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Abstract
During a pandemic people have to find a trade-off between meeting others and staying
safely at home.While meeting others is pleasant, it also increases the risk of infection.
We consider this dilemma by introducing a game-theoretic network creation model
in which selfish agents can form bilateral connections. They benefit from network
neighbors, but at the same time, theywant tomaximize their distance to all other agents.
This models the inherent conflict that social distancing rules impose on the behavior
of selfish agents in a social network. Besides addressing this familiar issue, our model
can be seen as the inverse to the well-studied Network Creation Game by Fabrikant
et al. (in: PODC 2003, pp 347–351, 2003. https://doi.org/10.1145/872035.872088),
where agents aim at being as central as possible in the created network.We look at two
variants of network creation governed by social distancing. Firstly, a variant without
connection restrictions, where we characterize optimal and equilibrium networks, and
derive asymptotically tight bounds on the Price of Anarchy and Price of Stability. The
second variant allows connection restrictions. As our main result, we prove that Swap-
Maximal Routing-Cost Spanning Trees, an efficiently computable weaker variant of
MaximumRouting-Cost Spanning Trees, actually resemble equilibria for a significant
range of the parameter space. Moreover, we give almost tight bounds on the Price of
Anarchy and Price of Stability. These results imply that under social distancing the
agents’ selfishness has a strong impact on the quality of the equilibria.
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1 Introduction

Network Design is a core topic in Theoretical Computer Science and Operations
Research.Many classical combinatorial optimization problems, inspired by real world
applications, have been formulated and analyzed, such as the Minimum Spanning
Tree problem [1], the Network Design problem [2, 3] and finding geometric
spanners [4, 5]. Typically, a network having certain properties must be found by a
centralized algorithm. However, in many settings, the desired network is not created
by a central authority but by individually acting agents, e.g., people or institutions,
controlling a local part of the network. Prominent examples are the Internet, road
networks, and, most relevant for our work, social networks.

Especially in settings with little coordination, these individual agents tend to self-
ishly optimize their own utility without taking the impact of their actions on the
efficiency of the whole network into account. To better understand the dynamics aris-
ing in these decentralized settings and the network structures resulting from them,
many influential game-theoretic network formation models have been introduced in
the last decades [6–10]. The main research questions are: do equilibrium networks,
i.e., stable networks where no agent can improve by performing a local change, exist?
What properties do these networks have? And how efficient are they compared to
centrally computed optimal solutions?

All of the above mentioned influential game-theoretic network formation mod-
els assume that the creation of an edge is costly but the agents benefit from having
small distances to other agents in the network. However, departing from this standard
assumption in the field, there are real-world settings that should better be modeled via
an inverted utility function: neighbors yield benefit but being close to many agents is
costly as it yields an increased risk.

One example for this choice are financial networks. There, financial institutions
benefit from working together but suffer from risks arising from one of them failing.
For example, in inter-bank lending networks, it is beneficial for a bank to lend money
to other banks. However, as seen in the last financial crisis,1 once a bank defaults,
i.e., cannot pay its debts anymore, this failure may spread through the network since
other banks relied on these payments and subsequently become insolvent themselves.
Given this, a bank that is only indirectly connected to a defauling bank via a longer
chain of debt-contracts has more time to prepare for credit defaults, e.g., by lending
money from other banks or by insuring against such failures via credit default swaps.

Another example, that is themainmotivation of ourwork, cameupwith theCOVID-
19 pandemic and is described by the now commonly used term social distancing.
It refers to reducing social contacts in order to contain the spread of a contagious
virus in the population. While often mandated by the government, social distancing

1 The financial crisis in the late 2000s was mainly driven by contagious network effects of failing banks.
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was performed by many people voluntarily. One of the main reasons is quite simple:
while reducing social contacts is a restriction of the quality of life, it also reduces the
probability of getting infected. Moreover, once a contagious virus starts spreading in
the population, it is beneficial to be far away from the source of infection in order
to gain time for taking counter-measures like buying masks or developing vaccines.
Hence, the network of social interactions between people was sparsified by individual
strategic decisions.

Besides these examples, the inverted utility function model can also be applied to
computer viruses spreading in communicationnetworks, e.g., via emails or via the local
network, as often observed in the last decade.Also here, a large distance to the outbreak
helps for setting-up counter-measures like patching the affected software/systems or
by re-configuring firewalls.

In this work we introduce a novel game-theoretic network formation model in
which selfish agents strategically form a social network under the influence of social
distancing. Agents benefit from direct connections to other agents, modeling the posi-
tive effects of social contacts on their social life. However, at the same time they want
to maximize their distances to all other agents in the network in order to reduce their
risk of getting infected via an increased reaction time in case a contagious disease
starts spreading in the network. Here we assume that a random network node becomes
infected and that it is beneficial to be far away from the source of infection in order to
gain valuable time for setting up counter-measures.

The agents in our model act according to an inverted utility function, compared
to the famous models by Jackson and Wolinsky [6] and Fabrikant et al. [8]. Thus,
to the best of our knowledge, this is one of the rare cases of a game-theoretic model
where bothminimizing andmaximizing the utility function has a natural interpretation.
Another similar well-known example is the contrast between the Network Design
Game with fair cost sharing by Anshelevich et al. [9] and the Selfish Routing model
by Roughgarden and Tardos [11]. In both models the agents select paths in a given
network but in the former sharing an edge is beneficial for the involved agents whereas
in the latter edge sharing is detrimental. This difference yields vastly different behavior
in terms of the quality of the equilibria. However, this is not obvious, as can also be
seen by comparing classical minimization and maximization variants of optimization
problems, e.g., Minimum Spanning Tree versus Maximum Spanning Tree or
Shortest Path versus Longest Path. Sometimes, as with spanning trees, the
inverse problems are almost identical, whereas sometimes, as with the path problems,
the inverse problemsmay have completely opposite behavior.We set out to explore this
comparison for the natural inverse counter-part to the well-known Network Creation
Game by Fabrikant et al. [8]. Along the way, we will uncover a connection to the
Maximum Routing- Cost Spanning Tree problem that is inverse to the well-
studied Minimum Routing- Cost Spanning Tree problem [12].2

2 This problem is also known as the Optimum Communication Spanning Tree problem.
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1.1 Model and Notation

Before we start with the model definition, we introduce some notation regarding net-
works. A network is a tuple G:=(V , E) where V is the set of nodes and E is the set
of edges. An edge is represented by a set containing both incident nodes. If we do not
give the tuple defining G explicitly, we denote the set of nodes of G as VG and the set
edges of G as EG . We only consider unweighted undirected networks. For addition
and removal of a single edge e, we writeG+e:=(V , E∪{e}) andG−e:=(V , E \{e}).
A network G ′ with VG ′ ⊆ V and EG ′ ⊆ E is called a subnetwork of G and denoted
as G ′ ≤ G. If G ′ is connected and VG ′ = V , G ′ is a spanning subnetwork of G.
Let n ∈ N denote the number of nodes. The set of all connected networks containing
exactly n nodes will be referred to as Gn .

For two nodes v, x ∈ V , we define dG(v, x) as the distance between v and x
in network G, that is, the number of edges on a shortest path from v to x in G.
For convenience, we extend the definition of dG to sets of nodes: Let v ∈ V be
a node and M, N ⊆ V be sets of nodes. Then dG(v, M):=∑x∈M dG(v, x) and
dG(M, N ):=∑x∈M,y∈N dG(x, y). We call the special case dG(v, V ) the distances
from/for v and dG(V , V ) the total/summed distances or routing costs ofG. The degree
of v in the network G is the number of edges that are incident to v and is denoted as
degG(v). We call a tree which is a spanning subnetwork of G a spanning tree of G. A
spanning tree of G with routing costs at least as high as the routing costs of any other
spanning tree of G will be called aMaximum Routing-Cost Spanning Tree (MRCST).
A spanning tree of G with routing costs that cannot be increased by swapping one
edge is a Swap-Maximal Routing-Cost Spanning Tree (SMRCST).

Now, we can define the game-theoretic model. Let H = (V , E) be a connected
network. We call H the host network and its nodes agents. A state of the gameG ≤ H
is a spanning subnetwork of H .We only consider connected networks as host networks
and states.

Each agent v ∈ V selfishly tries to maximize its utility in state G given by

uv(G):=α degG(v) + dG(v, V )

where α ∈ R>0 is a global parameter. We will call α degG(v) the edge utility and
dG(v, V ) the distance utility of v. Note that α is a parameter of the game, i.e., equal
for all agents, that allows to adjust the agents’ trade-offs between edge utility and
distance utility. Here α is the benefit of a single edge, i.e., the benefit for each direct
neighbor in the network.

For measuring the efficiency of the network G, we use the social welfare defined
as

SW(G):=
∑

v∈VG
uv(G) = 2α|EG | + dG(V , V ).

This quantifies the well-being of the society of all agents. We call a network maxi-
mizing the social welfare for the host network H a social optimum and denote it as
OPTH .
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Agents are allowed to form connections bilaterally. More specifically, each agent
can unilaterally remove any incident edge if it does not disconnect the network, and
two agents together can form an edge between them if it is contained in the host
network. If removing an edge strictly increases the utility of one of its incident nodes
or adding an edge strictly increases the utility of both incident nodes, we call this an
improving move. A network without improving moves is referred to as pairwise stable
[6] or stable for short.3 If there are no improving edge additions or removals we call the
network stable against edge addition and stable against edge removal, respectively.

For a host network H , we define S(H) as the set of all pairwise stable states. For
measuring the efficiency lost by letting agents form the network selfishly, we use the
Price of Anarchy (PoA) [14] and Price of Stability (PoS) [9] defined as

PoA n := max
H∈Gn

max
G∈S(H)

SW (OPT H )

SW (G)
and PoS n := max

H∈Gn

min
G∈S(H)

SW (OPT H )

SW (G)
.

We will call this model Social Distancing Network Creation Game (SDNCG).
In Sect. 2 we will restrict the host networks to complete networks Kn . We will call this
restricted variant complete Social Distancing Network Creation Game (K -SDNCG).

1.2 RelatedWork

Variants of game-theoretic network formation models have been studied extensively
for decades and we refer to Jackson [15] for an overview.

Closest to our work is the literature on the Network Creation Game (NCG) by
Fabrikant et al. [8]. This influential model can be seen as the unilateral inverted variant
of the K -SDNCG. There, an agent can buy any incident edge without the consent of
the other endpoint for the price of α > 0. Each agent aims at minimizing its cost,
which is defined as the sum of α times the number of bought edges and the sum of
hop-distances to all agents. The authors of [8] show that Nash equilibria always exist,
i.e., complete networks are stable for α ≤ 2 and stars are stable for α ≥ 2. However,
besides these generic examples finding Nash equilibria is challenging since the NCG
and many of its variants do not belong to the class of potential games [16, 17]. Besides
finding equilibria, also computing a best possible strategy is challenging, since this
problem was shown to be NP-hard in [8]. However, such strategies can be efficiently
approximated with greedy strategy changes [18]. Regarding the quality of equilibrium
states the authors of [8] show that the PoA is in O(

√
α), that the PoA for tree Nash

equilibria is constant, and that the PoS is at most 4
3 . Later, a series of papers [19–25]

improved the PoA bounds, with the best general upper bound of 2O
√
log n by Demaine

et al. [20]. The latter also proved that the PoA is constant forα ∈ O(n1−ε) for any fixed
ε > 1

log n . For large α, it was shown by Bilò and Lenzner [24] that for α > 4n − 13
all Nash equilibria must be trees and this bound was recently improved by Dippel and

3 As shown by Corbo and Parkes [13] for bilateral Network Creation Games, pairwise stability is equivalent
to pairwise Nash stability, which is a refinement of the Nash equilibrium: it must be stable against unilateral
deviations and it must be stable against joint strategy changes by coalitions of agents of size two. The
strategy space of any agent i ∈ V is the power set of V \ i . An edge {u, v} is formed if and only if v is in
agent u’s strategy and u is in agent v’s strategy.
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Vetta [26] to α > 3n−3. This implies a constant PoA for α > 3n−3. Finally, Álvarez
and Messegué [25] established a constant PoA for α > n(1 + ε), for any ε > 0.

The NCG was generalized by Demaine et al. [27] by introducing a host network
that specifies which edges can be bought. They show that the PoA deteriorates by
providing a lower bound of �(min{α/n, n2/α}) and an upper bound of O(

√
α), for

α < n, and O(min{√n, n2/α}), for α ≥ n. Interestingly, no results on the existence
of equilibria are known. Recently, a further generalization that allows weighted host
networks was proposed by Bilò et al. [28]. This variant has a tight PoA of (α+2)/2 for
metric weights. Later a tight bound of�(α)was shown for arbitraryweights [29]. Also
a bilateral variant of the NCG was studied by Corbo and Parkes [13]. There, similar
to our model, edges can only be established by bilateral consent of the involved nodes
and both nodes have to pay α. The authors of [13] prove existence of pairwise stable
networks, i.e., complete networks are stable for α ≤ 1 and stars are stable for α ≥ 1,
they give a tight PoA bound of �(min{√α, n/

√
α}), and they show that the PoS is 1.

To the best of our knowledge, the bilateral variant with a given host network has not
yet been studied. Recently, also a bilateral variant modeling the formation of social
networks was introduced [30].

The idea of a game-theoretic model of network formation in a context of spreading
risk is not new. Goyal et al. [31] study a setting where a node is attacked and this attack
spreads to all vulnerable neighbors. Agents strategically create edges and immunize
themselves to maximize their connected component post attack. For this model, also
the efficient computation of best strategies [32] and a variant with probabilistic spread
[33] was studied. Moreover, there has been much research in the context of financial
contagion, where agents benefit from collaborating, but also suffer from the risk of
cascading failure arisingwith the collaboration [34–37]. In particular, Blume et al. [38]
developed an elegant model where nodes form a network and then some randomly
chosen nodes fail and this failure then spreads with some probability via the edges.
The utility is a linear combination of the node degree and the risk of failing in the
second phase. The virtue of this model is that utilities are based on a random process
that realistically models the spread of a contagious infection. However, the major
downside of this model is that the computation of the random process is #P-complete.
Thus, this model does not yield a realistic prediction of real-world behavior.

While analyzing our model for general host networks, we consider Maximum
Routing-Cost Spanning Trees. Routing costs have been studied much in mathematics,
mostly under the name of the Wiener index [39]. Trees were of special interest and
there has been much research on the Wiener index of trees with different properties.
But although spanning trees minimizing the Wiener index were studied extensively,
the concept of spanning trees maximizing the Wiener index received little attention
[40, 41]. However, it was shown that finding or even approximating a tree maximizing
the Wiener index is NP-hard [42, 43].

1.3 Our Contribution

We introduce the Social Distancing Network Creation Game (SDNCG), a game-
theoretic model in which selfish agents try to maximize their utility by strategically
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Table 1 An overview of our results (yellow) and a comparison with the results for the inverted models
(white)

Optimum Equilibria PoA PoS

NCG [8]
α ≤ 2 : Kn [8]
α ≥ 2 : Sn [8]

α ≤ 1 : Kn [8]
α ≥ 1 : Sn [8]

2O(
√
log n) [20]

α ∈ O
(
n1−ε

) : �(1) [20]
α > n(1 + ε) : �(1) [25]

α ≤ 1 : 1 [8]
1<α<2 : ≤ 4

3 [8]
α ≥ 2 : 1 [8]

BNCG [13]
α < 1 : Kn [13]
α > 1 : Sn [13]

α < 1 : Kn [13]
α > 1 : Sn , . . . [13]

�
(
min

{√
α, n√

α

})
[13]

α < 1 : 1 [13]
1 [13]

K -SDNCG
α < n

3 : Pn [T. 1]
α > n

3 : Kn [T. 1]

α ≤ 1 : trees [T. 2]
1 ≤ α ≤ n

2 :
Pn , Kn , . . . [T. 2]

α ≥ n
2 : Kn [T. 2]

O(n) [T. 5]
α ≤ √

n : �(n) [T. 5]

α≤ n
6 − 3 : �

(
n

log n

)
[T. 5]

α≤ ⌊ n
2

⌋− 2 : �
(√

n
)
[T. 5]

α ≥ n
2 : 1 [T. 5]

1 [T. 6]

H -NCG [27] open open

α < n : O (√
α
)
[27]

α≥n :min
{
O
(√

n, n2
α

)}
[27]

�
(
min

{
α
n , n2

α

})
[27]

open

SDNCG
α ≤ 1 :MRCST [T. 7]
α > N3 : H [T. 7]

α ≤ 1 : trees [T. 9]
1 ≤ α ≤ n

3 :
SMRCST [T. 10]

α ≥ N2 : H [T. 9]

O(n) [C. 14]
α≤n : �(n) [T.14]

α ≤ N2 : �
(
n2
α

)
[T. 14]

N2<α≤N3 : �(1) [T. 14]
α ≥ N3 : 1 [T. 14]

α ≤ 1 : 1 [T. 15]
α < n

3 : O (√
n
)
[T. 15]

N2<α≤N3 : �(1) [T. 15]
α ≥ N3 : 1 [T. 15]

BNCG abbreviates the bilateral NCG byCorbo and Parkes [13] whereas H -NCG denotes the NCG on a host

network by Demaine et al. [27]. N2:= (n−1)2
4 , N3:= (n−2)n(n+2)

24 , H denotes the host network, Pn , Kn , Sn
are the path, clique, and star networks on n nodes, respectively

connecting to other agents and thereby creating a network. Each agent values direct
connections to other agents but at the same time wants to maximize the distances to
all other agents in order to lower their exposure and increase their reaction time to
risks appearing in the network. In contrast to the similar model by Blume et al. [38],
our model, while not modeling a perfectly realistic spread of the infection, has the
advantage of an efficiently computable utility function. By using the distance to the
other agents as part of the utility, it also accounts for reaction time: If an infection
breaks out far away, an agent has more time to prepare or react to it. Another virtue
of our model is that it is the inverse to the well-known Network Creation Game [8]
and its bilateral variant [13]. Hence, we can study and compare the game-theoretic
properties of the inverted models. To the best of our knowledge, this is one of the rare
cases where both the minimization and the maximization of a utility function have a
natural interpretation.

Our results and the comparison with the inverted models are summarized in Table
1.
We analyze two variants of the SDNCG. For the K -SDNCG, where we assume a com-
plete host network, we characterize optimal and several stable networks and show that
the PoS is 1. We provide an improving response cycle, which implies that equilibrium
existence for the (K -)SDNCG cannot be derived from potential function arguments.
Finally, derive several bounds for the PoA which are tight for α ≥ n

2 , asymptotically
tight for α ≤ √

n, and asymptotically tight up to a log-factor for α ≤ n
6 − 3.
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For the SDNCG on arbitrary host networks we utilize Maximum Routing-Cost
Spanning Trees for characterizing optimal networks for α ≤ 1. As our main result,
we show that their locally optimal variant, the Swap-Maximal Routing-Cost Spanning
Trees, and hence alsoMaximumRouting-Cost Spanning Trees, are pairwise stable for
α ≤ n

3 . We prove that computing the MRCST is NP-hard, while the SMRCST can be
constructed efficiently. Thus, for the significant range of 1 ≤ α ≤ n

3 , we not only have
guaranteed equilibrium existence on any host graph, but we can compute stable states
efficiently. This is in stark contrast to what is known for the inverse model studied by
Demaine et al. [27]. Additionally, we approximate optimal networks and we derive
several (tight) bounds on the PoA and the PoS.

Compared with the NCG [8] and the bilateral NCG [13], we find that the results for
the K -SDNCG regarding optimal and stable networks are analogous but reversed, with
the spanning path taking over the role of the spanning star. Moreover, our PoA results
for both the K -SDNCG and the SDNCG show that our maximization variant has a
significantly worse PoA that is linear or almost linear in n, compared to the PoA upper
bounds of o(nε) andO(

√
α, n/

√
α) for the NCG and the bilateral NCG, respectively.

Asmain take away from our paper, this implies that under social distancing the agents’
selfish behavior has significantly more impact on the quality of the equilibria. This
calls for strong coordination mechanisms governing the network formation to avoid
detrimental stable states.

2 Complete Host Networks

We analyze the properties of the K -SDNCG, i.e., the SDNCG on complete host net-
works. First, we characterize optimal networks and give some examples for stable
networks, dependent on the relation between n and α. After that, we show several
bounds on the PoA and PoS.

2.1 Stable and Optimal Networks

Intuitively, for small α the distance utility dominates the social welfare. Hence, the
path should be the optimum since it maximizes the total distances. For large α, the
edge utility dominates, which leads to the clique being optimal since it maximizes
the number of edges. Now we show that this intuition is indeed true. Moreover, the
optimal construction is unique.

Theorem 1 For α < n
3 , the unique social optimum is the path. For α > n

3 , the unique
optimum is the clique. For α = n

3 , the clique and the path are the only social optima.

Proof Šoltés and L’ubomír [44] showed that for a fixed number of nodes and edges,
the network maximizing the summed distances is unique and contains a clique and a
path with at least two edges between one endpoint of the path and the clique. We call
this a PathClique. (Note that the clique can be empty, resulting in just a path) For a
visualization, we refer to Fig. 1.
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Note, that the social optimum has to be such a network, since for every other
network, there is a PathClique with the same number of edges but larger summed
distances and therefore a larger social welfare.

Let G be a PathClique with n nodes having a clique containing k nodes. Then the
corresponding path contains n − k nodes. First, we show that, unless G is a path or a
clique, we get a socially better network by adding or removing edges.

Let G be neither a clique nor a path and let v be the endpoint of the path that is
connected to the clique. Observe that removing an edge between v and the clique
results in a PathClique. (This is still true if there are only two edges connecting v to
the clique: Removing one of these edges makes the remaining neighbor of v in the
clique the new endpoint of the path and reduces the size of the clique by 1.) Therefore,
this is the socially best way of removing an edge from G. Similarly, the best way of
adding an edge to G is adding it between v and the clique unless v is already fully
connected to the clique in which case it is best to add an edge between the neighbor
of v on the path and the clique. We now make a case distinction.

If v is fully connected to the clique, adding an edge decreases distances by 2(n −
k − 1) and deleting an edge increases distances by 2(n − k). This means, that G can
only be optimal if α ≤ 2(n − k − 1) and α ≥ 2(n − k), which is a contradiction.

If v is not fully connected to the clique, adding an edge decreases distances by
2(n − k) and deleting an edge increases distances by 2(n − k). Thus, α = 2(n − k)
is necessary for G to be socially optimal. But when α = 2(n − k), adding and
deleting edges between v and the clique does not change the social welfare. Let G ′ be
the network obtained by fully connecting v to the clique. Then SW(G) = SW(G ′).
Additionally, G ′ cannot be an optimum since it fulfills the conditions of the first case.
Therefore, G cannot be socially optimal, too.

So, the social optimum network must be the path Pn or the clique Kn . We have

SW(Pn) = 2α(n − 1) + 2
n−1∑

i=1

i(n − i) = 2α(n − 1) + 1

3
(n − 1)n(n + 1),

SW(Kn) = 2α

(
n

2

)

+ 2

(
n

2

)

= n(n − 1)(α + 1).

For α = n
3 , we see that

SW(Pn) = 2

3
n(n − 1) + 1

3
(n − 1)n(n + 1) = n(n − 1)

(n

3
+ 1

)
= SW(Kn),

for α < n
3 we have SW(Pn) > SW(Kn), and α > n

3 yields SW(Kn) > SW(Pn).

Next, we have a look at the existence of pairwise stable networks. Similar to the
social optimum, for small α, agents prefer large distances over many incident edges
and therefore should remove as many edges as possible, leading to only trees being
stable. Interestingly, the restrictions of pairwise stability lead to all trees being stable
for small α, even if the distances are very small (like in a star). This is shown by the
next theorem.
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Fig. 1 This figure shows a
PathClique. It consists of a path
(left) and a clique (right), which
are connected by at least two
edges between one endpoint of
the path and some nodes of the
clique

Theorem 2 (Stable Networks)

1. For α ≤ 1, every tree is pairwise stable. For α < 1, any pairwise stable network
is a tree.

2. For α ≥ 1, the clique is pairwise stable.
3. For α ≤ n−1

2 , the path is pairwise stable.
4. For α > n

2 , the clique is the only pairwise stable network.

Proof of (1) Let G be a tree. Since removing an edge from G would lead to G being
disconnected, we only have to consider adding an edge. This would shorten the dis-
tances for both endpoints by at least 1. Since α ≤ 1, this is not an improvement for
the agents.

Let G be a network. If G contains a cycle, we can remove an edge without dis-
connecting the network. By doing this, the distances for both endpoints increase by at
least 1. Since α < 1, this is an improvement for both agents.

Proof of (2) Let G be a clique. Since adding an edge is not possible, we only look at
removing an edge. This would result in a distance increase of 1 for both endpoints.
Since α ≥ 1, this is not an improvement for either of the two incident agents.

Proof of (3) Let G be the path consisting of n nodes v1, . . . , vn , in that order. Since G
is a tree, no edge can be removed without disconnecting the network. Therefore, the
only possible move is adding an edge. Let 1 ≤ i < j ≤ n be such that vi and v j are
not adjacent (i.e., j − i ≥ 2). If j ≤ n

2 , adding the edge e:={vi , v j } shortens distances
from vi to at least n

2 nodes. The same holds for i ≥ n
2 regarding node v j . It is easy to

see that the distance decrease is minimal when j − i = 2. Intuitively, edge e has to be
as central as possible. According to this, choosing i = ⌊ n

2

⌋
and j = i + 2 yields

dG(vi , V ) − dG+e(vi , V ) = n − j + 1 = n − i − 1 ≥ n − 2

2
and

dG(v j , V ) − dG+e(v j , V ) = i ≥ n − 1

2
.

Thus, if α ≤ n−1
2 , adding edge e is not an improving move and G is pairwise stable.

Proof of (4) Let V be a set of n agents and G = (V , E) be a stable network. Let
v ∈ V be a node having minimum total distances, i.e., for all v′ ∈ V , we have
dG(v, V ) ≤ dG(v′, V ). Let NG [v] denote the closed neighborhood of v.

Now suppose, the network induced by NG [v] is not a clique. Then there are two
neighbors x, y of v with {x, y} /∈ E . We observe that for each node z ∈ V , the
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distances dG(v, z) and dG(x, z) can only differ by 1, since v and x are neighbors. By
choice of v, there are at least as many nodes that are closer to v than nodes that are
closer to x . Therefore, there are at most n

2 many nodes that are closer to x . Adding
an edge between x and y can, for node y, only shorten distances to nodes which are
closer to x than to v. Thus, this edge shortens the distances from y by at most n

2 . The
same holds for node x . Therefore, for α > n

2 , this edge would improve the utility of
agents x and y and, thus, G would not be stable. This contradicts our assumption.
Thus, NG [v] must induce a clique.

Now let x be a neighbor of v. Since x is connected to all neighbors of v, we have
dG(x, V ) ≤ dG(v, V ), i.e., also x minimizes pairwise distances. Hence, NG[x] also
induces a clique, leading to NG [v] = NG [x]. By induction, since G is connected, it
must be a clique.

Theorem 2 implies that socially optimal networks are also stable. In fact, they are
stable for a wide range of α-values. The clique is stable for α ≥ 1, meeting the bound
below which only trees are stable. Similarly, the path is stable for α ≤ n−1

2 , almost
meeting the lower bound for only the clique being stable. Additionally, we observe
that we only need two networks (path and clique) to provide pairwise stable networks
for all possible values of α.

For further constructions, we need the following definition. LetG be a network.We
call G ′ a clique network of G, if it can be obtained by replacing each node of G by a
clique of size at least 2 and for each edge of G connect the two corresponding cliques
fully bipartite. By using only constant-size cliques, some properties of G (density,
length of shortest paths) are preserved while the network is more stable against edge
removal.

Theorem 3 Let G be a clique network. For α ≥ 1, G is stable against edge removal.

Proof Removing any edge from G only effects the distances between its endpoints.
These distances increase by 1.

Finally, we show that stable statesmay not be found by simply letting agents iteratively
play improving moves, i.e., via a sequential process of improving strategy changes.
Figure 2 provides an example of a cyclic sequence of improving moves. This also
implies that both the K -SDNCGand the SDNCGdo not belong to the class of potential
games [45], i.e., the existence of equilibria cannot be proven via potential function
arguments.

Theorem 4 The Social Distancing Network Creation Game is not a potential game.

Proof This is shown by the existence of improving cycles. See Fig. 2 for an example.

2.2 Price of Anarchy and Price of Stability

In this section, we give a series of bounds for the Price of Anarchy and the Price of
Stability.
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Fig. 2 This figure shows a cyclic sequence of improving moves performed by n = 5 agents for α = 2.5.
In each step, the nodes responsible for the next change are highlighted in orange. Note that the last step is
isomorphic to the first step (Color figure online)

Theorem 5 (Price of Anarchy)

1. The Price of Anarchy is in O(n).
2. For α ≤ 1, the Price of Anarchy is in �(n).
3. For 1 < α ≤ √

n, the Price of Anarchy is in �(n).

4. For
√
n ≤ α ≤ n

6 − 3, the Price of Anarchy is in �
(

n
log n

)
.

5. For n
6 − 3 < α ≤ ⌊ n

2

⌋− 2, the Price of Anarchy is in �
(√

n
)
.

6. For α ≥ n
2 , the Price of Anarchy is 1.

Proof of (1) Let α ∈ R>0. Every connected network has at least n − 1 ∈ �(n)

and at most
(n
2

) ∈ O(n2) edges. Furthermore, the summed distances are at least
n(n − 1) ∈ �(n2), since every node has at least distance 1 to every other node, and
at most n3, since every node has at most distance n to every other node. With this, we
get the trivial bound of

PoAn ∈ O
(

αn2 + n3

αn + n2

)

= O(n).

Proof of (2) For α ≤ 1, the social optimum is the path as shown in Theorem 1. It has
social welfare of

α(n − 1) + 1

3
(n − 1)n(n + 1).

Because of Theorem 2 and the star being a tree, it is pairwise stable for α ≤ 1. It has
social welfare of

α(n − 1) + 2(n − 1) + 2(n − 1)(n − 2) = α(n − 1) + 2(n − 1)2.

Together with (1), this yields

PoA ≥ α(n − 1) + 1
3 (n − 1)n(n + 1)

α(n − 1) + 2(n − 1)2
= α + 1

3n(n + 1)

α + 2(n − 1)
∈ �(n).

Proof of (3) We construct a star-like network with cliques as leaves in the following
way. Let c:=	α
 + 2. Additionally, let K1, . . . , Kd be d:= ⌊ n−2

c

⌋
cliques containing
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c−2 nodes and v1, v
′
1, v2, v

′
2, . . . , vd , v

′
d be 2d nodes. Let furthermore M be a clique

of size n − cd. We now define our network G as

VG :=
d⋃

i=1

VKi ∪
d⋃

i=1

{vi , v′
i } ∪ VM

EG :=
d⋃

i=1

EKi ∪ EM ∪
d⋃

i=1

{{vi , v′
i }}

∪
d⋃

i=1

⋃

v∈Ki

{{v, vi }, {v, v′
i }} ∪

d⋃

i=1

⋃

v∈M
{{v, vi }, {v, v′

i }}.

We essentially connect the outer cliques K1, . . . , Kd to the center clique M via d
2-cliques and each connection is fully bipartite (see Fig. 3). Since n = |VG |, G is a
network of the desired size.

We now show that G is pairwise stable. We see that G is a clique network. Because
of Theorem 3 and α > 1, G is stable against edge removal. On the other hand, adding
an edge shortens distances to at least |Ki | = c− 2 ≥ α nodes which means a distance
decrease of at least α for the two incident nodes. This also does not increase their
utility. Therefore, G is pairwise stable.

For the center clique M , we see that |VM | = n − cd = n − c
⌊ n−2

c

⌋
and therefore

2 ≤ |VM | < n − (n − 2 − c) = c + 2. With this and 1 < α ≤ √
n, we obtain

|EG | = d

(
c − 2

2

)

+
(|VM |

2

)

+ 2d + d(c − 2)2 + d|VM |2

=
⌊

n − 2

	α
 + 2

⌋(	α
(	α
 − 1)

2
+ 2 + 2	α
 + 2|VM |

)

+ |VM |(|VM | − 1)

2

∈ �(αn)

and dG(VG , VG) ∈ �(n2).
For α <

√
n, the socially optimal network is the path. With the previous calcula-

tions, we can now bound the Price of Anarchy as

PoA ≥ 2α(n − 1) + �(n3)

2α�(αn) + �(n2)
= �(n3)

�(n2)
∈ �(n).

From (1), we have PoA ∈ O(n) and therefore PoA ∈ �(n).

Proof of (4) Let d = �log n� − 1. Then, the d-dimensional hypercube is represented
by GH with VGH = {0, 1}d and EGH = {{v, x} | v, x ∈ V ∧ dH (v, x) = 1} where
dH (v, x) denotes the Hamming Distance between v and x . Let G be a clique network
for GH with |VG | = n such that the sizes of the cliques replacing the nodes of GH

differ by at most 1. Observe, that each clique is of size 2 or 3 if 2 · 2d ≤ n < 3 · 2d
and of size 3 or 4 if 3 · 2d ≤ n < 4 · 2d . By Theorem 3 and since α ≥ 1, we know that
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Fig. 3 The figure shows a
star-like clique network, where
the center is formed by a clique
M and each ray consists of two
nodes vi , v

′
i and a clique Ki

G is stable against edge removal. We now show that adding an edge shortens the total
distances for the incident nodes by at least n

6 − 3.
Let v, x ∈ VG such that e:={v, x} /∈ EG and let v′, x ′ ∈ VGH be the nodes corre-

sponding to the cliques that contain v and x , respectively. Therefore, e′:={v′, x ′} /∈
EGH , which implies dH (v′, x ′) ≥ 2. By symmetry of the hypercube, we can assume
w.l.o.g. that

v′ = 00 . . . 0︸ ︷︷ ︸
dH (v,x)

0 . . . 00︸ ︷︷ ︸
d−dH (v,x)

and x ′ = 11 . . . 1︸ ︷︷ ︸
dH (v,x)

0 . . . 00︸ ︷︷ ︸
d−dH (v,x)

.

Adding e′ to GH decreases the distances from v′ to another node y′ ∈ VGH if and
only if dH (v′, y′) ≥ dH (x, y) + 2. The difference in distance can only come from the
first dH (v′, x ′) bits of the label since the remaining bits are equal for v′ and x ′. Let �
be the number of the first dH (v′, x ′) bits of y′ equal to 1. Then, dH (v′, x ′) − � is the
number of the first dH (v′, x ′) bits of y′ equal to 0.We obtain dH (v′, y′)−dH (x ′, y′) =
� − (dH (v′, x ′) − �) = 2� − dH (v′, x ′). Thus, adding e′ to GH shortens the distance
from v′ to y′ by 2� − dH (v′, x ′) − 1.

The number of nodes where exactly � of the first dH (v′, x ′) bits are equal to 1 is
(dH (v′,x ′)

�

) · 2d−dH (v′,x ′). Therefore, we get a distance decrease for v′ of

dGH (v′, VGH ) − dGH+e′(v′, VGH )

=
dH (v′,x ′)∑

�=
⌈
dH (v′,x ′)

2

⌉
+1

(
dH (v′, x ′)

l

)

· 2d−dH (v′,x ′) · (2� − dH (v′, x ′) − 1)

= 2d−dH (v′,x ′)

⌊
dH (v′,x ′)

2

⌋

−1
∑

�=0

(
dH (v′, x ′)

�

)

· (dH (v′, x ′) − 2� − 1)

≥ 2d−dH (v′,x ′)

⌊
dH (v′,x ′)

2

⌋

−1
∑

�=0

(
dH (v′, x ′)

�

)
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≥ 2d−dH (v′,x ′) 1

2

⎛

⎝
dH (v′,x ′)∑

�=0

(
dH (v′, x ′)

�

)

−
(
dH (v′, x ′)
⌊
dH (v′,x ′)

2

⌋
)
⎞

⎠

= 2d−dH (v′,x ′) 1

2

⎛

⎝2dH (v′,x ′) −
(
dH (v′, x ′)
⌊
dH (v′,x ′)

2

⌋
)
⎞

⎠

≥ 2d−dH (v′,x ′) 1

2
2dH (v′,x ′)−1

= 2d

4
.

Observe that the distances from v to all nodes in other cliques in G are exactly the
same as the distances from v′ to all other nodes in GH . The same holds for G + e and
GH + e′, with the exception of the distances from v to the (at most 3) nodes in the
same clique as x . We distinguish two cases:

If 2 · 2d ≤ n < 3 · 2d , each clique consists of 2 or 3 nodes. Therefore, we have a
distance decrease of at least

dG(v, VG) − dG+e(v, VG) ≥ 2(dGH (v′, VGH ) − dGH+e′(v′, VGH )) − 3

≥ 2d

2
− 3

≥ n

6
− 3.

If 3 · 2d ≤ n < 4 · 2d , each clique consists of 3 or 4 nodes. This means, we have a
distance decrease of at least

dG(v, VG) − dG+e(v, VG) ≥ 3(dGH (v′, VGH ) − dGH+e′(v′, VGH )) − 3

≥ 3
2d

4
− 3

≥ n

6
− 3.

Thus, edge additions are not beneficial for the incident agents if α ≤ n
6 − 3 and we

conclude that the constructed network is stable for 1 ≤ α ≤ n
6 − 3. We also see that

the number of edges m is in �(n log n) and the distance d(VG , VG) is in �(n2 log n).
Since the social optimum for 1 ≤ α ≤ n

6 − 3 is the path Pn , we get for the Price of
Anarchy:

PoAn ≥ SW (Pn)

SW (G)
= α(n − 1) + �(n3)

α�(n log n) + �(n2 log n)
∈ �

(
n

log n

)

.

Proof of (5) We construct a path of cliques in the following way. Let 2 ≤ d ≤ n−6
2

be some even number and c = ⌊ n−6
d

⌋
. Furthermore, let K1, . . . , Kd be d cliques
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Fig. 4 The figure shows clique network for a path consisting of d cliques K1, . . . , Kd highlighted in yellow
with 6 additional nodes in the middle. Note, that edges inside the cliques are not shown in this figure

consisting of c or c+1 nodes, such that
∑d

i=1 |VKi | = n−6 and
∑ d

2
i=1 |VKi | = ⌈ n−6

2

⌉

and
∑d

i= d
2 +1

|VKi | = ⌊ n−6
2

⌋
, andv1, v

′
1, v2, v

′
2, v3, v

′
3 be 6more nodes.Wenowdefine

the network G as

VG :=
d⋃

i=1

VKi ∪ {v1, v′
1, v2, v

′
2, v3, v

′
3},

EG :=
d⋃

i=1

EKi ∪
d
2 −1⋃

i=1

{{v, x} | v ∈ Ki ∧ x ∈ Ki+1} ∪
⋃

v∈K d
2

{{v, v1}, {v, v′
1}}

∪
d−1⋃

i= d
2 +1

{{v, x} | v ∈ Ki ∧ x ∈ Ki+1} ∪
⋃

v∈K d
2 +1

{{v, v3}, {v, v′
3}}

∪ {{v1, v′
1}, {v2, v′

2}, {v3, v′
3}} ∪ {{v, x} | v ∈ {v2, v′

2} ∧ x ∈ {v1, v′
1, v3, v

′
3}}.

Figure 4 shows a sketch of G.
We observe that G is stable against edge removal because of Theorem 3, since

α > n
6 − 3 ≥ 1 and G being a clique network for the path. We now show that adding

an edge is also not an improving move.
We quickly see that, for a node v, adding an edge into the 2-neighborhood always

shortens distances the least.We therefore only have to consider these edges.Weobserve
that adding an edge between v1 and v3 (or because of symmetry, v′

1 or v′
3) decreases

distances from v1 to v3 and all nodes in K d
2 +1, . . . , Kd and decreases distances from

v3 to v1 and all nodes in K1, . . . , K d
2
by exactly 1. This means, we get

dG(v1, V ) − dG+{v1,v3}(v1, V ) = 1 +
d∑

i= d
2 +1

|VKi | =
⌊n

2

⌋
− 2 and

dG(v3, V ) − dG+{v1,v3}(v3, V ) = 1 +
d
2∑

i=1

|VKi | =
⌈n

2

⌉
− 2.
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Every other edge we could add decreases distances to all the cliques of one side of
the path, resulting in larger distance decreases. This means that adding an edge is not
an improving move for α ≤ ⌊ n

2

⌋− 2. Therefore, G is pairwise stable for the desired
values of α.

We now evaluate the number of edges. We have |EKi | ∈ �(c2). The number of
edges between two neighboring cliques is also in �(c2). This means that the total

number of edges is |EG | ∈ �(dc2). We also see that the diameter of G is d and

therefore dG(V , V ) ∈ O(dn2). If we choose d = 2
⌊√

n
2

⌋
, we have d ∈ �(

√
n) and

c ∈ �(
√
n). Since α ∈ �(n), we get for the Price of Anarchy

PoAn ≥ α(n − 1) + �(n3)

α�(dc2) + O(dn2)
∈ �

(
n3

n
5
2 + n

5
2

)

= �
(√

n
)
.

Proof of (6) This follows directly from the clique being socially optimal (see Theo-
rem 1) and the only pairwise stable network (see Theorem 2).

We have established that the Price of Anarchy is relatively high for α ≤ n
2 . It even

meets the trivial upper bound ofO(n) for a large range of α. In contrast to the high PoA
values, we observe that the Price of Stability is independent of α and best possible.

Theorem 6 The Price of Stability is 1.

Proof This follows directly from the path being stable and socially optimal for α ≤ n
3

and the clique being stable and socially optimal for α ≥ n
3 (see Theorem 1 and

Theorem 2).

From an efficiency point-of-view, the huge gap between the PoA and the PoS suggests
that having an outside force assigning an initial strategy to all players is beneficial. That
way, stability and optimal socialwelfare can be guaranteed.Without such coordination,
the players could end up in socially bad equilibria or in a cyclic sequence of improving
moves.

3 General Host Networks

We now analyze the SDNCG on arbitrary connected but not necessarily complete
host networks. First, we analyze socially optimal networks and then we investigate
the existence of pairwise stable networks. We prove our main result that establishes
equilibrium existence on any connected host network for a wide parameter range of
α. Finally, we derive bounds on the Price of Anarchy and the Price of Stability. Addi-
tionally, we show that computing the social optimum and theMaximum Routing-Cost
Spanning Tree is NP-hard while computing a Swap-Maximal Routing-Cost Spanning
Tree can be done in polynomial time.
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3.1 Stable and Optimal Networks

While for the K -SDNCG, we only have two possible social optima (dependent on
α), this gets more complicated for general host networks. Of course, if they exist on
general host networks, then the optima for the K -SDNCG are still the most efficient
networks. Intuitively, if the host network does not contain a Hamilton path, then the
social optimum should be a tree if α is small enough. Since all trees have the same
number of edges, the social welfare of a tree is only influenced by the total distances.
Remember that the spanning tree maximizing the total distances is by definition the
Maximum Routing-Cost Spanning Tree (MRCST). We now show, that this intuition
is indeed correct.

Theorem 7 (Social Optimum) Let H be a connected host network containing n nodes.

1. If H contains a Hamilton path, then this path is the social optimum for α ≤ n
3 .

The Hamilton path is the unique social optimum if α < n
3 .

2. For α ≤ 1, the MRCST of H is socially optimal.
3. For α > 1

24 (n − 2)n(n + 2), H itself is the unique social optimum.

Proof of (1) This follows directly from Theorem 1.

Proof of (2) Let Topt be the MRCST of H and G some state of H , that is, a spanning
subnetwork of H . Furthermore, let T be a spanning tree ofG. Then SW(G) ≤ SW(T ),
since we can construct G by adding edges to T and for every edge added, the social
welfare goes up by α ≤ 1 and down by at least 1, because of distances decreasing.
Since Topt maximizes the total distances, we have SW(T ) ≤ SW(Topt ) and therefore
SW(G) ≤ SW(Topt ).

Proof of (3) We show that any edge added to any network shortens the total distances
by at most 1

24 (n − 1)n(n + 1). It is easy to see that adding an edge between the two
endpoints of a Hamilton path maximizes the distance decrease. This means, if α is
larger than that, it is always socially better to add more edges to the network, resulting
in H itself to be optimal.

We already know the social welfare of a Hamilton path Pn from Sect. 2. After
adding an edge between the two endpoints of Pn , we get a cycle Cn . In this cycle,
we see that for each node there are exactly two nodes for every possible distance
1 ≤ d < n

2 and an additional node at distance n
2 , if n is even. This yields

SW(Pn) = 2α(n − 1) + 1

3
(n − 1)n(n + 1),

SW(Cn) = 2αn + n

n−1
2∑

i=1

2i = 2αn + 1

4
(n − 1)n(n + 1) for n odd,

SW(Cn) = 2αn + n

⎛

⎝

n
2−1∑

i=1

2i + n

2

⎞

⎠ = 2αn + 1

4
(n − 2)n2 + n2

2
for n even.
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We then have SW(Cn) > SW(Pn) if and only if

α >
1

24
(n − 1)n(n + 1) for n odd,

α >
1

24
(n − 2)n(n + 2) >

1

24
(n − 1)n(n + 1) for n even.

This shows the claim.

Contrasting statement (3) fromTheorem 7, we observe that for α < 1
24 (n−2)n(n+2),

the host network is not necessarily the social optimum. Consider the host network
H :=Cn for even n, i.e., an even cycle with n nodes. In the proof of (3), we see
that SW(Pn) > SW(Cn), implying that Cn cannot be the social optimum. In fact,
in this example, Pn is the optimum since there are only two possible states (up to
isomorphism): Pn and Cn itself. This is in stark contrast to the K -SDNCG, where the
host network is optimal for α ≥ n

3 .
Since finding a MRCST is NP-hard [42], finding the social optimum for a given

host network must also be NP-hard.

Theorem 8 (ComputationalHardness) Computing the social optimum for a connected
host network H is NP-hard.

Proof This follows directly from the MRCST being hard to compute [42] and the
unique social optimum for α < 1 (see Theorem 7).

Next, we discuss stable networks. In contrast to the K -SDCNG, it is not obvious
that pairwise stable networks are guaranteed to exist for any connected host network.
However, we can directly transfer the result that spanning trees are stable for small α.
For large α, similar to the clique being the unique stable network for α > n

2 for
complete host networks, as shown in Theorem 2, we show that the whole host network
is pairwise stable. However, in contrast to the K -SDNCG, this is true only for much
larger values of α.

Theorem 9 (Stable Networks) Let H be a connected host network containing n nodes.

1. For α ≤ 1, every spanning tree of H is pairwise stable. For α < 1, spanning trees
are the only pairwise stable networks.

2. For α > 1
4 (n − 1)2, H is the only pairwise stable network.

Proof of (1) The proof is exactly the same as for (1) of Theorem 2.

Proof of (2) Consider a network G on a host network H = (V , EH ). The largest
distance decrease a node v ∈ V can suffer when forming an edge e ∈ EH is when
G is a path and v one of its endpoints connecting to the other endpoint x ∈ V . This
move decreases the distances by

�d:=dG(v, V ) − dG+e(v, V ) = dG(x, V ) − dG+e(x, V )

=
n−1
2∑

i=1

(n − 2i) = 1

4
(n − 1)2 for n odd,
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�d =
n
2−1∑

i=1

(n − 2i) = 1

4
(n − 2)n <

1

4
(n − 1)2 for n even.

Thus, since α > 1
4 (n − 1)2, forming edges is always beneficial for the incident

nodes. Similarly, edge removal always decreases the utility of the incident nodes.
Therefore, the host network H is the only pairwise stable network.

Contrasting statement (2) of Theorem 9, using H :=Cn for odd n and α < 1
4 (n − 1)2

shows that the host network is not necessarily pairwise stable. This example also
shows that the optimum is not necessarily stable: For α ≥ 1

4 (n − 1)2 and H :=Cn as
the host network, Cn is the only pairwise stable network but it is not the optimum for
α < 1

24 (n − 2)n(n + 2). This is another significant difference to the K -SDNCG.
Now that we characterized stable networks for extreme α-values, the question

remains whether stable states also exist for in-between values. For the K -SDNCG,
the path is stable up to α < n−1

2 . This is, of course, still true for non-complete host
networks if they contain a Hamilton path. Since a Hamilton path (if it exists) is the
MRCST, it is natural to suspect that the MRCST properties at least partially ensure
stability for some α ≥ 1. However, even if true, the MRCST is still NP-hard to com-
pute. Hence, in quest of an efficiently computable stable network, we introduce a less
strict variant of MRCSTs which is only locally optimal: Swap-Maximal Routing-Cost
Spanning Trees. Remember, a SMRCST is a spanning tree whose summed distances
cannot be increased by removing one edge and adding another edge.

As our main result, we now show that SMRCSTs (and therefore MRCSTs, too)
are indeed stable beyond α ≤ 1. Note, that for the inverse model of the NCG on an
arbitrary host network [27], so far no equilibrium existence statement is known.

Theorem 10 Let H be a connected host network containing n nodes. Then for α ≤ n
3 ,

any Swap-Maximal Routing-Cost Spanning Tree is pairwise stable.

Proof Let G with VG = VH and EG ⊆ EH be a SMRCST. Since G is a tree, we only
have to consider edge additions. We show that adding any edge decreases the summed
distances for at least one of the edges endpoints by at least n3 . This is sufficient to show
the claim.

Let e1 ∈ EH \ EG be an edge not part of the SMRCST. Adding e1 would form a
cycle of length d ∈ N consisting of nodes v1, . . . , vd ∈ V with v1 and vd being the
nodes incident to e1. Let EC be the set of all edges on this cycle. Removing all edges
in EC from G would create d trees rooted in v1, . . . , vd respectively. Let furthermore
x1, . . . , xd be the number of nodes in each of the d trees. See Fig. 5 for an illustration.

Since G is a tree, there is exactly one path between each pair of nodes (which is
also the shortest). For each edge e ∈ EG , we define dG(e) as the number of paths
between two nodes in G which include e. We then can express the total distances as

dG(V , V ) = 2
∑

e∈EG

dG(e).

Note, that each path between two nodes contributes twice to the total distances (one
for each node), which leads to the factor of 2.
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Let x :=(x1, . . . , xd). We now define for each edge e ∈ EC on the cycle

ce(x):=
∑

e′∈EC

dG+e1−e(e
′) =

d−1∑

i=1

d∑

j=i+1

xi x j dG+e1−e(vi , v j ).

This is the contribution of all the edges on the cycle to the total distances if we add e1
to it and instead remove e from it. Note that ce1 is the value for the original network
since G + e1 − e1 = G. We see that ce does not depent on the structure of the subtrees
rooted in the vi but only on the number of nodes in each subtree. Since the number of
paths going over an edge that is not on the cycle does not change when we add e1 and
remove e, we have

dG(V , V ) − dG+e−e1(V , V )

= 2
∑

e′∈E
(dG(e′) − dG+e−e1(e

′))

= 2
∑

e′∈EC

(dG(e′) − dG+e−e1(e
′)) + 2

∑

e′∈EG\EC

(dG(e′) − dG+e−e1(e
′))

= 2ce1(x) − 2ce(x).

We know that G is a SMRCST of H . This means that dG(V , V ) ≥ dG ′(V , V ) for
any other spanning tree G ′ which can be obtained from G by a swap of one edge. We
therefore also have

∀e ∈ EC : ce1(x) ≥ ce(x). (1)

Now, we use the previous observations to formulate and solve a minimization
problem which yields the desired bound. We start with some definitions.

We call x = (x1, . . . , xd) ∈ Nd with xi ≥ 1 and
∑d

i=1 xi = n a node distribution.
For each edge e ∈ EC , we call ce(x) (defined above) the cost of e. And lastly, we
define the distance decrease �d as

�d(x):=max

⎧
⎪⎪⎨

⎪⎪⎩

⌊
d−1
2

⌋

∑

i=1

(d − 2i)xi ,

⌊
d−1
2

⌋

∑

i=1

(d − 2i)xd−i+1

⎫
⎪⎪⎬

⎪⎪⎭

. (2)

The goal then is: Find a node distribution x that fulfills 1 and minimizes �d(x).
Observe that this indeed yields a lower bound for the distance decrease when adding
e to G. If we show that this is at least n

3 , we proved the statement.
Let x = (x1, . . . , xd) ∈ Nd be a node distribution minimizing �d(x). We first

show the claim for d = 3 and d = 4.
For d = 3, we have x2 ≤ x1 and x2 ≤ x3 from 1 and �d(x) = max{x1, x3}. Since

x1 + x2 + x3 = n, this yields �d(x) ≥ n
3 .
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For d = 4, we have ce1(x) − c{x1,x2}(x) = 2x1x4 − 2x1x2, and therefore ce1 ≥
c{x1,x2} if and only if x4 ≥ x2. Similarly, we get x1 ≥ x3 from {x3, x4}. Together with
x1 + x2 + x3 + x4 = n, we see that max{x1, x4} ≥ n

4 . We conclude that �d(x) =
2max{x1, x4} ≥ n

2 > n
3 .

For d > 4, we make a case distinction between d being odd and d being even and
simplify the problem by doing several relaxation steps. For d ≤ 4, it is easy to show
that �d(x) ≥ n

3 . For further steps, we allow x ∈ Rd≥1. Note, that this only allows for
smaller minima and therefore still yields a lower bound for the original problem.

The high level idea of the following steps is that we can redistribute weights of
the node distribution x without changing �(x) or violating 1 and thereby reducing
the number of variables contained in x by setting most xi to 1. We now make a case
distinction.

Case d odd: Let m = d+1
2 and e2:={vm−1, vm} and e3:={vm, vm+1}. Thus, vm is

the node equidistant from v1 and vd in C and e2 and e3 are the edges on C incident to
vm . (see Fig. 5 (middle)) We will only consider the two constraints

ce1(x) ≥ ce2(x) and ce1(x) ≥ ce3(x), (3)

where

ce1(x) =
d−1∑

i=1

d∑

j=i+1

( j − i)xi x j ,

ce2 (x) =
m−2∑

i=1

m−1∑

j=i+1

( j − i)xi x j +
d−1∑

i=m

d∑

j=i+1

( j − i)xi x j +
m−1∑

i=1

d∑

j=m

(i + d − j)xi x j ,

ce3(x) =
m−1∑

i=1

m∑

j=i+1

( j − i)xi x j +
d−1∑

i=m+1

d∑

j=i+1

( j − i)xi x j +
m∑

i=1

d∑

j=m+1

(i + d − j)xi x j .

This still yields a lower bound for the original problem since the constraints from 3
are a subset of the constraints from 1.

We observe that the claim is trivially true for n
3 ≤ d+3

2 since �d(x) ≥ d+3
2 (tight

for n = 5, d = 5, x = (1, 1, 1, 1, 1)). This means, we can assume

n >
3(d + 3)

2
, or rather n > 3(m + 1). (4)
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In the following, we perform a series of relaxations. For that, we define the node
distributions x (1), x (2), x (3) such that for all 1 ≤ i ≤ d

x (1)
i :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 +∑m−2
p=2

m−1−p
m−2 (xp − 1) if i = 1,

xm−1 +∑m−2
p=2

p−1
m−2 (xp − 1) if i = m − 1,

xm if i = m,

xm+1 +∑d−1
p=m+2

d−p
m−2 (xp − 1) if i = m + 1,

xd +∑d−1
p=m+2

p−m−1
m−2 (xp − 1) if i = d,

1 else,

(Without loss of generality, we assume x (1)
1 ≥ x (1)

d

and (2m − 3)x (1)
1 + x (1)

m−1 = (2m − 3)x (1)
d + x (1)

m+1.)

x (2)
i :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x (1)
1 if i = 1 or i = d,

x (1)
m−1 if i = m − 1 or i = m + 1,

x (1)
m + (2m − 4)

(
x (1)
1 − x (1)

d

)
if i = m,

1 else,

x (3)
i :=

⎧
⎪⎪⎨

⎪⎪⎩

x (2)
m + 22m−4

2m−3

(
x (2)
m−1 − 1

)
if i = m,

x (2)
1 + 1

2m−3

(
x (2)
m−1 − 1

)
if i = 1 or i = d,

1 else.

.

It is easy to see that �d(x) = �d
(
x (1)

) = �d
(
x (2)

) = �d
(
x (3)

)
. We show that

ce1
(
x (i)

) ≥ ce2
(
x (i)

)
and ce1

(
x (i)

) ≥ ce3
(
x (i)

)
for 1 ≤ i ≤ 3. This means, x (3) is

also a solution of the minimization problem.
First, we show this for x (1). Let 1 < p < m − 1. Consider x∗, a modification of x

where the weight of xp is distributed among x1 and xm−1 as follows:

∀1 ≤ i ≤ d : x∗
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 + m−1−p
m−2 (xp − 1) if i = 1,

1 if i = p,

xm−1 + p−1
m−2 (xp − 1) if i = m − 1,

xi else.

To show that x∗ also fulfills (3), we show that ce2(x) − ce1(x) = ce2(x
∗) − ce1(x

∗)
and ce3(x) − ce1(x) = ce3(x

∗) − ce1(x
∗). We have

ce2(x) − ce1(x) =
m−1∑

i=1

d∑

j=m

(i + d − j − ( j − i))xi x j =
m−1∑

i=1

d∑

j=m

(2i + d − 2 j)xi x j

and

ce2(x
∗) − ce1(x

∗)
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=
m−1∑

i=1

d∑

j=m

(2i + d − 2 j)x∗
i x

∗
j

=
m−1∑

i=1

d∑

j=m

(2i + d − 2 j)xi x j + m − 1 − p

m − 2
(xp − 1)

d∑

j=m

(2 + d − 2 j)x j

− (xp − 1)
d∑

j=m

(2p + d − 2 j)x j + p − 1

m − 2
(xp − 1)

d∑

j=m

(2(m − 1) + d − 2 j)x j

=
m−1∑

i=1

d∑

j=m

(2i + d − 2 j)xi x j + m − 1 − p

m − 2
(xp − 1)(d − m + 1)2

− (xp − 1)(d − m + 1)2p + p − 1

m − 2
(xp − 1)(d − m + 1)2(m − 1)

=
m−1∑

i=1

d∑

j=m

(2i + d − 2 j)xi x j

+ (xp − 1)(d − m + 1)(−2p + 2

m − 2
((m − 1 − p) + (p − 1)(m − 1)))

=
m−1∑

i=1

d∑

j=m

(2i + d − 2 j)xi x j + (xp − 1)(d − m + 1)

(

−2p + 2

m − 2
(m − 2)p

)

= ce2(x) − ce1(x).

The calculations for ce3(x) − ce1(x) = ce3(x
∗) − ce1(x

∗) are exactly the same with
the only difference being the sum indices (first sum goes to m and second sum starts
at m + 1).

Because of symmetry, form+1 < p < d, we can similarly distribute weights from
xp to xm+1 and xd . Using this for all 1 < p < m − 1 and m + 1 < p < d iteratively,
we get exactly x (1), which therefore still fulfills (3).

Next, we show that x (2) fulfills (3), too. We have

ce1(x
(1))

= (m − 2)x (1)
1 x (1)

m−1 + (m − 1)x (1)
1 x (1)

m + mx (1)
1 x (1)

m+1 + (2m − 2)x (1)
1 x (1)

d

+x (1)
m−1x

(1)
m + 2x (1)

m−1x
(1)
m+1 + mx (1)

m−1x
(1)
d + x (1)

m x (1)
m+1 + (m − 1)x (1)

m x (1)
d

+(m − 2)x (1)
m+1x

(1)
d + x (1)

1 (m − 3)(2m − 2) + x (1)
d (m − 3)(2m − 2)

+x (1)
m−1(m − 3)m + x (1)

m+1(m − 3)m + x (1)
m (m − 3)m

+1

3
(m − 4)(m − 3)(m − 2) + (m − 3)(m − 3)m,

ce2(x
(1))

= (m − 2)x (1)
1 x (1)

m−1 + mx (1)
1 x (1)

m + (m − 1)x (1)
1 x (1)

m+1 + x (1)
1 x (1)

d
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+(2m − 2)x (1)
m−1x

(1)
m + (2m − 3)x (1)

m−1x
(1)
m+1 + (m − 1)x (1)

m−1x
(1)
d

+x (1)
m x (1)

m+1 + (m − 1)x (1)
m x (1)

d + (m − 2)x (1)
m+1x

(1)
d

+x (1)
1 (m − 3)(m − 1) + x (1)

d (m − 3)(m − 1) + x (1)
m−1(m − 3)(2m − 3)

+x (1)
m+1(m − 3)(2m − 3) + x (1)

m (m − 3)(2m − 1)

+1

3
(m − 4)(m − 3)(m − 2) + (m − 3)(m − 3)(m − 1) and

ce3(x
(1))

= (m − 2)x (1)
1 x (1)

m−1 + (m − 1)x (1)
1 x (1)

m + (m − 1)x (1)
1 x (1)

m+1 + x (1)
1 x (1)

d

+x (1)
m−1x

(1)
m + (2m − 3)x (1)

m−1x
(1)
m+1 + (m − 1)x (1)

m−1x
(1)
d

+(2m − 2)x (1)
m x (1)

m+1 + mx (1)
m x (1)

d + (m − 2)x (1)
m+1x

(1)
d

+x (1)
1 (m − 3)(m − 1) + x (1)

d (m − 3)(m − 1) + x (1)
m−1(m − 3)(2m − 3)

+x (1)
m+1(m − 3)(2m − 3) + x (1)

m (m − 3)(2m − 1)

+1

3
(m − 4)(m − 3)(m − 2) + (m − 3)(m − 3)(m − 1).

We can further assume that (2m − 3)x (1)
1 + x (1)

m−1 = (2m − 3)x (1)
d + x (1)

m+1. This is

because if (without loss of generality) (2m − 3)x (1)
1 + x (1)

m−1 < (2m − 3)x (1)
d + x (1)

m+1

holds, we canmove value from x (1)
m−1 to x

(1)
1 without changing�d(x (1)). This increases

ce1(x
(1)) more than ce2(x

(1)) and ce3(x
(1)).

Let (without loss of generality) x (1)
1 ≥ x (1)

d and y:=x (1)
1 − x (1)

d . Then we have

x (1)
d = x (1)

1 − y and x (1)
m+1 = x (1)

m−1 + (2m − 3)y. We see, that

∀1 ≤ i ≤ d : x (2)
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x (1)
m + (2m − 4)y if i = m,

x (1)
m−1 if i = m − 1 or i = m + 1,

x (1)
1 if i = 1 or i = d,

1 else.

We show ce1(x
(2)) ≥ ce3(x

(2)), by showing that ce1(x
(1)) − ce3(x

(1)) − ce1(x
(2)) +

ce3(x
(2)) > 0.

We have

�x (1)

:=ce1(x
(1)) − ce3(x

(1))

= x (1)
1 x (1)

m+1 + (2m − 3)x (1)
1 x (1)

d − (2m − 5)x (1)
m−1x

(1)
m+1 + x (1)

m−1x
(1)
d

− (2m − 3)x (1)
m x (1)

m+1 − x (1)
m x (1)

d + x (1)
1 (m − 3)(m − 1) + x (1)

d (m − 3)(m − 1)

− x (1)
m−1(m − 3)(m − 3) − x (1)

m+1(m − 3)(m − 3) − x (1)
m (m − 3)(m − 1)

+ (m − 3)(m − 3)
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= x (1)
1 x (1)

m−1 + x (1)
1 (2m − 3)y + (2m − 3)x (1)

1 x (1)
1 − (2m − 3)x (1)

1 y

− (2m − 5)x (1)
m−1x

(1)
m−1 − (2m − 5)(2m − 3)x (1)

m−1y + x (1)
m−1x

(1)
1 − x (1)

m−1y

− (2m − 3)x (1)
m x (1)

m−1 − (2m − 3)x (1)
m (2m − 3)y − x (1)

m x (1)
1 + x (1)

m y

+ x (1)
1 (m − 3)(m − 1) + x (1)

1 (m − 3)(m − 1) − y(m − 3)(m − 1)

− x (1)
m−1(m − 3)(m − 3) − x (1)

m−1(m − 3)(m − 3)

− (2m − 3)y(m − 3)(m − 3) − x (1)
m (m − 3)(m − 1) + (m − 3)(m − 3)

and

�x (2)

:=ce1(x
(2)) − ce3(x

(2))

= x (1)
1 x (1)

m−1 + (2m − 3)x (1)
1 x (1)

1 − (2m − 5)x (1)
m−1x

(1)
m−1 + x (1)

m−1x
(1)
1

− (2m − 3)x (1)
m x (1)

m−1 − (2m − 3)(2m − 4)yx (1)
m−1 − x (1)

m x (1)
1 − (2m − 4)yx (1)

1

+ x (1)
1 (m − 3)(m − 1) + x (1)

1 (m − 3)(m − 1) − x (1)
m−1(m − 3)(m − 3)

− x (1)
m−1(m − 3)(m − 3) − x (1)

m (m − 3)(m − 1) − (2m − 4)y(m − 3)(m − 1)

+ (m − 3)(m − 3),

and therefore

�x (2) − �x (1)

= (2m − 5)(2m − 3)x (1)
m−1y + x (1)

m−1y + (2m − 3)x (1)
m (2m − 3)y

− (2m − 3)(2m − 4)yx (1)
m−1 − x (1)

m y − (2m − 4)yx (1)
1 + y(m − 3)(m − 1)

+ (2m − 3)y(m − 3)(m − 3) − (2m − 4)y(m − 3)(m − 1)

= x (1)
m−1y((2m − 5)(2m − 3) + 1 − (2m − 3)(2m − 4))

+ x (1)
m y((2m − 3)(2m − 3) − 1) − (2m − 4)x (1)

1 y

+ y(m − 3)(m − 1 + (2m − 3)(m − 3) − (2m − 4)(m − 1))

= − 2x (1)
m−1y(m − 2) + 4x (1)

m y(m − 2)(m − 1) − 2x (1)
1 y(m − 2)

− 2y(m − 3)(m − 2)

= 2y(m − 2)(−x (1)
m−1 + 2x (1)

m (m − 1) − x (1)
1 − m + 3)

= 2y(m − 2)(x (1)
m − x (1)

1 − x (1)
m−1 + 2x (1)

m (m − 1.5) − m + 3)

≥ 0.

The last step follows from x (1)
m ≥ x (1)

1 + x (1)
m−1 ≥ 1, m ≥ 3 and y ≥ 0.

Since x (1) fulfills (3), we see that ce1(x
(2)) ≥ ce3(x

(2)) holds, too. With x (2) being
symmetric, ce1(x

(2)) ≥ ce2(x
(2)) holds as well. This shows that x (2) also fulfills (3).
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Now, we show that x (3) fulfills (3), too. Let y:= x (2)
m−1−1
2m−3 . We see that

∀1 ≤ i ≤ d : x (3)
i =

⎧
⎪⎨

⎪⎩

x (2)
m + 2(2m − 4)y if i = m,

x (2)
1 + y if i = 1 or i = d,

1 else.

We see that

�x (2)

= 2x (2)
1 + 2(2m − 3)yx (2)

1 + (2m − 3)x (2)
1 x (2)

1 − (2m − 5)(1 + (2m − 3)y)2

− (2m − 3)x (2)
m − (2m − 3)x (2)

m (2m − 3)y − x (2)
1 x (2)

m + 2x (2)
1 (m − 3)(m − 1)

− 2(m − 3)(m − 3) − 2(2m − 3)y(m − 3)(m − 3) − x (2)
m (m − 3)(m − 1)

+ (m − 3)(m − 3)

= 2x (2)
1 + (2m − 3)x (2)

1 x (2)
1 − (2m − 5) − (2m − 3)x (2)

m − x (2)
1 x (2)

m

+ 2x (2)
1 (m − 3)(m − 1) − 2(m − 3)(m − 3) − x (2)

m (m − 3)(m − 1)

+ (m − 3)(m − 3)

+ y(2m − 3)(2x (2)
1 − (2m − 5)2 − (2m − 3)x (2)

m − 2(m − 3)(m − 3))

− y2(2m − 3)2(2m − 5),

�x (3)

:=ce1(x
(3)) − ce2(x

(3))

= 2x (2)
1 + 2y + (2m − 3)(x (2)

1 + y)2 − (2m − 5) − (2m − 3)(x (2)
m + 2(2m − 4)y)

− (x (2)
1 + y)(x (2)

m + 2(2m − 4)y) + 2(x (2)
1 + y)(m − 3)(m − 1)

− 2(m − 3)(m − 3) − (x (2)
m + 2(2m − 4)y)(m − 3)(m − 1)

+ (m − 3)(m − 3)

= 2x (2)
1 + (2m − 3)x (2)

1 x (2)
1 − (2m − 5) − (2m − 3)x (2)

m − x (2)
1 x (2)

m

+ 2x (2)
1 (m − 3)(m − 1) − 2(m − 3)(m − 3) − x (2)

m (m − 3)(m − 1)

+ (m − 3)(m − 3)

+ y(2 + (2m − 3)2x (2)
1 − (2m − 3)2(2m − 4) − x (2)

m − 2(2m − 4)x (2)
1

+ 2(m − 3)(m − 1) − 2(2m − 4)(m − 3)(m − 1))

+ y2((2m − 3) − 2(2m − 4))

and obtain

�x (3) − �x (2)

= y(2 − 2(2m − 3) + (2m − 3)2x (2)
m + 2(2m − 3)(m − 3)(m − 3) − x (2)

m
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− 2(2m − 4)x (2)
1 + 2(m − 3)(m − 1) − 2(2m − 4)(m − 3)(m − 1))

+ y2((2m − 3) − 2(2m − 4) + (2m − 3)2(2m − 5))

= y(m − 2)(−4x (2)
1 + 4(m − 1)x (2)

m − 4(m − 2))

+ 4y2(2m − 5)(m − 1)(m − 2)

≥ 0.

The last step follows from x (2)
m ≥ x (2)

1 , m ≥ 3 and y ≥ 0.
Since x (2) fulfills (3), x (3) does, too. Because of x (3) being a node distribution with

only two variables (x (3)
1 = x (3)

d and x (3)
m ), we can simplify �x (3) and �d to

�x (3) = ce1(x
(3)) − ce2(x

(3))

= 2x (3)
1 + (2m − 3)x (3)

1 x (3)
1 − (2m − 5) − (2m − 3)x (3)

m − x (3)
1 x (3)

m

+ 2x (3)
1 (m − 3)(m − 1) − 2(m − 3)(m − 3) − x (3)

m (m − 3)(m − 1)

+ (m − 3)(m − 3)

= (2m − 3)x (3)
1 x (3)

1 + 2x (3)
1 (m − 2)2 − x (3)

1 x (3)
m − m(m − 2)x (3)

m − (m − 2)2

and

�d(x (3)) = (m − 2)2 + (2m − 3)x (3)
1 .

We now prove the lower bound.
We see that �d(x (3)) is only dependent on x (3)

1 which means we have to minimize

x (3)
1 . Since x (3) sums to n, we have n = 2x (3)

1 + x (3)
m + 2m − 4, and therefore x (3)

m =
n − 2x (3)

1 − 2m + 4.
Substituting this into �x (3) yields

�x (3) = (2m − 3)x (3)
1 x (3)

1 + 2x (3)
1 (m − 2)2 − x (3)

1 (n − 2x (3)
1 − 2m + 4)

− m(m − 2)(n − 2x (3)
1 − 2m + 4) − (m − 2)2

= x (3)
1 x (3)

1 (2m − 1) + x (3)
1 (2(m − 2)(2m − 1) − n) + (2m − 1)(m − 2)2

− nm(m − 2).

Observe that x (3) fulfills (3) if and only if�x (3) ≥ 0. Solving the quadratic equation,
we see that this is only the case for

x (3)
1 ≥ − (m − 2) + n

2(2m − 1)

+
√
(

n

2(2m − 1)
− (m − 2)

)2

+ nm(m − 2) − (2m − 1)(m − 2)2.
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With (4), we see that the term under the root is larger than

02 + 3(m + 1)m(m − 2) − (2m − 1)(m − 2)2

≥ (m + 1)m(m − 2)

≥ (m − 2)2.

This yields

x (3)
1 ≥ −(m − 2) + n

2(2m − 1)
+
√

(m − 2)2 = n

2(2m − 1)
,

and therefore

�d(x (3)) ≥ (m − 2)2 + 2m − 3

2m − 1
· n
2

≥ n

3
.

Case d even: Let m = d
2 and e2:={vm−1, vm} and e3:={vm+1, vm+2}. (see

Fig. 5 (right)) Again, we will only consider the two constraints

ce1(x) ≥ ce2(x) and ce1(x) ≥ ce3(x), (5)

where

ce1 =
d−1∑

i=1

d∑

j=i+1

( j − i)xi x j ,

ce2 =
m−2∑

i=1

m−1∑

j=i+1

( j − i)xi x j +
d−1∑

i=m

d∑

j=i+1

( j − i)xi x j +
m−1∑

i=1

d∑

j=m

(i + d − j)xi x j ,

ce3 =
m∑

i=1

m+1∑

j=i+1

( j − i)xi x j +
d−1∑

i=m+2

d∑

j=i+1

( j − i)xi x j +
m+1∑

i=1

d∑

j=m+2

(i + d − j)xi x j ,

We observe that the claim is trivially true for n
3 ≤ d+6

2 , since �d(x) ≥ d+6
2 (tight for

n = 6, d = 6, x = (1, 1, 1, 1, 1, 1)). This means we can assume

n >
3(d + 6)

2
, or rather n > 3(m + 3). (6)
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Similar to the odd case, we perform a series of relaxations. For that, we define the
node distributions x (1), x (2), x (3), x (4) such that for all 1 ≤ i ≤ d

x (1)
i :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 +∑m−2
p=2

m−1−p
m−2 (xp − 1) if i = 1,

xm−1 +∑m−2
p=2

p−1
m−2 (xp − 1) if i = m − 1,

xm if i = m,

xm+1 if i = m + 1,

xm+2 +∑d−1
p=m+3

d−p
m−2 (xp − 1) if i = m + 1,

xd +∑d−1
p=m+3

p−m−2
m−2 (xp − 1) if i = d,

1 else,

(Without loss of generality, we assume x (1)
1 ≥ x (1)

d

and (m − 1)x (1)
1 + x (1)

m−1 = (m − 1)x (1)
d + x (1)

m+2.)

x (2)
i :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x (1)
1 if i = 1 or i = d,

x (1)
m−1 if i = m − 1 or i = m + 2,

x (1)
m if i = m

x (1)
m+1 + (m − 2)

(
x (1)
1 − x (1)

d

)
if i = m + 1,

1 else,

x (3)
i :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x (2)
1 if i = 1 or i = d,

x (2)
m−1 if i = m − 1 or i = m + 2,
x (2)
m +x (2)

m+1
2 if i = m or i = m + 1,

1 else,

x (4)
i :=

⎧
⎪⎪⎨

⎪⎪⎩

x (3)
1 + 1

m−1

(
x (3)
m−1 − 1

)
if i = 1 or i = d,

x (3)
m + m−2

m−1

(
x (3)
m−1 − 1

)
if i = m or i = m + 1,

1 else.

Again, it is easy to see that �d(x) = �d
(
x (1)

) = · · · = �d
(
x (4)

)
. We show

ce1
(
x (i)

) ≥ ce2
(
x (i)

)
and ce1

(
x (i)

) ≥ ce3
(
x (i)

)
, for 1 ≤ i ≤ 4. Therefore, x (4) is a

solution of the minimization problem.
First, we observe that ce2(x)−ce1(x) = ce2(x

(1))−ce1(x
(1)) and ce3(x)−ce1(x) =

ce3(x
(1)) − ce1(x

(1)) follow the same way as in the odd case (with slight adjustments
to the sum indices). This means that x (1) fulfills (5).

Next, we show that x (2) fulfills (5), too. We have

ce1(x
(1))

= (m − 2)x (1)
1 x (1)

m−1 + (m − 1)x (1)
1 x (1)

m + mx (1)
1 x (1)

m+1 + (m + 1)x (1)
1 x (1)

m+2
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+ (2m − 1)x (1)
1 x (1)

d + x (1)
m−1x

(1)
m + 2x (1)

m−1x
(1)
m+1 + 3x (1)

m−1x
(1)
m+2

+ (m + 1)x (1)
m−1x

(1)
d + x (1)

m x (1)
m+1 + 2x (1)

m x (1)
m+2 + mx (1)

m x (1)
d

+ x (1)
m+1x

(1)
m+2 + (m − 1)x (1)

m+1x
(1)
d + (m − 2)x (1)

m+2x
(1)
d

+ (m − 3)(2m − 1)x (1)
1 + (m − 3)(m + 1)x (1)

m−1 + (m − 3)(m + 1)x (1)
m

+ (m − 3)(m + 1)x (1)
m+1 + (m − 3)(m + 1)x (1)

m+2 + (m − 3)(2m − 1)x (1)
d

+ 1

3
(m − 4)(m − 3)(m − 2) + (m − 3)(m − 3)(m + 1),

ce2(x
(1))

= (m − 2)x (1)
1 x (1)

m−1 + (m + 1)x (1)
1 x (1)

m + mx (1)
1 x (1)

m+1 + (m − 1)x (1)
1 x (1)

m+2

+ x (1)
1 x (1)

d + (2m − 1)x (1)
m−1x

(1)
m + (2m − 2)x (1)

m−1x
(1)
m+1 + (2m − 3)x (1)

m−1x
(1)
m+2

+ (m − 1)x (1)
m−1x

(1)
d + x (1)

m x (1)
m+1 + 2x (1)

m x (1)
m+2 + mx (1)

m x (1)
d

+ x (1)
m+1x

(1)
m+2 + (m − 1)x (1)

m+1x
(1)
d + (m − 2)x (1)

m+2x
(1)
d

+ (m − 3)(m − 1)x (1)
1 + (m − 3)(2m − 3)x (1)

m−1 + (m − 3)(2m + 1)x (1)
m

+ (m − 3)(2m − 1)x (1)
m+1 + (m − 3)(2m − 3)x (1)

m+2 + (m − 3)(m − 1)x (1)
d

+ 1

3
(m − 4)(m − 3)(m − 2) + (m − 3)(m − 3)(m − 1) and

ce3(x
(1))

= (m − 2)x (1)
1 x (1)

m−1 + (m − 1)x (1)
1 x (1)

m + mx (1)
1 x (1)

m+1 + (m − 1)x (1)
1 x (1)

m+2

+ x (1)
1 x (1)

d + x (1)
m−1x

(1)
m + 2x (1)

m−1x
(1)
m+1 + (2m − 3)x (1)

m−1x
(1)
m+2

+ (m − 1)x (1)
m−1x

(1)
d + x (1)

m x (1)
m+1 + (2m − 2)x (1)

m x (1)
m+2 + mx (1)

m x (1)
d

+ (2m − 1)x (1)
m+1x

(1)
m+2 + (m + 1)x (1)

m+1x
(1)
d + (m − 2)x (1)

m+2x
(1)
d

+ (m − 3)(m − 1)x (1)
1 + (m − 3)(2m − 3)x (1)

m−1 + (m − 3)(2m − 1)x (1)
m

+ (m − 3)(2m + 1)x (1)
m+1 + (m − 3)(2m − 3)x (1)

m+2 + (m − 3)(m − 1)x (1)
d

+ 1

3
(m − 4)(m − 3)(m − 2) + (m − 3)(m − 3)(m − 1).

Similar to the odd case, we can further assume that (m−1)x (1)
1 +x (1)

m−1 = (m−1)x (1)
d +

x (1)
m+2. If this is not the case and (without loss of generality) (m − 1)x (1)

1 + x (1)
m−1 >

(m − 1)x (1)
d + x (1)

m+2, we could move weight from x (1)
m+2 to x (1)

d without changing
�d(x (1)). This would increase ce1(x

(1)) more than ce2(x
(1)) and ce3(x

(1)).
Let (without loss of generality) x (1)

1 ≥ x (1)
d and y:=x (1)

1 − x (1)
d . Therefore, we have

x (1)
d = x (1)

1 − y and x (1)
m+2 = x (1)

m−1 + (m − 1)y. We see that
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∀1 ≤ i ≤ d : x (2)
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x (1)
m if i = m,

x (1)
m+1 + (m − 2)y if i = m + 1,

x (1)
m−1 if i = m − 1 or i = m + 2,

x (1)
1 if i = 1 or i = d,

1 else.

We now show that

�2x
(2):=ce1(x

(2)) − ce2(x
(2)) ≥ ce1(x

(1)) − ce2(x
(1)) = �2(x

(1))

and

�3x
(2):=ce1(x

(2)) − ce3(x
(2)) ≥ ce1(x

(1)) − ce3(x
(1)) = �3(x

(1)).

We have

�2x
(1) = ce1(x

(1)) − ce2 (x
(1))

= − 2x(1)
1 x(1)

m + 2x(1)
1 x(1)

m+2 + (2m − 2)x(1)
1 x(1)

d − (2m − 2)x(1)
m−1x

(1)
m

− (2m − 4)x(1)
m−1x

(1)
m+1 − (2m − 6)x(1)

m−1x
(1)
m+2 + 2x(1)

m−1x
(1)
d

+ (m − 3)mx(1)
1 − (m − 3)(m − 4)x(1)

m−1 − (m − 3)mx(1)
m

− (m − 3)(m − 2)x(1)
m+1 − (m − 3)(m − 4)x(1)

m+2 + (m − 3)mx(1)
d

+ 2(m − 3)(m − 3)

= − 2x(1)
1 x(1)

m + 2x(1)
1 x(1)

m−1 + 2(m − 1)x(1)
1 y + (2m − 2)x(1)

1 x(1)
1

− (2m − 2)x(1)
1 y − (2m − 2)x(1)

m−1x
(1)
m − (2m − 4)x(1)

m−1x
(1)
m+1

− (2m − 6)x(1)
m−1x

(1)
m−1 − (2m − 6)x(1)

m−1(m − 1)y + 2x(1)
m−1x

(1)
1 − 2x(1)

m−1y

+ (m − 3)mx(1)
1 − (m − 3)(m − 4)x(1)

m−1 − (m − 3)mx(1)
m

− (m − 3)(m − 2)x(1)
m+1 − (m − 3)(m − 4)x(1)

m−1 − (m − 3)(m − 4)(m − 1)y

+ (m − 3)mx(1)
1 − (m − 3)my + 2(m − 3)(m − 3)

and

�2x
(2) = − 2x (1)

1 x (1)
m + 2x (1)

1 x (1)
m−1 + (2m − 2)x (1)

1 x (1)
1 − (2m − 2)x (1)

m−1x
(1)
m

− (2m − 4)x (1)
m−1x

(1)
m+1 − (2m − 4)x (1)

m−1(m − 2)y − (2m − 6)x (1)
m−1x

(1)
m−1

+ 2x (1)
m−1x

(1)
1 + (m − 3)mx (1)

1 − (m − 3)(m − 4)x (1)
m−1 − (m − 3)mx (1)

m

− (m − 3)(m − 2)x (1)
m+1 − (m − 3)(m − 2)(m − 2)y

− (m − 3)(m − 4)x (1)
m−1 + (m − 3)mx (1)

1 + 2(m − 3)(m − 3),
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and therefore

�2x
(2) − �2x

(1) = − (2m − 4)x (1)
m−1(m − 2)y + (2m − 6)x (1)

m−1(m − 1)y

+ 2x (1)
m−1y − (m − 3)(m − 2)(m − 2)y

+ (m − 3)(m − 4)(m − 1)y + (m − 3)my

= x (1)
m−1y(−(2m − 4)(m − 2) + (2m − 6)(m − 1) + 2)

+ (m − 3)y(−(m − 2)(m − 2) + (m − 4)(m − 1) + m)

= x (1)
m−1y · 0 + (m − 3)y · 0

= 0.

Furthermore, we see that

�3x
(1) = ce1(x

(1)) − ce3(x
(1))

= 2x(1)
1 x(1)

m+2 + (2m − 2)x(1)
1 x(1)

d − (2m − 6)x(1)
m−1x

(1)
m+2 + 2x(1)

m−1x
(1)
d

− (2m − 4)x(1)
m x(1)

m+2 − (2m − 2)x(1)
m+1x

(1)
m+2 − 2x(1)

m+1x
(1)
d

+ (m − 3)mx(1)
1 − (m − 3)(m − 4)x(1)

m−1 − (m − 3)(m − 2)x(1)
m

− (m − 3)mx(1)
m+1 − (m − 3)(m − 4)x(1)

m+2 + (m − 3)mx(1)
d

+ 2(m − 3)(m − 3)

= 2x(1)
1 x(1)

m−1 + 2x(1)
1 (m − 1)y + (2m − 2)x(1)

1 x(1)
1 − (2m − 2)x(1)

1 y

− (2m − 6)x(1)
m−1x

(1)
m−1 − (2m − 6)x(1)

m−1(m − 1)y + 2x(1)
m−1x

(1)
1 − 2x(1)

m−1y

− (2m − 4)x(1)
m x(1)

m−1 − (2m − 4)x(1)
m (m − 1)y − (2m − 2)x(1)

m+1x
(1)
m−1

− (2m − 2)x(1)
m+1(m − 1)y − 2x(1)

m+1x
(1)
1 + 2x(1)

m+1y

+ (m − 3)mx(1)
1 − (m − 3)(m − 4)x(1)

m−1 − (m − 3)(m − 2)x(1)
m

− (m − 3)mx(1)
m+1 − (m − 3)(m − 4)x(1)

m−1 − (m − 3)(m − 4)(m − 1)y

+ (m − 3)mx(1)
1 − (m − 3)my + 2(m − 3)(m − 3)

and

�3x
(2) = 2x (1)

1 x (1)
m−1 + (2m − 2)x (1)

1 x (1)
1 − (2m − 6)x (1)

m−1x
(1)
m−1 + 2x (1)

m−1x
(1)
1

− (2m − 4)x (1)
m x (1)

m−1 − (2m − 2)x (1)
m+1x

(1)
m−1 − (2m − 2)(m − 2)yx (1)

m−1

− 2x (1)
m+1x

(1)
1 − 2(m − 2)yx (1)

1 + (m − 3)mx (1)
1 − (m − 3)(m − 4)x (1)

m−1

− (m − 3)(m − 2)x (1)
m − (m − 3)mx (1)

m+1 − (m − 3)m(m − 2)y

− (m − 3)(m − 4)x (1)
m−1 + (m − 3)mx (1)

1 + 2(m − 3)(m − 3),
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and therefore

�3x
(2) − �3x

(1) = (2m − 6)x (1)
m−1(m − 1)y + 2x (1)

m−1y + (2m − 4)x (1)
m (m − 1)y

− (2m − 2)(m − 2)yx (1)
m−1 + (2m − 2)x (1)

m+1(m − 1)y

− 2(m − 2)yx (1)
1 − 2x (1)

m+1y − (m − 3)m(m − 2)y

+ (m − 3)(m − 4)(m − 1)y + (m − 3)my

= − x (1)
1 y(2m − 4)

+ x (1)
m−1y((2m − 6)(m − 1) + 2 − (2m − 2)(m − 2))

+ x (1)
m y(2m − 4)(m − 1)

+ x (1)
m+1y((2m − 2)(m − 1) − 2)

+ (m − 3)y(−(m − 2)m + (m − 4)(m − 1) + m)

= 2(m − 2)y(−x (1)
1 − x (1)

m−1 + (m − 1)x (1)
m + mx (1)

m+1 − (m − 3))

≥ 0.

The inequality in the last step comes from m ≥ 3, y ≥ 0, x (1)
1 + x (1)

m−1 ≤ n
3 and

x (1)
m + x (1)

m+1 ≥ n
3 .

Since x (1) fulfills (5) and we have �2x (2) −�2x (1) = 0 and �3x (2) −�3x (1) ≥ 0,
the node distribution x (2) fulfills (5), too.

Now, we show that x (3) fulfills (5), as well. Without loss of generality, we can
assume x (2)

m+1 ≥ x (2)
m .

We have

�3x
(2)

= 4x (2)
1 x (2)

m−1 + (2m − 2)x (2)
1 x (2)

1 − (2m − 6)x (2)
m−1x

(2)
m−1 − (2m − 4)x (2)

m x (2)
m−1

− (2m − 2)x (2)
m+1x

(2)
m−1 − 2x (2)

m+1x
(2)
1 + 2(m − 3)mx (2)

1 − 2(m − 3)(m − 4)x (2)
m−1

− (m − 3)(m − 2)x (2)
m − (m − 3)mx (2)

m+1 + 2(m − 3)(m − 3)

and

�3x
(3)

= 4x(2)
1 x(2)

m−1 + (2m − 2)x(2)
1 x(2)

1 − (2m − 6)x(2)
m−1x

(2)
m−1

− (2m − 4)x(2)
m−1

x(2)
m + x(2)

m+1

2
− (2m − 2)x(2)

m−1

x(2)
m + x(2)

m+1

2
− 2x(2)

1

x(2)
m + x(2)

m+1

2

+ 2(m − 3)mx(2)
1 − 2(m − 3)(m − 4)x(2)

m−1 − (m − 3)(m − 2)
x(2)
m + x(2)

m+1

2

− (m − 3)m
x(2)
m + x(2)

m+1

2
+ 2(m − 3)(m − 3)
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= 4x(2)
1 x(2)

m−1 + (2m − 2)x(2)
1 x(2)

1 − (2m − 6)x(2)
m−1x

(2)
m−1 − (2m − 3)x(2)

m−1x
(2)
m

− (2m − 3)x(2)
m−1x

(2)
m+1 − x(2)

1 x(2)
m − x(2)

1 x(2)
m+1 + 2(m − 3)mx(2)

1

− 2(m − 3)(m − 4)x(2)
m−1 − (m − 3)(m − 1)x(2)

m − (m − 3)(m − 1)x(2)
m+1

+ 2(m − 3)(m − 3),

and therefore

�3x
(3) − �3x

(2) = − x (2)
m−1x

(2)
m + x (2)

m−1x
(2)
m+1 − x (2)

1 x (2)
m + x (2)

1 x (2)
m+1

− (m − 3)x (2)
m + (m − 3)x (2)

m+1

= (x (2)
m+1 − x (2)

m )(x (2)
m−1 + x (2)

1 + m − 3)

≥ 0.

We also see that �2x (3) − �2x (3) ≥ 0 because x (3) is symmetric. Since x (2) fulfills
(5), x (3) does, too. This also means that the two inequalities from (5) are equivalent.

Finally, we show that x (4) fulfills (5). Let y:= x (3)
m−1−1
m−1 . We see that

∀1 ≤ i ≤ d : x (4)
i =

⎧
⎪⎨

⎪⎩

x (3)
m + (m − 2)y if i = m or i = m + 1,

x (3)
1 + y if i = 1 or i = d,

1 else.

We have

�3x
(3)

= 4x(3)
1 x(3)

m−1 + (2m − 2)x(3)
1 x(3)

1 − (2m − 6)x(3)
m−1x

(3)
m−1 − (4m − 6)x(3)

m−1x
(3)
m

− 2x(3)
1 x(3)

m + 2(m − 3)mx(3)
1 − 2(m − 3)(m − 4)x(3)

m−1 − (m − 3)(2m − 2)x(3)
m

+ 2(m − 3)(m − 3)

= 4x(3)
1 + 4x(3)

1 (m − 1)y + (2m − 2)x(3)
1 x(3)

1 − (2m − 6)(1 + (m − 1)y)2

− (4m − 6)x(3)
m − (4m − 6)x(3)

m (m − 1)y − 2x(3)
1 x(3)

m + 2(m − 3)mx(3)
1

− 2(m − 3)(m − 4) − 2(m − 3)(m − 4)(m − 1)y − (m − 3)(2m − 2)x(3)
m

+ 2(m − 3)(m − 3)

= 4x(3)
1 + (2m − 2)x(3)

1 x(3)
1 − (2m − 6) − (4m − 6)x(3)

m − 2x(3)
1 x(3)

m + 2(m − 3)mx(3)
1

− 2(m − 3)(m − 4) − (m − 3)(2m − 2)x(3)
m + 2(m − 3)(m − 3)

+ y(m − 1)(4x(3)
1 − 2(2m − 6) − (4m − 6)x(3)

m − 2(m − 3)(m − 4)))

− y2(m − 1)2(2m − 6)
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and

�3x
(4)

= 4x(3)
1 + 4y + (2m − 2)(x(3)

1 + y)2 − (2m − 6) − (4m − 6)x(3)
m

− (4m − 6)(m − 2)y − 2(x(3)
1 + y)(x(3)

m + (m − 2)y) + 2(m − 3)mx(3)
1

+ 2(m − 3)my − 2(m − 3)(m − 4) − (m − 3)(2m − 2)x(3)
m

− (m − 3)(2m − 2)(m − 2)y + 2(m − 3)(m − 3)

= 4x(3)
1 + (2m − 2)x(3)

1 x(3)
1 − (2m − 6) − (4m − 6)x(3)

m − 2x(3)
1 x(3)

m + 2(m − 3)mx(3)
1

− 2(m − 3)(m − 4) − (m − 3)(2m − 2)x(3)
m + 2(m − 3)(m − 3)

+ y(4 + 2(2m − 2)x(3)
1 − (4m − 6)(m − 2) − 2x(3)

1 (m − 2) − 2x(3)
m

+ 2(m − 3)m − (m − 3)(2m − 2)(m − 2))

+ y2((2m − 2) − 2(m − 2))

= 4x(3)
1 + (2m − 2)x(3)

1 x(3)
1 − (2m − 6) − (4m − 6)x(3)

m − 2x(3)
1 x(3)

m + 2(m − 3)mx(3)
1

− 2(m − 3)(m − 4) − (m − 3)(2m − 2)x(3)
m + 2(m − 3)(m − 3)

+ y(2mx(3)
1 − 2x(3)

m + 4 − (4m − 6)(m − 2) + 2(m − 3)m

− (m − 3)(2m − 2)(m − 2))

+ 2y2,

and therefore

�3x
(4) − �3x

(3) = y(−(2m − 4)x(3)
1 + (2m − 4)(2m − 1)x(3)

m + 4 − (4m − 6)(m − 2)

+ 2(m − 3)m − (m − 3)(2m − 2)(m − 2)

+ 2(2m − 6)(m − 1) + 2(m − 3)(m − 4)(m − 1))

+ y2(2 + (m − 1)2(2m − 6))

= y(2m − 4)(−x(3)
1 + (2m − 1)x(3)

m − (m − 2))

+ y2(2 + (m − 1)2(2m − 6))

≥ 0.

The last step follows from x (3)
m ≥ x (3)

1 , m ≥ 3 and y ≥ 0.
Since x (3) and x (4) are symmetric, we also have �2(x (4)) − �2(x (3)) ≥ 0, and

with x (3) fulfilling (5), the node distribution x (4) fulfills (5), too. Because of x (4) being
a node distribution with only two variables (x (4)

1 = x (4)
d and x (4)

m = x (4)
m+1), we can

simplify �x (4) and �d(x (4)) to

�x (4):=�2x
(4) = �3x

(4)

= 4x (4)
1 + (2m − 2)x (4)

1 x (4)
1 − (2m − 6) − (4m − 6)x (4)

m − 2x (4)
1 x (4)

m

+ 2(m − 3)mx (4)
1 − 2(m − 3)(m − 4) − (m − 3)(2m − 2)x (4)

m
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+ 2(m − 3)(m − 3)

= 2(m − 1)x (4)
1 x (4)

1 + 2(m − 1)(m − 2)x (4)
1 − 2x (4)

1 x (4)
m − 2m(m − 2)x (4)

m

and

�d(x (4)) = 2(m − 1)x (4)
1 + (m − 2)(m − 1) + 2.

We now prove the lower bound.
We see that �d is now only dependent on x (4)

1 which means we have to minimize

x (4)
1 . Since x (4) sums up to n, we have n = 2x (4)

1 + 2x (4)
m + 2m − 4, and therefore

x (4)
m = n

2 − x (4)
1 − m + 2. Substituting this into �x (4) yields

�x (4) = 2(m − 1)x (4)
1 x (4)

1 + 2(m − 1)(m − 2)x (4)
1 − 2x (4)

1

(n

2
− x (4)

1 − m + 2
)

− 2m(m − 2)
(n

2
− x (4)

1 − m + 2
)

= 2mx (4)
1 x (4)

1 + (4m(m − 2) − n)x (4)
1 − m(m − 2)(n − 2m + 4).

We know that x (4) fulfills (5) if and only if�x (4) ≥ 0. Solving the quadratic inequality
leaves us with

x (4)
1 ≥ n

4m
− (m − 2) +

√( n

4m
− (m − 2)

)2 + (m − 2)
(n

2
− (m − 2)

)
.

Because of (6), we see that the term under the root is larger than

0 + (m − 2)

(
3(m + 3)

2
− m + 2

)

≥ 1

2
(m − 2)(m − 2).

We therefore obtain

x (4)
1 ≥ n

4m
− (m − 2) +

√
2

2
(m − 2)

≥ n

4m
− m − 2

2
,

and finally

�d(x (4)) ≥ 2(m − 1)

(
n

4m
− m − 2

2

)

+ (m − 2)(m − 1) + 2 ≥ m − 1

m
· n
2

≥ n

3
,

which concludes the proof.
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Fig. 5 This figure shows the cycle formed by adding e1 to the SMRCST. The cycle is of length d and
contains the nodes v1, . . . , vd . Every other node is contained in one of the subtrees rooted in one of the
nodes on the cycle. These subtrees are represented in yellow. The number of nodes contained in the subtree
rooted in vi is xi . Middle and right: the cycle for d being odd or even, respectively, and the two special
edges e2 and e3 (Color figure online)

Algorithm 1 Computes a SMRCST for a given connected host network.
Input: connected host network H
Output: SMRCST T
1: P ← greedyLongPath(H)

2: T ← extend P to form a spanning tree of H
3: while ∃e ∈ ET , e′ ∈ EH \ ET : dT −e+e′ (VH , VH ) > dT (VH , VH ) do
4: T ← T − e + e′
5: end while

Next, we show that we can find a SMRCST in polynomial time via Algorithm 1
and even guarantee some bounds on the social welfare of the resulting network. Our
algorithm employs a greedy algorithm developed by Karger et al. [46] which can find
a path of length at least |EH |

|VH | inO(|EH |) as a subroutine for initialization. We call this
subroutine greedyLongPath. This will help us to derive bounds on the total distances
of the computed SMRCST later. For extending the path to a spanning tree in line 2 of
Algorithm 1, we can simply iterate over all edges and add them to the network if they
do not close a cycle.

Theorem 11 Let H be a connected network containing n nodes and m edges. Then
Algorithm 1 finds a Swap-Maximal Routing-Cost Spanning Tree of H in runtime
O(n5m).

Proof It is easy to see that, by construction, T is always a spanning tree of H . The
condition in the while-loop ensures that all possible swaps are tried. This means that
the while-loop ends if and only if T is a SMRCST. Therefore if the while-loop stops,
the result is correct.

In every iteration in which the while-loop does not stop, the total distances of T
increase by at least 1. Since the tree maximizing the total distances is the path, we get
its total distances 1

3 (n − 1)n(n + 1) ∈ O(n3) as an upper bound for the number of
iterations.

The runtime of Algorithm 1 is clearly dominated by the while-loop. Since T has
n − 1 edges which can be removed and EH \ ET has O(m) possible edges to add,
the number of possible swaps is in O(nm). For each swap, the total distances can be
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computed in O(n) [47]. Therefore computing the condition can be done in O(n2m).
Altering the current solution in the body of the while-loop only takesO(n)when using
adjacency lists. Since there are at mostO(n3) iterations of the while-loop, the overall
runtime is in O(n5m).

For the K -SDNCG, the social optima were also stable. For general host networks,
this is not necessarily the case. However, we can show that for α ≤ n

3 there are stable
states which approximate the social welfare better than with the trivial factor ofO(n).

Theorem 12 (OPT-Approximation via the MRCST) Let H be a connected host net-
work containing n nodes and m edges and T be the MRCST of H.

1. We have SW(OPTH )
SW(T )

∈ O (mn
)
.

2. For α ∈ O( n2m
)
, we have SW(OPTH )

SW(T )
∈ O(1).

3. For α ∈ ω
( n2
m

)
, we have SW(OPTH )

SW(T )
∈ O(min

{m
n , α n

m

}+ 1
)
.

Proof of (1) Let V :=VH and O:=OPTH . Since T is a MRCST of H , we have
dT (V , V ) ≥ dO(V , V ). This yields

SW(O)

SW(T )
= 2α|EO | + dO(V , V )

2α|ET | + dT (V , V )
≤ 2αm + dT (V , V )

2α(n − 1) + dT (V , V )
≤ m

n − 1
+ 1 ∈ O

(m

n

)
.

Proof of (2) Let V :=VH and O:=OPTH . We have 2α|ET | ≤ 2α|EO | ≤ 2αm ∈
O(n2) and dO(V , V ) ∈ �(n2). We also know that dO(V , V ) ≤ dT (V , V ) because T
is a MRCST. This yields

SW(O)

SW(T )
= 2α|EO | + dO(V , V )

2α|ET | + dT (V , V )
∈ O

(
dO(V , V )

dT (V , V )

)

= O(1).

Proof of (3) Let V :=VH and O:=OPTH . Algorithm 1 uses the greedyLongPath algo-
rithm to construct an initial tree that contains a path of at least length l ≥ m

n [46].
Every node in that tree has a distance of at least l

3 to at least l
3 of the nodes on the

long path. This means that the total distances are at least n
( l
3

)2 ∈ �
(
m2

n

)
. Since

Algorithm 1 only increases the total distances, this is a lower bound for every solution
found by the algorithm, and therefore also for the MRCST. With this, we get

SW(O)

SW(T )
= 2α|EO | + dO (V , V )

2α|ET | + dT (V , V )
≤ 2αm

2α(n − 1) + dT (V , V )
+ dT (V , V )

2α(n − 1) + dT (V , V )

∈ O
(

αm

αn + m2

n

+ 1

)

= O
(
min

{m

n
, α

n

m

}
+ 1

)
.

Since finding the MRCST is NP-hard [42], these are only existence results. However,
the next theorem yields a bound for dense networks and the computed SMRCST from
Algorithm 1.
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Theorem 13 Let H be a connected host network containing n nodes and m edges and
T be the SMRCST obtained byAlgorithm 1. Then for α ∈ O(n), we have SW(OPTH )

SW(T )
∈

O( n4
m2

)
.

Proof Let V :=VH and O:=OPTH . We can trivially upper bound the distances and
number of edges with dO(V , V ) ∈ O(n3) and |EO | ≤ m. Since T is a result of

Algorithm 1, we have dT (V , V ) ∈ �
(
m2

n

)
, as seen in the previous proof. This yields

SW(O)

SW(T )
= 2α|EO | + dO(V , V )

2α|ET | + dT (V , V )
≤ 2αm

2α(n − 1) + m2

n

+ n3

2α(n − 1) + m2

n

∈ O
(
n2

m
+ n4

m2

)

= O
(
n4

m2

)

.

This means, for α ≤ n
3 and a dense host network, we can compute a state which is

pairwise stable and also has a favorable social welfare.

3.2 Price of Anarchy and Price of Stability

Wederive several bounds on the PoA and the PoS for the SDNCG. For the K -SDNCG,
the PoA is already quite high for small α. The next Theorem shows that this gets even
worse for general host networks since the PoA is linear up to α ≤ n and super-constant
for α ∈ o(n2).

Theorem 14 (Price of Anarchy)

1. The Price of Anarchy is in O(n).
2. For α < 1, the Price of Anarchy is in �(n).
3. For 1 ≤ α ≤ n, the Price of Anarchy is in �(n).

4. For n < α ≤ n2, the Price of Anarchy is in �
(
n2
α

)
.

5. For 1
4 (n − 1)2 < α ≤ 1

24 (n − 2)n(n + 2), the Price of Anarchy is in �(1).
6. For α > 1

24 (n − 2)n(n + 2), the Price of Anarchy is 1.

Proof of (1) and (2) This follows in the same way as (1) and (2) of Theorem 5.

Proof of (3) and (4) Let W = (VW , EW ) be a wheel network on n′:= ⌊ n2
⌋
nodes, i.e.,

VW :={v1, . . . , vn′ } and

EW :={{v1, vi } | 2 ≤ i ≤ n′} ∪ {{vi , vi+1} | 2 ≤ i ≤ n′} ∪ {{v2, vn′ }}.

We then define the host network H as the clique network obtained by replacing every
node of W by a clique of size 2. (See Fig. 6 for an illustration.) For odd n, we instead
replace the central node by a clique of size 3. We see that H contains n nodes, �(n)

edges, and most importantly a Hamilton path. We also know that H is stable because
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Fig. 6 This figure shows a clique
network (black) for a wheel
network (yellow) (Color figure
online)

of Theorem 3 and since no edge can be added. This yields the following lower bound
for the Price of Anarchy

PoA ≥ SW (P)

SW (H)
= α(n − 1) + �(n3)

α�(n) + �(n2)
∈ �

(

min

{

n,
n2

α

})

,

which proves the claim.

Proof of (5) Let H be a (connected) host network and O:=OPTH and V :=VH . From
Item 2 we know that H itself is the only pairwise stable network. Since we can bound
|EO | ≤ |EH | and dO(V , V ) ≤ n3, we obtain

PoAn ≤ SW(O)

SW(H)
= 2α|EO | + dO (V , V )

2α|EH | + dH (V , V )
≤ 2α|EH | + n3

2α|EH | ∈ �

(

1 + n3

αn

)

= �(1).

Proof of (6) This follows directly from the host network being socially optimal and
the only stable network (see Theorems 7 and 9).

Theorem 15 (Price of Stability)

1. The Price of Stability is in O(n).
2. For α ≤ 1, the Price of Stability is 1.
3. For 1 < α ≤ n

3 , the Price of Stability is in O(
√
n).

4. For 1
4 (n − 1)2 < α ≤ 1

24 (n − 2)n(n + 2), the Price of Stability is in �(1).
5. For α > 1

24 (n − 2)n(n + 2), the Price of Stability is 1.

Proof of (1), (4), and (5) This follows from Theorem 14 and the Price of Anarchy being
an upper bound for the Price of Stability.

Proof of (2) This follows directly from the MRCST being socially optimal and stable
(see Theorems 7 and 9).

Proof of (3) Let H be a (connected) host network and T be the MRCST of H . Let
furthermore O:=OPTH and V :=VH . From Theorem 10 we know that T is stable.
From Theorems 7 and 12, we know that

SW(O)

SW(T )
∈ O

(
min

{m

n
, α

n

m

})
≤ O

(

min

{
m

n
,
n2

m

})

≤ O (√n
)
.
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4 Conclusion

We introduced and analyzed a natural game-theoretic model for network formation
governed by social distancing. Besides modeling this timely issue, our model resem-
bles the inverse compared to the well-known (bilateral) Network Creation Game [8,
13]. Thus, via our analysis we could explore the impact of inverting the utility function
in a non-trivial strategic game. We find that this inverts some of the properties, like the
rough structure of optimum states, while it also yields non-obvious insights. First of all,
for the variant with non-complete host networks we could show a strong equilibrium
existence result, whereas no such result is known for the inverse model. Moreover, we
established that the PoA is significantly higher in the (K -)SDCNG compared to the
(bilateral) NCG. This demonstrates that the impact of the agents’ selfishness is higher
under social distancing, which calls for external coordination.

The most obvious open question for future work is to settle the equilibrium exis-
tence.Do pairwise stable states exist for all connected host networks H andα?Another
research direction would be to consider the unilateral variant of the SDNCG. While
this no longer realistically models the formation of social networks, it might still yield
interesting insights and it allows for studying stronger solution concepts like the Nash
equilibrium or strong Nash equilibria, similar to [48, 49]. Also, altering the utility
function, e.g., to using the maximum distance instead of the summed distances, or the
probability of infection, similar to [38], seems promising. Finally, also considering
weighted host networks, as in [28], where the edge weight models the benefit of the
social interaction, would be an interesting generalization.
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