWL denotes the parameterised version of NL with k-bounded
nondeterminism. One can also restrict this model by only giving one-way access to
the nondeterministic tape. The following definition is a more formal version of the
one of Stockhusen and Tantau [3, Def. 2.1] who use the symbol para∃→

f log instead.

Definition 6 Let C = SPACETIME(s, t) for some s, t : N → N. Then paraβC
denotes the class of all parameterised problems Q that can be accepted by a k-bounded
paraC-machine with a choice tape with one-way read access to the choice tape.

As there is only read-once access to the nondeterministic bits, paraβC can be
equivalently defined via nondeterministic transitions and without using a choice tape.

Another notion studied in parameterised complexity is tail-nondeterminism. A k-
bounded machine M is tail-nondeterministic if there exists a computable function g
such that on all inputs (x, k), after its first nondeterministic step, M makes at most
g(k) · log |x | further steps in the computation. The value of this concept is evidenced
by the machine characterisation of W[1] (Chen et al. [50]). We hope to get new
insights by transferring this concept to space-bounded computation. In consequence,
we introduce the tail-nondeterministic versions of paraWC and paraβC, which are
denoted by paraW[1]C and paraβtailC.

Note that the restriction of the above classes to k-boundedness is crucial in the
context of logarithmic space. If we drop this restriction, themachines are able to access
2 f (k)+log |x |, i.e., fpt-many nondeterministic bits. Regarding multiple-read access, this
allows for solving SAT in logarithmic space (with constant parameterisation). That
is, the class would contain a paraNP-complete problem. For read-once access, we
expect a similar result for paraNL.When adding tail-nondeterminism, k-boundedness
is always implicitly given.
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Configurations Let M be a TM with choice tape. A configuration of M on an input
(x, k), is the snapshot of M at some point during the computation on M on input
(x, k). Disregarding the input query tape and relation query tape for the moment, a
configuration more formally is a tuple (p, γ, h1, h2, h3) ∈ Q × Σ∗ × N × N × N,
where p is the state, γ is the content of the work tapes, h1 is the head position on
the work tape, h2 is the head position on the input tape and h3 is the head position
on the choice tape. In the case of machines with multiple work tapes, the notion of a
configuration can be modified accordingly by adding for each of them both the content
and the head position to the configuration. Input query tape and relation query tape
are treated in the same way as a usual work tape. For an s space-bounded machine,
a configuration is of size O(s). Note that we do not store the contents of input and
choice tapes in a configuration.

A configuration C is said to be nondeterministic if the next configuration is depen-
dent on the content of the choice tape at the current head position.

Remark 7 Note that it is important to have random access to the input tape in the case
of tail-nondeterminism.Without random access to input bits and input relations, a TM
cannot even make reasonable queries to the input in time g(k) · log(n).

Logic We assume basic familiarity with first-order logic (FO). A vocabulary is a
finite ordered set of relation symbols and constants. Each relation symbol R has an
associated arity arity(R) ∈ N. Let τ be a vocabulary. A τ -structure A consists of a
nonempty finite set dom(A) (its universe), and an interpretation RA ⊆ dom(A)arity(R)

for every relation symbol R ∈ τ . Syntax and semantics are defined as usual (see, e.g.,
the textbook of Ebbinghaus et al. [53]).

LetA be a structure with universe A. We denote by |A| the size of a binary encoding
of A, i.e., the number of bits required to represent the universe and relations as lists
of tuples. For example, if R is a relation symbol of arity 3, then RA is represented as
a subset of A3, i.e., a set of triples over A. This requires O(|RA| · arity(R)) · log |A|)
bits to represent the relation RA, assuming log |A| bits to represent an element in A.
As analysed by Flum et al. [54, Sect. 2.3], this means that |A| ∈ Θ((|A| + |τ | +∑

R∈τ |RA| · arity(R)) · log |A|).
Recall the following important classes of FO-formulas. A formula is in prenex

normal form if it begins with a quantifier prefix followed by a quantifier-free formula.
Moreover,Σi (for i ∈ N) refers to the fragment of FO containing all formulas in prenex
normal form with i quantifier blocks alternating between existential and universal
quantifiers and the outermost quantifier being existential.

Counting Problems A counting problem is a function of the form f : Σ∗ → N,
where Σ is a finite alphabet. The counting class #P is characterised by the set of all
functions that can be expressed as the number of accepting paths in a nondeterministic
polynomial time-bounded Turing Machine. Valiant [8] developed the theory of count-
ing problems by showing that counting the number of perfect matchings in a graph is
complete for #P.

For any counting problem f : Σ∗ → N, the associated decision problem is the
problem of deciding f (x) > 0 or not. For example, the associated decision problem
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for #SAT is the well known problem of SAT. For further details, we refer the reader
to an excellent book on counting problems by Jerrum [55].

3 Parameterised Counting in Logarithmic Space

A good survey article on counting problems in parameterised complexity is by Cur-
ticapean [56]. Now, we define the counting counterparts based on the parameterised
classes defined using bounded nondeterminism. A parameterised function is a func-
tion F : {0, 1}∗ × N → N. For an input (x, k) of F with x ∈ {0, 1}∗, k ∈ N, we call
k the parameter of that input. If C is a complexity class and a parameterised function
F belongs to C, we say that F is C-computable. Let M be an NTM. We denote by
#accM (x) the number ofwords y such thatM on input x with the choice tape initialised
with y accepts and reads y completely during its computation. When transforming a
Turing machine with a choice tape into a standard nondeterministic Turing machine,
this notion coincides with the number of accepting computation paths of M on input
x .

Definition 8 Let C = SPACETIME(s, t) for some s, t : N → N. Then a param-
eterised function F is in #paraWC if there is a k-bounded nondeterministic
paraC-machineM such that for all inputs (x, k), we have that #accM (x, k) = F(x, k).
Furthermore, F is in

• #paraβC if there is such an M with read-once access to its nondeterministic bits,
• #paraW[1]C if there is such an M that is tail-nondeterministic, and
• #paraβtailC if there is such an M with read-once access to its nondeterministic
bits that is tail-nondeterministic.

By definition, we get #paraβtailL ⊆ C ⊆ #paraWL for C ∈ {#paraβL, #paraW[1]
L}.

The following lemma shows that paraL-machines can be normalised in a specific
way. This normalisation will play a major role in Sect. 4.

Lemma 9 For any k-bounded nondeterministic paraL-machine M there exists a k-
bounded nondeterministic paraL-machine M ′ with #accM (x, k) = #accM ′(x, k) for
all inputs (x, k) such that M ′ has the following properties:

1. M ′ has a unique accepting configuration,
2. on any input (x, k), every computation path of M ′ accesses exactly g(k) · log |x |

nondeterministic bits (for some computable function g), and M ′ counts on an extra
tape (tape S) the number of nondeterministic steps, and

3. M ′ has an extra tape (tape C) on which it remembers previous nondeterministic
bits, resetting the tape after every log |x |-many nondeterministic steps.

Additionally, if M has read-once access to its nondeterministic bits, or is tail-
nondeterministic, or both, then M ′ also has these properties.

Proof We construct the machine M ′ with the three desired properties and the same
number of accepting computation paths as M step by step, ensuring that the properties
from previous steps are preserved.
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First, note that without loss of generality M can be assumed to have a single
accepting state. We can modify M so that upon reaching an accepting state, it erases
everything in the work tape and moves the head positions of every tape to the left end
marker. This ensures that M has a unique accepting configuration, which is property
(1). This does not alter the number of accepting paths of M on any input.

To ensure (2), we construct a new machine N that behaves as M but additionally
maintains a counter on tape S for the number of nondeterministic bits that have already
been accessed: Every time a new nondeterministic bit is accessed, the counter is
incremented. IfM halts with the counter being less than g(k)·log |x |, then themodified
machine N keeps making nondeterministic choices until the count is g(k) · log |x |.
As the machine has multiple read access to nondeterministic bits, it is not clear when
exactly new bits are accessed. This can be handled using two additional counters:
One stores the index of the rightmost position on the choice tape that has already been
accessed and one stores the current head position on the choice tape. As we use at most
g(k) · log |x | nondeterministic bits, these counters can be stored by a paraL-machine.
Wedefine N to accept if andonly ifM accepts and all of the additional nondeterministic
bits guessed by N have the value 0. Note that N does not use any additional space
except for maintaining and updating the counter. For all (x, k) ∈ {0, 1}∗ × N, the
machine N accesses exactly g(k) · log |x | nondeterministic bits on all computation
paths and #accM (x, k) = #accN (x, k). Also, N still has property (1), since the tape
S has the same content and head position for all accepting configurations and the
remaining part of accepting configurations does not change compared to M .

Finally, to ensure (3), we modify N from the previous step to obtain M ′ as follows.
The new machine M ′ has an additional tape (tape C) on which it initially marks
exactly log |x | cells, placing the head on the left-most cell afterwards. Whenever N
reads a nondeterministic bit, M ′ copies the nondeterministic bit to tape C (that is,
M ′ copies the bit to tape C and moves the head position to the right). If the current
head position in tape C is on the right-most marked cell, then M ′ erases the content
of tape C in the marked cells and copies the nondeterministic bit currently being
read to the first marked cell on tape C . Finally, M ′ accepts if and only if N accepts.
Since this modification does not introduce new nondeterministic steps, the number
of accepting computation paths of M ′ on any input is the same as that of N and the
modification preserves property (2). To re-establish property (1), whenever we would
reach an accepting configuration, we first clear tape C and then accept. ��

The following result follows froma simple simulation of nondeterministicmachines
by deterministic ones. Let FFPT be the class of functions computable by FPT-
machines with output.

Theorem 10 #paraβL ⊆ FFPT.

Proof Let F ∈ #paraβL via the machine M with space-bound g(k)+c log n for some
constant c > 0. For an input (x, k), let G(x, k) = (V (x, k), E(x, k)) be the configu-
ration graph of M on (x, k). Since |V (x, k)| = 2O(g(k)+c log |x |),G can be constructed
in FPT time given the input (x, k). Now, #accM (x, k) is equal to the number of paths
from the starting configuration s(x, k) of M on input (x, k) to the unique accepting
configuration Cacc (by virtue of Lemma 9). Note that computing #accM (x, k) can be

123



2936 Algorithmica (2023) 85:2923–2961

done by counting the number of paths from the initial configuration to the accepting
configuration in G(x, k). This can be done via a simple dynamic programming algo-
rithm (in the fashion of matrix multiplication) computing the number of paths from
the initial configuration to a given configuration in a dynamic fashion. Let C0 be the
initial configuration. Initialise L(C0) = 1 and L(C) = 0 for every other configuration
C in G(x, k). At every iteration, update the value of L(C) for every configuration C
based on the values of all configurations that have an edge to C . For every C , after
|G(x, k)| many iterations, L(C) will the the number of paths from C0 to C . Since
|G(x, k)| is fpt, this can be implemented in fpt time. ��

Using the notion of oracle machines (see, e.g., [57]), we define Turing, metric, and
parsimonious reductions computable in paraL. In the space-bounded setting, we need
to assume that the oracle tape is write-once. Further, the answer to an oracle query is
written on a read-once tape.

With the above assumptions, the oracle tape is always exempted from space restric-
tions which is often the case in the context of logspace Turing reductions [58]. A study
on the effect of changing this assumption might be interesting.

Definition 11 (Reducibilities) Let F, F ′ : {0, 1}∗ × N → N be two functions.

1. F is para-logspace Turing reducible to F ′, F ≤plog
T F ′, if there is a paraL oracle

TM M that computes F with oracle F ′ and the parameter of any oracle query of
M is bounded by a computable function in the parameter.

2. F is para-logspace metrically reducible to F ′, F ≤plog
met F ′, if there is such an M

that uses only one oracle query.
3. F is para-logspace parsimoniously reducible to F ′, F ≤plog

pars F ′, if there is such
an M that returns the answer of the first oracle query.

For any reducibility relation � and any complexity class C, [C]� := { A | ∃C ∈
C such that A � C } is the �-closure of C.

Next, we show that both new classes that are not restricted to tail-nondeterminism
are closed under ≤plog

pars .

Lemma 12 The classes #paraWL and #paraβL are closed under ≤plog
pars .

Proof We start with #paraWL. Let F, F ′ : {0, 1}∗ ×N → N and F ′ ∈ #paraWL via
the k-bounded, sF ′ space-bounded NTM MF ′ . Furthermore, let F ≤plog

pars F ′ via the
paraL oracle TM M . Let σ : {0, 1}∗ × N → {0, 1}∗ and h : {0, 1}∗ × N → N such
that the machine M on input (x, k) uses the only oracle query (σ (x, k), h(x, k)).

Let Mσ , Mh with space-bounds sσ , sh be the machines computing σ , h. To show
that F ∈ #paraWL, we construct a new k-bounded nondeterministic paraL-machine
MF as follows.

On input (x, k), themachineMF simulatesMF ′ on (σ (x, k), h(x, k)) usingMσ and
Mh . Initially, h(x, k) is computed using Mh and the value is stored. Then, whenever
MF ′ reads the i-th input symbol, MF runs Mσ on (x, k) until it outputs the i-th symbol
and uses it as the next input symbol. For this, note that |σ(x, k)| is fpt-bounded.
Afterwards, MF continues the simulation of MF ′ . On (x, k) the number of accepting
paths of MF is exactly the number of accepting paths of MF ′ on (σ (x, k), h(x, k)),
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which is equal to F ′(σ (x, k), h(x, k)) = F(x, k) as required. The space required by
MF is bounded by the sum of the following: The space required to compute and store
h(x, k), the space used by MF ′ on input (σ (x, k), h(x, k)), the space used by Mσ on
input (x, k), and bookkeeping. Regarding bookkeeping, we need an index counter for
MF ′’s input head position. Formally, the space is bounded by

sh(x, k) + |h(x, k)| + sF ′(|σ(x, k)|, h(x, k)) + sσ (|x |, k) + sbk(|x |, k),

where sbk(|x |, k) is the space required for bookkeeping. This sum is in O(log |x | +
f (k)).
The number of nondeterministic bits required by MF is the same as MF ′ on input

(σ (x, k), h(x, k)). Consequently, the computation of MF is still k-bounded as the
number of nondeterministic bits is bounded by

f ′(h(x, k)) · log |σ(x, k)| ≤ f ′′(k) · log |x |,

where f ′, f ′′ are computable functions. This is due to |σ(x, k)| being fpt-bounded
and h(x, k) being bounded by a computable function in k.

We continue with #paraβL. The proof is analogous but MF ′ has read-once access
to its nondeterministic bits. Note that the only time MF accesses nondeterministic
bits is when MF ′ accesses its nondeterministic bits. Moreover, the order in which
nondeterministic bits are accessed is preserved. Consequently, MF has read-once
access to its nondeterministic bits. ��

It is not clear whether the classes restricted to tail-nondeterminisnm share this
closure property. In Corollary 16, we will show that in case of read-once access and
tail-nondeterminisnm, taking the closure under para-logspace parsimonious reductions

is as powerful as lifting the restriction to tail-nondeterminism, i.e. [#paraβtailL]≤plog
pars =

#paraβL. Open Problem 2 on page 44 asks what class corresponds to the correspond-
ing closure of #paraW[1]L.

Another important question is whether classes are closed under certain arithmetic
operations. We show that all newly introduced classes are closed under addition and
multiplication.

Theorem 13 For any o ∈ {W,W[1], β, β-tail}, the class #paraoL is closed under
addition and multiplication.

Proof Let C be any class #paraoL, where o ∈ {W,W[1], β, β-tail}. Let F1, F2
be in C via the NTMs M1 and M2, respectively. Let h be a computable func-
tion such that M1 and M2 both are O(log |x | + h(k)) space-bounded. We start
by showing that the above classes are closed under addition. We first consider
#paraWL and #paraβL. The argument is similar for both of the classes. We give
details for #paraWL. We construct a new machine M as follows: M nondetermin-
istically chooses whether to simulate the machine M1 or the machine M2 on the
given input using a single additional nondeterministic bit. By construction we have
#accM (x, k) = #accM1(x, k) + #accM2(x, k) = F1(x, k) + F2(x, k). Also, M is
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O(log |x | + h(k)) space-bounded and k-bounded, since apart from the initial step
choosing which machine to run, it behaves exactly like either M1 or M2.

We conclude that the class #paraWL is closed under addition. The same argument
works for C = paraβL, as read-once access to nondeterministic bits is preserved by
the construction.

For #paraW[1]L and #paraβtailL, we modify M as follows: M first simulates the
deterministic parts up until the first nondeterministic step of both machines M1 and
M2. That isM first runsM1 until the first nondeterminstic step is reached. SayC1 is the
corresponding configuration. Store C1, and now simulate M2 until the fist nondeter-
minstic step. LetC2 be the corresponding configuration.We then nondeterministically
choose a ∈ {0, 1}. If a = 1, then continue with the simulation of M1 starting at C1,
discard the configuration C2. If a = 0, then continue with simulation of M2 starting at
C2 and discard C1. Accept if and only if the simulated machine accepts. This ensures
that M is tail-nondeterministic if M1 and M2 are tail-nondeterministic. Also, read-
once access to nondeterministic bits is still preserved. Further, M accepts an input if
and only if either M1 accepts it or M2 accepts it. Further, the number of accepting path
of M is equal to the sum of the number of accepting paths of M1 and M2. Total space
requirement of M is bounded by the sum of the spaces used by M1 and M2.

We now show that the above classes are closed under multiplication, starting again
with #paraWL and #paraβL. We construct a new machine M ′. On input (x, k), M ′
first simulates M1 on input (x, k). Whenever, M1 needs a nondeterministic bit, M gets
it from its choice tape, moving the head direction as done by M1. Additionally, we
keep two counters (c1 and c2) to keep track of the position on the choice tape. Initially,
c1 = c2 = 1, indicating that the head is at the first bit on the choice tape. The first
counter (c1) is incremented if M1 moves the head on the choice tape to the right, and
is decremented if the M1 moves the choice tape head to the left. Whenever M1 moves
the choice tape head to the right, we increment c2 if c1 = c2. If M1 accepts, then M ′
simulates M2 on (x, k) such that the start of the choice tape head is at position c2. The
machine M ′ never lets M2 move the choice tape head to the left of position c2. (M ′
will reject if M2 ever tries to do so.) Finally, M ′ accepts if and only if M2 accepts. Note
that we use the counters c1 and c2 to ensure that simulations of M1 and M2 are done
on disjoint sets of nondeterministic choices. This is needed especially for #paraWL.
When M1 and M2 both have read-once access to nondeterministic choices, we do not
need to use the counters c1 and c2.

Since M1 and M2 are k-bounded, M ′ is also k-bounded. The space used by
M ′ is at most the maximum of that of M1 and M2. By construction we have
#accM ′(x, k) = #accM1(x, k) · #accM2(x, k) = F(x, k) · F ′(x, k). Accordingly, the
class C = #paraWL is closed under multiplication. Additionally, if M1 and M2 only
have read-once access to the nondeterministic bits, so has the new machine M ′. We
conclude that #paraβL is closed under multiplication.

We now cover the case of #paraW[1]L and #paraβtailL. Here, M1 and M2 are tail-
nondeterministic. We modify the constructed machine M ′ similar to what was done to
show that these classes are closed under addition. M ′ first simulates the deterministic
parts up until the first nondeterministic configuration of both machines M1 and M2.
Then M ′ simulates M1 starting from the first nondeterministic configuration. If M1
accepts, M ′ simulates M2 starting from the first nondeterministic configuration and
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accepts if and only if M2 accepts. As both M1 and M2 are tail-nondeterministic, the
number of steps of M1 and M2 starting from their first nondeterministic configuration
is k-bounded. Furthermore, the machine M ′ does not perform any nondeterministic
steps until it starts simulating M1 from configuration C1. This ensures that M ′ is
tail-nondeterministic.

Formally, let C1 be the first nondeterministic configuration of M1 on input (x, k)
and C2 be the first nondeterministic configuration of M2 on (x, k). The new machine
M ′ runs M1 on (x, k) until the configuration C1 is reached. Then M ′ stores the config-
uration C1 and runs M2 on (x, k) until the configuration C2 is reached. Storing C2 in a
separate tape, M ′ now proceeds with the nondeterministic computation of M1 starting
with the configuration C1. For every accepting configuration of M1, the machine M ′
starts the computation of M2 from configuration C2 accepting on all paths where M2
does. Further, when M1 and M2 have two-way access to the nondeterministic bits (that
is in the case of #paraW[1]L), we need two counters c1 and c2 as done in the case of
#paraWL.

By construction, we have #accM ′(x, k) = #accM1(x, k) · #accM2(x, k) = F(x, k) ·
F ′(x, k) andM ′ is tail-nondeterministic. Moreover, it can again be seen that read-once
access to nondeterministic bits is preserved by the construction. ��

Closure properties of counting classes under various operations are studied a lot in
the literature. Apart from addition and multiplication, operations of decrement (i.e.,
max of n−1 and 0), andmonus have received wide attention in the literature. There are
several results in the literature concerning closure of counting classes under the monus
operation (see, e.g., [59, 60]). We believe that knowing the closure properties of the
parameterised counting classes introduced in this article under the monus operation
might be interesting in its own right:

Open Problem 1 Which of the classes are closed undermonus, that is,max{F−G, 0}?

4 Complete Problems

In this section, we study complete problems for the previously defined classes. The
complete problems are related to counting walks in directed graphs, model-checking
for FO formulas, and counting homomorphisms between FO-structures, as well as a
parameterised version of the determinant.

4.1 CountingWalks

We start with parameterised variants of counting walks in directed graphs, which will
be shown to be complete for the introduced classes.
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Algorithm 1 Algorithm solving p-#LOGREACHb in #paraβL
Require: G = (V , E), s, t ∈ V , a ∈ N, k ∈ N

1: if a > k · log |V | then
2: reject
3: end if
4: v1 ← s
5: for 1 ≤ i ≤ a do
6: guess a number j between 1 and b
7: if v1 has less than j successors then
8: reject
9: end if
10: let v2 be the j th successor of v1
11: v1 ← v2
12: end for
13: if v1 = t then
14: accept
15: else
16: reject
17: end if

Problem: p-#LOGREACHb

Input: directed graph G = (V , E) with out-degree b, s, t ∈ V and
a ∈ N.

Parameter: k ∈ N.
Output: number of s-t-walks of length a if a ≤ k · log |V |, 0 otherwise.

Theorem 14 For every b > 2, p-#LOGREACHb is #paraβL-complete with respect

to ≤plog
pars -reductions.

Proof We start with the proof idea. For the upper bound, guess a path of length exactly
a. The number of nondeterministic bits is bounded by O(k · log |V |) since successors
can be referenced by numbers in {0, . . . , b − 1}.

For the lower bound, using Lemma 9, construct the configuration graphG restricted
to nondeterministic configurations and the unique accepting configurationCacc, where
the edge relation expresses whether a configuration is reachable with exactly one non-
deterministic, but an arbitrary number of deterministic steps. Accepting computations
of the machine correspond to paths from the first nondeterministic configuration to
Cacc of length f (k) · log |G| in G.

Now we turn to the details of the proof. Algorithm 1 shows membership. The
algorithm first checks the constraint on a. Then it starts from vertex s and guesses an
arbitrary path of length exactly a, using the fact that the out-degree of all vertices is
bounded by b to limit the number of nondeterministic bits needed for this task. More
precisely, we choose a natural ordering depending on the encoding of vertices and use
this to reference successors of the current node by numbers 0, . . . , b− 1. The needed
number of nondeterministic bits is a · log(b) ∈ O(k · log |V |). Furthermore, at any
point of time, the encoding of at most two vertices as well as one number bounded by
a constant are stored, so the algorithm uses logarithmic space.
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Regarding the lower bound, let F ∈ #paraβL via the machine M . Using Lemma 9,
we can assume that M has a unique accepting configuration Cacc and there is a com-
putable function f such that for any input (x, k) all accepting computation paths of
M on input (x, k) use exactly f (k) · log |x | nondeterministic bits. Let (x, k) be an
input of M . Consider the graphG(x, k) = (V (x, k), E(x, k))where V (x, k) is the set
containing all nondeterministic configurations of M on input (x, k) as well asCacc and
E(x, k) contains an edge (C,C ′) if and only ifC ′ is reached fromC using exactly one
nondeterministic step and any number of deterministic steps in the computation of M
on input (x, k). Now the number of accepting computation paths of M on input (x, k)
is exactly the number of paths of length f (k) · log |x | from the first nondeterministic
configuration s(x, k) reached in the computation of M on input (x, k) to the unique
accepting configuration in G. To ensure that the length of accepting paths is bounded
by f (k) · log |G|, we further assume, without loss of generality, that |V (x, k)| ≥ |x |.
This can be ensured as follows: In the beginning of the computation, guess �log |x |�
nondeterministic bits. If all these bits are 0, continue with the original computation of
M . Otherwise, reject. This results in 2�log |x |� ≥ |x | additional nondeterministic con-
figurations. Note that no (directed) cycle is reachable from the initial configuration in
the configuration graph of M on any input. For that reason, no cycle is reachable from
s(x, k) in G and hence every s-t-walk in G is an s-t-path. We now have for all (x, k)
that

F(x, k) = #accM (x, k)

= p-#LOGREACHb((G(x, k), s(x, k), t, f (k) · log |x |), f (k)).

The output G(x, k) needs to be on a write-once tape. We note that the adjacency
withinG(x, k) can be computed from (x, k) in parameterised logspace. That is, given
two nodes C,C ′ ∈ V (x, k), we can decide whether (C,C ′) ∈ E(x, k) or not in
parameterised logspace. We run the machine M starting from C as long as M uses
at most one nondeterministc choice. This essentially means exploring two paths in
the computation of M starting from the configuration C . This can be done by storing
at most three configurations at any point of time. If C1 is the first nondeterministic
configuration reached starting from C , we store C1 and explore the subsequent con-
figurations originating from C1 with the nondeterministic choice as 0 until we reach
a nondeterministic configuration. Then abandon this path and restart with C1 with
nondeterministic choice as 1 and proceed until a nondeterministic configuration is
reached. During this, check if the configuration reached at any point is the same as C ′.
If yes, then output the edge (C,C ′). We repeat this for every pair (C,C ′) of vertices
in V (x, k).

In the above, the reduction outputs an edge list representation of G(x, k) on a
write-once tape. The argument can be extended to the case when an adjacency matrix
representation is needed.

Furthermore, the new parameter is bounded by a computable function in the old
parameter. Accordingly, the construction yields a para-logspace parsimonious reduc-
tion. ��
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In the above problem, the out-degree b could also be taken as part of the parameter
instead of being fixed, maintaining #paraβL-completeness. Hardness immediately
transfers, while membership can be shown with essentially the same algorithm. Let
n be the input length, and k+b be the parameter. The required space is still in para-
logspace, as the algorithmstill only needs to store twovertices andonenumber between
1 and b at any point. The number of nondeterministic bits used is in O(k log n log b)
as log b nondeterministic bits are needed in each of the k log n iterations, which is
clearly k-bounded.

Now consider the problem p-#REACH, defined as follows.

Problem: p-#REACH

Input: directed graph G = (V , E), s, t ∈ V .
Parameter: k ∈ N.
Output: number of s-t-walks of length exactly k.

In contrast to the previous problem, nodes can here have unbounded out-degree,
but we count walks of length k instead of length a ≤ k · log |x |. Note that the analogue
problem for counting paths is #W[1]-complete [20]. However, we will see now that
the problem for walks is #paraβL-complete.

Theorem 15 p-#REACH is #paraβL-complete with respect to ≤plog
pars .

Proof For membership, we modify Algorithm 1. As the length of the path is exactly
k, lines 1–3 are omitted and the loop in line 5 now runs for 1 ≤ i < k. In lines 6–11,
instead of guessing the index of a successor, we directly guess any vertex v2 and reject,
if it is not a successor of v1. As a successor is only guessed less than k times, the new
algorithm is still k-bounded.

Regarding hardness, let F ∈ #paraβL via the machine M . Without loss of gen-
erality, M is in the normal form from Lemma 9. Let f be the computable function
such that M on any input (x, k) uses exactly f (k) · log |x | nondeterministic bits. Also,
assume without loss of generality that the accepting configuration of M is determinis-
tic. Fix an input (x, k). We reduce the problem of counting the accepting computation
paths of M on input (x, k) to the problem of counting walks in a modified version of
the configuration graph of M on input (x, k). The difference to the hardness proof of
Theorem 14 is that edges now encode computations comprised of log |x |-many non-
deterministic steps. More precisely, define G = (V , E) and s, t ∈ V as follows: V
consists of all nondeterministic configurations of M on input (x, k) and the (unique)
accepting configurationCacc of M . ForC ′ �= Cacc, (C,C ′) ∈ E if and only if configu-
ration C ′ is reachable from C in exactly log |x |-many nondeterministic steps (and any
number of deterministic steps) in the computation of M on input (x, k). Furthermore,
(C,Cacc) ∈ E if and only if Cacc is reachable from C using exactly one nondetermin-
istic step and any number of deterministic steps, i.e. no additional nondeterministic
configurations appear. Finally, s is the first nondeterministic configuration reached in
the computation of M on input (x, k) and t = Cacc.

Since all accepting computation paths in the configuration graph of M on input
(x, k) use exactly f (k) · log |x | nondeterministic bits, the change made compared to
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the reduction used for Theorem 14 does not change the number of paths and we can
simply count paths of length exactly f (k) in the new graph. By the above we have

F(x, k) = #accM (x, k)

= p-#REACH((G, s(x, k), t), f (k)).

Note that this equality crucially depends on the machine storing the last log |x | non-
deterministic bits on the extra tape which can be assumed thanks to Lemma 9.

The set E can still be computed by a paraL-machine: To check whether an edge
(C,C ′) is present, we simply loop over all values for the next log |x | nondeterministic
bits and verify whether the corresponding sequence of configurations starting from C
is a path ending in C ′ in the configuration graph of M on input (x, k). Consequently,
the construction yields a para-logspace parsimonious reduction. ��

As the length of paths that are counted in p-#REACH is k, the runtime of the whole
algorithm used to prove membership in the previous theorem is actually bounded by
k · log |x | on input (x, k). This means that the computation is tail-nondeterministic.
Also, it may be noted that query access to the input is necessary to ensure tail-
nondeterminism. Apart from Theorem 16 we need this assumptions in Theorems 21
and 14.

Theorem 16 p-#REACH is #paraβtailL-complete with respect to ≤plog
pars .

Proof This almost immediately follows from the proof of Theorem 15. For member-
ship, first observe that finding the j-th successor is not a problem thanks to the RAM
access. Furthermore, the runtime of the modified algorithm described in that proof is
bounded by O(k · log n), and hence the algorithm is already tail-nondeterministic. For
hardness, it suffices that the problem is #paraβL-hard and #paraβtailL ⊆ #paraβL.

��
The previous results together with the fact that #paraβL is closed under≤plog

pars yield
the following surprising collapse (a similar behaviour was observed by Bottesch [37,
38]).

Corollary 17 [#paraβtailL]≤plog
pars = #paraβL.

We continue with another variant of p-#LOGREACHb, namely p-#LOGWALKb.
Here, all walks of length a are counted, if a ≤ k · log |x | (and s, t are not part of the
input).

Theorem 18 p-#LOGWALKb is #paraβL-complete with respect to ≤plog
T .

Proof For membership, we use Algorithm 1 but nondeterministically guess nodes
s, t ∈ V .

For hardness, let F ∈ #paraβL via the machine M . Without loss of generality
assume that M is in the normal form from Lemma 9 and that f is a computable
function such that on input (x, k), M uses exactly f (k) · log |x | nondeterministic bits.
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Fig. 2 Construction of G(x) in the proof of Theorem 18. The black chains of unnamed vertices depict
possibly occurring “bad” configuration sequences in the configuration graph that should not be considered
as they are unreachable from the initial configuration

Similarly as in the proof of Theorem 14, let G(x, k) = (V (x, k), E(x, k)) be the
modified configuration graph where edges represent one nondeterministic step and an
arbitrary number of deterministic steps. Furthermore, we extend G(x, k) by adding a
path of fresh vertices v1, . . . , vlog |x | with (vi , vi+1) ∈ E(x) for 1 ≤ i < log |x |. The
reason for this construction lies in possible “bad” paths that start in some configuration
that is not reachable from the starting configuration, but end in the unique accepting
configuration. Such paths are depicted in Fig. 2.

Furthermore, without loss of generality we assume |V (x, k)| ≥ |x |.
Now, any path inG(x, k) going from v1 to the initial configuration s(x, k) and then

to the accepting configuration t is of length 
(x, k) := ( f (k) + 1) · log |x |. Notice,
that the number of such v1-t-paths is equivalent to the number of accepting paths of
M on input x .

Next, consider the graph G′(x, k) obtained from G(x, k) by removing the edge
(v1, v2). This ensures that in G′(x, k), among paths of length 
(x, k), exactly the
“good” accepting paths are missing compared to G(x, k). Consequently, the number
of accepting computation paths #accM (x, k) is exactly the difference between the
number of paths of length 
(x, k) in G(x, k) and in G′(x, k):

#accM (x, k) = p-#LOGWALKb(G(x, k), 
(x, k), f (k) + 1)

− p-#LOGWALKb(G
′(x, k), 
(x, k), f (k) + 1).
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These numbers of paths cannot be stored on the worktape as they are only bounded
by 2
(x,k) = 2( f (k)+1)·log |x |. Hence, for a ≤plog

T -reduction, we need to compute the
difference bit by bit by querying both oracles for each bit and only storing the carry bit
and a counter for the current position in the output. As the output only has O(( f (k)+
1) · log |x |) many bits, this is possible in para-logspace. ��
Remark 19 Though the completeness in Theorem 18 is stated for Turing reductions,
the reduction does not use the full power of Turing reductions. In fact, we need only
a difference of the results of two queries. Such a reduction is studied in the literature
and is known as a subtractive reduction [61]. Due to the technicalities involved in
extending the notion of subtractive reductions to the parameterised logspace setting,
we have stated the completeness for Turing reductions.

Furthermore, one might think that a simple layering of the graph might be enough
to make the reduction parsimonious instead of Turing. However, this does not work,
for the target problem counts all walks of given length, not only s-t-walks. However,
we need to extract the number of s-t-paths in the configuration graph. It is not clear
how layering helps here. Even with layering, p-#LOGWALKb will count the number
of walks from the first layer to the last layer. We will still need two queries.

It may be noted that the decision versions of the problems p-#REACH and
p-#LOGREACHb are complete for the respective decision complexity classes. Stock-
husen [51] presents path variants of these problems and proves completeness for those
problems. However, Stockhusen considers paths of length at most k, where as our
variants seek paths of length exactly k. We do not know if the counting versions of the
path related problems in [51] are contained in the corresponding counting classes. It
will be interesting to see if the counting versions of parameterised path problems in
[51] characterise the corresponding counting classes as well.

4.2 Counting FO-Assignments

Let F be a class of first-order formulas. The problem of counting satisfying assign-
ments to free FO-variables in F-formulas, p-#MC(F), is defined as follows.

Problem: p-#MC(F)

Input: formula ϕ ∈ F , structure A.
Parameter: k ∈ N.
Output: |ϕ(A)| if k = |ϕ|, 0 otherwise.

Here, ϕ(A) is the set of satisfying assignments of ϕ in A:

ϕ(A) = { (a1, . . . , an) ∈ dom(A)n | A |� ϕ(a1, . . . , an) }.

We investigate parameterisations of variants of this problem and in this way obtain
complete problems for some of our new complexity classes in the setting of first-order
model-checking.
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Algorithm 2Model-counting algorithm for Σ0-formulae with bounded arity
1: function Model- Count(Σ0-formula ϕ, structure A; arity ≤ a ∈ N)
2: if ϕ = ϕ1∧ϕ2 then
3: if Model- Count(ϕ1, A) then
4: return Model- Count(ϕ2, A)
5: end if
6: end if
7: if ϕ = ¬ϕ1 then
8: return not Model- Count(ϕ1, A)
9: end if
10: if ϕ = R(xi1 , . . . , xim ) where m = arity(R) then
11: write encoding of R and delimiter # to relation query tape
12: for j = 1, . . . ,m do
13: if xi j is already assigned a value then
14: copy value of xi j to relation query tape, add delimiter #
15: else
16: guess value a ∈ dom(A) for xi j and store it
17: copy value of xi j to relation query tape, add delimiter #
18: end if
19: end for
20: query RA using a relation query
21: return result of the above query
22: end if
23: end function

Denote by p-#MC(F)a the variant where for all relations the arity is at most a ∈ N.
Furthermore, we consider a fragment of FO obtained by restricting the occurrence of
variables in the syntactic tree of a formula in a purely syntactic manner. Formally,
the syntax tree of a quantifier-free FO-formula ϕ is a tree with edge-ordering whose
leaves are labelled by atoms of ϕ and whose inner vertices are labelled by Boolean
connectives. We now introduce a purely syntactical notion of locality. Note that the
definition for the Σi -classes can be found at page 18 in the subsection on ‘Logic’
within the preliminaries.

Definition 20 Let r ∈ N and ϕ be a quantifier-free FO-formula. Let θ1, . . . , θm be
the atoms of ϕ in the order of their occurrence in the standard encoding of ϕ as a
string. We say that ϕ is r -local if for any θi , θ j that involve the same variable, we have
|i − j | ≤ r .

We define Σr -local
0 := { ϕ ∈ Σ0 | ϕ is r -local }.

Using this syntactic notion of locality, we obtain a complete problem for our
classes with read-once access to nondeterministic bits in the setting of first-order
model-checking. The following proofs will utilise the straightforward model-counting
algorithm for Σ0-formulae of bounded arity, see Algorithm 2.

Theorem 21 For a ≥ 2, r ≥ 1, p-#MC(Σr-local
0 )a is #paraβL-complete and

#paraβtailL-complete with respect to ≤plog
pars .

Proof Let us start with a proof idea. Regarding membership, Algorithm 2 can be
used with a slight modification. Note that the whole running time of the algorithm is
bounded by f (|ϕ|)·log |A| for some computable function f and thereby the procedure
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is tail-nondeterministic. Furthermore, we need to ensure that any assignment to a free
variable, which is stored globally, is removed when the variable cannot occur anymore
due to r -locality. After removing an assignment, the space can be reused for further
assignments in the computation. For this, note that the algorithm visits the atoms in the
order of their occurrence in the standard encoding of ϕ as a string. Hence, r -locality
ensures that the number of assignments that need to be stored at any point is bounded
sufficiently.

Regarding the lower bound, we reduce from p-#REACH and use the formula

ϕk(x1, . . . , xk) := (x1 = s)∧E(x1, x2)∧E(x2, x3) ∧ · · · ∧ E(xk−1, xk)∧xk = t

expressing that a tuple of vertices (v1, . . . , vk) is an sA-tA-walk in an (E, s, t)-
structure A.

Now, we are ready to present the proof details. We show both completeness results
by showing membership in #paraβtailL and hardness for #paraβL.

For membership, let ϕ ∈ Σr -local
0 be a formula over some vocabulary σ of bounded

arity, A be a σ -structure and k ∈ N. Without loss of generality, |ϕ| ≤ k, since
we can immediately reject otherwise. Now Algorithm 2 can be used to count the
satisfying assignments of ϕ in A. Here, the assignments for variables are guessed
nondeterministically whenever a variable first occurs and are stored globally. The
only parts of the algorithm that depend on the structure A are the stored assignments
as well as the tuples written to the relation query tape. Hence, the space needed for
book-keeping of the recursion is bounded by a computable function in |ϕ| ≤ k. As ϕ

has bounded arity, the tuples written to the relation query tape are of size O(log n).
Also, the total number of nondeterministic bits used by the algorithm is k-bounded,
as there are at most |ϕ| ≤ k variables and each gets an assignment of O(log n) bits.

Leaving the algorithm unchanged means that we also need O(k log n) bits to store
all assignments. To avoid this, we use the fact that ϕ is r -local and has bounded arity.
We store any assignment xi �→ a as the pair (i, a) followed by the delimiter #. By
r -locality, we can then remove any assignment after evaluating r more atoms and
reuse the space. For this, after reaching an atom, we check for all assignments that are
currently stored howmany atoms occur in ϕ before the first occurrence of that variable
and the current atom. If this number exceeds r , the assignment can be removed. This
means that at any point during the computation, we store an assignment only for the
variables that occurred in the previous r atoms, that is, for at most a · r variables.

Finally, we need to argue that the algorithm is tail-nondeterministic. This is triv-
ial, as the running time of the whole algorithm is k-bounded. For this, observe that
the size of the recursion tree of the algorithm is bounded by a computable function
in the parameter. Furthermore, the running time for connectives is constant, while
the running time for atoms is bounded by the time needed to search for a constant
number of assignments as well as writing a tuple on the relation query tape. As the
space needed by all assignments is in O(log n) and the tuples written to the relation
query tape are of bounded arity, both operations can be done in time O(log n). This
means that the running time of the algorithm is k-bounded and, consequently, it is
tail-nondeterministic.
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To show hardness, we reduce from p-#REACH, which is #paraβL-complete by
Theorem15.Define the vocabularyσ := (E, s, t). Fix an input ((G = (V , E), s, t), k)
of p-#REACH. The formula

ϕk(x1, . . . , xk) := (x1 = s)∧E(x1, x2)∧E(x2, x3) ∧ · · · ∧ E(xk−1, xk)∧xk = t

expresses that a tuple of vertices (v1, . . . , vk) is an sA-tA-walk in the input structureA.
We define the σ -structureG as (V , E, s, t). By construction, the number of satisfying
assignments of ϕ in structure G is exactly the number of s-t-paths of length k in G.
Also, |ϕ| is bounded by k. As a result, the mapping ((G, s, t), k) �→ ((ϕk,G), |ϕ|) is
the desired reduction. ��

We will now consider the more general problem p-#MC(Σ0)a for a ∈ N and
show that it is complete for tail-nondeterministic para-logspace with multiple-read
access to nondeterministic bits. Note that the decision version of p-#MC(Σ0)a asks
whether there is an assignment to the free variables satisfying the formula. Hence, the
free variables can be viewed as existentially quantified and the problem is equivalent
to parameterised model-checking for Σ1-sentences. This problem has received wide
attention in the literature [2, Chapter 7.4]. We prove:

Theorem 22 For a ≥ 3, p-#MC(Σ0)a is #paraW[1]L-complete with respect to ≤plog
pars

reductions.

Proof Membership in #paraW[1]L again follows from a modified version of Algo-
rithm 2. Here, the modification consists of using the contents of the choice tape as
assignments to the free variables. The number of nondeterministic bits needed is still
in O(k · log n), where k is the parameter and n is the input length. As we havemultiple-
read access to the choice tape, we do not need to store the assignments on a work tape.
Instead, we copy them to the relation query tape directly from the choice tape when-
ever needed. This means that the considerations for space and running time given in
the proof of Theorem 21 mostly still apply. The only difference comes from the time
needed to access an assignment. To access the assignment to a single variable, we at
most need to go over the whole relevant part of the choice tape once and copying a
word of length O(log n), needing time at most O(k log n) in total. As there are at most
|ϕ| ≤ k occurrences of variables in the formula, accessing the correct assignments
and copying them to the relation query tape needs time at most O(k2 log n) in total.
In total, this still results in a k-bounded running time, meaning that the algorithm is
still tail-nondeterministic.

Regarding hardness, let F ∈ #paraW[1]L via the NTM M . Without loss of gen-
erality, assume that M is in the normal form from Lemma 9. Furthermore, let f be
a computable function such that M is O(log |x | + f (k)) space-bounded and M uses
exactly f (k) · log |x | nondeterministic bits on any input (x, k). Fix an input (x, k).
The idea for the reduction is to construct from (x, k) the configuration graph of M on
input (x, k) as a first-order structure A together with a formula ϕ(b). The formula ϕ

expresses that M accepts (x, k), if the choice tape contains the binary word encoded
by b.
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Anaive approachwould nowbe to use a relation Rwith the following interpretation.
Let (C,C ′, b) ∈ RA, ifC ′ is reached fromC in the computation ofM , when the choice
tape contains the binary word encoded by b. The problem is that this would lead to the
size of A not being fpt-bounded. Hence, we instead construct RA in such a way that
(C,C ′, a) ∈ RA, if C ′ is reached from C using exactly log |x | nondeterministic and
any number of deterministic steps in the computation ofM , when the nondeterministic
bits accessed by M in these steps are exactly the bits of a. As a now only needs to
encode log |x | bits, the resulting structure is fpt-bounded.

As it is not clear in advancewhich bits of b are used atwhat point of the computation,
we need an additional tuple a of free variables encoding the actual nondeterministic
bits encountered in the computation. Moreover, we need additional relation symbols
S0, . . . , S f (k)−1 specifying whether the bits of a actually encode the nondeterministic
bits encountered by the computation of M starting from a given configuration, when
the choice tape contains the binary word encoded by b.

This is done by letting (C, a, b) ∈ SAj , if the bits of a being the actual next log |x |
nondeterministic bits accessed by M starting from configuration C is consistent with
b encoding the content of the j-th block of length log |x | on the choice tape. More
precisely: Consider the next log |x | nondeterministic configurations reached by M
starting fromC , when the bits of a are the bits read from the choice tape in these steps.
Let pos1, . . . , poslog |x | be the indices of the cells of the choice tape accessed in those
configurations in the order they are reached. Now (C, a, b) ∈ SAj means that for all i , if
posi lies in the j-th block of length log |x | on the choice tape, i.e. �posi/ log |x |� = j ,
then the i-th bit of a is exactly the corresponding bit on the choice tape as given by
b, i.e. the i-th bit of a equals the (posi MOD log |x |)-th bit of b. In this construction,
both a and b are tuples of arity f (k) and each element encodes a binary word with
log |x | bits.

Finally, we need the constants C0 and Cacc for the first nondeterministic configu-
ration of M on input (x, k) and the unique accepting configuration, respectively. This
results in the vocabulary σ = (R3, S30 , . . . , S

3
f (k)−1;C0,Cacc).

Given the above construction of A and σ , we can now define ϕ as follows:

ϕ(b, a, x) := x0 = C0∧x f (k) = Cacc∧
f (k)−1∧
i=0

(
R(xi , xi+1, ai )∧

f (k)−1∧
j=0

S j (xi , ai , b j )
)
,

where b = (b0, . . . , b f (k)−1), a = (a0, . . . , a f (k)−1), and x = (x0, . . . , x f (k)). On a
high level, ϕ expresses that Cacc is reached from C0 within f (k) batches of log |x |
steps each, when the choice tape contais the binary word encoded by b. This is done as
follows: The tuple x encodes a sequence of configurations starting from the first non-
deterministic configuration and ending in the unique accepting configuration. Using R,
ϕ expresses that configuration xi+1 is reached from xi in exactly log |x | nondetermin-
istic steps and any number of deterministic steps in the computation of M , provided
that ai encodes the nondeterministic bits that are accessed in these steps. Using the
relations S j , the formula further expresses that ai encodes the actual nondeterministic
bits accessed within the i-th batch, when b encodes the content of the choice tape.
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For correctness, also note that, if ϕ is satisfiable, the assignments to both a and x are
uniquely determined by the assignment to b. ��

Having seen in Corollary 17 that [#paraβtailL]≤plog
pars = #paraβL, we want to con-

clude this subsection with the question of whether the ≤plog
pars -closure of #paraW[1]L

also coincides with some known class.

Open Problem 2 Is the class [#paraW[1]L]≤plog
pars equivalent to some known class?

4.3 Counting Homomorphisms

This subsection is devoted to the study of the problem of counting homomorphisms
between two structures in the parameterised setting. Typically, the size of the uni-
verse of the first structure is considered as the parameter. The complexity of counting
homomorphisms has been intensively investigated for almost two decades [34–36,
62].

Definition 23 (Homomorphism) Let A and B be structures over some vocabulary τ

with universes A and B, respectively. A function h : A → B is a homomorphism
from A to B if for all R ∈ τ and for all tuples (a1, . . . , aarity(R)) ∈ RA, we have
(h(a1), . . . , h(aarity(R))) ∈ RB.

A bijective homomorphism h between two structures A,B such that the inverse
of h is also a homomorphism is called an isomorphism. If there is an isomorphism
between A and B, then A is said to be isomorphic to B.

Definition 24 Let A be a structure with universe A. We denote by A∗ the extension of
A by a fresh unary relation symbol Ca interpreted as CA

a = {a} for each a ∈ dom(A).
For a class of structures A, we analogously denote the class {A∗ | A ∈ A } by A∗.

Define p-#Hom(A) as the following problem. Given a pair of structures (A,B)

where A ∈ A, and parameter k, output the number of homomorphisms from A to B,
if |dom(A)| ≤ k, and 0 otherwise.

Problem: p-#Hom(A)

Input: A pair of structures (A,B) where A ∈ A.
Parameter: k ∈ N.
Output: the number of homomorphisms from A to B if |dom(A)| ≤ k, 0

otherwise.

Notice that B can be any structure.
For n ≥ 2, let Pn be the canonical undirected path of length n, that is, the (E)-

structure with universe {1, . . . , n} and EPn = { (i, i + 1), (i + 1, i) | 1 ≤ i < n }.
Let P be the class of structures isomorphic to some Pn . We next want to show that
p-#Hom(P∗) is #paraβL-complete with respect to ≤plog

pars . For this, we will reduce to
p-#REACH for membership, and from a normalised, coloured variant of p-#REACH
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Fig. 3 Example for the membership proof of Theorem 26

for hardness.We begin by introducing said variant and showing that it is still #paraβL-

complete with respect to ≤plog
pars . Here, a colouring function 
 : V → {1, . . . ,m} for

some m ∈ N is given as an additional part of the input.

Problem: p-#REACH∗

Input: Directed graph G = (V , E), s, t ∈ V , 
 : V → {1, . . . ,m} with
m ∈ N, 
(s) = 1 and 
(t) = m.

Parameter: k ∈ N.
Output: number of s-t-paths (s = v1, . . . , vk = t) with 
(vi ) = i for

1 ≤ i ≤ k, if m = k, 0 otherwise.

Lemma 25 p-#REACH∗ is #paraβL-complete with respect to ≤plog
pars .

Proof sketch The proof is very similar to that of Theorem 15. For membership, the
algorithm additionally needs to check in each step of the path whether the guessed
successor is consistent with the labeling.

Regarding hardness, we outline the main difference and the process of labeling the
vertices. Let F ∈ #paraβL via a k-bounded log-space NTM M which has read-once
access to nondeterministic bits. Consider an input (x, k) and let G = (V , E) be the
configuration graph of M on input (x, k) as defined in the proof of Theorem 15. For a
nondeterministic configurationC ∈ V , let 
(C) be the number represented in tape S in
the configuration C . Now it is not hard to see that F(x, k) = p-#REACH∗(G, s, t, 
),
where s is the first nondeterministic configuration reachable from the initial configu-
ration of M on (x, k) and t is the unique accepting configuration of M . ��

Theorem 26 p-#Hom(P∗) is #paraβL-complete with respect to ≤plog
pars .

Regarding membership, we will show p-#Hom(P∗) ≤plog
pars p-#REACH, where the

latter is in #paraβL by Theorem 15. The proof idea is visualised in Fig. 3 with an
example. Consider an arbitrary input ((A,B), k) to p-#Hom(P∗) with FO-structures
A,B and k ∈ N. By definition of the problemwe haveA ∈ P∗. Let A = dom(A), B =
dom(B).We assume thatA andB have the same underlying vocabulary σ and |A| ≤ k,
since the remaining cases can easily be handled. Let E be the edge relation symbol
in σ . Furthermore, let A = {a1, . . . , an} with n ∈ N be the universe of A such that
(ai , ai+1) ∈ EA and let B be the universe of B.
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Now, define the directed graph G = (B ∪ {s, t}, E ′) with s, t /∈ B and

E ′ :={ (s, x) | x ∈ CB
a1 }∪

{ (x, y) ∈ EB | ∃1 ≤ i ≤ n : x ∈ CB
ai , y ∈ CB

ai+1
}∪

{ (x, t) | x ∈ CB
an }.

The reduction is given by the mapping ((A,B), k) �→ ((G, s, t), |A| + 2).
We show correctness by giving a 1-1-correspondence between homomorphisms

fromA to B and s-t-walks inG of length |A|+2. This correspondence is given by the
following mapping. Let h be a homomorphism from A to B. This homomorphism is
bijectively mapped to an s-t-path as follows. The homomorphism yields a sequence
(h(a1), . . . , h(an)) with h(ai ) ∈ CB

ai , (h(ai ), h(ai+1)) ∈ EB for 1 ≤ i < n. From
this, we obtain the s-t-path (s, h(a1), . . . , h(an), t) in G.

Regarding injectivity, let h �= h′ be two different homomorphisms from A to B.
As a result, there exists an 1 ≤ i < n such that h(ai ) �= h′(ai ). Consequently,
(s, h(a1), . . . , h(an), t) �= (s, h′(a1), . . . , h′(an), t).

Regarding surjectivity, let (s, v1, . . . , vn, t) be an s-t-path in G. Now, (s, v1),
(vi , vi+1), (vn, t) ∈ E ′ for all 1 ≤ i < n. By construction of E ′, this means vi ∈ CB

ai
for 1 ≤ i ≤ n and (vi , vi+1) ∈ EB for 1 ≤ i < n. Consequently, the function h
with h(ai ) = vi for all i is a homomorphism from A to B as well as a preimage of
(s, v1, . . . , vn, t) under the given mapping.

The reduction can be computed by a paraL-machine as follows. The vertex set
of the graph is just the universe B extended by two new vertices. Store the sequence
a1, . . . , an . To compute E ′, the machine identifies all vertices x ∈ CB

a1 and prints for
each the edge (s, x); similarly for all edges (x, t) with x ∈ CB

an . Then, for each edge
(x, y) ∈ EB, we find and store the index i such that x ∈ CB

ai and check whether
y ∈ CB

ai+1
is true. The machine only queries relations of B for individual tuples which

can be achieved with binary counters.
For hardness, we show p-#REACH∗ ≤plog

pars p-#Hom(P∗). Given a directed graph
G = (V , E), s, t ∈ V , k ∈ N, 
 : V → {1, . . . , k}, we define two structures A,B
as follows. Let the universe of A be defined as {1, . . . , k}, EA := { (i, i + 1), (i +
1, i) | 1 ≤ i < k }, and CA

i := {i} for 1 ≤ i ≤ k. Define the universe of B as V ,
EB := { (u, v), (v, u) | (u, v) ∈ E and 
(v) = 
(u)+1 }, and CB

i := { u | 
(u) = i }.
Regarding correctness, the function thatmaps each s-t-pathπ = (s = v1, . . . , vk =

t) to the homomorphism hπ with hπ (i) = vi for all 1 ≤ i ≤ k is a bijective mapping
between colour-respecting s-t-paths π in G and homomorphisms hπ from A to B.
The mapping is injective due to the fact that each node in the path contributes to the
construction of the homomorphism. The mapping is surjective as for each homomor-
phism h the path (h(1), . . . , h(k)) is a colour-respecting s-t-path inG and a preimage
of h.

We now argue that the above reduction can be computed in paraL. The structureA
only depends on the parameter. The universe of structure B is a copy. The relation EB

is the symmetric closure of E (i.e., for every (u, v) ∈ E , EB contains both (u, v) and
(v, u)) with the additional condition that edges have to be consistent with the labeling
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function 
. The relationsCB
i require a log |V |-counter to check for each u ∈ V whether


(u) = i . This completes the proof. ��
Open Problem 3 Is there a natural class of structures A such that p-#Hom(A) is
#paraW[1]L-complete with respect to ≤plog

pars?

4.4 The Parameterised Complexity of the Determinant

In this section, we consider a parameterised variant of the determinant function intro-
duced by Chauhan and Rao [32]. For n > 0 let Sn denote the set of all permutations of
{1, . . . , n}. For each k ≤ n, we define the subsetSn,k ofSn containing all permutations
with exactly k non-fixpoints:

Sn,k = { π | π ∈ Sn, |{ i : π(i) �= i }| = k }.

We define the parameterised determinant function of an n × n square matrix A =
(ai, j )1≤i, j≤n as

p-det(A, k) =
∑

π∈Sn,k

sign(π)
∏

i :π(i) �=i

ai,π(i).

Remark 27 The reader might wonder why the product in the above definition is over
i such that π(i) �= i . The original idea in the definition was to have p-det as a
polynomial function of degree bounded by the parameter, so that it will be of use in
the development of parameterised algebraic complexity theory. The two notions are
equivalent if we ensure that diagonal entries are all 1’s, i.e., the underlying graph has
a self-loop at every vertex.

In the following, wewill assume that A is amatrixwith entries from {0, 1}. Using an
interpolation argument, it can be shown that p-det is in FP when k is part of the input
and thereby inFFPT [32]. In fact, the same interpolation argument can be used to show
that p-det is in GapL (the class of functions f (x) such that for some NL-machine,
f (x) is the number of accepting minus the number of rejecting paths). However,
this does not give a space efficient algorithm for p-det in the sense of parameterised
classes. The GapL algorithm may require a large number of nondeterministic steps
and accordingly is not k-bounded. We show that the space efficient algorithm for the
determinant given by Mahajan and Vinay [33] can be adapted to the parameterised
setting, proving that p-det can be written as the difference of two #paraβL functions.
Recall the notion of a clow sequence introduced by Mahajan and Vinay [33].

Definition 28 (Clow) Let G = (V , E) be a directed graph with V = {1, . . . , n} for
some n ∈ N. A clow in G is a walk C = (w1, . . . , wr−1, wr = w1) where w1 is the
minimal vertex among w1, . . . , wr−1 with respect to the natural ordering of V and
w1 �= w j for all 1 < j < r . Node w1 is called the head of C , denoted by head(C).

Definition 29 (Clow sequence) A clow sequence of a graph G = ({1, . . . , n}, E) is a
sequence W = (C1, . . . ,C
) such that Ci is a clow of G for 1 ≤ i ≤ 
 and
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• the heads of the sequence are in ascending order, that is, head(C1) < · · · <

head(C
), and
• the total number of edges (including multiplicities), that is, |C1| + · · · + |C
|, is
exactly n, where |C | denotes the number of edges in the clow C .

For a clow sequence W of some graph G = ({1, . . . , n}, E) consisting of r clows
the sign of W , sign(W ), is defined as (−1)n+r . Note that, if the clow sequence is a
cycle cover σ , then (−1)n+r is equal to the sign of the permutation represented by
σ (that is, (−1)#inversions in σ ). Mahajan and Vinay came up with this sign-function to
derive their formula for the determinant.

For an (n×n)-matrix A,GA is theweighted directed graphwith vertex set {1, . . . , n}
and weighted adjacency matrix A. For a clow (sequence)W , weight(W ) is the product
of weights of the edges (clows) in w. For any G as above, WG is the set of all
clow sequences ofG. Mahajan and Vinay proved that det(A) = ∑

W∈WGA
sign(W ) ·

weight(W ) [33].
We adapt these notions to the parameterised setting. First observe that for a permu-

tation σ ∈ Sn,k , we have that sign(σ ) = (−1)n+r , where r is the number of cycles
in the permutation. However, the number of cycles in σ is n − k + r ′, where r ′ is
the number of cycles of length at least two in σ , the rest being fixed points, i.e., self
loops. Accordingly, we have sign(σ ) = (−1)2n−k+r ′

. Adapting the definition of a
clow sequence, for k ≥ 0, define a k-clow sequence to be a clow sequence where the
total number of edges (including multiplicity) in the sequence is exactly k, every clow
has at least two edges, and no self loop edge of the form (i, i) occurs in any of the
clows. For any graph G with vertex set {1, . . . , n} for n ∈ N, WG,k is the set of all
k-clow sequences of G. For a k-clow sequence W ∈ WG,k , sign(W ) is (−1)2n−k+r ′

,
where r ′ is the number of clows inW . Mahajan and Vinay showed that the signed sum
of the weights of all clow sequences is equal to the determinant [33, Theorem 1]. At
the outset, this is a bit surprising, since the determinant is equal to the signed sum of
weights of cycle covers, whereas there are clow sequences that are not cycle covers.
Mahajan and Vinay observed that every clow sequence that is not a cycle cover can be
associated with a unique clow sequence of opposite sign, and thereby all such clow
sequences cancel out [33]. We observe a parameterised version of the above result
[33, Theorem 1].

Lemma 30 p-det(A, k) = ∑
W∈WGA ,k

sign(W ) · weight(W ), for a (0, 1)-matrix A,

k ∈ N.

Proof The statement essentially follows from the arguments of Mahajan and Vinay
[33, Theorem 1]. The reader is referred to the original article for a full construction.
Their proof involves defining an involution η (i.e., η is a bijection whose inverse is
itself) on the set of clow sequences such that η is the identity on the set of all cycle
covers (i.e., η(C) = C for any cycle cover C) and for any clow sequence W that is
not a cycle cover, we have sign(W ) = −sign(η(W )).

We briefly describe the involution η given by Mahajan and Vinay [33]. For a clow
sequenceW = (W1, . . . ,Wr ), the clow sequence η(W ) is obtained fromW as follows.
Let i ∈ {1, . . . , r} be the smallest index such that clows Wi+1, . . . ,Wr are vertex
disjoint simple cycles. Traverse the clow Wi starting from the head until we reach
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some vertex v such that either v is in some Wj for i + 1 ≤ j ≤ r or v completes a
simple cycle within Wi . In the former case, we merge the simple cycle Wj with the
clow Wi and remove Wj from the sequence to get the clow sequence η(W ). In the
latter case, we split the clow Wi at the vertex v to get a new clow W ′

i and a simple
cycle C ′. Then η(W ) is the clow sequence obtained by replacing Wi by the new clow
W ′

i and inserting the cycle C ′ into the resulting clow sequence. The remaining clows
in W are kept untouched.

We now give a brief justification for why η is self-inverse and consequently an
involution, which was proven by Mahajan and Vinay [33, Theorem 1]. Restricted to
cycle covers, η is the identity function and hence clearly self-inverse. Otherwise, the
operations applied in the two cases of the construction of η are opposite to each other:
In the first case a simple cycle is merged into another clow in the sequence, while in
the second case a clow in the sequence is split by extracting a simple cycle from it.
Showing that η is indeed an involution now boils down to verifying the following:
Whenever η(W ) is obtained from W by merging two clows, another application of η

will reverse that operation by splitting the merged clow. Whenever η(W ) is obtained
from W by splitting a clow, another application of η will reverse that operation by
merging the two parts of the split clow.

We note that the involution η described above does not require that the clow
sequence W has exactly n edges. In particular, η(W ) is well defined even when
W ∈ WG,k for some graph G. Furthermore, for W ∈ WG,k we have η(W ) ∈ WG,k
and sign(W ) = −sign(η(W )), since η(W ) has the same number of edges asW and in
case thatW is not a cycle cover either has one clowmore thanW or one clow less than
W . Combining with the argument that η is indeed an involution, and that p-det(A, k)
is the alternating sum of weights of cycle covers with exactly k non-self-loop edges,
we get:

p-det(A, k) =
∑

W∈WGA ,k

sign(W ) · weight(W ).

This concludes the proof. ��
Using this characterisation, the upper bound in the following theorem can be

obtained. For hardness a reduction from p-#REACH suffices.

Theorem 31 The problem p-det for (0, 1)-matrices can be written as the difference of
two functions in #paraβtailL, and is #paraβtailL-hard with respect to ≤plog

met .

Proof We prove this using a parameterised version of the algorithm given by Maha-
jan and Vinay [33, Thm. 2]. Let A be the adjacency matrix of a directed graph
G. We construct two k-bounded nondeterministic paraL-machines M0 and M1
that have read-once access to their nondeterministic bits such that p-det(A, k) =
#accM0(A, k) − #accM1(A, k).

Both M0 and M1 behave exactly the same except for the last step, where their
answer is flipped. More precisely, both machines nondeterministically guess a k-clow
sequence, and M0 accepts if the guessed clow sequence has a positive sign while
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M1 accepts if the guessed clow sequence has a negative sign. Then, it follows from
Lemma 30 that p-det(A, k) = #accM0(A, k) − #accM1(A, k).

Now, we describe the process of guessing nondeterministic bits. The process
is the same for both M0 and M1. We need the following variables throughout
the process: curr-head, curr-vertex, parity, count, ccount. The vari-
able curr-head contains the head of the clow currently being constructed, while
parity holds the sign of the partial clow sequence constructed so far and is initialised
to (−1)2n−k . In fact, for a partial clow sequenceW , its sign is defined as (−1)2n−k+r ′

,
where r ′ is the number of clows in W . Note that we have choosen (−1)2n−k as the
initial value of parity because we are going to compute the sign of a clow sequence
W as (−1)2n−k+r ′

, where r ′ is the number of clows in W with at least two edges.
The variable count keeps track of the total number of edges used in the partial clow
sequence constructed so far and ccount keeps track of the number of edges in the
current clow. The machines M0 and M1 are described in Algorithm 3.

Note that the guess a = 0 in step 5 leads to expansion of the current clow with
addition of a newly guessed edge. The guess a = 1 in step 5 leads to completion of
the current clow by chosing the back edge to the head (step 10, only the existence of
such an edge needs to be checked), and guessing the head for a new clow. Since the
parity of the number of clows changes for the case when a = 1, we flip the parity
(step 16). Note that the algorithm reaches step 20 if and only if the nondeterministic
choices correspond to a clow sequence with exactly k edges. Hence, for b ∈ {0, 1} the
machine Mb accepts on all nondeterministic paths where the guessed k-clow sequence
has sign (−1)b which completes the correctness proof.

Since both M0 and M1 guess exactly k vertices, they are k-bounded. Also, only
curr-vertex and curr-head need to be stored at any point of time, conse-
quently the machines only need read-once access to nondeterministic bits. Finally,
the machines use O(log |A| + log k) space and are tail-deterministic, taking only
O(k · log |A|) steps after the first nondeterministic step.

For hardness we give a reduction from p-#REACH. Note that, even when the input
graph is a directed acyclic graph (i.e., a DAG), p-#REACH remains #paraβtailL hard.
Let G, s, t be an instance of p-#REACH, where G is a DAG. Let G′ be the graph
obtained by adding the “back edge” (t, s) toG. Note that the set of all s-t paths inG is
in bijective correspondence with the set of cycles inG′. This correspondence is given
by mapping any s-t path to the cycle obtained by adding the edge (t, s) to that path.
As each cycle in G′ contains the edge (t, s), this means that there is also a bijection
between the set of s-t paths in G of length k and the set of clow sequences consisting
of one simple cycle and containing k + 1 edges in G′. More precisely: Let A′ be the
adjacency matrix ofG′. Then p-det(A′, k+1) = (−1)2n−k · R where R is the number
of s-t paths in G. As a result, R can be retrieved from p-det(A′, k) in deterministic
logspace. This completes the proof. ��

5 Conclusions and Outlook

We developed foundations for the study of parameterised space complexity of count-
ing problems. Our results show interesting characterisations for classes defined in
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Algorithm 3Machine Mb, b ∈ {0, 1}.
Require: G = (V , E) as the adjacency matrix A.
1: Guess a vertex v ∈ {1, . . . , n}
2: curr-head ← v,curr-vertex ← v

3: parity ← (−1)2n−k , count ← 0, ccount ← 0.
4: while count ≤ k − 1 do
5: Guess a ∈ {0, 1}
6: if a = 0 then
7: Guess v ∈ {1, . . . , n} such that (curr-vertex, v) ∈ E
8: curr-vertex ← v, count ← count + 1, ccount ← ccount + 1
9: else
10: if ccount < 1 or (curr-vertex,curr-head) /∈ E then
11: reject
12: end if
13: count ← count + 1
14: Guess v ∈ {1, . . . , n} such that v > curr-head
15: curr-head ← v and curr-vertex ← v

16: parity ← −1 · parity
17: ccount ← 0
18: end if
19: end while
20: if (curr-vertex,curr-head) /∈ E then
21: reject
22: end if
23: if (−1)b = parity then
24: accept
25: else
26: reject
27: end if

terms of k-bounded para-logspace NTMs. We believe that our results will lead to fur-
ther research of parameterised logspace counting complexity. Notice that the studied
walk problems in Sect. 4.1 can be considered restricted to DAGs yielding the same
completeness results.

Comparing our newly introduced classes to the W-hierarchy (which is defined
in terms of weighted satisfiability problems for circuits of so-called bounded weft),
one might ponder whether there is an alternative definition of our classes in terms of
such circuit satisfiability problems. While we did not explore weighted satisfiability
in this article, the closely related problem p-MC(Σ0)a sheds some light on this. The-
orem 22 shows that p-MC(Σ0)a is complete for paraW[1]L (in fact, we show this for

their counting versions) under≤plog
m -reductions. However, if we take FPT-reductions,

p-MC(Σ0)a is complete for W[1]. Interestingly, this phenomenon is more general
as witnessed by the following observation whose proof has been pointed out by an
anonymous reviewer.

Observation 32 [paraW[1]L]≤fpt
m = W[1].

In other words, any problem that is paraW[1]L-complete under ≤plog
m -reductions is

complete for W[1] under FPT reductions. To see that this is true, take a paraW[1]L-
complete problem A under ≤plog

pars -reductions. Now, it suffices that theW[1]-complete
problem p-CLIQUE FPT-reduces to A. Since p-CLIQUE is in paraW[1]L and since A
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is complete for this class under ≤plog
pars -reductions, we know p-CLIQUE ≤plog

pars -reduces
to A. But, then p-CLIQUE also FPT-reduces to A. Notice that this connection is in
line with the even stronger statement from the classical setting that [∃AC0]≤P

m = NP.
One might also ask the question whether paraWL is contained in FPT. This is

unlikely based on the view expressed above. For example, p-MC(Σ0) is complete
for both paraW[1]L and W[1], albeit under two different reductions. As a result,
paraWL ⊆ FPTwould imply that p-MC(Σ0) ∈ FPT and, accordingly,FPT = W[1]
as FPT is closed under FPT-reductions.
We close with interesting tasks for further research:

• Study further closure properties of the new classes (e.g., Open Problem 1).
• Find a characterisation of the ≤plog

pars -closure of #paraW[1]L (Open Problem 2).
• Identify a natural class of structures for which the homomorphism problem is
#paraWL-complete (Open Problem 3).

• Establish a broader spectrum of complete problems for the classes paraβL and
paraWL, e.g., in the realm of satisfiability questions.

• Identify further characterisations of the introduced classes, e.g., in the vein of
descriptive complexity, which could highlight their robustness.

• Studygap classes [63] based onour classes. Thismight help improvingTheorem31
and, more generally, the understanding of the complexity of p-det.

• Investigate relations to branching programs. The characterisation of classes in
terms of branching programs only seems to hold for classes with non-tail-
nondeterminism. More precisely, one can easily obtain a characterisation of
non-tail-nondeterministic classes in the non-uniform setting. Uniform characteri-
sations of the tail-nondeterministic classes in terms of branching programs remains
an open question.

• There are recent techniques in the area of counting complexity that might help in
further strengthening some of the hardness results, namely, inclusion–exclusion or
polynomial interpolation [56] or the graph-motif-parameter framework byCurtica-
pean, Dell and Marx [25]. It seems that inclusion–exclusion can be used to yield a
para-logspace Turing reduction in the context of counting homomorphisms. Also,
counting answers to an FO-formula without existential quantifiers could yield a
para-logspace reduction that is used as a linear combination of homomorphism
counts, again. Yet, the concrete details have to be worked out.
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