
Algorithmica (2023) 85:2454–2481
https://doi.org/10.1007/s00453-023-01107-1

Certifying Fully Dynamic Algorithms for Recognition and
Hamiltonicity of Threshold and Chain Graphs

Jesse Beisegel1 · Ekkehard Köhler1 · Robert Scheffler1 ·Martin Strehler2

Received: 8 November 2021 / Accepted: 7 February 2023 / Published online: 28 February 2023
© The Author(s) 2023

Abstract
Solving problems on graphs dynamically calls for algorithms to function under
repeated modifications to the graph and to be more efficient than solving the prob-
lem for the whole graph from scratch after each modification. Dynamic algorithms
have been considered for several graph properties, for example connectivity, shortest
paths and graph recognition. In this paper we present fully dynamic algorithms for the
recognition of threshold graphs and chain graphs, which are optimal in the sense that
the costs per modification are linear in the number of modified edges. Furthermore,
our algorithms also consider the addition and deletion of sets of vertices as well as
edges. In the negative case, i.e., where the graph is not a threshold graph or chain
graph anymore, our algorithms return a certificate of constant size. Additionally, we
present optimal fully dynamic algorithms for the Hamiltonian cycle problem and the
Hamiltonian path problem on threshold and chain graphs which return a vertex cutset
as certificate for the non-existence of such a path or cycle in the negative case.

Keywords Fully dynamic algorithms · Threshold graphs · Chain graphs · Difference
graphs · Hamiltonian cycles · Hamiltonian paths

Mathematics Subject Classification 05C85 · 05C45 · 68R10

B Robert Scheffler
robert.scheffler@b-tu.de

Jesse Beisegel
jesse.beisegel@b-tu.de

Ekkehard Köhler
ekkehard.koehler@b-tu.de

Martin Strehler
martin.strehler@fh-zwickau.de

1 Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany

2 Department of Mathematics, Westsächsische Hochschule Zwickau, Zwickau, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01107-1&domain=pdf
http://orcid.org/0000-0002-8760-0169
http://orcid.org/0000-0001-6007-4202
http://orcid.org/0000-0003-4241-6584

Algorithmica (2023) 85:2454–2481 2455

1 Introduction

In many graph-theoretical applications graphs are not static, but change over time. For
example in a social network it is common that vertices (representing members of the
network) as well as edges (representing a connection between two members) can be
added or deleted at any given time. As these types of networks can be very large, it
is important to update certain properties of a network efficiently when making such
a modification. Due to the size of some of these networks, however, even a running
time linear in the size of the network can be prohibitive, begging the question whether
it is possible to make such an update either in time logarithmic in the input or ideally
with a running time linear in the size of the modification. In particular, we can ask if
it is possible to use such a scheme when checking whether a given graph is part of
some graph class. Such schemes are called dynamic recognition algorithms and are
categorized depending on the modification operations they support: An edges-only
dynamic recognition algorithm supports both edge additions and edge deletions. A
fully dynamic recognition algorithm supports edge modifications as well as vertex
additions and deletions. Note that for vertex additions one usually is also given a set
of neighbors of the new vertex. A dynamic recognition algorithm is said to be optimal
if the running time of each operation is linear in the number of edges involved in that
operation.

Dynamic recognition algorithms have been developed for many different graph
classes. For example, Ibarra [20] presented edges-only fully dynamic recognition
algorithms for chordal graphs and split graphs. Similar results were attained by Hell et
al. [16] for proper interval graphs, byCrespelle and Paul [9] for permutation graphs and
by Soulignac [28] for proper circular arc graphs. Furthermore, Shamir and Sharan [27]
formulated a fully dynamic algorithm for the recognition of cographs. The combina-
tion of this algorithmwith Ibarra’s for split graphs implies a fully dynamic recognition
algorithm for threshold graphs, as these form the intersection of split and cographs
[27]. However, this algorithm does not yield a certificate for the negative case and does
not fully represent the special structure of threshold graphs, as it relies on algorithms
for other graph classes. Besides the recognition of graph classes, fully dynamic algo-
rithms have also been developed for many other graph-theoretical problems such as
connectivity [18, 19, 29], shortest paths [10, 21] and matching approximation [2], as
well as for minimal integral separators for threshold and difference graphs [4].

Threshold graphs were first introduced by Hammer and Chvátal [5, 6], where they
were used to solve the aggregation problem for set-packing inequalities, and, inde-
pendently by Henderson and Zalcstein [17]. Furthermore, Hammer and Chvátal [6]
showed that threshold graphs can be characterized as the graphs which do not contain
an induced subgraph isomorphic to 2K2, P4 or C4. Since then, there has been con-
siderable interest in this graph class leading to many interesting results. A survey can
be found in the book by Peled and Mahadev [23]. Apart from linear integer program-
ming, threshold graphs have also been used in applications as diverse as mathematical
psychology [7, 8], scheduling [22] and parallel computing [24, 25].

In the context of fully dynamic recognition algorithms, the relationship between
threshold graphs and the aggregation problem for set packing inequalities is of par-
ticular interest. In this problem one is given a linear integer program containing a

123

2456 Algorithmica (2023) 85:2454–2481

collection of set-packing inequalities and wishes to find an equivalent program in
which this collection of inequalities is covered by a single equation. In [6], Hammer
and Chvátal showed that this problem is in fact equivalent to the recognition of thresh-
old graphs. To this end, each variable of the linear program contained in set-packing
inequalities is identified with a vertex of a graph, where two vertices are connected by
an edge if they both appear together in some equation. The binary solutions to these
inequalities correspond to the independent sets of the constructed graph. In particular,
they can be aggregated to one linear equation if and only if the graph is threshold. In
this context, adding and removing vertices from the graph can be seen as the addition
or removal of variables, while the addition and deletion of edges corresponds to the
modification of the inequalities.

Chain graphs (also known as difference graphs in the literature), introduced by
Yannakakis [30] and also independently by Hammer et al. [11], are closely related
to threshold graphs and in many ways form a bipartite variant of threshold graphs.
In fact, a bipartite graph G with bipartition (X ,Y) is a chain graph if and only if
adding all edges between vertices in X yields a threshold graph [23]. Equivalently,
Yannakakis [30] characterized chain graphs as bipartite graphs that do not contain an
induced 2K2. Heggernes and Kratsch showed that both threshold and chain graphs
can be recognized in linear time [13].

Our Contribution. In this paper, we present optimal fully dynamic recognition algo-
rithms for threshold graphs and chain graphs. These algorithms are certifying, i.e.,
they return a certificate in form of a forbidden subgraph for the negative case. The
algorithms need linear time for preprocessing and the running time of the operations
are as follows: O(1) for deleting and inserting an edge and O(d) for inserting or
deleting a vertex v which has d neighbors in G. For threshold graphs Shamir and
Sharan [27] already introduced a fully dynamic recognition algorithm with similar
running times. However, their algorithm is not certifying and uses the fully dynamic
recognition algorithms for split graphs and cographs, while our implementation is self
contained, using an efficient data structure for threshold graphs, and yields certificates.

Furthermore, we expand on the idea of a fully dynamic algorithm by giving efficient
routines for the addition and deletion of sets of vertices or edges. While for the studied
graph classes the modification of sets of vertices is a straightforward extension of
the previous results, the modification of sets of edges needs a different approach
which leads to a running time of O(min{k log k, n + k}), where k is the size of the
modified edge set. This approach uses special edge elimination schemes introduced
by Beisegel et al. [1].

Using concepts from these recognition algorithms, we also present fully dynamic
algorithms for both threshold graphs and chain graphs that decide whether a given
threshold and chain graph has a Hamiltonian cycle or a Hamiltonian path. These
algorithms have running times that are identical to the running times of the recognition
algorithms. In the positive case, they can find aHamiltonian cycle or path in timeO(n).
Otherwise, they can find in timeO(n) a vertex cutset that separates the graph intomany
connected components. This can be used as a certificate for the non-existence of such
a path or cycle. To the best of our knowledge, these are the first dynamic algorithms
for the Hamiltonian path and cycle problem.

123

Algorithmica (2023) 85:2454–2481 2457

2 Preliminaries

Throughout this paper, we consider graphs G = (V , E) with n = |V | vertices and
m = |E | edges, which are always finite, simple and undirected. Apart from possible
isolated vertices, i.e., vertices without incident edges, the graphs are connected, that
is, they have only one non-trivial component. An edge between u and v is simply
denoted by uv. For a vertex v ∈ V , the (open) neighborhood of v is denoted by
N (v), i.e., N (v) := {u ∈ V | uv ∈ E}, the closed neighborhood N [v] is defined as
N [v] := N (v) ∪ {v}. The degree of a vertex x in G is denoted by dG(v) := |N (v)|.

Given a subset of vertices U ⊆ V , the subgraph of G induced by U is denoted by
G[U] and has vertex set V (G[U]) = U and edge set E(G[U]) = {uv ∈ E(G) | u, v ∈
U }. The subgraph induced by V (G)\U is denoted by G − U and, in the case that U
contains just one element v ∈ U , we simply write G − v instead of G − {v}.

Let u and v be two different vertices of G = (V , E). Then, G − uv denotes the
graph without edge uv, i.e., the graph with vertex set V and edge set E ′ = E\{uv}.
Similarly, G + uv is the graph with edge uv, that is, E ′ = E ∪ {uv}.

In this paper, we mainly focus on two graph classes, namely threshold graphs
and chain graphs. A graph is a threshold graph if there are vertex weights w(v) for
each vertex v ∈ V and a value S (the threshold) such that uv ∈ E if and only if
w(u) + w(v) > S. Although this is the standard definition of threshold graphs, an
equivalent definition will turn out to be more convenient for our purpose: A graph is a
threshold graph if and only if it can be generated from a one-vertex graph by repeated
additions of isolated vertices or universal vertices, i.e., vertices that are adjacent to all
already existing vertices. Furthermore, threshold graphs are exactly the graphs that do
not contain an induced P4, C4 or 2K2 [6], that is, there are no induced paths or cycles
with four vertices and no two non-adjacent edges.

Similarly, chain graphs can be defined in various ways. A graph is a chain graph if
there are a positive threshold T and vertex weights w(v) with |w(v)| < T such that
uv ∈ E if and only if |w(u) − w(v)| > T . Therefore, these graphs are also called
difference graphs [11]. In fact, chain graphs are exactly the bipartite 2K2-free graphs
[30]. The complement of a bipartite graph G is an interval graph if and only if G
is a chain graph. Furthermore, chain graphs can be characterized as those bipartite
graphs with vertex bipartition B1∪̇B2, where the neighborhoods of the vertices in B1
are totally ordered by set inclusion, i.e., for every u, v ∈ B1, either N (u) ⊆ N (v) or
N (v) ⊆ N (u). The same applies to B2.

There is a close relation between threshold and chain graphs. Given a threshold
graph G with the vertex partition in the set U of universal vertices and the set I of
independent vertices, the graph consisting only of the edges of G between U and I
and the same vertex set is a chain graph. Vice versa, completing one of the sets Bi of
a chain graph to a clique yields a threshold graph [30]. Note that both threshold and
chain graphs have only one non-trivial component, as they are 2K2-free. Moreover,
threshold graphs are chordal, whereas chain graphs are AT-free and co-comparability
graphs [3]. A comprehensive survey on threshold and chain graphs is given in the book
of Mahadev and Peled [23].

123

2458 Algorithmica (2023) 85:2454–2481

The following lemma shows that the neighborhoods of two vertices in a threshold
or chain graph can be compared by simply comparing their respective degrees. This
property will be used frequently throughout.

Lemma 2.1 Let G = (V , E) be a threshold graph and let u, v ∈ V be two vertices in
G such that NG(u) � NG[v]. Then dG(u) > dG(v).

Let G = (X ∪ Y , E) be a chain graph and let u, v ∈ X be two vertices in the same
partition set of G such that NG(u) � NG(v). Then dG(u) > dG(v).

Proof We start with the threshold graphs. Let x be a vertex in NG(u)\NG [v]. Then
for the weight function w : V → R and the threshold S it holds: w(u) + w(x) > S
and w(v)+w(x) ≤ S. Therefore, w(u) must be larger than w(v) and for every vertex
y ∈ V holds w(u) + w(y) > w(v) + w(y). Thus, there cannot be a vertex in N (v)

that is not in N [u] and the degree condition holds.
For the chain graph we turn X into a clique and get a threshold graph. Since the

property of the neighborhoods of u and v still holds, it follows from the first part of
the lemma that the degree of u is larger than the degree of v in the threshold graph.
This also holds for the chain graph, as both degrees were raised by the same number.

�	
This shows that vertex degrees play an important role in threshold and chain graphs

and motivates the following definition which aims to simplify notation throughout.

Definition 2.2 Let uv and xy be two edges connecting vertices of a graph G with
dG(u) ≤ dG(v) and dG(x) ≤ dG(y). Note that it is not necessary that these edges are
contained in the edge set of G. The edge xy is called degree-lower than edge uv in G
if:

– x
= u and dG(x) ≤ dG(u), or
– x = u and dG(y) ≤ dG(v).

The edge xy is called degree-greater than edge uv if:

– x
= u and dG(x) ≥ dG(u), or
– x = u and dG(y) ≥ dG(v).

Note that an edge xy can be both degree-lower and degree-greater than an edge
uv
= xy at the same time. This holds for example if x
= u and dG(x) = dG(u) or if
x = u and dG(y) = dG(v). Furthermore, in the definition of degree-lower and degree-
greater, we consider both edges and non-edges of a graph. This is necessary as we will
consider both the insertion and the deletion of edges in our dynamic algorithms. For a
graph G and a set of edges F connecting vertices of G, but not necessarily contained
in G we say that e ∈ F is degree-minimal in F if it is degree-lower in G than any
other edge in F . Edge e is said to be degree-maximal in F if it is degree-greater in G
than any other edge in F .

The problem of dynamically recognizing certain graph classes can be defined as
follows: Given a graph class G and a graph G ∈ G, one looks for a representation
which allows the efficient insertion or deletion of vertices and edges and a decision
whether the new graph is still in G. Algorithms for this problem are called dynamic

123

Algorithmica (2023) 85:2454–2481 2459

(i)

a b

c d

e f

(ii)

a b e c f d

Fig. 1 A threshold graph together with its threshold partition. Black vertices belong to
⋃3

i=1Ui and white

vertices belong to the
⋃3

i=1 Ii . Thus, the partition is (I1 = {a},U1 = {b}, I2 = {e},U2 = {c}, I3 =
{ f },U3 = {d}). Usually, both a and b would be included in the clique set of the threshold graph. However,
since we have an odd number of degrees, one of the vertices of degree three, i.e., vertex a, forms the set I1
and the rest forms U1

recognition algorithms and are categorized depending on the modification operations
they support. Following the terminology used in [27], we call a dynamic recognition
algorithm an edges-only fully dynamic recognition algorithm if it supports both edge
additions and edge deletions. A fully dynamic recognition algorithm supports edge
modifications as well as vertex additions and deletions. Note that for vertex additions
one usually is also given a set of neighbors of the new vertex.

3 Threshold Graphs

Heggernes and Papadopoulos [15] introduced a vertex partition of threshold graphs
which consists of an ordered partition of the clique set and an ordered partition of the
independent set. Here, we introduce a similar structure that merges these two partitions
into one and swaps the order of the partition sets (see Fig. 1for an example).

Definition 3.1 Let G = (V , E) be a threshold graph. A threshold partition of G is an
ordered partition P = (I1,U1, . . . , Ik,Uk, Ik+1) of the vertex set V with Ii ,Ui
= ∅
for all 1 ≤ i ≤ k such that xy ∈ E if and only if x ∈ Ii ∪Ui and y ∈ Uj or vice versa
for some i ≤ j .

Note that the set Ik+1 contains the isolated vertices of G and can be empty. The
existence of a threshold partition for every threshold graph follows from the fact that
a threshold graph can be generated from a one-vertex graph by repeated additions
of isolated or universal vertices. The following observation is a direct result of the
definition of the threshold partition and Lemma 2.1.

Observation 3.2 Let G = (V , E) be a threshold graph with threshold partition P =
(I1,U1, . . . , Ik,Uk, Ik+1).

• If x, y ∈ Ii or x, y ∈ Ui , then dG(x) = dG(y).
• If x ∈ Ii and y ∈ I j with i < j , then dG(x) > dG(y).
• If x ∈ Ui and y ∈ Uj with i < j , then dG(x) < dG(y).
• If x ∈ Ii and y ∈ Uj , then dG(x) ≤ dG(y) and unless i = j = 1 and |I1| = 1, it
holds that dG(x) < dG(y).

123

2460 Algorithmica (2023) 85:2454–2481

Thus, apart from I1 andU1, the sets of the threshold partition coincide with the sets
of vertices of the same degree. However, the U -sets are ordered increasingly by the
degree of their vertices while the I -sets are ordered decreasingly. As we will see in
the following, this unusual ordering ensures that vertices incident to edges which are
safe to add or to delete lie close to each other in the threshold partition. This would
not be the case if we order the partition sets strictly due to their vertex degrees. As
well as leading to more intuitive proofs, this definition also has benefits with regard
to the implementation of this structure.

Observation 3.2 also implies a linear-time algorithm to compute such a partition.

Theorem 3.3 There is an algorithm that computes the threshold partition of a threshold
graph in time O(n + m).

Proof We sort the vertices by their degrees using bucket sort. If there are vertices of
degree zero, then they form the set Ik+1 and we delete them from the graph G. Then
we consider the vertices with the smallest degree of the remaining graph. They form
set Ik and their neighbors form set Uk . Note that, due to G being a threshold graph,
all vertices contained in Uk are universal in G. Again, we delete both the vertices of
Ik and of Uk from G. The resulting graph is still a threshold graph and the degree
ordering does not change as the vertices of Uk are adjacent to all remaining vertices
and the vertices of Ik are adjacent to none of them. We repeat this procedure until
we have either partitioned the whole graph or we only have one bucket S left, i.e., all
the remaining vertices have the same degree. The degree of these remaining vertices
was not minimal in the step before, i.e., these vertices have neighbors that were not
neighbors of the vertices in I2. This implies that there are at least two vertices in S and
the vertices of S are pairwise adjacent. We choose one of the vertices of S that forms
I1, the other vertices of S form U1.

The whole procedure has a running time of O(n + m). The first sorting of the
vertices can be found in linear time. Because there is no resorting needed, the rest of
the procedure can also be done in linear time. �	

In the following, we will present three lemmas that use the threshold partition to
characterize edges and vertices that can be deleted from a threshold graph or added to it
such that it is still a threshold graph. The proofs of these lemmas are constructive, i.e.,
for the positive case they provide the updated threshold partition of the new graph and
for the negative case they imply a certificate for the graph not being a threshold graph
in form of a forbidden induced subgraph. Both the new threshold partition as well as
the forbidden subgraph will be helpful for our fully dynamic algorithm for threshold
graph recognition. Additionally, we will show that the vertices of the certificate still
induce a forbidden subgraph ifwe delete or add further edgeswith a special property on
the degrees of their vertices. We will use these results in Sect. 5 to present a certifying
dynamic algorithm for the addition and deletion of several edges at the same time.

The following data structure will be used throughout to represent threshold graphs.

Definition 3.4 (Threshold data structure) For a threshold graph G = (V , E) a
threshold data structure consists of the following elements:

• a threshold partition P of G as a doubly linked list of doubly linked lists,

123

Algorithmica (2023) 85:2454–2481 2461

• a pointer from every vertex v ∈ V to its list L in P and to its element in L
• for every list in P the information whether it represents a U -set or an I -set

We begin with the deletion of an edge.

Lemma 3.5 Let G = (V , E) be a threshold graph with a threshold data structure
containing threshold partition P = (I1,U1, . . . , Ik,Uk, Ik+1) and let xy ∈ E. There
is an algorithm with running time inO(1) which returns a threshold data structure of
G − xy if one of the following conditions holds:

1. |I1| = 1 and both x and y are elements of U1
2. x ∈ I j and y ∈ Uj for some j ∈ {1, . . . , k}, or vice versa.
Otherwise the algorithm returns a set of four vertices that induces a P4 or a C4 in
G–xy and a P4, C4 or 2K2 in the graph G–xy–F where F is an arbitrary set of edges
in G that are degree-greater than xy in G.

Proof In order to decide whether the first condition holds, we only have to check the
size of I1 and whether both x and y are contained in the setU1 of the doubly linked list.
For the second condition we only have to check whether the set containing one of the
vertices is the successor of the set containing the other vertex in P . These operations
can be done in constant time.

Nowwe show that the edge xy can be removedwithout leaving the class of threshold
graphs if one of the two conditions holds. Note that this result was already proven by
Heggernes and Papadopoulos [15]. However, we need a slightly different technical
argument for the fully dynamic recognition algorithm, so we present it here again. For
the two cases we consider the following vertex partitions:

P1 = ({x, y}, (U1\{x, y}) ∪ I1, I2,U2, . . . , Ik,Uk, Ik+1),

P2 = (I1,U1, . . . , I j−1,Uj−1, I j\{x}, {y}, {x},Uj\{y},
I j+1,Uj+1, . . . , Ik,Uk, Ik+1).

Note that in P2 the vertex x becomes a member of Uj−1 if I j\{x} is empty and y
becomes a member of I j+1 ifUj\{y} is empty. It follows by definition thatP1 is again
a threshold partition of the graph G− xy if Condition 1 holds. Furthermore,P2 is also
a threshold partition of G − xy if Condition 2 holds. To compute theses partitions we
only have to remove a constant number of elements from their corresponding lists and
put them in lists that are predecessors or successors of the old lists. Therefore, these
operations can be done in O(1).

We will show that for every edge xy ∈ E that does not fulfill the conditions the
graph G − xy is not a threshold graph. To this end, we will show how we can find an
induced P4 or C4 in G − xy. Without loss of generality, we may assume that y ∈ Uj

for some j ∈ {1, . . . , k}.
In the following we consider three cases (see Fig. 2).
Case (i) We first consider the case that x is an element of an independent set I�.

As xy is an edge of G it holds that � ≤ j . Since Condition 2 fails, we have � < j .
Let a be a vertex in U� and b be a vertex in I j . Both vertices can be found in constant

123

2462 Algorithmica (2023) 85:2454–2481

(i)

x a b y

(ii)

a b x
y

(iii)

a x b y

Fig. 2 The three cases of the proof of Lemma 3.5. Black vertices belong to
⋃k

i=1Ui and white vertices

belong to
⋃k

i=1 Ii . The thick edge is the edge we want to delete. The order of the vertices respects the order
of their corresponding sets in the threshold partition

time. The set {x, a, y, b} induces the following edges: xa, ay, by. Thus, (x, a, y, b)
is an induced P4 in G − xy, since x is not adjacent to b, as both x and b are part of
an independent set, and a is not adjacent to b because � < j . Due to Observation 3.2,
both xa and by are not degree-greater than xy inG. If we remove arbitrary edges from
G − xy which are degree-greater than xy, then the vertices a, b, x and y induce a P4
or a 2K2, depending on whether the edge ay was removed.

For cases (ii) and (iii) we assume that x ∈ Ui and i ≤ j , as otherwise we can swap
the roles of x and y.

Case (ii) Let i = j . If i = 1, then I1 contains at least two vertices because
Condition 1 does not hold. Otherwise, there are at least two vertices in I1 ∪ I2. In
both cases we have at least two non-adjacent vertices a and b which are adjacent both
to x and to y. Thus, the set {x, y, a, b} induces a C4 in G − xy. Both a and b can
be found in constant time. Furthermore, all the edges contained in this cycle are not
degree-greater than edge xy in G, due to Observation 3.2. Therefore, the C4 is also
contained in any graph G − F where F is a set of edges that are degree-greater than
xy in G.

Case (iii) Let i < j . We pick vertices a ∈ I1 and b ∈ I j in constant time. The edges
ax , ay and by are contained in G. Note that x is not adjacent to b since j > i and
that a is not adjacent to b since both belong to independent sets. Now (x, a, y, b) is an
induced P4 inG−xy. Again, all the edges contained in this path are not degree-greater
than edge xy in G. �	

For the addition of an edge there is a similar characterization.

Lemma 3.6 Let G = (V , E) be a threshold graph with a threshold data structure
containing threshold partition P = (I1,U1, . . . , Ik,Uk, Ik+1) and xy /∈ E. There is
an algorithm with running time in O(1) which returns a threshold data structure of
G + xy if one of the following conditions hold:

1. x ∈ I1 and y ∈ I1;
2. I1 = {x} and y ∈ I2, or vice versa;
3. x ∈ Uj and y ∈ I j+1 for some j ∈ {1, . . . , k}, or vice versa.
Otherwise the algorithm returns a set of four vertices that induces a P4 or a 2K2 in
G + xy and a P4, 2K2 or C4 in the graph G + xy + F where F is an arbitrary set of
non-edges of G that are degree-lower than xy in G.

123

Algorithmica (2023) 85:2454–2481 2463

(i)

x a b y

(ii)

a b x y

(iii)

x a b y

Fig. 3 The cases of the proof of Lemma 3.6. Black vertices belong to
⋃k

i=1Ui and white vertices belong

to
⋃k

i=1 Ii . The thick edge is the edge we want to add. The order of the vertices respects the order of their
corresponding sets in the threshold partition

Proof All three conditions can be checked in constant time. Assume first that the edge
xy fulfills one of the three conditions. Then consider the following threshold partitions:

P1 = ({x}, {y}, I1\{x, y},U1, . . . , Ik,Uk, Ik+1)

P2 = ({z},U1\{z}, {y}, {x}, I2\{y},U2, . . . , Ik,Uk, Ik+1) with z ∈ U1

P3 = (I1,U1, . . . , I j ,Uj\{x}, {y}, {x}, I j+1\{y},Uj+1, . . . , Ik,Uk, Ik+1)

If I1\{x, y} in P1 is empty, then y becomes an element of U1. If U1\{z} is empty
in P2, then we join the sets {z} and {y}. If I2\{y} in P2 is empty, x becomes a member
of U2. If Uj\{x} is empty in P3, then {y} becomes a member of I j and if I j+1\{y} is
empty, then x is added toUj+1. It is not difficult to see that these three partitions form
threshold partitions of G + xy for the three different cases, respectively. Just as in the
argument in the proof of Lemma 3.5, they can be computed in constant time.

Now assume that xy does not fulfill any of these three conditions. First assume that
one of the vertices, say x , is in a set Ui . Since xy /∈ E and Condition 3 does not hold,
vertex y must be in a set I j with j > i + 1. Let a be a vertex in Ii+1 and b be a vertex
in Ui+1. Then, (a, b, x, y) is an induced P4 in G + xy (see Fig. 3(i)). Note that we
can find a and b in constant time since we only have to find the successor of Ui and
its successor in the threshold partition P . Furthermore, the only non-edge of the P4
that is degree-lower than xy in G is the edge ay, due to Observation 3.2. Therefore,
in any graph G + xy + F where F contains only edges that are degree-lower than xy
in G the vertices a, b, x and y induce a P4 or C4, depending on whether ay is in F .

Thus, we can assume that both x and y are elements of I -sets. First assume that
both x and y are elements of Ii . Since Condition 1 does not hold, i must be greater
than 1. Let a ∈ I1 and b ∈ U1. Then the vertices a, b, x , and y induce a 2K2 in G+ xy
(see Fig. 3(ii)) Again, we can find a and b in constant time and all non-edges of the
2K2 are not degree-lower than xy in G.

Now consider the case that x and y are in different I -sets.Without loss of generality,
we assume that x ∈ Ii and y ∈ I j with i < j . Assume first that i = 1. If j = 2,
then, by Condition 2, there is a vertex a ∈ I1\{x}. In this case let b ∈ U1. If j > 2,
than let a ∈ I2 and b ∈ U2. In both cases (a, b, x, y) is an induced P4 in G + xy (see
Fig. 3(iii)) and we find a and b in time O(1). Similar to the first case, ay is the only
non-edge of this path that is degree-lower than xy and the insertion of ay turns the P4
into a C4 in any G + xy + F .

123

2464 Algorithmica (2023) 85:2454–2481

Now assume that i
= 1 and let a ∈ I1 and b ∈ U1. The vertices a, b, x and y
induce a 2K2 in G + xy (see Fig. 3(ii)), which is also a 2K2 in any G + xy + F with
suitable F . �	

Since threshold graphs are hereditary, the deletion of a vertex in a threshold graph
always leads to a threshold graph. Therefore, we only have to characterize the case
in which a vertex with a given set of neighbors can be added to G such that G is still
threshold.

Lemma 3.7 Let G = (V , E) be a threshold graph with a threshold data structure
containing threshold partition P = (I1,U1, . . . , Ik,Uk, Ik+1) and let U = ⋃k

j=1Uj .
For a vertex z /∈ V and a set Nz ⊆ V of vertices in G we consider the graph
G ′ = (V ∪ {z}, E ∪ {zv | v ∈ Nz}).

There is an algorithm with running time inO(|Nz |) which returns a threshold data
structure of G ′ if one of the following conditions hold.

1. Nz ⊆ U and there is an 1 ≤ i ≤ k such that
⋃k

j=i+1Uj ⊆ Nz and U� ∩ Nz = ∅
for all 1 ≤ � ≤ i − 1;

2. |I1| = 1 and Nz ⊆ U ∪ I1 and
⋃k

j=2Uj ∪ I1 ⊆ Nz;

3. U ⊆ Nz and there is an 1 ≤ i ≤ k + 1 such that
⋃i−1

j=1 I j ⊆ Nz and I� ∩ Nz = ∅
for all i + 1 ≤ � ≤ k + 1.

Otherwise the algorithm returns a set of four vertices that induces a P4, C4 or 2K2 in
G ′.
Proof We first describe how to check in timeO(|Nz |) whether one of the three condi-
tions hold. We iterate through Nz , mark the contained vertices and count the number
of elements of Nz in each set Ui and Ii as well as the total number of elements of Nz

in U -sets and I -sets, respectively. Furthermore, when considering an element of Nz

we remove it from its list and reinsert it at the front of this list. Therefore, in every list
the elements of Nz are at the beginning.

If all elements of Nz are in U -sets, then we have to check whether Condition 1
holds. We iterate through the U -sets starting in Uk and check whether the number of
elements of Nz in the respective set is equal to the size of the set. Furthermore, we
count how many elements of Nz we have already found in the considered sets. When
we have found the first setUi for which |Ui |
= |Ui ∩ Nz |, we check whether we have
already found all elements of Nz .

If there is only one vertex in I1 and this vertex is the only element of an I -set in
Nz , then we check Condition 2 in the same way that we have checked Condition 1.
Otherwise, we have to check whether Condition 3 holds. We first examine whether
for allU -sets their size is equal to the number of elements of Nz in it. Then we iterate
through the I -sets starting in I1 and check the same property. When the first I -set for
which this does not hold is found, we check whether we have discovered all elements
of Nz so far.

Now we present the threshold partitions of the graph G ′ belonging to each of the
three conditions. For the first condition let A = Ui\Nz and B = Ui∩Nz . The following
partition is a threshold partition of G ′:

P1 = (I1,U1, . . . , Ii−1,Ui−1, Ii , A, {z}, B, Ii+1,Ui+1, . . . , Ik,Uk, Ik+1).

123

Algorithmica (2023) 85:2454–2481 2465

(i)
x a yz

(ii)
y a xz

(iii)
y z a x

Fig. 4 The three cases of the proof of Lemma 3.7. Black vertices belong to
⋃k

i=1Ui and white vertices

belong to
⋃k

i=1 Ii , the added vertex z is gray. In (a) and (b) the order of the vertices respects the order of
their corresponding sets in the threshold partition (apart from the position of z). Dashed edges could be in
the graph or not, missing edges are not in the graph

For the second condition let A = U1\Nz and B = U1 ∩Nz and let a be an arbitrary
vertex in A. Then the following partition is a threshold partition of G ′:

P2 = ({a}, A\{a}, {z}, B ∪ I1, I2,U2 . . . , Ik,Uk, Ik+1).

If A is empty, then we omit the sets {a} and A\{a}.
For the third condition let A = Ii\Nz and B = Ii ∩ Nz . In this case

P3 = (I1,U1, . . . , Ii−1,Ui−1, B, {z}, A,Ui , Ii+1,Ui+1, . . . , Ik,Uk, Ik+1)

is a threshold partition of G ′. If in any of the three cases the set preceding (or suc-
ceeding) {z} is empty, then we remove this empty set and put z into the set preceding
(or succeeding) this empty set. Due to our sorting of the lists in P , we can find A and
B in time O(|Nz |). This is done by simply iterating through Ui or Ii , removing the
elements fromUi or Ii and put them into the new list B as long as they are in Nz . The
remaining list is A.

Now, we show how to find the forbidden induced subgraphs in the case that none of
the three conditions hold. Assume first that there is a vertex x ∈ Ui ∩ Nz and a vertex
y ∈ Uj with j > i and y /∈ Nz . Vertex y is found at the end of the first set for which
|Uj |
= |Uj ∩Nz |. To find the vertex x wemark each setUi while iterating through the
U -sets. If Condition 1 fails, then we iterate through Nz and find x by checking whether
theU -sets of the vertices are marked or not. Additionally, we consider a vertex a ∈ I j .
The set {a, x, y, z} induces a P4 or a C4 in G ′ depending on whether a is in Nz or not
(see Fig. 4(i)).

Assume that x ∈ Ii ∩ Nz and y ∈ I j\Nz with j < i . We find both vertices in a
similar way as we found x and y in the case above while iterating through the I -sets
in order to check Condition 3. For some a ∈ Uj the set {a, x, y, z} induces a P4 or a
2K2 depending on whether a is in Nz or not (see Fig. 4(ii)).

If none of the two cases above occurs, then there must be a vertex x ∈ U\Nz and a
vertex y in Nz which is an element of an I -set. Since Condition 2 does not hold, there
must be another vertex a in an I -set with a
= y and xa ∈ E . We find x by scanning
the U -sets starting in Uk and consider the set Ui with largest index that contains a
vertex x /∈ Nz . We choose an arbitrary vertex y ∈ Nz\U and another vertex a in Ii or
Ii−1. We know that both yz and ax are edges of G ′ and neither ay nor zx are edges in
G ′. Depending on which of the edges xy and az are in G ′, the set {a, x, y, z} induces
a P4 or a C4 or a 2K2 in G ′ (see Fig. 4(iii)). �	

123

2466 Algorithmica (2023) 85:2454–2481

Using the results above, we now present an optimal fully dynamic algorithm for
threshold graphs that provides a certificate for the negative case.

Theorem 3.8 There is a fully dynamic algorithm for the recognition of threshold
graphs which provides a set of four vertices inducing a forbidden induced subgraph
as certificate in the negative case and has the following costs:

• Initialization: O(n + m)

• Adding and deleting an edge: O(1)
• Adding and deleting a vertex with d neighbors: O(d)

Proof It follows fromLemmas 3.5, 3.6 and 3.7 that we have an algorithmwhich allows
addition and deletion of edges and the addition of a vertex with d neighbors. It remains
to show that this is also possible for the deletion of a vertex. Since threshold graphs are
hereditary, we do not have to check anything if we delete a vertex z. The new threshold
partition is constructed by simply deleting z from its set. If the set is empty afterwards,
then we remove it from the threshold partition and merge its predecessor set with its
successor set. If z was in a set Ui we move all vertices from Ii into Ii+1. If z was in
a set Ii , then we move all vertices from Ui into Ui−1. Therefore, only neighbors of z
change their set and the whole procedure can be done in O(|N (z)|). �	

4 Chain Graphs

We begin with the definition of a special vertex partition of chain graphs that we will
use for this algorithm.

Definition 4.1 Let G = (A ∪ B, E) be a chain graph. A chain partition of G is an
ordered partitionP = (A1, B1, . . . , Ak, Bk, I) of V with Ai , Bi
= ∅ for all 1 ≤ i ≤ k
such that xy ∈ E if and only if x ∈ Ai and y ∈ Bj or vice versa with i ≤ j . In
particular, the set I is the set of isolated vertices and can be empty.

In order to be more convenient in this context, this definition has been adapted from
a similar concept introduced by Heggernes and Papadopoulos [15]. Note that a graph
with a chain partition does not contain a 2K2, as for any two edges the vertex that
appears first in the ordered partition must be adjacent to both vertices in the other set
of the bipartition. Thus, a graph with a chain partition is, in fact, a chain graph, as it
is also bipartite by definition. For the existence and computation of a chain partition
we use the following result by Hammer et al. [11].

Lemma 4.2 [11] A bipartite graph is a chain graph if and only if every induced sub-
graph without isolated vertices has a dominating vertex on each side of the bipartition,
that is, a vertex adjacent to all the vertices on the other side of the bipartition.

For a chain graph we first remove all isolated vertices and insert them into I . For
the remaining graph we compute a bipartition (A, B). Due to Lemma 4.2, there must
be at least one vertex in B that is adjacent to all vertices in A. These vertices form the
elements of Bk . After the deletion of Bk there are isolated vertices in A which form

123

Algorithmica (2023) 85:2454–2481 2467

the set Ak . These are then also removed from the graph. Repeating this procedure until
the graph is empty leads to a chain partition. For our fully dynamic algorithm we use
the following data structure.

Definition 4.3 (Chain data structure) For a chain graph G = (V , E) a chain data
structure consists of the following elements:

• a chain partition P of G as a doubly linked list of doubly linked lists
• a pointer from every vertex v ∈ V to its list L inP and to its corresponding element
in L

• for every list in P the information whether it stands for an A-set or a B-set or the
set I

Similar to the results for threshold graphs, we now present algorithms for the dele-
tion and addition of edges as well as the addition of a vertex with a set of neighbors.
These algorithms will either return a new chain data structure or they will return an
induced 2K2 or an odd cycle contained in the new graph, showing that it is not a chain
graph.

Lemma 4.4 Let G = (V , E) be a chain graph with a chain data structure containing
chain partition P = (A1, B1, . . . , Ak, Bk, I) and let xy ∈ E. There is an algorithm
with running time in O(1) which returns a chain data structure of G − xy if x ∈ Ai

and y ∈ Bi or vice versa.
Otherwise, the algorithm returns a set of four vertices that induces a 2K2 in G−xy

and any graph G − xy − F where F is an arbitrary set of edges in G that are
degree-greater than xy in G.

Proof In order to check the condition we only have to compare the successor of the set
of x to the set of y in the chain partition and vice versa. This can be done in constant
time. If x ∈ Ai and y ∈ Bi , then consider the following partition:

P ′ = (A1, B1, . . . , Ai−1, Bi−1, Ai\{x}, {y}, {x}, Bi\{y},
Ai+1, Bi+1, . . . , Ak, Bk, I)

If Ai\{x} is empty, then y becomes a member of Bi−1 and if Bi\{y} is empty, then x
becomes a member of Ai+1 (or I if i = k). It is not difficult to see that P ′ is a chain
partition of G − xy and can be constructed in time O(1).

On the other hand, assume that xy does not fulfill the condition, i.e., without loss
of generality we may assume that x ∈ Ai and y ∈ Bj with j > i . Consider vertices
w ∈ Bi and z ∈ A j . Then the set {w, x, y, z} induces a 2K2 in G − xy. Since
dG(z) < dG(x) and dG(w) < dG(y), this 2K2 is contained in any graph G − xy − F
where F only contains edges that are degree-greater than xy. �	
Lemma 4.5 Let G = (V , E) be a chain graph with a chain data structure containing
chain partition P = (A1, B1, . . . , Ak, Bk, I) and let xy /∈ E. There is an algorithm
with running time in O(1) which returns a chain data structure of G + xy if one of
the following conditions holds:

123

2468 Algorithmica (2023) 85:2454–2481

1. x ∈ Ai and y ∈ Bi−1 or vice versa
2. x ∈ A1 and y ∈ I or vice versa
3. x ∈ I and y ∈ Bk or vice versa
4. I = V

Otherwise, the algorithm returns an induced 2K2 or a C3 contained in G + xy. In
this case let F be an arbitrary set of non-edges of G that are degree-lower than xy in
G. Then the algorithm can find an induced 2K2 or a C3 contained in G ′ = G+xy+F
in time O(|F |).
Proof Onecan checkwhether oneof the conditions holds inO(1)using the information
given by the chain data structure. Consider the following partitions:

P1 = (A1, B1, . . . , Ai−1, Bi−1\{y}, {x}, {y}, Ai\{x}, Bi ,
Ai+1, Bi+1, . . . , Ak, Bk, I);

P2 = ({x}, {y}, A1\{x}, B1, A2, B2, . . . , Ak, Bk, I\{y});
P3 = (A1, B1, . . . , Ak, Bk\{y}, {x}, {y}, I\{x});
P4 = ({x}, {y}, I\{x, y}).

Similar to the proofs of Lemmas 3.5–3.7, we remove empty sets from these partitions
and add x and y to the preceding or succeeding set. It follows from the structure of
the chain graphs, as given above, that partition Pi is a chain partition of graph G + xy
if Condition i holds. Furthermore, all partitions can be constructed in time O(1).

For the reverse, first consider the case that x, y ∈ I but I
= V . Then let w ∈ A1
and z ∈ B1. The set {w, x, y, z} induces a 2K2 in G+ xy and any missing edge in this
2K2 is not degree-lower than xy in G. If both x and y are elements of A-sets, then
we choose a vertex z ∈ Bk . If both x and y are elements of B-sets, then we choose a
vertex z ∈ A1. In both cases the set {x, y, z} induces a C3 in G + xy and any graph
containing G + xy, showing that they are not bipartite and, thus, not chain graphs.

If x ∈ Ai and y ∈ Bj with j < i −1, then x and y together with verticesw ∈ Ai−1
and z ∈ Bi−1 induce a 2K2 in G + xy. Assume x ∈ I . If y ∈ Bi with i < k, then
a 2K2 is induced by x and y and the vertices w ∈ Ak and z ∈ Bk . If y ∈ Ai with
i > 1, then the 2K2 is induced by x , y and the vertices w ∈ A1 and z ∈ B1. All these
vertices can easily be found in constant time. The only missing edges of the 2K2 that
could be degree-lower than the edge xy in G are the edges yz and wx . However, these
edges connect two vertices of A or B, respectively. Therefore, if we find such an edge
in the set F , then we can find a C3 contained in G + xy + F using the steps described
above. �	
Lemma 4.6 Let G = (V , E) be a chain graph with a chain data structure containing
chain partition P = (A1, B1, . . . , Ak, Bk, I). For a vertex z /∈ V and a set Nz ⊆ V
of vertices in G we consider the graph G ′ = (V ∪ {z}, E ∪ {zv | v ∈ Nz}).

There is an algorithm with running time in O(|Nz |) which returns a chain data
structure of G ′ if one of the following conditions holds.

1. Nz = ∅;
2.

⋃k
j=1 A j ⊆ Nz and B j ∩ Nz = ∅ for all 1 ≤ j ≤ k;

123

Algorithmica (2023) 85:2454–2481 2469

3.
⋃k

j=1 Bj ⊆ Nz and A j ∩ Nz = ∅ for all 1 ≤ j ≤ k;

4. there is an 1 ≤ i ≤ k such that
⋃i−1

j=1 A j ⊆ Nz and A� ∩Nz = ∅ for all k ≥ � > i ,
B j ∩ Nz = ∅ for all 1 ≤ j ≤ k and I ∩ Nz = ∅;

5. there is an 1 ≤ i ≤ k such that
⋃k

j=i+1 Bj ⊆ Nz and B� ∩ Nz = ∅ for all
1 ≤ � < i , A j ∩ Nz = ∅ for all 1 ≤ j ≤ k and I ∩ Nz = ∅.

Otherwise the algorithm returns an induced C3 or 2K2 contained in G ′ or a set of five
vertices inducing a subgraph of G ′ that contains a C5.

Proof To check these conditions, we iterate through Nz and count the number of
elements that it has in each set in the chain partition. Furthermore, when considering
an element of Nz we remove it from its list and reinsert it at the front of this list.
Therefore, in every list the elements of Nz are at the beginning. If there are vertices
from both A- and B-sets in Nz , then none of the conditions hold. If there are only
vertices of A-sets (andmaybe vertices of I), then we iterate through the A-sets starting
in A1 and search for the first set where the size of the set is not equal to the number
of vertices of Nz in this set. At this point we must have found all elements of Nz , as
otherwise none of the conditions hold. If no such set exists, then Condition 2 holds.
For the case that Nz only contains elements of B-sets (and maybe I) we do the same,
with the difference that we start in Bk . All these steps can be done in O(|Nz |) since
the number of sets that we have to consider is bounded by O(|Nz |).

Assume that z fulfills one of the conditions of the lemma. If Nz = ∅, then we simply
insert z into I . For the other conditions we consider the following partitions:

P2 = (A1, B1, . . . , Ak, Bk, I ∩ Nz, {z}, I\Nz),

P3 = ({z}, I ∩ Nz, A1, B1, . . . , Ak, Bk, I\Nz),

P4 = (A1, B1, . . . , Ai−1, Bi−1, Nz ∩ Ai , {z}, Ai\Nz, Bi ,

Ai+1, Bi+1, . . . , Ak, Bk, I),

P5 = (A1, B1, . . . , Ai−1, Bi−1, Ai , Bi\Nz, {z}, Bi ∩ Nz,

Ai+1, Bi+1, . . . , Ak, Bk, I).

In the partition P4 vertex z is added to Bi−1 if Nz ∩ Ai is empty and to Bi if Ai\Nz

is empty. In the partition P5 vertex z is added to Ai if Bi\Nz is empty and to Ai+1
if Bi ∩ Nz is empty. The partition Pi is a chain partition of G ′ if Condition i holds.
Furthermore, we can compute these partitions in time O(|Nz |).

Now assume that z does not fulfill any of the conditions. If there are vertices of
Nz in both A-sets and B-sets, then we consider different cases. If there is a vertex
x ∈ A1 ∩ Nz , then we choose an arbitrary vertex y in Nz which is an element of a
B-set and {x, y, z} induces a C3 in G ′. If there is a vertex in x ∈ Bk ∩ Nz , then this
vertex x together with z and an arbitrary vertex y in Ai ∩ Nz induces a C3 in G ′. If
none of these two cases occurs, then we choose arbitrary vertices in x ∈ Nz ∩ Ai

and y ∈ Nz ∩ Bj . Additionally, we choose a vertex a ∈ A1 and b ∈ Bk . The set
{a, b, x, y, z} induces a subgraph of G ′ that contains a C5.

Now assume that there are vertices a ∈ Ai ∩ Nz (or a ∈ I ∩ Nz) and b ∈ A j\Nz

with j < i (or ≤ k). We find b while iterating through the A-sets and afterwards

123

2470 Algorithmica (2023) 85:2454–2481

a while iterating through Nz and check whether the sets of the vertices are already
marked. Let c be an arbitrary vertex in Bj . Then the set {a, b, c, z} induces a 2K2 in
G ′. Analogously, we find a 2K2 if a ∈ Bi ∩ Nz (or a ∈ I ∩ Nz) and b ∈ Bj\Nz with
j > i (or ≤ k) by considering a vertex c ∈ A j . �	
Using these results, we can state a fully dynamic recognition algorithm for chain

graphs.

Theorem 4.7 There is a fully dynamic algorithm for the recognition of chain graphs
whichprovides a set of atmost five vertices inducinga forbidden subgraphas certificate
in the negative case and has the following costs:

• Initialization: O(n + m)

• Adding and deleting an edge: O(1)
• Adding and deleting a vertex with d neighbors: O(d)

Proof Due to Lemmas 4.4, 4.5 and 4.6, it only remains to show that our algorithm also
works for the deletion of a vertex. Since chain graphs are hereditary, we do not have
to check anything if we delete a vertex z and the new chain partition is constructed
by simply deleting z from its set. If the set of z is empty afterwards, then we remove
this set from the chain partition and merge its predecessor set with its successor set.
Similar to the proof of Theorem 3.8, we do this in such a way that only neighbors of
z are moved. Therefore, this procedure can be done in time O(|N (z)|). �	

5 Adding and DeletingMultiple Vertices and Edges

In some applications it is important to not only delete or add one edge (vertex) at
a time but rather sets of edges (vertices). This problem cannot always be solved by
regular dynamic algorithms. For example, when dealing with the vertex connectivity
problemwe cannot delete vertices in an arbitrary orderwhilemaintaining connectivity.
However, if we have a set of vertices after whose deletion the graph is still connected,
then we can find an order of deletions of these vertices that maintains connectivity. On
the other hand, if we consider edge deletion in Eulerian graphs, then it is obvious that
no one edge can be deleted without leaving the class of Eulerian graphs. For the graph
classes considered in this paper, i.e., threshold and chain graphs, we will see that it is
always possible to add and delete sets of edges (vertices) one at a time by finding a
suitable order.

Since both threshold graphs and chain graphs are hereditary, the deletion of a set
of vertices can be done iteratively in any order. The addition of vertices together with
incident edges is also simple. If the graph that results from this addition is still in
the respective graph class, then we can delete the vertices from this larger graph in an
arbitrary order and all intermediate graphs are in the respective graph class. The reverse
of this deletion scheme is an addition scheme of the vertices. Therefore, any ordering
of the vertices to add is sufficient. Furthermore, a forbidden induced subgraph found
by the algorithms described in Lemmas 3.7 and 4.6 remains an induced subgraph, even
if we add further vertices together with edges incident to at least one of these vertices.

123

Algorithmica (2023) 85:2454–2481 2471

(a)

v w x y

(b)

v w x y

Fig. 5 In (a) the graphs with and without the thick edges are threshold graphs. However, if we delete the
edge vx from the larger graph or add the edge vw to the smaller graph, then the result is not a threshold
graph. In (b) both graphs are chain graphs. The deletion of wx from the larger graph or the addition of vw

to the smaller graph results in a graph that is not a chain graph

Therefore, we can easily adapt our certifying dynamic algorithms to the addition and
deletion of whole sets of vertices (and incident edges).

For sets of edges, the problem is more difficult. In Fig. 5we present two examples
which show that we cannot choose an arbitrary ordering in which we add or delete
the edges iteratively since there are orderings where the intermediate graphs are not
threshold or chain graphs anymore. However, in both examples there is an ordering
where the intermediate graphs are in the respective class. This motivates the following
definition: A graph class C is called sandwich monotone if for any graph G = (V , E)

with G ∈ C and any set F ⊆ E with G − F ∈ C it holds that there is an ordering
(e1, . . . , ek)of the edges in F such that for any i ∈ {1, . . . , k} the graphG−{e1, . . . , ei }
is in C. Equivalently, we can say that F must contain an edge e ∈ F such thatG−e ∈ C.
From this definition it follows directly that the same holds for the addition of edges,
i.e., if G ∈ C and G + F ∈ C, then there is an edge e ∈ F for which G + e is in C.

This property was already studied in 1976 by Rose et al. [26], who showed that
chordal graphs fulfill the property. The term sandwich monotonicity was introduced
in 2007 by Heggernes and Papadopoulos [14]. The same authors also proved that both
threshold and chain graphs are sandwich monotone.

Theorem 5.1 [15] Threshold and chain graphs are sandwich monotone.

This result leads to a dynamic algorithm that decides whether a set of edges can be
added to or deleted from a threshold graph (chain graph) such that the graph is still a
threshold graph (chain graph). We iterate through the edges that are not already added
or deleted and check with the algorithms of Lemmas 3.5, 3.6, 4.4 and 4.5 whether
they are a safe choice. If we do not find such an edge, then the graph that results from
the addition or deletion of all edges of the set is not a threshold or chain graph. This
algorithm needs timeO(k2) to delete or add k edges. In the following, we will present
a more sophisticated approach that only needs time O(min{k log k, n + k}). In the
negative case, the presented algorithms return a forbidden induced subgraph of the
graph that results from the addition or deletion of all edges.

Beisegel et al. [1] showed that for any threshold graph (chain graph) and a special
partition (E1, . . . , Ek) of the edges of the graph one can compute an elimination
ordering of the edges of the graph in linear time such that the edges within a set Ei are
consecutive and the graph never leaves its respective graph class during the elimination
process.

The difference to the problemdiscussed here is that all edges of the graph are deleted
and, as a result, the running time must be dependent on n + m. Here, we only delete
k edges and ask whether this can be done faster than n + k. Furthermore, we want

123

2472 Algorithmica (2023) 85:2454–2481

to give a certificate in the negative case which was not considered in [1]. However,
it will be possible to follow a similar approach using so-called degree-minimal edge
elimination schemes.

Definition 5.2 LetG = (V , E) be a graph and F ⊆ E be a set of edges ofG. A degree-
minimal edge elimination scheme of F from G is an ordering (e1, . . . , ek) of the edges
in F such that for any i ∈ {1, . . . , k} it holds that the edge ei is a degree-minimal edge
of F\{e1, . . . , ei−1} for the graph G − {e1, . . . , ei−1}.

In [1], Beisegel et al. showed the following theorem.

Theorem 5.3 [1] Let G = (V , E) be a threshold graph (chain graph). Let F ⊆ E be
a subset of the edges of G such that G − F is a threshold graph (chain graph). Then
for any degree-minimal edge e in F it holds that G − e is a threshold graph (chain
graph).

This immediately implies the following corollary.

Corollary 5.4 Let G = (V , E) be a threshold graph (chain graph) and F ⊆ E. Then,
G − F is a threshold graph (chain graph) if and only if for any degree-minimal
edge elimination scheme (e1, . . . , ek) of F from G it holds that G − {e1, . . . , ei } is a
threshold graph (chain graph) for any i ∈ {1, . . . , k}.

Beisegel et al. [1] showed that for any graph we can compute a degree-minimal
elimination scheme of all the edges of the graph in time O(n + m).

Theorem 5.5 [1] Given a graph G = (V , E), there is an algorithm that computes a
degree-minimal edge elimination scheme of E from G in time O(n + m).

An important step in this algorithm is the sorting of up to m objects by a degree
value in time O(n +m) using counting sort. As here it is only necessary to sort up to
k objects we can sort these objects in O(k log k). This allows us to reach an overall
time bound of O(min{k log k, n + k}). We will give a short overview of the steps of
the algorithm. For an exhaustive analysis we refer to [1].

First we identify all vertices that are incident to an edge in F . Then we sort these
vertices due their degrees in G. This takes O(min{k log k, n + k}) many steps. Now,
we remove the edges of F incident to the first vertex of our ordering and update the
ordering of the vertices in time linear in the number of deleted edges. Iterating this
process leads to an edge elimination scheme. In order to turn this elimination scheme
into a degree-minimal edge elimination scheme, we have to sort the edges that are
deleted at the same vertex by the degree of their second vertex. This can be done in
O(min{k log k, n + k}) when sorting all edges together.

Theorem 5.6 Given a threshold graph (chain graph) G = (V , E) with a threshold
(chain) data structure and a set F ⊆ E. There is an algorithm that returns either
a threshold (chain) data structure of G − F or returns a constant number of ver-
tices of G that induces a forbidden subgraph in G − F. This algorithm needs time
O(min{k log k, n + k}).

123

Algorithmica (2023) 85:2454–2481 2473

(a)

s t u v w x y

Fig. 6 This example shows why the usage of the reverse of a degree-minimal edge elimination scheme
as an edge addition scheme is a problem. Black vertices belong to

⋃k
i=1Ui and white vertices belong to

⋃k
i=1 Ii . The order of the vertices respects the order of their corresponding sets in the threshold partition.

The edges of the graph are not depicted but given implicitly by the threshold partition. The thick edges are
elements of the set F , which we want to add to the graph

Proof As described above, we first compute a degree-minimal edge elimination
scheme of F from G in timeO(min{k log k, n+k}). Then we delete the edges follow-
ing this scheme using the algorithms given by Lemmas 3.5 and 4.4. If the graphG−F
is still a threshold (chain) graph, then this procedure results in a threshold (chain) data
structure of G − F .

It remains to show that otherwise the returned vertices induce a forbidden subgraph
in G − F . If the algorithms described in Lemmas 3.5 and 4.4 fail to remove the edge
e, then all edges in F that are not already deleted are degree-greater than e in the
currently considered graph. Therefore, it follows from Lemmas 3.5 and 4.4 that the
returned vertices also induce a forbidden subgraph in G − F . �	

For the addition of the edges contained in a set F but not in the graph G we could
use the following algorithm: We compute a degree-minimal edge elimination scheme
of the set F from the graph G + F . If G + F is a threshold graph (chain graph), then
all intermediate graphs of this elimination scheme must be threshold graphs (chain
graphs). Therefore, we can use the reverse ordering as an edge addition scheme of
the set F to the graph G. If G + F is not threshold (not chain), then in the reverse
ordering there must be an edge which cannot be added to the graph such that it remains
a threshold graph (chain graph). However, the forbidden subgraph returned by the
algorithm proposed in Lemmas 3.6 and 4.5 does not have to be an induced subgraph
of G + F . An example for threshold graphs is given in Fig. 6. The threshold graph
G is given by its threshold partition. The edge set F is marked with thick lines. The
graph G + F is not threshold. A possible degree-minimal edge elimination scheme
of F from G + F is (vw, uy, vy). Therefore, our addition scheme would add vy to
G first. The algorithm of Lemma 3.6 would reject this addition and would return the
path (w, x, v, y) which is an induced P4 in G + vy. However, the four vertices do not
induce a forbidden subgraph in G + F since the edge vw is in F .

To solve this problem we consider degree-maximal addition schemes.

Definition 5.7 LetG = (V , E) be a graph and F be a set of non-edges ofG. A degree-
maximal edge addition scheme of F to G is an ordering (e1, . . . , ek) of the edges in
F such that for any i ∈ {1, . . . , k} it holds that the edge ei is a degree-maximal edge
of F\{e1, . . . , ei−1} for the graph G + {e1, . . . , ei−1}.

We will now show that in such an addition scheme every intermediate graph is a
threshold or chain graph if the initial and the final graph are threshold or chain graphs.

123

2474 Algorithmica (2023) 85:2454–2481

The following observation for degree-maximal edges will be helpful for this. It follows
directly from the definition of degree-maximal edges.

Observation 5.8 Let G be a graph, F be a set of edges of G, and xy a degree-maximal
edge in F. Then, for every edge xz ∈ F, we have dG(z) ≤ dG(y).

In the following two propositions we will show that a degree-maximal edge in F
can be added to a threshold or chain graph without leaving the respective graph class.

Proposition 5.9 Let G = (V , E) be a threshold graph and F be a set of non-edges of
G such that G + F is a threshold graph. Then for any degree-maximal edge e ∈ F it
holds that G + e is a threshold graph.

Proof Let e = xy and assume for contradiction that G + e would not be a threshold
graph. Then there must be an induced P4, 2K2 orC4 inG+e. If the addition of e leads
to an induced C4 in G, then G must contain an induced P4, which is a contradiction
to the fact that G is a threshold graph. Thus, we can assume that G + e contains a P4
or 2K2. First we consider the case of a P4. Without loss of generality, we may assume
that the path has the form (a, b, x, y) since G does not contain a 2K2. Since G + F is
a threshold graph, F must contain ax or by. Due to Lemma 2.1, it holds that dG(b) is
larger than both dG(a) and dG(x) since b is adjacent to both a and x in G, whereas a
and x are not adjacent. Furthermore, dG(y) is smaller than min{dG(a), dG(x)} since y
is not adjacent to b. Thus, xy cannot be degree-maximal in F , due to Observation 5.8.

Now assume that G + e contains an induced 2K2 containing the edges ab and
xy. Due to Lemma 2.1, both dG(a) and dG(b) are greater than max{dG(x), dG(y)}.
Since G + F is a threshold graph, F contains an edge with one endpoint in {a, b}
and one endpoint in {x, y}. Thus, the edge xy is not degree-maximal in F , due to
Observation 5.8. �	
Proposition 5.10 Let G = (A ∪ B, E) be a chain graph and F be a set of non-edges
of G such that G + F is a chain graph. Then for any degree-maximal edge e ∈ F it
holds that G + e is a chain graph.

Proof Let e = xy and assume for contradiction that G + e is not a chain graph. If
G + e contains an odd cycle, then there is also an odd cycle in G + F ; a contradiction.
Therefore, we can assume that G + e contains a 2K2 containing the edges ab and
xy with a, x ∈ A and b, y ∈ B. Since G + F does not contain an induced 2K2,
either xb or ay must be part of F . Due to Lemma 2.1, it holds that dG(x) < dG(a)

and dG(y) < dG(b). Due to Observation 5.8, xy was not degree-maximal in F ; a
contradiction. �	

In order to compute a degree-maximal edge addition scheme using only
O(min{k log k, n + k}) many steps, we can use a modified version of the algorithm
that computes the degree-minimal edge elimination scheme. The following theorem
follows from Lemmas 3.6 and 4.5 as well as Propositions 5.9 and 5.10.

Theorem 5.11 Let G = (V , E) be a threshold graph (chain graph) with a threshold
(chain) data structure and let F be a set of non-edges of G. There is an algorithm

123

Algorithmica (2023) 85:2454–2481 2475

that returns either a threshold (chain) data structure of G + F or returns a constant
number of vertices of G that induce a forbidden subgraph in G + F. This algorithm
runs in time O(min{k log k, n + k}).
Proof Similar to Theorem 5.6, we compute a degree-maximal addition scheme of F to
G and then add the edges of F one by one following this scheme using the algorithms
given by Lemma 3.6 and 4.5. Following fromPropositions 5.9 and 5.10, the algorithms
return a threshold (chain) data structure of G + F if and only if G + F is a threshold
(chain) graph.

If the respective algorithm fails to add an edge e, then G + F is not a threshold
(chain) graph. If G is a threshold graph, then, due to Lemma 3.6, the returned set
of vertices induces a forbidden subgraph in G + F since the edges following in the
addition scheme are degree-lower than edge e. IfG is a chain graph, then byLemma4.5
the algorithm can find a set of vertices, that induced a forbidden subgraph in G + F
needing time O(|F |). �	

6 Fully Dynamic Algorithms for Hamiltonian Cycles and Paths

In this section we present fully dynamic algorithms that decide for a given threshold
graph or a given chain graph whether it has a Hamiltonian cycle or a Hamiltonian path.
Similar to the algorithms in the former sections these algorithms can handle updates
until the graph leaves the corresponding graph class. However, the graph is not forced
to stay Hamiltonian during the process, i.e., some of the intermediate graphs can have
a Hamiltonian cycle or path while others have no such cycle or path.

We will first characterize when a threshold graph or a chain graph has such a cycle
or path using the threshold partition and chain partition. Afterwards, we will explain
how we can use these characterizations algorithmically. Note that threshold graphs
with Hamiltonian cycles have already been characterized by Harary and Peled [12].

The following observation holds for all graphs and is well known.

Observation 6.1 Let G = (V , E) be a graph and ∅ ⊆ S ⊂ V . If G contains a
Hamiltonian cycle, then G − S has at most max{1, |S|} components. If G contains a
Hamiltonian path, then G − S has at most |S| + 1 components.

The following four lemmas characterize threshold and chain graphs that contain a
Hamiltonian cycle or path. The proofs of the lemmas are constructive, i.e., we will
explain how to find the cycle or path in the positive case and we will give a cut set
contradicting Observation 6.1 for the negative case. For both cases we will show that
the respective certificate can be found in time O(n). We start by characterizing those
threshold graphs which contain a Hamiltonian path.

Lemma 6.2 Let G=(V , E) be a threshold graph and letP=(I1,U1, . . . , Ik,Uk, Ik+1)

be the corresponding threshold partition. The graph G has a Hamiltonian path if and
only if the following conditions hold:

1. Ik+1 = ∅;
2.

∑k
j=i |I j | ≤ ∑k

j=i |Uj | ∀i ∈ {2, . . . , k};

123

2476 Algorithmica (2023) 85:2454–2481

3. (
∑k

j=1 |I j |) − 1 ≤ ∑k
j=1 |Uj |.

There is an algorithm that finds a Hamiltonian path or a set S ⊂ V where G − S has
more than |S| + 1 components in time O(n).

Proof Assume that the three statements hold. We construct the Hamiltonian path in
the following way: We start in a vertex of Ik and follow a path that alternates between
the vertices in Ik and Uk . Since |Ik | ≤ |Uk |, this path visits all vertices in Ik and ends
in a vertex of Uk . Using Conditions 2 and 3 we can visit all vertices in I -sets in that
way. If there are still unvisited vertices in U -sets, we can visit them in an arbitrary
order. Otherwise, the Hamiltonian path ends in the last vertex of I1. This procedure
can easily be implemented in time O(n) using two pointers that iterate through all
I -sets and U -sets, respectively.

Now assume that one of the three statements does not hold. If Ik+1
= ∅, then G is
not connected and cannot have a Hamiltonian path. In this case, we return S = ∅. If
the second statement does not hold, then there is an i ∈ {2, . . . , k} with ∑k

j=i |I j | >
∑k

j=i |Uj |. LetU∗ = ⋃k
j=i U j and I ∗ = ⋃k

j=i I j . Since N (I ∗) = U∗ and I ∗ induces
an independent set, the graph G −U∗ has at least |I ∗| + 1 components (every vertex
in I ∗ and the component containing I1). Therefore, S = U∗ shows the non-existence
of a Hamiltonian path, due to Observation 6.1. If the third statement does not hold we
choose S = ⋃k

j=1Uj . The graph G − S contains at least |S| + 2 components, since

| ⋃k
j=1 I j | − 1 > |S|. The construction of S can straightforwardly be done in time

O(n). �	
There is a similar characterization for Hamiltonian cycles in threshold graphs.

Lemma 6.3 Let G=(V ,E) be a threshold graph and letP=(I1,U1, . . . , Ik,Uk, Ik+1)

be the corresponding threshold partition. The graph G has a Hamiltonian cycle if and
only if the following conditions hold:

1. Ik+1 = ∅;
2. (

∑k
j=i |I j |) + 1 ≤ ∑k

j=i |Uj | ∀i ∈ {2, . . . , k};
3.

∑k
j=1 |I j | ≤ ∑k

j=1 |Uj |.
There is an algorithm that finds a Hamiltonian cycle or a set S ⊂ V where G − S has
more than max{1, |S|} components in time O(n).

Proof Assume that the three statements hold. We construct a Hamiltonian cycle as
follows: We start in a vertex s of Uk . Now we follow a path which alternates between
the vertices in Ik and Uk . Since |Ik | + 1 ≤ |Uk |, this path visits all vertices in Ik
and ends in a vertex in Uk . Now we visit a vertex in Ik−1 next and alternate between
vertices in Ik−1 and unvisited vertices in Uk−1 ∪ Uk . Similar to the argument before,
we can visit all elements in Ik−1 and end in a vertex inUk−1∪Uk . Due to Conditions 2
and 3, it is possible to continue this procedure until we have visited the last vertex of
I1. If there are still unvisited vertices in U -sets, then we can visit them in an arbitrary
order. Afterwards we go back to the starting vertex s.

Now assume that one of the three conditions does not hold. If Ik+1
= ∅, the
graph is not connected and we can return S = ∅. If the second statement does not

123

Algorithmica (2023) 85:2454–2481 2477

hold for i ∈ {2, . . . , k}, we choose set S = ⋃k
j=i U j . In G − S every element of

I ∗ = ⋃k
j=i I j is isolated. Since |I ∗| + 1 > |S| and the elements of I1 and U1 form

their own component,G−S hasmore than |S| components. Due to Observation 6.1,G
does not contain a Hamiltonian cycle. If the third statement does not hold, we choose
S = ⋃k

j=1Uj . Then G − S contains more than |S| components.
Similar to the proof of Lemma 6.2, both the construction of the Hamiltonian cycle

and of the set S can be implemented in time O(n). �	
Due to the close relation between threshold and chain graphs, there are similar

characterizations for chain graphs which have a Hamiltonian cycle or a Hamiltonian
path.

Lemma 6.4 Let G = (V , E) be a chain graph and let P = (A1, B1, . . . , Ak, Bk, I)
be the corresponding chain partition. The graph G has a Hamiltonian path if and only
if the following conditions hold:

1. I = ∅;
2.

∑k
j=i |A j | ≤ ∑k

j=i |Bj | ∀i ∈ {2, . . . , k};
3.

∑i
j=1 |A j | ≥ ∑i

j=1 |Bj | ∀i ∈ {1, . . . , k − 1};
4. (

∑k
j=1 |A j |) − 1 ≤ ∑k

j=1 |Bj | ≤ (
∑k

j=1 |A j |) + 1.

There is an algorithm that finds a Hamiltonian path or a set S ⊂ V where G − S has
more than |S| + 1 components in time O(n).

Proof Assume that all four statements hold. First we consider the case that∑k
j=1 |Bj | ≤ ∑k

j=1 |A j |. We start in a vertex of Ak . Due to Condition 2, we can

visit all vertices in
⋃k

j=2 A j by alternating between these vertices and their neighbors
in the sets B2, . . . , Bk and end in a vertex of B2. The number of visited vertices in
A-sets and B-sets is identical at this point. Due to Condition 4, the number of unvisited
vertices in B-sets is either |A1| − 1 or |A1|. Therefore, we can visit all vertices in A1
and all remaining vertices in B.

It remains to show that for
∑k

j=1 |Bj | = ∑k
j=1 |A j |+1 there is also a Hamiltonian

path. In this case, it holds that |Bk | > |Ak | due to Condition 3 for i = k−1. Therefore,
we can start in a vertex of Bk and visit all vertices of Ak . Following the same argument
as in the first case, we find a Hamiltonian path.

Now assume that G does not fulfill one of the statements. If I
= ∅, then G is
connected and we can return S = ∅. If the second statement does not hold for i ∈
{2, . . . , k}, then we choose S = ⋃k

j=i B j . If the third statement does not hold, then

we choose S = ⋃i
j=1 A j . If the fourth statement does not hold, we put all vertices

of the smaller partition set into the set S. In all cases, the graph G − S contains more
than |S| + 1 components.

Similar to the proof of Lemma 6.2, both the construction of the Hamiltonian path
and of the set S can be implemented in time O(n). �	
Lemma 6.5 Let G = (V , E) be a chain graph and let P = (A1, B1, . . . , Ak, Bk, I)
be the corresponding chain partition. The graph G has a Hamiltonian cycle if and
only if the following conditions hold:

123

2478 Algorithmica (2023) 85:2454–2481

1. I = ∅;
2. (

∑k
j=i |A j |) + 1 ≤ ∑k

j=i |Bj | ∀i ∈ {2, . . . , k};
3.

∑k
j=1 |A j | = ∑k

j=1 |Bj |.
There is an algorithm that finds a Hamiltonian path or a set S ⊂ V where G − S has
more than max{1, |S|} components in time O(n).

Proof The proof follows a similar chain of arguments as the proof of Lemma 6.3.
If the three conditions hold, then we start in a vertex of Bk and visit all vertices in
Ak first, alternating with vertices from Bk . Iterating this procedure also for the other
A-sets and using Conditions 2 and 3 we can visit all vertices in A and B. After visiting
the last vertex in A1, we go back to our starting vertex in Bk . Since Condition 3 holds
with equality, all vertices are contained in the cycle.

If the first statement does not hold, then we set S = ∅. If the second statement does
not hold for i ∈ {2, . . . , k}, then we set S = ⋃k

j=i B j . If the last statement does not
hold, we add all vertices of the smaller partition set to the set S. In all three cases, the
graph G − S contains more than max{1, |S|} components.

Similar to the proof of Lemma 6.2, both the construction of the Hamiltonian cycle
and of the set S can be implemented in time O(n). �	

Using the above characterizations and the results of Sect. 3, we can formulate a
fully dynamic algorithm on threshold graphs and chain graphs for both Hamiltonian
paths and cycles.

Theorem 6.6 There are fully dynamic algorithms for the Hamiltonian cycle problem
and the Hamiltonian path problem on threshold graphs and chain graphs which have
the following costs:

• Initialization: O(n + m)

• Adding and deleting an edge: O(1)
• Adding and deleting a set of k edges: O(min{k log k, n + k})
• Adding and deleting a vertex with d neighbors: O(d)

• Computing a Hamiltonian cycle or path, or a vertex set contradicting Observa-
tion 6.1 contained in G: O(n)

Proof Wewill prove this theorem for threshold graphs; the algorithms for chain graphs
work analogously and their correctness and running time can be shown in the same
way.

We use the threshold data structure defined in Definition 3.4. Let P =
(I1,U1, . . . ,Uk, Ik+1) be the threshold partition of the threshold graph G. For every
set Ui we introduce a variable αi storing the number

∑i
j=1 |I j | and for every set Ii

we have a variable βi storing the number
∑k

j=i |Uj |. This ensures that every set only
counts vertices that are adjacent to the elements of the set. Furthermore, we store the
total size γ of the U -sets and the total size δ of the I -sets. In order to check whether
G has a Hamiltonian cycle or a Hamiltonian path, we have to compare γ and δ. Fur-
thermore, for every set Ii and Ui we have to compare βi and γ − αi + |Ii | as stated
in Lemmas 6.2 and 6.3. Since we also want to handle threshold graphs without a
Hamiltonian cycle or a Hamiltonian path, we introduce a variable ζ which counts the

123

Algorithmica (2023) 85:2454–2481 2479

number of pairs Ui and Ii whose values αi and βi do not fulfill the given constraint.
Whenever we update α- or β-values we check whether the status of the corresponding
constraint has changed. If this is the case we increase or decrease ζ . Therefore, the
graph has a Hamiltonian cycle or Hamiltonian path if and only if ζ = 0, Ik+1 is empty
and the constraint on γ and δ is fulfilled.

If we delete an edge fromG or add an edge toG, we apply the operations described
in the proofs of the Lemmas 3.5 and 3.6. As one can see there is only a constant number
of variables αi and βi which have to be updated. Furthermore, we have to update γ

and δ. For the addition and deletion of whole sets of edges we use the algorithms
described in Theorems 5.6 and 5.11.

If we delete a vertex z of aU -set, we only have to update the variables of I -sets that
are to the left of it in P . All elements of these sets are neighbors of z and, therefore, it
only uses O(|N (z)|) operations. If we delete an element z of an I -set, we only have
to update the variables of U -sets to the right of it and their elements are neighbors of
z. Thus, the number of operations is also in O(|N (z)|).

For the addition of a vertex we consider the operations in the proof of Lemma 3.7.
Here, we only have to update sets whose elements are neighbors of the new vertex z.
Therefore, these operation can also be done in time O(d), where d is the number of
neighbors of z. �	

7 Conclusion

In this paper we have presented optimal fully dynamic recognition algorithms for
the classes of threshold and chain graphs, which additionally yield a constant size
certificate in the negative case. Furthermore, we expand on the idea of a fully dynamic
algorithm by giving efficient routines for the addition and deletion of sets of vertices
or edges. Using the techniques developed for these algorithms, it was also possible to
state fully dynamic algorithms for the Hamiltonian path and cycle problems for both
of these classes. These algorithms have the same running times as the recognition
algorithms and return certificates in the negative case which are of size O(n) and can
also be checked in time O(n).

Some open questions remain. While our algorithms are able to decide whether a
modified graph has a Hamiltonian path or cycle, it is not yet possible to give a fully
dynamic update on the path or cycle itself. Therefore, it is an interesting question
whether there exists a data structure to keep track of the cycle or the path efficiently
on these graph classes while adding or removing vertices and edges.

To the best of our knowledge the problem of dynamically solving the Hamiltonian
cycle and path problems has not been considered so far. Thus, a natural question is
whether one can find efficient dynamic algorithms for these problems on other graph
classes. Clearly, only graph classes for which these problems can be solved efficiently
in a non-dynamic way are candidates. Examples for such graph classes are cographs
and interval graphs.

Similarly, the addition or deletion of whole sets of edges does not seem to have
been considered so far. It is an interesting question whether similar approaches can be

123

2480 Algorithmica (2023) 85:2454–2481

implemented for other graph classes, especially graph classes that are not sandwich
monotone.

In the light of these results, one can also ask whether further graph problems can be
solved efficiently in a dynamic way on threshold or chain graphs. A possible candidate
could be a dynamic algorithm for the max cut problem on threshold graphs.

Acknowledgements We thank Nina Chiarelli, Matjaž Krnc, Martin Milanič, and Nevena Pivač for fruitful
discussions. Furthermore, we thank the German Academic Exchange Service for its financial support
(BI-DE/17-19-18 and BI-DE/19-20-007).

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Beisegel, J., Chiarelli, N., Köhler, E., Krnc,M.,Milanič, M., Pivač, N., Scheffler, R., Strehler, M.: Edge
elimination and weighted graph classes. In: Adler, I., Müller, H. (eds.) Graph-Theoretic Concepts in
Computer Science, LNCS, vol. 12301, pp. 134–147. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60440-0_11

2. Bhattacharya, S., Henzinger, M., Nanongkai, D.: New deterministic approximation algorithms for
fully dynamic matching. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of
Computing, pp. 398–411 (2016). https://doi.org/10.1145/2897518.2897568

3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999). https://doi.org/10.
1137/1.9780898719796

4. Calamoneri, T., Monti, A., Petreschi, R.: Fully dynamically maintaining minimal integral separator
for threshold and difference graphs. In: WALCOM: Algorithms and Computation, LNCS, vol. 9627,
pp. 313–324. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6_25

5. Chvátal, V., Hammer, P.L.: Set-packing and threshold graphs. Tech. Rep. CORR 73-21, University of
Waterloo (1973)

6. Chvátal, V., Hammer, P.L.: Aggregations of inequalities in integer programming. Stud. Integ. Program.
Ann. Discrete Math. 1, 145–162 (1977)

7. Cozzens, M.B., Leibowitz, R.: Threshold dimension of graphs. SIAM J. Algebr. Discrete Methods 5,
579–595 (1984). https://doi.org/10.1137/0605055

8. Cozzens, M.B., Leibowitz, R.: Multidimensional scaling and threshold graphs. J. Math. Psychol. 31,
179–191 (1987). https://doi.org/10.1016/0022-2496(87)90014-9

9. Crespelle, C., Paul, C.: Fully dynamic algorithm for recognition and modular decomposition of per-
mutation graphs. Algorithmica 58(2), 405–432 (2010). https://doi.org/10.1007/s00453-008-9273-
0

10. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic shortest paths in digraphs with arbi-
trary arcweights. J. Algorithms 49(1), 86–113 (2003). https://doi.org/10.1016/S0196-6774(03)00082-
8

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-60440-0_11
https://doi.org/10.1007/978-3-030-60440-0_11
https://doi.org/10.1145/2897518.2897568
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1007/978-3-319-30139-6_25
https://doi.org/10.1137/0605055
https://doi.org/10.1016/0022-2496(87)90014-9
https://doi.org/10.1007/s00453-008-9273-0
https://doi.org/10.1007/s00453-008-9273-0
https://doi.org/10.1016/S0196-6774(03)00082-8
https://doi.org/10.1016/S0196-6774(03)00082-8

Algorithmica (2023) 85:2454–2481 2481

11. Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Discrete Appl. Math. 28(1), 35–44 (1990).
https://doi.org/10.1016/0166-218X(90)90092-Q

12. Harary, F., Peled, U.: Hamiltonian threshold graphs. Discrete Appl. Math. 16, 11–15 (1987). https://
doi.org/10.1016/0166-218X(87)90050-3

13. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced
subgraphs. Nordic J. Comput. 14(1–2), 87–108 (2007)

14. Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algo-
rithms for minimal completions and deletions. In: International Computing and Combinatorics
Conference, pp. 406–416. Springer (2007). https://doi.org/10.1007/978-3-540-73545-8_40

15. Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algo-
rithms for minimal completions and deletions. Theor. Comput. Sci. 410(1), 1–15 (2009). https://doi.
org/10.1016/j.tcs.2008.07.020

16. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and represent-
ing proper interval graphs. SIAM J. Comput. 31(1), 289–305 (2002). https://doi.org/10.1137/
S0097539700372216

17. Henderson, P.B., Zalcstein,Y.:Agraph-theoretic characterization of the PVchunk class of synchronizing
primitives. SIAM J. Comput. 6(1), 88–108 (1977). https://doi.org/10.1137/0206008

18. Henzinger,M.R.: Fully dynamic biconnectivity in graphs.Algorithmica 13(6), 503–538 (1995). https://
doi.org/10.1007/BF01189067

19. Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dynamic connectivity problems in graphs.
Algorithmica 22(3), 351–362 (1998). https://doi.org/10.1007/PL00009228

20. Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. ACMTrans. Algorithms 4(4),
1–40 (2008). https://doi.org/10.1145/1383369.1383371

21. Klein, P.N., Subramanian, S.: A fully dynamic approximation scheme for shortest paths in planar
graphs. Algorithmica 22(3), 235–249 (1998). https://doi.org/10.1007/PL00009223

22. Koop, G.J.: Cyclic scheduling of offweekends. Oper. Res. Lett. 4, 259–263 (1986). https://doi.org/10.
1016/0167-6377(86)90026-X

23. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Annals of DiscreteMathematics,
vol. 56. North-Holland Publishing Co., Amsterdam (1995)

24. Ordman, E.T.: Threshold coverings and resource allocation. In: Proceedings of the 16th Southeastern
Conference on Combinatorics, Graph Theory, and Computing, pp. 99–113. Utilitas Mathematica Pub.,
Winnipeg (1985)

25. Ordman, E.T.: Minimal threshold separators and memory requirements for synchronization. SIAM J.
Comput. 18(1), 152–165 (1989). https://doi.org/10.1137/0218010

26. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J.
Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021

27. Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recogni-
tion of cographs. Discrete Appl. Math. 136(2–3), 329–340 (2004). https://doi.org/10.1016/S0166-
218X(03)00448-7

28. Soulignac, F.J.: Fully dynamic recognition of proper circular-arc graphs. Algorithmica 71(4), 904–968
(2015). https://doi.org/10.1007/s00453-013-9835-7

29. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, pp. 343–350 (2000). https://doi.org/10.1145/
335305.335345

30. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Algebr. Discrete
Methods 3(3), 351–358 (1982). https://doi.org/10.1137/0603036

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/0166-218X(90)90092-Q
https://doi.org/10.1016/0166-218X(87)90050-3
https://doi.org/10.1016/0166-218X(87)90050-3
https://doi.org/10.1007/978-3-540-73545-8_40
https://doi.org/10.1016/j.tcs.2008.07.020
https://doi.org/10.1016/j.tcs.2008.07.020
https://doi.org/10.1137/S0097539700372216
https://doi.org/10.1137/S0097539700372216
https://doi.org/10.1137/0206008
https://doi.org/10.1007/BF01189067
https://doi.org/10.1007/BF01189067
https://doi.org/10.1007/PL00009228
https://doi.org/10.1145/1383369.1383371
https://doi.org/10.1007/PL00009223
https://doi.org/10.1016/0167-6377(86)90026-X
https://doi.org/10.1016/0167-6377(86)90026-X
https://doi.org/10.1137/0218010
https://doi.org/10.1137/0205021
https://doi.org/10.1016/S0166-218X(03)00448-7
https://doi.org/10.1016/S0166-218X(03)00448-7
https://doi.org/10.1007/s00453-013-9835-7
https://doi.org/10.1145/335305.335345
https://doi.org/10.1145/335305.335345
https://doi.org/10.1137/0603036

	Certifying Fully Dynamic Algorithms for Recognition and Hamiltonicity of Threshold and Chain Graphs
	Abstract
	1 Introduction
	2 Preliminaries
	3 Threshold Graphs
	4 Chain Graphs
	5 Adding and Deleting Multiple Vertices and Edges
	6 Fully Dynamic Algorithms for Hamiltonian Cycles and Paths
	7 Conclusion
	Acknowledgements
	References

