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Abstract
Paths P1, . . . , Pk in a graph G = (V , E) are mutually induced if any two distinct Pi

and P j have neither common vertices nor adjacent vertices. The Induced Disjoint
Paths problem is to decide if a graph G with k pairs of specified vertices (si , ti )
contains k mutually induced paths Pi such that each Pi starts from si and ends at ti .
This is a classical graph problem that is NP-complete even for k = 2. We introduce
a natural generalization, Induced Disjoint Connected Subgraphs: instead of
connecting pairs of terminals, we must connect sets of terminals. We give almost-
complete dichotomies of the computational complexity of both problems for H -free
graphs, that is, graphs that do not contain some fixed graph H as an induced subgraph.
Finally, we give a complete classification of the complexity of the second problem if
the number k of terminal sets is fixed, that is, not part of the input.

Keywords Induced subgraphs · Connectivity · H -free graph · Complexity dichotomy

An extended abstract has appeared in the proceedings of WG 2022 [22].

B Daniël Paulusma
daniel.paulusma@durham.ac.uk

Barnaby Martin
barnaby.d.martin@durham.ac.uk

Siani Smith
siani.smith@durham.ac.uk

Erik Jan van Leeuwen
e.j.vanleeuwen@uu.nl

1 Department of Computer Science, Durham University, Durham, UK

2 Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01109-z&domain=pdf
http://orcid.org/0000-0002-4642-8614
http://orcid.org/0000-0001-5945-9287
http://orcid.org/0000-0003-0797-0512
http://orcid.org/0000-0001-5240-7257


Algorithmica (2023) 85:2580–2604 2581

1 Introduction

The well-known Disjoint Paths problem is one of the problems in Karp’s list of
NP-complete problems. It is to decide if a graph has pairwise vertex-disjoint paths
P1, . . . , Pk where each Pi connects two pre-specified vertices si and ti . Its gen-
eralization, Disjoint Connected Subgraphs, plays a crucial role in the graph
minor theory of Robertson and Seymour. This problem asks for connected subgraphs
D1, . . . , Dk , where each Di connects a pre-specified set of vertices Zi . In a recent
paper [17] we classified, subject to a small number of open cases, the complexity of
both these problems for H -free graphs, that is, for graphs that do not contain some
fixed graph H as an induced subgraph.

Our FocusWe consider the induced variants ofDisjoint Paths andDisjoint Con-
nected Subgraphs. These problems behave differently. Namely, Disjoint Paths
for fixed k, or more generally,Disjoint Connected Subgraphs, after fixing both k
and � = max{|Z1|, . . . , |Zk |}, is polynomial-time solvable [28]. In contrast, Induced
Disjoint Paths is NP-complete even when k = 2, as shown both by Bienstock
[2] and Fellows [5]. Just as for the classical problems [17], we perform a systematic
study and focus on H -free graphs. As it turns out, for the restriction to H -free graphs,
the induced variants actually become computationally easier for an infinite family of
graphs H . We first give some definitions.

Terminology For a subset S ⊆ V in a graphG = (V , E), letG[S] denote the subgraph
of G induced by S, that is, G[S] is the graph obtained from G after removing every
vertex not in S. Let G1 + G2 be the disjoint union of two vertex-disjoint graphs G1
and G2. We say that paths P1, . . . , Pk , for some k ≥ 1, are mutually induced paths
of G if there exists a set S ⊆ V such that G[S] = P1 + . . . + Pk ; note that every Pi

is an induced path and that there is no edge between two vertices from different paths
Pi and P j . A path P is an s-t-path (or t-s-path) if the end-vertices of P are s and t .

A terminal pair (s, t) is an unordered pair of two distinct vertices s and t in a
graph G, which we call terminals. A set T = {(s1, t1), . . . , (sk, tk)} of terminal pairs
of G is a terminal pair collection if the terminals pairs are pairwise disjoint, so,
apart from si �= ti for i ∈ {1, . . . , k}, we also have {si , ti } ∩ {s j , t j } = ∅ for every
1 ≤ i < j ≤ k. We now define the following decision problem:

Induced Disjoint Paths
Instance: a graph G and terminal pair collection T = {(s1, t1) . . . , (sk, tk)}.
Question: does G have a set of mutually induced paths P1,…,Pk such that Pi

is an si -ti path for i ∈ {1, . . . , k}?
Note that as every path between two vertices s and t contains an induced path between
s and t , the condition that every Pi must be induced is not strictly needed in the above
problem definition. We say that the paths P1, . . . , Pk , if they exist, form a solution of
Induced Disjoint Paths.

We now generalize the above notions from pairs and paths to sets and connected
subgraphs. Subgraphs D1, . . . , Dk of a graph G = (V , E) are mutually induced
subgraphs of G if there exists a set S ⊆ V such that G[S] = D1 + . . . + Dk .
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A connected subgraph D of G is a Z -subgraph if Z ⊆ V (D). A terminal set Z
is an unordered set of distinct vertices, which we again call terminals. A set Z =
{Z1, . . . , Zk} is a terminal set collection if Z1, . . . , Zk are pairwise disjoint terminal
sets. We now introduce the generalization:

Induced Disjoint Connected Subgraphs
Instance: a graph G and terminal set collection Z = {Z1, . . . , Zk}.
Question: does G have a set of mutually induced connected subgraphs

D1, . . . , Dk such that Di is a Zi -subgraph for i ∈ {1, . . . , k}?

The subgraphs D1, . . . , Dk , if they exist, form a solution.Wewrite Induced Disjoint
Connected �- Subgraphs if � = max{|Z1|, . . . , |Zk |} is fixed. Note that Induced
Disjoint Connected 2- Subgraphs is exactly Induced Disjoint Paths.

1.1 Known Results

Only results for Induced Disjoint Paths are known, and these sometimes hold
for a slightly more general problem definition where terminals are no longer required
to form an independent set (see also Sect. 6). Namely, Induced Disjoint Paths is
linear-time solvable for circular-arc graphs [10]; polynomial-time solvable for chordal
graphs [1], AT-free graphs [11], graph classes of bounded mim-width [13]; and NP-
complete for claw-free graphs [6], line graphs of triangle-free chordless graphs [27]
and thus for (theta,wheel)-free graphs, and for planar graphs; the last result follows
from a result of Lynch [21] (see [11]). Moreover, Induced Disjoint Paths is XP
with parameter k for (theta,wheel)-free graphs [27] and even FPT with parameter k
for claw-free graphs [9] and planar graphs [15]; the latter can be extended to graph
classes of bounded genus [18].

1.2 Our Results

Let Pr be the path on r vertices. A linear forest is the disjoint union of one or more
paths. We write F ⊆i G if F is an induced subgraph of G and sG for the disjoint
union of s copies of G. We can now present our first two results: the first one includes
our dichotomy for Induced Disjoint Paths (take � = 2).

Theorem 1 Let � ≥ 2. For a graph H, Induced Disjoint Connected �-
Subgraphs on H-free graphs is polynomial-time solvable if H ⊆i s P3 + P6 for
some s ≥ 0; NP-complete if H is not a linear forest; and quasipolynomial-time solv-
able otherwise.

Theorem 2 For a graph H such that H �= sP1 + P6 for some s ≥ 0, Induced
Disjoint Connected Subgraphs on H-free graphs is polynomial-time solvable
for H-free graphs if H ⊆i s P1 + P3 + P4 or H ⊆i s P1 + P5 for some s ≥ 0, and it
is NP-complete otherwise.
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Note the complexity jumps if we no longer fix �. We will show that all the open cases
in Theorem 2, so the cases where H = sP1 + P6 for any s ≥ 0, are equivalent to
exactly one open case, namely H = P6.
Comparison The Disjoint Connected Subgraphs problem restricted to H -free
graphs is polynomial-time solvable if H ⊆i P4 and else it is NP-complete, even if
the maximum size of the terminal sets is � = 2, except for the three unknown cases
H ∈ {3P1, 2P1+P2, P1+P3} [17]. Perhaps somewhat surprisingly, Theorems 1 and 2
show the induced variant is computationally easier for an infinite number of linear
forests H (assuming P �= NP and that some problems in NP are not quasipolynomial-
time solvable).

Fixing k If the number k of terminal sets is fixed, we write k- Induced Disjoint
Connected Subgraphs and prove the following complete dichotomy.

Theorem 3 Let k ≥ 2. For a graph H, k- Induced Disjoint Connected Sub-
graphs on H-free graphs is polynomial-time solvable for H-free graphs if H ⊆i

s P1 + 2P4 or H ⊆i s P1 + P6 for some s ≥ 0, and it is NP-complete otherwise.

Comparison We note a complexity jump between Theorems 2 and 3 when H =
sP1 + 2P4 for some s ≥ 0.
Remark The polynomial functions that bound the running times of the algorithms in
Theorems 1 and 3 have k, respectively, � in the exponent.
Paper Outline Section 2 contains terminology, known results and auxiliary results that
wewill use as lemmas. Hardness results for Theorem 1 transfer to Theorem 2, whereas
the reverse holds for polynomial results. As such, we show all our polynomial-time
algorithms in Sect. 3 and all our hardness reductions in Sect. 4. The cases H = sP3+P6
in Theorem 1 and H = sP1 + P5 in Theorem 2 are proven by a reduction from
Independent Set via so-called blob graphs, just as the quasipolynomial-time result
if H is a linear forest. Hence, we also include the proof of the latter result in Sect. 3. In
Sect. 5 we combine the results from the previous two sections to prove Theorems 1–3.

In our theorems we have infinite families of polynomial cases related to nearly
H -free graphs. For a graph H , a graph G is nearly H-free if G is (P1 + H)-free. It
is easy to see (cf [3]) that Independent Set is polynomial-time solvable on nearly
H -free graphs if it is so on H -free graphs. However, for many other graph problems,
this might either not be true or less easy to prove (see, for example, [14]). In Sect. 3
we show that it holds for the relevant cases in Theorem 2, in particular for the case
H = P6 (see Lemma 7). The latter result yields no algorithm but shows that essentially
H = P6 is the only one open case left in Theorem 2 (see also Remark 1).

In Sect. 6 we briefly discuss the aforementioned more general problem definition
of Induced Disjoint Paths used in the literature. We show that the complexity
dichotomy for this problem differs from the one in Theorem 1 (for � = 2).

In Sect. 7 we consider a number of directions for future work. In particular we
consider the restriction k- Disjoint Connected �- Subgraphs where both k and �

are fixed and discuss some open problems.
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2 Preliminaries

Let G = (V , E) be a graph. A subset S ⊆ V is connected if G[S] is connected.
A subset D ⊆ V (G) is dominating if every vertex of V (G) \ D is adjacent to least
one vertex of D; if D = {v} then v is a dominating vertex. The open and closed
neighbourhood of a vertex u ∈ V are N (u) = {v | uv ∈ E} and N [u] = N (u) ∪ {u}.
For a set U ⊆ V we define N (U ) = ⋃

u∈U N (u)\U and N [U ] = N (U ) ∪U .
For a graph G = (V , E) and a subset S ⊆ U , we write G − S = G[V \ S]. If

S = {u} for some u ∈ V , we write G−u instead of G−{u}. A vertex u is a cut-vertex
of a connected graph G if G − u is disconnected.

The contraction of an edge e = uv in a graph G replaces the vertices u and v by
a new vertex w that is adjacent to every vertex previously adjacent to u or v; note
that the resulting graph G/e is still simple, that is, G/e contains no multi-edges or
self-loops. The following lemma is easy to see (see, for example, [16]).

Lemma 1 For a linear forest H, let G be an H-free graph. Then G/e is H-free for
every e ∈ E(G).

In a solution (D1, . . . , Dk) for an instance (G,Z) of Induced Disjoint Con-
nected Subgraphs, if Di is inclusion-wiseminimal and Xi is a minimum connected
dominating set of Di , then Xi ∪ Zi = Di or, equivalently, Di \ Xi ⊆ Zi . This will
be relevant in our proofs, where we use the following result of Camby and Schaudt,
in particular for the case r = 6 (alternatively, we could use the slightly weaker char-
acterization of P6-free graphs in [32] but the below characterization gives a faster
algorithm).

Theorem 4 ([4]) Let r ≥ 4andG bea connected Pr -free graph. Let X be anyminimum
connected dominating set of G. Then G[X ] is either Pr−2-free or isomorphic to Pr−2.

Let G = (V , E) be a graph. Two sets X1, X2 ⊆ V are adjacent if X1 ∩ X2 �=
∅ or there exists an edge with one end-vertex in X1 and the other in X2. The
blob graph G◦ of G has vertex set {X ⊆ V (G) | X is connected} and edge set
{X1X2 | X1 and X2 are adjacent}. Note that blob graphs may have exponential size,
but in our proofs we will only construct parts of blob graphs that have polynomial
size. We need the following known lemma that generalizes a result of Gartland et al.
[8] for paths.

Lemma 2 ([25]) For every linear forest H, a graph G is H-free if and only if G◦ is
H-free.

The Independent Set problem is to decide if a graph G has an independent set
(set of pairwise non-adjacent vertices) of size at least k for some given integer k.

We need the following two known results for Independent Set. The first
one is due to Grzesik, Klimosová, Pilipczuk and Pilipczuk [12]. The second one
is due to Pilipczuk, Pilipczuk and Rzążewski [26], who improved the previous
quasipolynomial-time algorithm for Independent Set on Pt -free graphs, due to
Gartland and Lokshtanov [7] (whose algorithm runs in nO(log3 n) time).
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Theorem 5 ([12]) Independent Set is polynomial-time solvable for P6-free graphs.

Theorem 6 ([26]) For every r ≥ 1, Independent Set can be solved in nO(log2 n)

time for Pr -free graphs.

Two instances of some decision problem are equivalent if one is a yes-instance if
and only if the other one is. We make frequently use of the following observation.

Lemma 3 From an instance (G,Z) of Induced Disjoint Connected Subgraphs
we can in linear time, either find a solution for (G,Z) or obtain an equivalent instance
(G ′,Z ′) with |V (G ′)| ≤ |V (G)|, such that the following holds:

1. |Z ′| ≥ 2;
2. every Z ′

i ∈ Z ′ has size at least 2; and
3. the union of the sets in Z ′ is an independent set.

Moreover, if G is H-free for some linear forest H, then G ′ is also H-free.

Proof Let (G,Z) be an instance of Induced Disjoint Connected Subgraphs,
where Z = {Z1, . . . , Zk} for some integer k ≥ 1. If two adjacent vertices will always
appear in the same set of every solution (D1, . . . , Dk), then we can safely contract
the edge between them at the start of any algorithm. This property holds for every pair
of adjacent vertices of every Zi . Hence, we contract every edge between two vertices
that belong to the same set Zi . This takes linear time.

Let (G∗,Z∗) be the resulting instance. Note that every Z ∈ Z∗ is an independent
set. If a set Z ∈ Z∗ has size 1, say Z = {z}, then we remove z and all its neighbours
from G∗ to obtain an equivalent instance. After doing this for all singleton sets in Z∗,
we obtain our desired instance (G ′,Z ′) in linear time.

If G is H -free for some linear forest H , then G ′ is also H -free, as H -freeness is
preserved by edge contraction (Lemma 1) and by vertex deletion (by definition). If
it turns out that two vertices from different sets in Z ′ are adjacent, then (G,Z) is
a no-instance. Else we find that the union of the sets in Z ′ is an independent set. If
|Z ′| = 1, then the problem is trivial to solve, so we may assume that |Z ′| ≥ 2. �

We also use the next lemma frequently.

Lemma 4 Let H be a linear forest. If (G,Z) is a yes-instance of Induced Disjoint
Connected Subgraphs and G is H-free, then (G,Z) has a solution (D1, . . . , Dk),
where each Di has size at most (2|V (H)| − 1)|Zi |.
Proof Consider a solution (D1, . . . , Dk). As G is H -free and H is a linear forest, G
is also Pt -free where t = 2|V (H)| − 1. For every Di , fix a vertex u in it. As Di is
connected and G is Pt -free, there exists a path from every vertex of Zi to u that has
length at most t − 1. Let Ai be the subgraph of Di induced by the union of the vertex
sets of these paths of Di . Note that the number of vertices of each Ai is at most t |Zi |.
As each Ai is connected, (A1, . . . , Ak) is a solution. �

3 Algorithms

In this section we show all the polynomial-time and quasipolynomial-time results
needed to prove our main theorems.
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3.1 Using the Blob Graph Approach

We start with the following result, which holds for every fixed integer � ≥ 2. In the
proof of this result and the next one we use the blob graph approach.

Lemma 5 Let � ≥ 2. For every s ≥ 0, Induced Disjoint Connected�- Subgraphs
is polynomial-time solvable for (sP3 + P6)-free graphs.

Proof Let (G,Z) be an instance of the Induced Disjoint Connected �-
Subgraphs problem, where G is an (sP3 + P6)-free graph for some s ≥ 0. By
Lemma 3, we may assume that the union of the sets in Z = {Z1, . . . , Zk} is an
independent set.

First suppose that k ≤ s. By Lemma 4 we may assume that each Di in a solution
(D1, . . . , Dk) has size at most t = (6s + 11)�. So |D1| + . . . + |Dk | has size at most
kt ≤ st . Hence, we can consider all O(nst ) options of choosing a solution. As s and
t are constants, this takes polynomial time in total.

Now suppose that k ≥ s + 1. We consider all O(n(s−1)t ) options of choosing the
first s subgraphs Di , discarding those with an edge between distinct Di or between
some Di and Z j for some j ≥ s + 1. For each remaining option, let G ′ = G −
N [V (D1) ∪ · · · ∪ V (Ds)] and Z ′ = {Zs+1, . . . , Zk}. Note that G ′ is P6-free.

Let F be the subgraph of the blob graph G ′◦ induced by all connected subsets X in
G ′ that have size at most 11�, such that X contains all vertices of one set from Z ′ and
no vertices from any other set of Z ′. Then F has polynomial size, as it has O(n11�)
vertices, so we can construct F in polynomial time. By Lemma 2, F is P6-free.

We claim that (G ′,Z ′) has a solution if and only if F has an independent set of
size k − s.

First suppose that (G ′,Z ′) has a solution. Then, by Lemma 4, it has a solution
(Ds+1, . . . , Dk), where each Di has size at most 11�. Such a solution corresponds to
an independent set of size k − s in F . For the reverse implication, two vertices in F
that each contain vertices of the same set Zi are adjacent. Hence, an independent set
of size k − s in F is a solution for (G ′,Z ′).

Due to the above, it remains to apply Theorem 5 to find in polynomial time whether
G ′◦ has an independent set of size k − s. �
By replacing Theorem 5 by Theorem 6 in the above proof and repeating the arguments
of the second part we obtain the following result.

Lemma 6 Let � ≥ 2. For every r ≥ 1, Induced Disjoint Connected �-
Subgraphs is quasipolynomial-time solvable for Pr -free graphs.

3.2 Nearly H-Free Graphs

In this section we prove a crucial lemma on nearly H -free graphs.

Lemma 7 For k ≥ 2, r ≤ 6 and s ≥ 1, if (k-)Induced Disjoint Connected
Subgraphs is polynomial-time solvable for Pr -free, graphs, then it is so for (sP1+Pr )-
free graphs.
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Proof We let r = 6, and we let k be part of the input; as will be clear from the
proof below, the case where r ≤ 5 and/or k is fixed can be shown by using exactly
the same arguments. Let (G,Z) be an instance of Induced Disjoint Connected
Subgraphs, where G is an (sP1 + P6)-free graph for some integer s ≥ 1 and Z =
{Z1, . . . , Zk}. We may assume without loss of generality that |Z1| ≥ |Z2| ≥ · · · ≥
|Zk |. By Lemma 3, we may assume that k ≥ 2; every Zi ∈ Z has size at least 2; and
the union of the sets in Z is an independent set. We assume that Induced Disjoint
Connected Subgraphs is polynomial-time solvable for P6-free graphs.

Case 1 For every i ≥ 2, |Zi | ≤ s − 1. Let D1, . . . , Dk be a solution for (G,Z)

(assuming it exists). By Lemma 4, we may assume without loss of generality that for
i ≥ 2, the number of vertices of Di is at most (2 s + 11)|Zi | ≤ (2 s + 11)(s − 1).

First assume k ≤ s. Then V (D2) ∪ · · · ∪ V (Dk) has size at most t , where t =
(s − 1)(2s + 11)(s − 1) is a constant. Hence, we can do as follows. We consider
all O(nt ) options for choosing the subgraphs D2, . . . , Dk . For each choice we check
in polynomial time if D2, . . . , Dk are mutually induced and connected, and if each
Di contains Zi . We then check in polynomial time if the graph G − N [(V (D2) ∪
· · · V (Dk)] has a connected component containing Z1. As the number of choices is
polynomial, the total running time is polynomial.

Now assume k ≥ s+1.We consider all O(ns(2s+11)(s−1)) options of choosing the s
subgraphs D2, . . . , Ds+1.Wediscard anoption if for some i ∈ {1, . . . , s}, the graphDi

is disconnected.We also discard an option if there is an edge between two vertices from
two different subgraphs Dh and Di for some 2 ≤ h < i ≤ s + 1, or if there is an edge
between a vertex from some subgraph Dh (2 ≤ h ≤ s) and a vertex from some set Zi

(i = 1 or i ≥ s+2). If we did not discard the option, thenwe solve Induced Disjoint
Connected Subgraphs on instance (G − ⋃s+2

i=2 N [V (Di )],Z\{Z2, . . . , Zs+1}).
The latter takes polynomial time as G − ⋃s+1

i=2 N [Di ] is P6-free, due to G being
(sP1 + P6)-free by our assumption. As the number of branches (subproblems) is
polynomial as well, the total running time is polynomial.

Case 2 |Z2| ≥ s (and thus also |Z1| ≥ s). Let D1, . . . , Dk be a solution for (G,Z)

(assuming it exists). As |Z1| ≥ s, we find that for every i ≥ 2, Di is P6-free. As
|Z2| ≥ s, we also find that D1 is P6-free. Then, by setting r = 6 in Theorem 4, every
Di (i ∈ {1, . . . , k}) has a connected dominating set Xi such that G[Xi ] is either P4-
free or isomorphic to P4. We may assume without loss of generality that every Xi is
inclusion-wise minimal (as otherwise we could just replace Xi by a smaller connected
dominating set of Di ).

Case 2a There exist some Xi with size at least 7s + 2. As s ≥ 1, we have that G[Xi ]
is P4-free. We now set r = 4 in Theorem 4 and find that G[Xi ] has a connected
dominating set Yi of size at most 2. Hence, G[Xi ] contains a set R of 7s vertices that
are not cut-vertices of G[Xi ]. As Xi is minimal, this means that in Di , each r ∈ R has
at least one neighbour z ∈ Zi that is not adjacent to any vertex of Xi \ {r}. We say that
z is a private neighbour of r . We now partition R into sets R1, . . . , R7, each of exactly
s vertices. For h = 1, . . . , 7, let Rh = {r1h , . . . , rsh} and pick a private neighbour z jh
of r j

h . For h = 1, . . . , 7, let Qh = {z1h, . . . , zsh}. Each Qh is independent, as Zi is
independent and Qh ⊆ Zi .
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We claim that there exists an index h ∈ {1, . . . , 7} such that G − (N [Qh] \ Rh)

is P6-free. For a contradiction, assume that for every h ∈ {1, . . . , 7}, we have that
G − (N [Qh] \ Rh) is not P6-free. As G is (sP1 + P6)-free and every Qh is an
independent set of size s, we have that G − N [Qh] is P6-free. We conclude that every
induced P6 ofG contains a vertex of Rh for every h ∈ {1, . . . , 7}. This is contradiction,
as every induced P6 only has six vertices. Hence, there exists an index h ∈ {1, . . . , 7}
such that G − (N [Qh] \ Rh) is P6-free.

We exploit the above structural claim algorithmically as follows. We consider all
k ≤ n options that one of the sets Xi has size at least 7s+2. For each choice of index i
wedoas follows.Weconsider allO(n2s)options of choosing a setQh of s vertices from
the independent set Zi together with a set Rh of s vertices from N (Qh). We discard the
option if a vertexofQh hasmore thanoneneighbour in Rh , or ifG ′ = G−(N [Qh]\Rh)

is not P6-free. Otherwise, we solve Induced Disjoint Connected Subgraphs on
instance (G ′,Z ′), where Z ′ = (Z\{Zi }) ∪ {(Zi\Qh) ∪ Rh}. As G ′ is P6-free, the
latter takes polynomial time by our initial assumption. Hence, as the total number of
branches is O(n2s+1) the total running time of this check takes polynomial time.
Case 2b. Every Xi has size at most 7s + 1. 7s + 2. First assume k ≤ s. We consider
all O(ns(7s+1)) options of choosing the sets X1, . . . , Xk . For each option we check if
(X1 ∪ Z1, . . . , Xk ∪ Zk) is a solution for (G,Z). As the latter takes polynomial time
and the total number of branches is polynomial, this takes polynomial time.

Now assume k ≥ s + 1. We consider all O(ns(7s+1)) options of choosing the first
s sets X1, . . . , Xs . We discard an option if for some i ∈ {1, . . . , s}, the set Xi ∪ Zi

is disconnected. We also discard an option if there is an edge between two vertices
from two different sets Xh ∪ Zh and Xi ∪ Zi for some 1 ≤ h < i ≤ s, or if there is
an edge between a vertex from some set Xh ∪ Zh (h ≤ s) and a vertex from some set
Zi (i ≥ s + 1). If we did not discard the option, then we solve Induced Disjoint
Connected Subgraphs on instance (G − ⋃s

i=1 N [Xi ∪ Zi ], {Zs+1, . . . , Zk}). The
latter takes polynomial time as G − ⋃s

i=1 N [Xi ∪ Zi ] is P6-free. As the number of
branches is polynomial as well, the total running time is polynomial.
From the above case analysis we conclude that the running time of our algorithm is
polynomial. As mentioned, if r ≤ 5 and/or k is fixed, then we use exactly the same
arguments. �
Remark 1 Due to Lemma 7, the missing cases H = sP1 + P6 in Theorem 2 are all
equivalent to the case H = P6.

3.3 Two Applications of Lemma 7

We will first use Lemma 7 for the case where r = 5. In the proof of the next result,
we also make use of the blob approach again.

Lemma 8 For every s ≥ 0, Induced Disjoint Connected Subgraphs is
polynomial-time solvable for (sP1 + P5)-free graphs.

Proof Due to Lemma 7 it suffices to prove the statement for P5-free graphs only. Let
(G,Z) be an instance of Induced Disjoint Connected Subgraphs, where G is
a P5-free graph and Z = {Z1, . . . , Zk}. By Lemma 3, we may assume that k ≥ 2;
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every Zi ∈ Z has size at least 2; and the union of the sets in Z is an independent
set. We may also delete every vertex from G that is not in a terminal set from Z but
that is adjacent to two terminals in different sets Zh and Zi (such a vertex cannot be
used in any subgraph of a solution). We now make a structural observation that gives
us a procedure for safely contracting edges; recall that edge contraction preserves
P5-freeness by Lemma 1.

Consider a solution (D1 . . . Dk) that ismaximal in the sense that any vertex v outside
V (D1) ∪ · · · ∪ V (Dk) must have a neighbour in at least two distinct subgraphs Di

and D j . Since G is P5-free, v must be adjacent to all vertices of at least one of Di

and D j . Since v does not have neighbours in both Zi ⊆ V (Di ) and Z j ⊆ V (D j ), we
find that v is adjacent to all vertices of exactly one of Di and D j .

The above gives rise to the following algorithm. Let v be a vertex that is adjacent
to at least one vertex z ∈ Zi but not to all vertices of Zi . As v is adjacent to z and z is
in Zi , it holds that v does not belong to any Dh with h �= i for every (not necessarily
maximal) solution (D1, . . . , Dk). The observation from the previous paragraph tells
us that if v is not in any Dh and (D1, . . . , Dk) is a maximal solution, then v must be
adjacent to all vertices of some D j . As v is adjacent to z ∈ Zi , it holds by construction
that v is not adjacent to any vertex of any Zh ⊆ V (Dh)with h �= i . Hence, i = j must
hold. However, this is not possible, as we assumed that v is not adjacent to all vertices
of Zi ⊆ V (Di ). Hence, wemay assumewithout loss of generality that v belongs to Di

(should a solution exist). This means that we can safely contract the edge vz and put
the resulting vertex in Zi . Then we apply Lemma 3 again and also remove all common
neighbours of vertices from Zi and vertices from other sets Z j . This takes polynomial
time and the resulting graph has one vertex less. Hence, by applying this procedure
exhaustively we have, in polynomial time, either solved the problem or obtained an
equivalent but smaller instance.

Suppose we have an equivalent instance. For simplicity we denote the obtained
instance by (G,Z) again, where G is a P5-free graph and Z = {Z1, . . . , Zk} with
k ≥ 2. Due to our procedure, every Zi ∈ Z has size at least 2; the union of the sets
in Z is an independent set. Moreover, every non-terminal vertex is adjacent either to
no terminal vertex or is adjacent to all terminals of exactly one terminal set. We let S
be the set of vertices of the latter type. Observe that it follows from the preceding that
only vertices of S need to be used for a solution.

We now construct the subgraph F of the blob graph G◦ that is induced by all
connected subsets X of the form X = Zi ∪ {s} for some 1 ≤ i ≤ k and s ∈ S. Note
that F has O(kn) vertices. Hence, constructing F takes polynomial time. Moreover,
F is P5-free due to Lemma 2. As in the proof of Lemma 5, we observe that (G,Z) has
a solution if and only if F has an independent set of size k. It now remains to apply
(in polynomial time) Theorem 5. �

We now show a stronger result when k is fixed instead of part of the input. Again we
will use Lemma 7.

Lemma 9 For every integer s ≥ 0, k- Induced Disjoint Connected Subgraphs
is polynomial-time solvable for (sP1 + P6)-free graphs.

123



2590 Algorithmica (2023) 85:2580–2604

Proof Due to Lemma 7 it suffices to prove the statement for P6-free graphs only. Let
(G,Z) be an instance of k- Induced Disjoint Connected Subgraphs, where G
is a P6-free graph and Z = {Z1, . . . , Zk}. By Lemma 3, we may assume that every
Zi ∈ Z has size at least 2 and that the union of the sets in Z is an independent set. We
start by deleting from G,

(i) Every common neighbour of a vertex of Zi and a vertex of Z j with i �= j .

This takes polynomial time and is safe, as such vertices are not in any subgraph of a
solution.

Consider a solution (D1, . . . , Dk) (if it exists). As G is P6-free, each Di is P6-free.
By Theorem 4 (take r = 6), this means that every Di has a connected dominating
set Xi such that G[Xi ] is either P4-free or isomorphic to P4. In the former case we
say that Di is difficult and in the latter we say that Di is easy.

We consider all options of choosing which of the subgraphs Di is easy and consider
all options of choosing the corresponding dominating P4s. This leads to total number
of O(2kn4k) branches (subproblems), which is polynomial as k is fixed. We discard
those options that do not result in mutually induced connected subgraphs Di with
Zi ⊆ V (Di ) and also those with an edge between a vertex of some guessed Di and
some Z j that will correspond to a difficult subgraph D j .

For each remaining branch, we delete the vertices of each easy Di and all their
neighbours from G. We also remove the corresponding sets Zi fromZ . For simplicity
we denote the new instance by (G,Z) again, and we let |Z| = k. If k ≤ 1, then we
can solve the problem in a trivial way. Suppose that k ≥ 2. We note that G is still
P6-free; every Zi ∈ Z still has size at least 2 and that the union of the sets in Z is an
independent set such that no two vertices from different Zi and Z j have a common
neighbour. Moreover, if (G,Z) has a solution, then every connected subgraph in it is
difficult.

Consider a solution (D1, . . . , Dk) (if it exists).As each Di is difficult, it contains (by
definition) a connected dominating set Xi such that G[Xi ] is P4-free. By Theorem 4
(take r = 4), every G[Xi ] has a connected dominating set Yi of size at most 2. We
consider all options of choosing the connected sets Yi . For every chosen Yi of size 2,
we contract the edge between the two vertices of Yi . The resulting graph is still P6-free
by Lemma 1. Note that the number of branches is O(n2k), which is polynomial as k is
fixed. In each branch, we may now assume that Yi = {yi } for i ∈ {1, . . . , k} and thus
yi will dominate G[Xi ]. We discard an option if {y1, . . . , yk} is not an independent
set, or if some yi is adjacent to a vertex of some Z j with i �= j . For every other branch
we continue as follows. From G we first delete

(ii) For every i ∈ {1, . . . , k}, every neighbour of yi adjacent to a vertex of Z j ∪ {y j }
for some j �= i .

This takes polynomial time and we may do this, as these common neighbours cannot
belong to any subgraph in a solution (D1, . . . , Dk)with yi ∈ V (Di ) for i ∈ {1, . . . , k}.

We may assume without loss of generality that in the solution (D1, . . . , Dk)we are
looking for the subgraphs that are minimal. That is, we cannot replace a subgraph Di

with some subgraph Fi with V (Fi ) ⊂ V (Di ). So each vertex x of Xi \ {yi } is either a
vertex of Zi or has a neighbour zi in Zi that is not adjacent to any vertex of Xi \ {xi };
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in the latter case we say that zi is a private neighbour of xi . For every i ∈ {1, . . . , k},
at least one such pair (xi , zi ) exists, as otherwise yi dominates Di , and thus Di would
not be difficult.

We now consider for i ∈ {1, . . . , k}, all options of choosing the pairs (xi , zi )where
xi is a neighbour of yi that is not from Zi , whilst zi is taken from Zi . We discard
those options where xi and zi are not adjacent or where zi is adjacent to yi ; in both
cases zi will not be a private neighbour of xi . We also discard every option where the
graphs G[{yi , xi , zi }] are not mutually induced. Note that the number of branches is
O(n2k) (so polynomial). For each branch that we have not discarded we continue by
first deleting from G, the following sets of vertices:

(iii) For i ∈ {1, . . . , k}, every neighbour of zi not equal to xi ;
(iv) For i ∈ {1, . . . , k}, every neighbour of xi that is adjacent to a vertex of Z j ∪

{x j , y j } for some j �= i ;

This takes polynomial time. Moreover, we are allowed to delete all these vertices, as
none of them can be used in the solution that we are trying to construct. In particular,
every zi will be a private neighbour of xi , so every zi has only one neighbour in
V (D1) ∪ · · · ∪ V (Dk). We now use that we have performed the operations of (i)–(iv)
to prove the following claim:
A solution for this branch exists if and only if NG [yi ] dominates Zi for every i ∈
{1, . . . , k}.
First suppose that (G,Z) has a solution (D1, . . . , Dk) such that for every i ∈
{1, . . . , k} it holds that yi dominates Xi . Then NG[yi ] contains Xi , which dominates
Zi by definition.

Now suppose that NG [yi ] dominates Zi for every i ∈ {1, . . . , k}. We claim that
the k-tuple (D1, . . . , Dk) where V (Di ) = NG [yi ] ∪ Zi for every i ∈ {1, . . . , k} is a
solution. First note that each Di is connected (as NG[yi ] dominates Zi ) and contains
Zi . Hence, it remains to show that D1, . . . , Dk are mutually induced.

For a contradiction, let ui ∈ V (Di ) and u j ∈ V (D j ) be adjacent for some i �= j .
Due to (i)–(iv), we find that ui belongs to NG [yi ]\{xi } and u j belongs to NG[y j ]\{x j }.
First suppose thatui is not adjacent to xi oru j is not adjacent to x j , sayui is not adjacent
to xi . Now, {zi , xi , yi , ui , u j , y j } induces a P6, a contradiction. Hence, ui must be
adjacent to xi and u j must be adjacent to x j . However, now {zi , xi , ui , u j , x j , z j }
induces a P6, another contradiction. Hence, we have proven the claim.
We can check in polynomial time whether NG[yi ] dominates Zi for every i ∈
{1, . . . , k}. By the above claim, this means that we can check in polynomial time
if a certain branch leads to a solution. As the total number of branches is polynomial,
the running time of our algorithm is polynomial. The correctness of our algorithm
follows from its description; note that we examined all possible situations. �

3.4 TwoMore Algorithmic Results

In this section we present our final two polynomial-time algorithms. The first result
holds for fixed k. The second result is for a smaller graph class but holds even when k
and � are both part of the input. To prove the second result, we will use the algorithm
of the first result as a subroutine.
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Lemma 10 For every k ≥ 2 and s ≥ 0, k- Induced Disjoint Connected Sub-
graphs is polynomial-time solvable for (sP1 + 2P4)-free graphs.

Proof Let s ≥ 0. Let (G,Z) be an instance of k- Induced Disjoint Connected
Subgraphs, where G is an (sP1 + 2P4)-free graph and Z = {Z1, . . . , Zk}. By
Lemma 3, we may assume that every Zi ∈ Z has size at least 2 and that the union of
the sets in Z is an independent set.

By Lemma 4 we may assume without loss of generality that for a solution
(D1, . . . , Dk) it holds that every Di has size at most (2s + 15)|Zi |. Call a set Zi

small if |Zi | ≤ s − 1, else Zi is large.
If Zi is small, then Di has size at most t where t = (2s + 15)(s − 1). Let Z ′ be

the subset of Z that contains the small sets of Z . We consider all O(nkt ) options of
choosing the corresponding connected subgraphs Di . We check in polynomial time if
there are no forbidden edges between these subgraphs or between such a subgraph and
a large set, and we also check if each such Di contains Zi . If one of the conditions is
violated, we discard the choice. Otherwise, we delete the vertices of N [V (Di )] from
G for each small Zi and we also delete the small sets from Z . Note that the resulting
graph is still (sP1 + 2P4)-free. For simplicity, we denote the resulting instance by
(G,Z) again. If |Z| = k ≤ 1, we solve the instance directly in a trivial way. Keep all
created instances with more than one set in Z . Note that we created O(nkt ) branches
(subproblems) in this way and the instance of each branch that we kept has no small
sets and k ≥ 2.

We say that a subgraph Di in a solution is easy if Di is P4-free; otherwise Di

is difficult. As each Zi in Z is now large, each Di contains an induced sP1. As G
is (sP1 + 2P4)-free, this means that at least k − 2 subgraphs of any solution are
easy. We consider all O(k2) options of choosing the easy subgraphs. By Theorem 4
(take r = 4) we find that each easy Di has a connected dominating set Xi of size at
most 2. We consider all O(n2(k−2)) options of choosing the vertices of the sets Xi

corresponding to the easy subgraphs Di . Again, we discard a choice if some guessed
Di = G[Xi ∪ Zi ] is not connected or a vertex of some guessed Di is adjacent to
a vertex of another guessed Dh or to a vertex of a set Z j that will be contained in
a D j that is difficult. Otherwise, we obtained, in polynomial time, a new instance
after deleting the vertices of N [V (Di )] from G for each easy Di and deleting the
corresponding sets fromZ . For simplicity, we denote the resulting instance by (G,Z)

again. Observe that G is still (sP1 +2P4)-free, and in particular thatZ has size k ≤ 2.
If k ≤ 1, the problem has become trivial to solve. Assume that k = 2. Then, for
simplicity, we write Z = {Z1, Z2}; note both Z1 and Z2 are large, as these sets were
large at the start of the initial branch.

So, to summarize, we have created in polynomial time O(k2n2(k−2)) branches and
for each branch we have an instance (G,Z) of 2- Induced Disjoint Connected
Subgraphswhere G is (sP1 +2P4)-free andZ = {Z1, Z2}. Moreover, if an instance
has a solution (D1, D2) then both D1 and D2 are difficult. It remains to show how we
can solve this problem in polynomial time for each created instance (G,Z). We do
this below.

Consider a created instance (G,Z). Let (D1, D2) be a solution for it. As D1 is
difficult, D1 has an induced P4 by definition. As G is (sP1 + 2P4)-free, this means
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that D2 is (sP1 + P4)-free. As D2 is difficult, D2 has an induced P4 as well, say on
vertices a, b, c, d. As D2 is (sP1 + P4)-free and Z2 is an independent set, the set
{a, b, c, d} must dominate all but at most s − 1 vertices of Z2. Let Z∗

2 be the subset of
Z2 that consists of vertices not adjacent to any vertex of {a, b, c, d}; so, Z∗

2 has size
at most s − 1.

Fix a vertex u of D2. As D2 is (sP1 + P4)-free and thus P2s+3-free, there exists a
path Pi of length at most 2s + 1 from each zi ∈ Z∗

2 to u. For the same reason we can
also choose a path Pd from d to u of length at most 2s + 3. Then replacing D2 by the
subgraph F2 of D2 that is induced by the union of {a, b, c, d, u} ∪ Z2 and the inner
vertices of all these paths leads to an alternative solution (D1, F2), where F2 − Z2
has size at most t ′, for t ′ = (2s + 2)(s + 1).

It now remains to consider all O(nt
′
) options of choosing the vertices of F2 − Z2.

For each option we check if F2 is connected and contains Z2 and if G − N [F2]
contains a connected component that contains Z1. This can be done in polynomial
time.

Correctness of our algorithm follows from the above description. As the number
of branches is polynomial and each branch can be processed in polynomial time, the
running time of our algorithm is polynomial. �
As mentioned, we use the algorithm of Lemma 10 as a subroutine in our next result,
which holds even when k and � are part of the input. In addition, we also use the
algorithm of of Lemma 8 as a subroutine.

Lemma 11 For every s ≥ 0, Induced Disjoint Connected Subgraphs is
polynomial-time solvable for (sP1 + P3 + P4)-free graphs.

Proof Let (G,Z) be an instance of Induced Disjoint Connected Subgraphs,
where G is an (sP1 + P3 + P4)-free graph for some integer s ≥ 0 and Z =
{Z1, . . . , Zk}. We assume without loss of generality that |Z1| ≥ |Z2| ≥ · · · ≥ |Zk |.
By Lemma 3, we may assume that k ≥ 2; every Z ′

i ∈ Z has size at least 2; and the
union of the sets in Z is an independent set.

Case 1 |Zk | ≤ s − 1.
By Lemma 4 we may assume without loss of generality that for a solution
(D1, . . . , Dk), we have |V (Dk)| ≤ t , where t = (2s + 13)(s − 1). We consider
all O(nt ) options of choosing the subgraph Dk . For each choice we check in polyno-
mial time if Dk is connected, contains Zk and that no vertex of Dk is adjacent to any
vertex of Z1 ∪ . . . ∪ Zk−1. If one of these conditions does not hold, then we discard
the choice. Otherwise, we solve Induced Disjoint Connected Subgraphs on
instance (G − N [V (Dk)],Z\{Zk}). This can be done in polynomial time. Namely,
the graph Dk contains an induced P3, as Zk is an independent set of size at least 2.
Thus, G − N [Dk] is (sP1 + P4)-free (and hence, (sP1 + P5)-free) and we can apply
Lemma 8.As the number of branches (subproblems) is polynomial aswell, the running
time for processing Case 1 is polynomial.

Case 2 |Zk | ≥ s (and hence |Zi | ≥ s for every i).
We need to make a distinction into two more subcases (recall that k ≥ 2).
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Case 2a k = 2.
As G is (sP1 + P3 + P4)-free, G is also (sP1 + 2P4)-free and we can use Lemma 10
to process Case 2a in polynomial time.

Case 2b. k ≥ 3.
Let (D1, . . . , Dk) be a solution (assuming it exists). As Z2 and Z3 are independent
sets of size at least s, both D2 and D3 contain an induced sP1 and an induced P3.
Hence, D1 is P4-free. By Theorem 4 (take r = 4), we find that D1 has a connected
dominating set X1 of size at most 2. We consider all O(n2) options of choosing
X1. We discard a choice if D1 = G[X1 ∪ Z1] is not connected or a vertex of D1 is
adjacent to a vertex of Z2∪· · ·∪Zk . For each non-discarded choice, we solve Induced
Disjoint Connected Subgraphs on instance (G−N [V (D1)],Z\{Z1}). The latter
takes polynomial time, as we can apply Lemma 8: as D1 has an induced P3, the graph
G−N [V (D1)] is (sP1+P4)-free and thus (sP1+P5)-free. As the number of branches
is polynomial as well, the running time for processing Case 2b is polynomial.
The correctness of our algorithm follows from the case descriptions. As each of the
cases can be done in polynomial time, the total running time of our algorithm is
polynomial. �

4 NP-Completeness Results

In this section we show a number of NP-completeness results that we need for prov-
ing our main theorems. Some of these results hold even for more restricted graph
classes. If � = 2, we write Induced Disjoint Paths instead of Induced Disjoint
Connected �- Subgraphs.

4.1 High Girth

The girth of a graph G that is not a forest is the length of a shortest cycle of G. We
prove two results for graphs of high girth.

Lemma 12 For every g ≥ 3, Induced Disjoint Paths is NP-complete for the class
of graphs of girth at least g.

Proof We reduce from Disjoint Paths. The reduction of Lynch [21] has the prop-
erty that the terminals are on disjoint vertices. Hence, after subdividing every edge
�g/3� ≥ 1 times, the terminals in the new graph, which has girth at least g, are disjoint.
Moreover, we now obtained an equivalent instance of Induced Disjoint Paths. �
For some of our other results we prove NP-hardness by reducing from the 2- Disjoint
Connected Subgraphs problem. Recall that this problem asks if a given graph has
two vertex-disjoint connected subgraphs containing pre-specified sets of vertices Z1
and Z2, respectively.

Lemma 13 For every g ≥ 3, 2- Induced Disjoint Connected Subgraphs is NP-
complete for the class of graphs of girth at least g.
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Proof We reduce from 2- Disjoint Connected Subgraphs, which is known to be
NP-complete for graphs of girth at least g for every g ≥ 3 [17, Lemma 6]. Again,
the reduction of [17] subdivides the edges of an instance of 2- Disjoint Connected
Subgraphs on general graphs, and we may assume that it does so at least once. Then
we obtain an equivalent instance of 2- Induced Disjoint Connected Subgraphs
on a graph of girth at least g. �

4.2 Line Graphs

The line graph L(G) of a graphG has vertex set {ve | e ∈ E(G)} and an edge between
ve and v f if and only if e and f are incident on the same vertex in G.

The following two lemmas show NP-completeness for line graphs. Lemma 14 is
due to Fiala et al. [6]. They consider a more general variant of Induced Disjoint
Paths, but their reduction holds in our setting as well. Lemma 15 can be derived from
the NP-completeness of 2- Disjoint Connected Subgraphs [31].

Lemma 14 ([6]) Induced Disjoint Paths is NP-complete for the class of line
graphs.

Proof Fiala et al. [6, Theorem 24] prove that Induced Disjoint Paths is NP-
complete for line graphs by reducing from Disjoint Paths on general graphs.
However, in the paper, they consider a more flexible variant where (among others)
terminals can be adjacent. Fortunately, this extra freedom is not used in the reduction.
We note that for Disjoint Paths, the reduction of Lynch [21] guarantees that the
terminals are on disjoint vertices. Then the construction of [6] guarantees that the ter-
minals in the constructed graph form an independent set and hardness for our variant
follows. �

Lemma 15 2- Induced Disjoint Connected Subgraphs is NP-complete for the
class of line graphs.

Proof We reduce from 2- Disjoint Connected Subgraphs, which is known to be
NP-complete [31].We describe a reduction that is similar to Fiala et al. [6, Theorem24]
for Induced Disjoint Paths.

Let (G, Z1, Z2) be an instance of 2- Disjoint Connected Subgraphs. For each
vertex z ∈ Z1 ∪ Z2, create a new vertex vz and connect it by an edge ez to z. Let
G ′ denote the new graph. Note that (G, Z1, Z2) is a yes-instance of 2 - Disjoint
Connected Subgraphs if and only if (G ′, {vz | z ∈ Z1}, {vz | z ∈ Z2}) is a yes-
instance. Now consider the line graph L(G ′). For each z ∈ Z1 ∪ Z2, let v(ez) be the
vertex in L(G ′) corresponding to ez . Then it can be readily seen that (G, Z1, Z2) is a
yes-instance of 2- Disjoint Connected Subgraphs if and only if (L(G ′), {v(ez) |
z ∈ Z1}, {v(ez) | z ∈ Z2}) is a yes-instance of 2- Induced Disjoint Connected
Subgraphs. �
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Fig. 1 Connections between cliques in the proof of Lemma 16. The horizontal double lines indicate these
vertices are joined in a clique. In the diagram we show variable x2 appearing in clause C1 and variable xn
appearing in clause Cm

4.3 Forbidding Some Linear Forest

Finally, we show two lemmas for graphs without certain induced linear forests.
Lemma 16 shows that 2- Induced Disjoint Connected Subgraphs is NP-
complete for (3P2, P7)-free graphs. It is readily seen that the gadget constructed in the
hardness reduction is not 2P4-free. Note that this is in line with Theorem 3. However,
Lemma 17 shows that NP-completeness does hold for 2P4-free graphs when the num-
ber k of terminal sets is part of the input. That is, Induced Disjoint Connected
Subgraphs is NP-complete for 2P4-free graphs.

Lemma 16 2- Induced Disjoint Connected Subgraphs is NP-complete for the
class of (3P2, P7)-free graphs.

Proof We reduce from Monotone Not- All- Equal- 3- Sat, which is known to
be NP-complete [29]. Let (X , C) be an instance of Monotone Not- All- Equal-
3- Sat containing n variables x1, . . . , xn and m clauses C1, . . . ,Cm containing only
positive literals. The question is whether there exists a truth assignment for (X , C)

such that each C j contains at least one true variable and at least one false variable.
We construct a graphG as follows. Let X be a clique of size n on vertices v1, . . . , vn .

Introduce a copy v′
i of each vi in X . Call the new set X ′ and make it a clique. Add

the edges viv
′
i for each vi in X . Let C be an independent set of size m on vertices

c1, . . . , cm . Introduce a copy c′
j of each vertex c j in C . Call the new set C ′ (and keep

it an independent set). Now for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, add an edge vi c j
and an edge v′

i c
′
j if clause C j contains variable xi . Set Z1 = C and Z2 = C ′. Then,

(G, Z1, Z2) is an instance of 2 - Induced Disjoint Connected Subgraphs. See
Fig. 1.

Observe that G is P7-free. Indeed, let P be any longest induced path in G. Then
P can contain at most two vertices from X and at most two vertices from X ′. If P
contains at most one vertex from C and at most one vertex from C ′, then P has length
at most 2 + 2 + 1 + 1 = 6. On the other hand, if P contains two vertices from C or
two vertices from C ′, then P has length at most 3.
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We also observe that G is 3P2-free, as any P2 must contain at least one vertex from
X or from X ′, and X and X ′ are cliques. So we are done after proving the following
claim: (X , C) is a yes-instance ofMonotone Not- All- Equal- 3- Sat if and only
if (G, Z1, Z2) is a yes-instance of 2 - Induced Disjoint Connected Subgraphs.

In the forward direction, let τ be a satisfying truth assignment. We put in A every
vertex of X for which the corresponding variable is set to true. We put in A′ every
vertex of X ′ for which the corresponding variable is set to false. As each clause C j

contains at least one true variable, c j is adjacent to a vertex in A. Similarly, each clause
C j contains at least one false variable, so each c′

j is adjacent to a vertex in A′. As
X and X ′ are cliques, A and A′ are cliques. Hence, G[C ∪ A] and G[C ′ ∪ A′] are
connected.

Now suppose there is an edge between a vertex of C ∪ A and a vertex of C ′ ∪ A′.
Then, by construction, this edge must be equal to some viv

′
i , which means that vi is

in A and v′
i is in A′, so xi must be true and false at the same time, a contradiction.

Hence, there exists no edge between a vertex from C ∪ A and a vertex from C ′ ∪ A′.
We conclude that (C ∪ A,C ′ ∪ A′) is a solution.

In the backwards direction, let (C ∪ A,C ′ ∪ A′) be a solution. Then, by definition,
there is no edge betweenC∪ A andC ′ ∪ A′, whichmeans that there is no edge between
A and A′. Then A ⊆ X and A′ ⊆ X ′, since X and X ′ are cliques and A (A′) needs to
contain at least one vertex of X (X ′). Also, there is no variable xi such that vi is in A
and v′

i is in A′. This means we can define a truth assignment τ by setting all variables
corresponding to vertices in A to be true, all variables corresponding to vertices in A′
to be false, and all remaining vertices in X to be true (or false, it does not matter).

As C is an independent set and C ∪ A is connected, each c j has a neighbour in
A. So each C j contains a true literal. As C ′ is an independent set and C ′ ∪ A′ is
connected, each c′

j has a neighbour in A′. So each C j contains a false literal. Hence,
τ is a satisfying truth assignment. This completes the proof. �

Lemma 17 Induced Disjoint Connected Subgraphs isNP-complete for the class
of 2P4-free graphs.

Proof We reduce from Monotone 3- Satisfiability [20]. Let Φ be an instance of
Monotone 3- Satisfiabilitywith n variables v1, . . . , vn , l clauseswith only positive
literals P1, . . . , Pl and m clauses with only negated literals N1, . . . , Nm . We define
an instance (G, Z1, . . . Zm+1) of Induced Disjoint Connected Subgraphs as
follows (see also Fig. 2).

– Add a clique, with one vertex vi for each variable.
– Add an independent set consisting of one vertex pi for each positive clause together
with one further vertex x adjacent to every variable vertex.

– Add an edge between each vertex pi and the variable vertices contained in the
corresponding clause Pi .

– For each negative clause add a complete bipartite graph K2,3 where the vertices
contained in the part of size 3, ni,1, ni,2 and ni,3, represent the literals of the clause
Ni , whilst the vertices contained in the part of size 2 are denoted as ni,4 and ni,5.

– Add edges from each literal vertex ni, j , 1 ≤ j ≤ 3 to the corresponding variable
vertex.
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Fig. 2 The graph constructed in the proof of Lemma 17 corresponding to an instance of Monotone
3- Satisfiability with three positive clauses and one negative clause (¬x1 ∨ ¬x2 ∨ ¬x3)

– Let Z1 consist of each positive clause vertex pi together with the vertex x .
– Let Zi consist of the two vertices ni−1,4 and ni−1,5 for 2 ≤ i ≤ m + 1.

Wefirst show thatG is 2P4-free. Note that atmost one of the two paths in an induced
2P4 contains any variable vertex. Since every neighbour of the vertices {p1 . . . pl , x} is
a variable vertex, none of these vertices is contained in an induced P4 which excludes
variable vertices. As the complete bipartite graph K2,3 is P4-free, this implies that G
is 2P4-free.

Next we show that G is a yes-instance of Induced Disjoint Connected Sub-
graphs if and only if Φ is a yes-instance of Monotone 3- satisfiability. Given
a satisfying assignment of Φ, let S1 = Z1 ∪ T where T is the set of variable ver-
tices corresponding to true variables. For 2 ≤ i ≤ m + 1, let Si = Zi ∪ Fi where
Fi is the set of literal vertices ni−1, j adjacent to variable vertices appearing in Ni−1
which are assigned to be false. Note that no subgraph Si , 2 ≤ i ≤ m + 1 contains a
variable vertex. S1 is connected since at least one variable appearing in each positive
clause must be true in any satisfying assignment. Similarly each Si is connected for
2 ≤ i ≤ m + 1 since any negative clause must contain at least one variable which is
assigned to be false. Any edge between Si and S j for i �= j must contain a variable
vertex since the remaining edges are those contained in copies of K2,3 and hence either
have two endpoints in the same subgraph Si or one endpoint contained in no subgraph
Si . Therefore we may assume that i = 1. If a variable vertex vi is contained in S1 and
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has a neighbour in a second subgraph S j it must be both true and false in a satisfying
assignment, a contradiction.

If (G, Z1 . . . Zm+1) is a yes-instance of Induced Disjoint Connected Sub-
graphs, consider any solution (S1, . . . , Sm+1) such that Zi ⊆ Si for 1 ≤ i ≤ m + 1.
Note that {ni−1,1, ni−1,2, ni−1,3 | 2 ≤ i ≤ m + 1} ⊆ N (Z2 ∪ · · · ∪ Zm+1), and thus
S1 ⊆ Z1 ∪ {v1, . . . , vn}. Since the variable vertices form a clique and S1 will need to
contain at least one variable vertex, (S2 ∪ · · · ∪ Sm+1) ∩ {v1, . . . , vn} = ∅. Set each
variable whose corresponding vertex is contained in S1 to true and each remaining
variable to false. We claim this yields a satisfying assignment for Φ. For a positive
clause Pi , note that S1 must connect pi to x , which is only possible if a variable vertex
adjacent to pi is in S1. This variable is contained in the clause and set to true, and
will thus satisfy the clause. For a negative clause Ni−1 with 2 ≤ i ≤ m + 1, we
note that Zi = {ni−1,4, ni−1,5} is connected by Si , which is only possible if one of
ni−1,1, ni−1,2, ni−1,3 is in Si , say ni−1,1. But then the variable vertex corresponding
to the first literal of the clause cannot be in S1, and thus is set to false and satisfies the
clause. �

5 The Proofs of Theorems 1–3

We are now ready to prove Theorems 1–3, which we restate below.

Theorem 1 (restated). Let � ≥ 2. For a graph H, Induced Disjoint Connected �-
Subgraphs on H-free graphs is polynomial-time solvable if H ⊆i s P3+ P6 for some
s ≥ 0; NP-complete if H is not a linear forest; and quasipolynomial-time solvable
otherwise.

Proof If H contains a cycleCs , thenwe use Lemma 12 by setting the girth to g = s+1.
Lemma 12 holds only for � = 2. If � ≥ 3, we add �− 2 new terminal vertices to some
set Zi with |Zi | = 2 and make them all adjacent to exactly one vertex that is from Zi .

Suppose that H contains no cycle, that is, H is a forest. If H contains a vertex of
degree at least 3, then we use Lemma 14, as in that case the class of H -free graphs
contains the class of K1,3-free graphs, which in turn contains the class of line graphs.
Lemma 14 is for line graphs but holds only for � = 2. If � ≥ 3, we add a clique of
� − 2 new terminal vertices to some set Zi with |Zi | = 2 and make them adjacent to
exactly one vertex u ∈ Zi and to all neighbours of u. The resulting graph is still a line
graph.

In the remaining cases, H is a linear forest. If H ⊆i s P3 + P6 for some s ≥ 0 we
use Lemma 5. Else we use Lemma 6. �
Theorem 2 (restated). For a graph H such that H �= sP1 + P6 for some s ≥ 0,
Induced Disjoint Connected Subgraphs on H-free graphs is polynomial-time
solvable for H-free graphs if H ⊆i s P1 + P3 + P4 or H ⊆i s P1 + P5 for some s ≥ 0,
and it is NP-complete otherwise.

Proof If H is not a linear forest, we use Theorem 1. Suppose H is a linear forest. If
H ⊆i s P1 + P5 for some s ≥ 0 we use Lemma 8. If H ⊆i s P1 + P3 + P4 for some
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s ≥ 0 we use Lemma 11. If 3P2 ⊆i H or P7 ⊆i H we use Lemma 16. Otherwise
2P4 ⊆i H and we use Lemma 17. �
Theorem 3 (restated). Let k ≥ 2. For a graph H, k- Induced Disjoint Connected
Subgraphs on H-free graphs is polynomial-time solvable for H-free graphs if H ⊆i

s P1 + 2P4 or H ⊆i s P1 + P6 for some s ≥ 0, and it is NP-complete otherwise.

Proof If H contains a cycleCs , thenwe use Lemma 13 by setting the girth to g = s+1.
Suppose that H contains no cycle, that is, H is a forest. If H contains a vertex of degree
at least 3, then we use Lemma 15, as in that case the class of H -free graphs contains
the class of K1,3-free graphs, which in turn contains the class of line graphs. In the
remaining cases, H is a linear forest. If H ⊆i s P1 + P6 for some s ≥ 0 we use
Lemma 9. If H ⊆i s P1 + 2P4 for some s ≥ 0 we use Lemma 10. Otherwise we have
that 3P2 ⊆i H or P7 ⊆i H and we use Lemma 16. �

6 A Slight ProblemGeneralization

In this section we consider a more general variant of the problem. So far, we required
that the terminals must all form an independent set. This condition has been relaxed in
some papers in the literature, such as [19] (see also Sect. 1). Given a graph G, we say
that vertex-disjoint paths P1, . . . , Pk , for some integer k ≥ 1, with set R of endpoints
are flexibly mutually induced paths of G if there exists a set S ⊆ V \ R such that
G[S ∪ R] = (P1 + . . .+ Pk)∪G[R]. So, there is no edge between two vertices from
different paths Pi and P j except possibly between the endpoints of the paths. We can
now define the following decision problem:

Flexibly Induced Disjoint Paths
Instance: a graph G and terminal pair collection T = {(s1, t1) . . . , (sk, tk)}.
Question: does G have a set of flexibly mutually induced paths P1, . . . , Pk

such that Pi is an si -ti path for i ∈ {1, . . . , k}?
Requiring terminals to form an independent set is crucial for our quasipolynomial
results. Namely, Theorem 1 is unlikely to hold in the relaxed setting, as shown below.

Theorem 7 The Flexibly Induced Disjoint Paths problem is NP-complete for
the class of P14-free graphs.

Proof We reduce from 3- Satisfiability, which is well known to be NP-hard. Let
Φ be an instance of 3- Satisfiability with n variables v1, . . . , vn and p clauses
c1, . . . , cp. We may assume that each variable occurs at most once in each clause.
Create a set L of n + p vertices, denoted lv1 , . . . , l

v
n , l

c
1, . . . , l

c
p, and a set R of n + p

vertices, denoted rv
1 , . . . , rv

n , rc1 , . . . , r
c
p. We make L into a clique and R into a clique.

For each variable vi , create two vertices mt
i and m f

i , which we both make adjacent
to lvi and rv

i . For each clause c j and each literal � of c j , create a new vertex m�
j ,

which we make adjacent to both lcj and r
c
j . If � is the negation of variable vi , make m�

j
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Fig. 3 The hardness
construction for Flexibly
Induced Disjoint Paths on
P14-free graphs. The sets L and
R are cliques; the corresponding
edges are not drawn. The three
curved edges betweenm-vertices
correspond to an instance of
3- Satisfiability where
variable v1 occurs negatively in
c1 (as the third literal), variable
vn occurs positively in c1 (as the
second literal) and positively in
cp (as the second literal)

adjacent to mt
i ; if � is variable vi , make m�

j adjacent to m f
i . Call M the set of these

m-vertices for the variables and the literals. Call the resulting graphG. Let the terminal
pair collection T = {(lv1 , rv

1 ), . . . , (lvn , r
v
n ), (lc1, r

c
1), . . . , (l

c
p, r

c
p)}. The construction is

illustrated in Fig. 3. We claim (G, T ) is a yes-instance if and only if Φ is satisfiable.
First suppose that (G, T ) is a yes-instance. Let Pv

1 , . . . , Pv
n , Pc

1 , . . . , Pc
p be a solu-

tion for the paths between (lv1 , r
v
1 ), . . . , (lvn , r

v
n ), (lc1, r

c
1), . . . , (l

c
p, r

c
p) respectively. For

1 ≤ i ≤ n, since terminal lvi is adjacent to other terminals and tomt
i andm

f
i , we know

that Pv
i contains one ofmt

i andm
f
i immediately after lvi . Sincem

t
i andm

f
i are adjacent

to rv
i , we may assume without loss of generality that Pv

i then continues directly to rv
i .

We create a truth assignment σ where we set vi to true if and only if Pv
i contains mt

i .
Similarly, we can argue that Pc

j goes from lcj to a vertex m�
j for some literal � in c j ,

and then continues to rcj . If � is the negation of vi , then m�
j is adjacent to mt

i . Hence,

mt
i is not in Pv

i and thus the clause is satisfied by σ . Otherwise, if � is vi , then m�
j is

adjacent tom f
i . Hence,m

f
i is not in Pv

i and thus the clause is satisfied by σ . It follows
that each clause is satisfied by σ and thus Φ is satisfiable.
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Now suppose that Φ is satisfiable. Let σ be a truth assignment that satisfies every
clause of Φ. For each variable i , let Pv

i be the path from lvi to rv
i that goes via mt

i if

σ(i) is set to true and goes via m f
i otherwise. For each clause 1 ≤ j ≤ p, let Pc

j be

the path from lci to r
c
i that goes via m�

j , where � is any literal in c j that is satisfied by

σ . Observe that when � is satisfied, then if � is the negation of vi , then m�
j is adjacent

to mt
i but m

t
i is not in Pv

i . Similarly, if � is vi , then m�
j is adjacent to m

f
i but m f

i is not
in Pv

i . It follows that P
v
1 , . . . , Pv

n , Pc
1 , . . . , Pc

p is a set of flexibly mutually induced
paths. Hence, (G, T ) is a yes-instance.

It remains to argue thatG is P14-free. Consider a longest induced path P inG. Since
both L and R are cliques, P contains at most two vertices of L and at most two vertices
of R, and if P contains two vertices of L (or R), then these must appear consecutively.
We also note that the vertices in M corresponding to literals have degree 3, and thus
when P contains such a vertex m′, the next or previous vertex on P must be in L or
R, or m′ is an endpoint of P . The vertices in M corresponding to variables can have
large degree; however, when P contains such a vertex m′′, the next or previous vertex
on P must be in L or R or must be a vertex in M corresponding to a literal, or P has
length 0. Hence, at most three vertices in M can lie consecutively on P before (or
after) a vertex of L or R must appear or an endpoint of P is reached: them-vertex for a
literal, a variable, and a literal consecutively. Therefore, in the worst case, P contains
three vertices of M , followed by two of L or R, followed by three of M , followed by
two of L or R, followed by three of M . Hence, P has at most 13 vertices and thus, G
is P14-free. �

7 FutureWork

We proved a number of new complexity results on induced paths and subgraphs con-
necting terminals. These results naturally lead to some open problems. First of all,
can we find polynomial-time algorithms for the quasipolynomial cases in Theorem 1?
This is a challenging task that is also open for Independent Set; note that we reduce
to the latter problem in our proof for the case where H = sP1 + P6 for some s ≥ 0.
Interesting open cases are when H ∈ {2P4, P7}.

We also recall that the case H = P6 is essentially the only remaining open case
left in Theorem 2, which is for the setting where k and � are both part of the input. As
shown in Theorems 1 and 3, respectively, we have a positive answer for the settings
where � is fixed (and k is part of the input) and where k is fixed (and � is part of the
input), respectively. However, it seems challenging to combine the techniques used
for proving these results for H = P6 when both k and � are part of the input.

We did not yet discuss the k- Induced Disjoint Connected �- Subgraphs prob-
lem, which is the variant where both k and � are fixed; note that if � = 2, thenwe obtain
the k- Induced Disjoint Paths problem. The latter problem restricted to k = 2 is
closely related to the problem of deciding if a graph contains a cycle passing through
two specified vertices and has been studied for hereditary graph classes as well; see
[19]. Recently, we made some more progress on k-Induced Disjoint Paths, as we
discuss below.
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A subdivided claw is obtained from a claw after subdividing each edge zero or
more times. In particular, the chair is the graph obtained from the claw by subdividing
one of its edges exactly once. The set S consists of all graphs with the property that
each of their connected components is either a path or a subdivided claw. We proved
in [23] that for every integer k ≥ 2 and graph H , k-Induced Disjoint Paths is
polynomial-time solvable if H is a subgraph of the disjoint union of a linear forest
and a chair, and it is NP-complete if H is not in S.

From the above it follows in particular that k-Induced Disjoint Paths is
polynomial-time solvable for claw-free graphs (just like Independent Set [24, 30]).
This is in contrast to the three problems in this paper, which are NP-complete for claw-
free graphs (see Theorems 1–3).We leave completing the classification of k- Induced
Disjoint Paths as future work and refer to [23] for a more in-depth discussion.

We also leave classifying Flexibly Induced Disjoint Paths to future research;
recall that Theorem 1 is unlikely to hold for this problem.

Acknowledgements The authors thank Paweł Rzążewski for the argument using blob graphs, which sim-
plified two of our proofs and led to the case H = P6 in Theorem 1. The paper did not receive support from
external funding agencies.

Author Contributions All authors contributed to the paper.

Data Availibility Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of interest The authors have no competing interests as defined by Springer, or other interests that
might be perceived to influence the results and/or discussion reported in this paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Belmonte, R., Golovach, P.A., Heggernes, P., van’t Hof, P., Kaminski, M., Paulusma, D.: Detecting
fixed patterns in chordal graphs in polynomial time. Algorithmica 69, 501–521 (2014)

2. Bienstock, D.: On the complexity of testing for odd holes and induced odd paths. Discrete Math. 90,
85–92 (1991)

3. Brandstädt, A., Hoàng, C.T.: On clique separators, nearly chordal graphs, and the maximum weight
stable set problem. Theoret. Comput. Sci. 389, 295–306 (2007)

4. Camby, E., Schaudt, O.: A new characterization of Pk -free graphs. Algorithmica 75, 205–217 (2016)
5. Fellows, M.R.: The Robertson-Seymour theorems: a survey of applications. Proc. AMS-IMS-SIAM

Jt. Summer Res. Conf. Contemp. Math. 89, 1–18 (1989)
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