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Abstract
In this work, we advance the understanding of the fundamental limits of computation
for binary polynomial optimization (BPO), which is the problem of maximizing a
given polynomial function over all binary points. In our main result we provide a novel
class of BPO that can be solved efficiently both from a theoretical and computational
perspective. In fact, we give a strongly polynomial-time algorithm for instances whose
corresponding hypergraph is β-acyclic. We note that the β-acyclicity assumption is
natural in several applications including relational database schemes and the lifted
multicut problem on trees. Due to the novelty of our proving technique, we obtain
an algorithm which is interesting also from a practical viewpoint. This is because
our algorithm is very simple to implement and the running time is a polynomial of
very low degree in the number of nodes and edges of the hypergraph. Our result
completely settles the computational complexity of BPO over acyclic hypergraphs,
since the problem isNP-hard onα-acyclic instances. Our algorithm can also be applied
to any general BPO problem that contains β-cycles. For these problems, the algorithm
returns a smaller instance together with a rule to extend any optimal solution of the
smaller instance to an optimal solution of the original instance.
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1 Introduction

In binary polynomial optimization we seek a binary point that maximizes a given
polynomial function. This fundamental problem has a broad range of applications in
several areas, including operations research, engineering, computer science, physics,
biology, finance, and economics (see e.g., [1–3]).

In order to formalize this optimization problem, a hypergraph representation is
often used [4]. A hypergraph G is a pair (V , E), where V is the node set and E
is the edge set, which is a family of non-empty subsets of V . We remark that the
edge set E may contain parallel edges and loops, as opposed to the setting considered
in [4–6]. In the hypergraph representation, each node represents a variable of the
given polynomial function, whereas every edge represents a monomial. Therefore,
any binary polynomial optimization problem can be formulated as

max
∑

v∈V
pvxv +

∑

e∈E
pe

∏

v∈e
xv (BPO)

s.t. x ∈ {0, 1}V .

In this formulation, x is the decision vector, and an instance comprises of a hypergraph
G = (V , E) together with a profit vector p ∈ Z

V∪E . We remark that a rational profit
vector can be scaled to be integral by multiplying it by the least common multiple of
the denominators and this transformation leads to a polynomial growth of the instance
size (see Remark 1.1 in [7]).

Themain goal of this paper is that of advancing the understanding of the fundamen-
tal limits of computation for (BPO). In fact, while there are several known classes of
binary quadratic optimization that are polynomially solvable (see for instance [8–12]),
very few classes of higher degree (BPO) are known to be solvable in polynomial-time.
These are instances that have: (i) incidence graph or co-occurrence graph of fixed
treewidth [11, 13, 14], or (ii) objective function whose restriction to {0, 1}n is super-
modular (see Chapter 45 in [15]), or (iii) a highly acyclic structure [6], which we
discuss in detail below.

Notice that, in the quadratic setting, the hypergraphs representing the instances
are actually graphs. It is known that instances over acyclic graphs can be solved in
strongly polynomial time [13]. Motivated by this fact, it is natural to analyze the
computational complexity of (BPO) in the setting in which the hypergraph G does not
contain any cycle. However, for hypergraphs, the definition of cycle is not unique. As
a matter of fact, one can define Berge-cycles, γ -cycles, β-cycles, and α-cycles [16,
17]. Correspondingly, one obtains Berge-acyclic, γ -acyclic, β-acyclic, and α-acyclic
hypergraphs, in increasing order of generality. The definitions of β-acyclic and α-
acyclic hypergraph are given in Sects. 1.1 and 1.2, and we refer the reader to [16] for
the remaining definitions.

In [6], Del Pia andKhajavirad show that it is possible to solve (BPO) in polynomial-
time if the corresponding hypergraph is kite-free β-acyclic. It should be noted that this
class of hypergraphs lies between γ -acyclic and β-acyclic hypergraphs. This result
is obtained via linearization, which is a technique that consists in linearizing the
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polynomial objective function via the introduction of new variables ye, for e ∈ E ,
defined by ye = ∏

v∈e xv . This leads to an extended integer linear programming
formulation in the space of the (x, y) variables, which is obtained by replacing the
nonlinear constraints ye = ∏

v∈e xv , for all e ∈ E , with the inequalities that describe
its convex hull on the unit hypercube [18]. The convex hull of the feasible points is
known as themultilinear polytope, as defined in [4]. The tractability result in [6] is then
achieved by providing a linear programming extended formulation of the multilinear
polytope of polynomial size. The linearization technique also led to several other
polyhedral results for (BPO), including [4–6, 19–23].

A different approach to study binary polynomial optimization involves quadratiza-
tion techniques [24–28]. The common idea in the quadratization approaches is to add
additional variables and constraints so that the original polynomial can be expressed
in a higher dimensional space as a new quadratic polynomial. The reason behind it is
that, in this way, it is possible to exploit the vast literature available for the quadratic
case. An alternative approach is to use a different formalism altogether like pseudo-
Boolean optimization [1, 13, 29–32]. Pseudo-Boolean optimization is a more general
framework, as in fact the goal is to optimize set functions that admit closed algebraic
expressions.

1.1 A Strongly Polynomial-Time Algorithm forˇ-Acyclic Hypergraphs

Our main result is an algorithm that solves (BPO) in strongly polynomial-time when-
ever the hypergraph corresponding to the instance is β-acyclic. To formally state our
tractability result, we first provide the definition ofβ-acyclic hypergraph [16].A hyper-
graph is β-acyclic if it does not contain any β-cycle. A β-cycle of length q, for some
q ≥ 3, is a sequence v1, e1, v2, e2, . . . , vq , eq , v1 such that v1, v2, . . . , vq are distinct
nodes, e1, e2, . . . , eq are distinct edges, and vi belongs to ei−1, ei and no other e j for
all i = 1, . . . , q, where e0 = eq .

Our algorithm is based on a dynamic programming-type recursion. The idea behind
it is to successively remove a nest point from G, until there is only one node left in the
hypergraph. In fact,we observe that optimizing the problembecomes trivialwhen there
is only one node left. A node u of a hypergraph is a nest point if for every two edges
e, f containing u, either e ⊆ f or f ⊆ e. Equivalently, the set of the edges containing
u is totally ordered. Observe that, in connected graphs with at least two nodes, nest
points coincide with leaves. Therefore, nest points can be seen as an extension of the
concept of leaf in a graph to the hypergraph setting. Before going forward, we remark
that finding a nest point in a hypergraph can be done in strongly polynomial-time by
brute force [33].We denote by τ the number of operations required to find a nest point,
which is bounded by a polynomial in |V | and |E |. We are now ready to state our main
result.

Theorem 1 There is a strongly polynomial-time algorithm to solve (BPO), provided
that the input hypergraph G = (V , E) is β-acyclic. In particular, the number of
arithmetic operations performed is O(|V |(τ + |E | + |V | log |E |)).
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The description of the algorithm and the proof of Theorem 1 can be found in
Sect. 2. Theorem 1 provides a novel class of (BPO) that can be solved efficiently both
from a theoretical and computational perspective. In fact, this class of problems is not
contained in the classes (i), (ii), or (iii) for which a polynomial-time algorithm was
already known. This can be seen because a laminar hypergraph G = (V , E) with
edges e1 ⊆ e2 ⊆ · · · ⊆ em = V is β-acyclic and does not satisfy the assumptions in
(i). Furthermore, it is simple to see that there exist polynomials whose restriction to
{0, 1}n is not supermodular and the corresponding hypergraph is β-acyclic. Finally, it
is well-known that the class of β-acyclic hypergraphs significantly extends the class
of kite-free β-acyclic hypergraphs.

The concept of β-acyclicity is not interesting only in a theoretical context. To the
contrary, this assumption is quite natural in several real world applications. A thorough
discussion of this topic is not in the scope of this paper, where instead we only mention
a couple of examples. In the study of relational database schemes, the β-acyclicity
assumption is renowned to be advantageous [34]. In fact, a number of basic and
desirable properties in database theory turn out to be equivalent to acyclicity. A second
example is given by the lifted multicut problem on trees, where the problem can be
equivalently formulated via binary polynomial optimization [35]. The goal of the lifted
multicut problem is to partition a given graph in a way that minimizes the total cost
associated with having different pairs of nodes in different components. This problem
has been shown to be very useful in the field of computer vision, in particular when
applied to image segmentation [36], object tracking [37], and motion segmentation
[38]. Even when the underlying graph is a tree, the lifted multicut problem is NP-hard.
However it can be solved in polynomial time when we focus on paths rather than on
trees. It is simple to observe that this special case is formulated with a polynomial
whose hypergraph is β-acyclic. Lastly, we observe that these β-acyclic hypergraphs
can exhibit kites, and therefore do not fit into the previous studies [6].

The interest of Theorem 1 also lies in the novelty of the proving technique with
respect to the other recent results in the field previously mentioned. In particular, our
algorithm does not rely on linear programming, extended formulations, polyhedral
relaxations, or quadratization. This in turn leads to two key advantages. First, our
algorithm is very simple to implement. Second, we obtain a strongly polynomial time
algorithm (as opposed to a weakly polynomial time algorithm) and the running time is
a polynomial of very low degree in the number of nodes and edges of the hypergraph.
These two key points contribute to making our algorithm interesting also from a
practical viewpoint. Furthermore, we remark that it is possible to recognize efficiently
when (BPO) is represented by a β-acyclic hypergraph [16].

Theorem 1 has important implications in polyhedral theory as well. In particular, it
implies that one can optimize over the multilinear polytope for β-acyclic hypergraphs
in strongly polynomial-time. By the polynomial equivalence of separation and opti-
mization (see, e.g., [7]), for this class of hypergraphs, the separation problem over the
multilinear polytope can be solved in polynomial-time.

We remark that our algorithm in Theorem 1 can be applied also to hypergraphs that
are not β-acyclic. In this case, the algorithm does not return an optimal solution to the
given instance. However, it returns a smaller instance together with a rule to construct
an optimal solution to the original instance, given an optimal solution to the smaller

123



Algorithmica (2023) 85:2189–2213 2193

instance. Therefore, our algorithm can be used as a reduction scheme to decrease the
size of a given instance. Via computational experiments, we generate random instances
and study the magnitude of this decrease. In particular, the results of our simulations
show that the percentage of removed nodes is on average 50% whenever the number
of the edges is half the number of nodes. We discuss in detail this topic in Sect. 4.

1.2 Settling the Complexity of (BPO) Over Acyclic Hypergraphs

Theorem 1 allows us to completely settle the computational complexity of (BPO) over
acyclic hypergraphs.More specifically, it can be seen that two hardness results hold for
(BPO) when the input hypergraphs belong to the next class of acyclic hypergraphs,
in increasing order of generality, that is the one of α-acyclic hypergraphs. Several
equivalent definitions of α-acyclic hypergraphs are known (see, e.g., [16, 39, 40]). In
the following, we will use the characterization stated in Theorem 2 below. This char-
acterization is based on the concept of removing nodes and edges from a hypergraph.
When we remove a node u from G = (V , E) we are constructing a new hypergraph
G ′ = (V ′, E ′) with V ′ = V \ {u} and E ′ = {e \ {u} | e ∈ E, e �= {u}}. Observe
that when we remove a node we might be introducing loops and parallel edges in
the hypergraph. When we remove an edge f from G = (V , E), we construct a new
hypergraph G ′ = (V , E ′), where E ′ = E \ { f }.
Theorem 2 ([39]) A hypergraph G is α-acyclic if and only if the empty hypergraph
(∅,∅) can be obtained by applying the following two operations repeatedly, in any
order:

1. If a node v belongs to at most one edge, then remove v;
2. If an edge e is contained in another edge f , then remove e.

We claim that both Simple Max-Cut and Max-Cut can be formulated as special
cases of (BPO) where the hypergraphs representing the problems are α-acyclic. It is
well-known that both these problems can be formulated as binary quadratic problems
[7]. Then, we define the corresponding instance of (BPO) starting from the graph
representing the instance of the binary quadratic problem. Namely, we construct the
hypergraph by adding to the graph one edge of weight zero that contains all the nodes.
Theorem 2 implies that such hypergraph is α-acyclic. At this point, it can be seen that
the corresponding instance of (BPO) is equivalent to the original quadratic instance.
Therefore, the known hardness results of Simple Max-Cut and Max-Cut [41, 42]
transfer to this setting, yielding the following hardness result.

Theorem 3 (BPO) over α-acyclic hypergraph is strongly NP-hard. Furthermore, it is
NP-hard to obtain an r-approximation for (BPO), with r > 16

17 ≈ 0.94.

The reduction just described shows that the statement of Theorem 3 holds even if
the values of the objective function belong to a restricted subset. The interested reader
can find more details in Sect. 3. Together, Theorem 1 and Theorem 3 completely
settle the computational complexity of binary polynomial optimization over acyclic
hypergraphs.
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2 A Strongly Polynomial-Time Algorithm forˇ-Acyclic Hypergraphs

In this section we present the general algorithm for β-acyclic instances. We start with
a simple discussion to provide some intuition about why and how the algorithmworks.
We are indebted to an anonymous reviewer for providing this simple interpretation.
In the following discussion, we denote by obj(x), for x ∈ R

V , the objective function
of (BPO), and we let u ∈ V . Factoring out variable xu from the monomials in obj(x)
that contain it, we write obj(x) in the form

obj(x) = xuq(x ′) + r(x ′),

where x ′ ∈ R
V \{u} is obtained from x by dropping the component xu , and where q

and r are polynomials from R
V \{u} to R. If u is a nest point of the hypergraph G, the

monomials in q are totally ordered. This special structure allows us to obtain efficiently
a new polynomial f from R

V \{u} to R such that, for every x ′ ∈ {0, 1}V \{u}, we have

f (x ′) =
{
q(x ′) if q(x ′) > 0

0 if q(x ′) ≤ 0.

The construction of the polynomial f is nontrivial, and a large part of the next section
will be devoted to obtaining its coefficients. Assume now that we have an optimal
solution x ′∗ to the optimization problem, with one fewer variable, defined by

max f (x ′) + r(x ′)
s.t. x ′ ∈ {0, 1}V \{u}.

Due to the property of the function f (x ′), the vector x∗, obtained from x ′∗ by adding
component

x∗
u :=

{
1 if q(x ′∗) > 0

0 if q(x ′∗) ≤ 0,

is an optimal solution to (BPO).
This idea is then used recursively to remove one variable at every iteration. Since

the hypergraph is β-acyclic, at each iteration there is a nest point, and so this recursion
can be applied until only one variable remains. At that point the problem can be solved
trivially, and the construction of the optimal solution is performed in the reverse order.

2.1 Description of the Algorithm

In this section we present the detailed description of our algorithm. Our algorithm
makes use of a characterization of β-acyclic hypergraphs, which is based on the
concept of removing nest points from the hypergraph. We remind the reader that
the operation of removing a node is explained in Sect. 1.2. We are now ready to state
this characterization of β-acyclic hypergraphs.
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Theorem 4 ([43]) A hypergraphG isβ-acyclic if and only if after removing nest points
one by one we obtain the empty hypergraph (∅,∅).

We observe that Theorem 4 does not depend on the particular choice of the nest
point to be removed at each step. Theorem 4 implies that, for our purposes, it suffices
to understand how to reduce an instance of the problem to one obtained by removing
a nest point u. In particular, realizing how to update the profit vector is essential. Once
we solve the instance of the new problem without u, we decide whether to set the
variable corresponding to u to zero or one depending on the values of the variables
of the other nodes in the edges containing u, which are given by the solution of the
smaller problem.

Before describing the algorithm, we explain some notation that will be used in this
section. Let u ∈ V be a nest point contained in k edges. Without loss of generality,
we can assume that these edges are e1, e2, …, ek and that e1 ⊆ e2 ⊆ · · · ⊆ ek . For
simplicity of notation, we denote by e0 the set {u} and by pe0 the profit pu . Moreover,
we clearly have e0 ⊆ e1.Wewill divide the subcases to consider based on the sequence
of the signs of

pe0 , pe0 + pe1, pe0 + pe1 + pe2 , . . . , pe0 + pe1 + · · · + pek .

Note that the number of subcases can be exponential in the number of edges, however
wefind a compact formula for the optimality conditions,which in turn yields a compact
way to construct the new profit vector p′ for the hypergraph G ′ = (V ′, E ′) obtained
by removing u from G. We say that there is a flip in the sign sequence whenever the
sign of the sequence changes. More precisely, a flip is positive if the sign sequence
goes from non-positive to positive and the previous non-zero value of the sequence
is negative. Similarly, we say that a flip is negative if the sequence goes from non-
negative to negative and the previous non-zero value of the sequence is positive. We
say that an edge ei corresponds to a flip in the sign sequence, if there is a flip between∑i−1

j=0 pe j and
∑i

j=0 pe j .
In order to describe the several cases easily, in a compact way, we partition the

indices 0, . . . , k into four setsP ,N ,N P , andPN . The first two sets are defined
by

P := {i | i = 1, . . . , k, ei corresponds to a positive flip},
N := {i | i = 1, . . . , k, ei corresponds to a negative flip}.

If there is at least one flip, the setsN P , and PN are defined as follows:

N P := {0, . . . , s − 1 | s is the first flip and s ∈ P}
∪ {i | ∃ two consecutive flips s ∈ N , t ∈ P s.t. s + 1 ≤ i ≤ t − 1}
∪ {t + 1, . . . , k | if t is the last flip and t ∈ N },

PN := {0, . . . , s − 1 | s is the first flip and s ∈ N }
∪ {i | ∃ two consecutive flips s ∈ P, t ∈ N s.t. s + 1 ≤ i ≤ t − 1}
∪ {t + 1, . . . , k | if t is the last flip and t ∈ P}.
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Otherwise, if there is no flip, we define

N P := {0, . . . , k | if pe0 ≤ 0},
PN := {0, . . . , k | if pe0 > 0}.

Remark 1 We observe that the indices {0, 1, . . . , k} cycle between N P , P , PN ,
N following this order. In fact, if i ∈ P then the following indices must be inPN
until we reach an index that belongs to N . Similarly, if i ∈ N the indices after i
must belong to N P until there is an index in P . Note that it can happen that there
is an index inP and the next index is inN . If this happens, then there are no indices
inPN between these two indices. Similarly, it may happen that there is an index in
N followed immediately by an index in P . Moreover, the index 0 belongs to either
N P or PN . 
Example 1 Let us give an example to clarify the meaning of the sets P , N , N P ,
and PN . Consider a nest point u, contained in the edges e1, e2, e3, e4, e5 such that
e1 ⊆ e2 ⊆ e3 ⊆ e4 ⊆ e5. Assume that pe0 = 3, pe1 = −3, pe2 = 1, pe3 = −2,
pe4 = 3, pe5 = 2. We can check that pe0 = 3 > 0, pe0+ pe1 = 0, pe0+ pe1+
pe2 = 1 > 0, pe0 + pe1 + pe2 + pe3 = −1 < 0, pe0 + pe1 + pe2 + pe3 + pe4 = 2 > 0
and finally pe0+ pe1+ pe2+ pe3+ pe4+ pe5 = 4 > 0. The indices 0, . . . , 5 are
partitioned in the sets PN = {0, 1, 2, 5}, N = {3}, N P = ∅, P = {4}. Observe
that here there are no indices inN P whenwe go from the negative flip corresponding
to e3 to the next positive flip, which corresponds to e4. 

Our algorithm acts differently whether all the edges containing the nest point u are
loops or not. Let us now consider the case where u is contained not only in loops.
In this case, for a vector x ′ ∈ {0, 1}V ′

, we define ϕ(x ′) ∈ {0, 1} that will assign the
optimal value to the variable corresponding to the nest point u, given the values of the
variables corresponding to the nodes in V ′. We denote by μ = μ(x ′) the largest index
i ∈ {0, . . . , k}, such that x ′

v = 1 for every v ∈ ei \ {u}. Note that all the edges e that
are loops {u} satisfy trivially the condition x ′

v = 1 for every v ∈ e\{u}, as e\{u} = ∅.
In particular, e0 always satisfies this condition, hence μ is well defined. We then set

ϕ(x ′) :=
{
1 if μ ∈ P ∪ PN

0 if μ ∈ N ∪ N P.

In our algorithm we decide to keep loops and parallel edges for ease of exposition.
An additional reason is that we avoid checking for loops and parallel edges at every
iteration. Furthermore, in this way there is a bijection between {e ∈ E | e �= {u}}
and E ′, which will be useful in the arguments below. In order to construct the new
profit vector p′, it is convenient to give a name to the index of the first edge in
e0 ⊆ e1 ⊆ · · · ⊆ ek that is not equal to {u}. We denote this index by λ. We remark that
when u is not contained only in loops, the index λ is well defined. Next, observe that
p′ ∈ R

V ′∪E ′
. We will use an abuse of notation for the indices of p′ corresponding to

the edges in E ′ obtained from eλ, . . . , ek by removing u. We denote these indices by
eλ, . . . , ek , even if these edges belong to E . This abuse of notation does not introduce
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ambiguity because of the bijection between {e ∈ E | e �= {u}} and E ′ and the fact
that {ei ∈ E | i = λ, . . . , k} ⊆ {e ∈ E | e �= {u}}. We are now ready to present our
algorithm for β-acyclic hypergraphs, which we denote by Acyclic(G, p).

Algorithm 1 Acyclic(G, p)

1: Find a nest point u. Let e1 ⊆ e2 ⊆ · · · ⊆ ek be the edges containing it.
2: Compute P , N ,N P ,PN .
3: Construct the hypergraph G ′ = (V ′, E ′) by removing u from G.
4: if ek = {u} then
5: Set x∗

u :=
{
1 if

∑k
i=0 pei ≥ 0

0 if
∑k

i=0 pei < 0 .

6: if |V | > 1 then
7: Set p′

t := pt for all t ∈ V ′ ∪ E ′.
8: Set x ′ := Acyclic(G ′, p′).
9: Set x∗

w := x ′
w for all w ∈ V ′.

10: end if
11: else
12: Find λ.
13: Set p′

t := pt for all t ∈ V ′ ∪ E ′ \ {e1, . . . , ek}.

14: Set p′
ei :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for every i ∈ N P ∩ {i | i ≥ λ}∑i
r=0 per for every i ∈ P ∩ {i | i ≥ λ}

pei for every i ∈ PN ∩ {i | i ≥ λ}
−∑i−1

r=0 per for every i ∈ N ∩ {i | i ≥ λ} .

15: Set x ′ := Acyclic(G ′, p′).
16: Set x∗

w := x ′
w for all w ∈ V ′.

17: Set x∗
u := ϕ(x ′).

18: end if
19: return x∗.

The remainder of the section is organized as follows: In Sect. 2.2, we present an
example of the execution of the algorithm; In Sect. 2.3, we show the correctness of
the algorithm; In Sect. 2.4, we provide the analysis of the running time.

2.2 Example of the Execution of the Algorithm

In this section, we show how Acyclic(G, p) works by running it on an example.
We choose a β-acyclic hypergraph G that is not kite-free (see [6]), since no other
polynomial-time algorithm is known for instances of this type. We use the notation
defined so far in this section. The input hypergraph G, together with the hypergraphs
produced by the algorithm throughout its execution, is represented in the Fig. 1. The
profits of the edges are written next to the label of the corresponding edge. Labels are
always outside their edges. Moreover, we denote by λ(i), μ(i), ϕ(i) the values of λ,
μ(x ′), ϕ(x ′) in the i-th step of the algorithm. Similarly we call G(i) the hypergraph
that is built at the end of the i-th step. For ease of exposition, we will keep the same
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Fig. 1 The input hypergraph, and the hypergraphs produced at each iteration by Acyclic(G, p)

names for the edges throughout the execution of the algorithm. For example, in G(3)

we do not change the names of e3 and e4 to e1 and e2 respectively.
We define the profit vector as follows: pv1 = 1, pv2 = 3, pv3 = 2, pv4 = −1,

pv5 = 1, pe1 = 2, pe2 = −1, pe3 = −6, pe4 = 3.

Iteration 1 Observe that v1 is a nest point of G, as it belongs only to e1, e4, and these
edges are such that e1 ⊆ e4. Moreover, λ(1) = 1. First of all we need to compute the
setsP ,N ,N P ,PN . In order to do so, observe that pv1 is non-negative, as well
as pv1 + pe1 and pv1 + pe1 + pe4 . This means thatPN = {0, 1, 4}. The node v1 is
removed from G, and the result is the hypergraph G(1) showed in Fig. 1. We denote
the profits corresponding to G(1) by p(1). Therefore, at this step p(1)

v := pv for every
v ∈ {v2, v3, v4, v5} and p(1)

e := pe for every e ∈ {e1, e2, e3, e4}.
Iteration 2 Here Acyclic(G(1), p(1)) removes v2. We remark that v2 is now a
nest point for G(1), even if not for G. In fact, in G(1) we have e1 ⊆ e2 ⊆ e3 ⊆ e4.
Furthermore, λ(2) = 1. Here, p(1)

v2 , p
(1)
v2 + p(1)

e1 , p
(1)
v2 + p(1)

e1 + p(1)
e2 , are non-negative,

while p(1)
v2 + p(1)

e1 + p(1)
e2 + p(1)

e3 is negative, and p(1)
v2 + p(1)

e1 + p(1)
e2 + p(1)

e3 + p(1)
e4 is

positive. Thus,PN = {0, 1, 2},N = {3},P = {4},PN = ∅. Next, we construct
G(2). We define the profits p(2) as follows: p(2)

e1 := p(1)
e1 = 2, and p(2)

e2 := p(1)
e2 = −1,

however we define p(2)
e3 := −p(1)

v2 − p(1)
e1 − p(1)

e2 = −4 and p(2)
e4 := p(1)

v2 + p(1)
e1 +

p(1)
e2 + p(1)

e3 + p(1)
e4 = 1. Moreover, p(2)

v := p(1)
v for every node v of G(2), this means

that p(2)
v3 := 2, p(2)

v4 := −1, p(2)
v5 := 1.

Iteration 3 Now it’s the turn of v3, which is a nest point of G(2). Here λ(3) = 3.
It is easy to check that all sums p(2)

v3 , p
(2)
v3 + p(2)

e1 , p
(2)
v3 + p(2)

e1 + p(2)
e2 are positive,

whereas p(2)
v3 + p(2)

e1 + p(2)
e2 + p(2)

e3 is negative, and p(2)
v3 + p(2)

e1 + p(2)
e2 + p(2)

e3 + p(2)
e4

is equal to zero. Therefore PN = {0, 1, 2}, N = {3}, N P = {4}, P = ∅.
The hypergraph G(3) is constructed by removing v3 from G(2). Observe that, as we
remove v3, we are also removing e1 and e2, since e1 = e2 = {v3}. Then, we set

123



Algorithmica (2023) 85:2189–2213 2199

p(3)
e3 := −p(2)

u − p(2)
e1 − p(2)

e2 = −3, p(3)
e4 := 0. Finally, p(3)

v4 := −1, p(3)
v5 := 1. We

then iterate on the smaller hypergraph.

Iteration 4 Next, v4 is a nest point of G(3). Observe that now we have that λ(4) = 4.
Here, p(3)

v4 , p
(3)
v4 + p(3)

e3 , p
(3)
v4 + p(3)

e3 + p(3)
e4 are all negative. Hence,N P = {0, 3, 4}.

We construct G(4). It is easy to see that p(4)
e4 is set equal to zero. Therefore, we define

p(4)
v5 := p(3)

v5 = 1.

Iteration 5 We have arrived at the last step of the algorithm. Indeed, v5 is the only
node in G(4). Observe that it is useless to compute P , N , N P , PN , and G(5)

in this last iteration. So, we skip it. We introduce e0 = {v5} and let p(4)
v5 := p(4)

v5 ,

p(4)
v5 := 0. We check that p(4)

v5 + p(4)
e4 = p(4)

v5 > 0. So, we set xv5 := 1.
At this point,we are ready to compute xv1 , xv2 , xv3 , and xv4 .We start fromcomputing

xv4 . Since xv5 = 1 and e4 is the only edge in G(4), it follows that μ(4) = 4. Recall that
4 ∈ N P in iteration number 4. Then, by the definition of ϕ(4), we set xv4 := 0. Now
we look at xv3 . In this case μ(3) = 2. This follows from the facts that we have just
set xv4 = 0 and that v3 belongs to all the edges of G(2). Since 2 ∈ PN in iteration
number 3, we set xv3 := 1. Next, consider xv2 . Similarly to before, μ(2) = 2, since
xv4 = 0. Again, we have that 2 ∈ PN in iteration number 2. Hence, we define
xv2 := 1. It remains to compute xv1 . In order to compute μ(1), we need to consider the
edges containing v1 in G, which are e1 and e4. Since xv4 = 0, we find that μ(1) = 1.
Therefore we set xv1 := 1, since 1 ∈ PN in the first iteration. Then, an optimal
solution of the problem is x = (xv1 , xv2 , xv3 , xv4 , xv5) = (1, 1, 1, 0, 1).

2.3 Correctness of the Algorithm

In this section, we show that Acyclic(G, p) is correct.

Proposition 5 The algorithmAcyclic(G, p) returns an optimal solution to (BPO),
provided that G is β-acyclic.

Proof We prove this proposition by induction on the number of nodes. We start from
the base case, that is when |V | = 1. It follows that e = {u} for all e ∈ E , since
{e1, . . . , ek} = E . In this case the algorithm only performs lines 1-5 and line 17.
There are only two possible solutions: either x∗

u = 0, or x∗
u = 1. The algorithm

computes the objective corresponding to x∗
u = 1. If the objective is non-negative, it

sets x∗
u := 1, otherwise it sets x∗

u := 0. The solution provided by the algorithm is
optimal, since we are maximizing.

Nextweconsider the inductive step, and analyze the correctness of Acyclic(G, p)
when it removes a nest point.Wedefineobj(·) to be the objective value of (BPO)yielded
by a binary vector in {0, 1}V . Let u be the nest point to be removed at a given itera-
tion of the algorithm. We denote by (BPO)′ the problem of the form (BPO) over the
hypergraph G ′ and the profits p′, defined by Acyclic(G, p). Likewise, let obj′(·)
be the objective value of (BPO)′ provided by a vector in {0, 1}V ′

. By the inductive
hypothesis, the vector x ′ defined in line 8 or 14 is optimal to (BPO)′. Our goal is to
show that the returned solution x∗ is optimal to (BPO).
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We consider first the case in which ek = {u}, i.e., when all the edges that contain u
are loops. This implies that every edge e ∈ E is either a loop {u} or does not contain
the node u. Therefore, an optimal solution to (BPO) is obtained by combining an
optimal solution to (BPO)′ with an optimal solution to the problem represented by the
hypergraph ({u}, {e1, . . . , ek}) with profits pu and pei , for i = 1, . . . , k. By using the
same proof of the base case, we can see that line 5 provide the optimal value of x∗

u .
Since the vector x ′ is optimal to (BPO)′, we can conclude that the vector x∗ returned
by the algorithm is optimal.

Next, we consider the case in which ek is not a loop. For notational simplicity, we
introduce extensions of the functionsμ and ϕ with domain {0, 1}V rather than {0, 1}V ′

.
To do so, given a vector x ∈ {0, 1}V , we denote by dropu(x) the vector in {0, 1}V ′

obtained from x by dropping its entry corresponding to the node u. We then define
μ(x) := μ(dropu(x)) and ϕ(x) := ϕ(dropu(x)).

Claim 1 There exists an optimal solution x̃ to (BPO) such that x̃u = ϕ(x̃).

Proof of Claim 1 To show this, let x̄ be an optimal solution to (BPO). If x̄u = ϕ(x̄),
then we are done. Thus, assume that x̄u = 1 − ϕ(x̄), and let x̃ be obtained from x̄
by setting x̃u := ϕ(x̄). Note however that ϕ(x̄) = ϕ(x̃), since x̄v = x̃v for all nodes
v �= u. Therefore we want to show that x̃ is optimal. The proof splits in two cases:
either ϕ(x̃) = 0, or ϕ(x̃) = 1.

Consider the first case ϕ(x̃) = 0. Hence x̄u = 1 and x̃u = 0. Therefore, it follows
that obj(x̄) = obj(x̃)+∑μ

i=0 pei . By definition of ϕ, we haveμ = μ(x̃) ∈ N ∪N P ,
thus

∑μ
i=0 pei ≤ 0. Then, we obtain that obj(x̄) ≤ obj(x̃) and x̃ is optimal to (BPO)

as well.
Assume now that we are in the second subcase, i.e., ϕ(x̃) = 1. Therefore we have

x̄u = 0, x̃u = 1, and obj(x̃) = obj(x̄) + ∑μ
i=0 pei . Since μ ∈ P ∪ PN , it follows

that
∑μ

i=0 pei ≥ 0, therefore obj(x̃) ≥ obj(x̄). Thus, we can conclude that also x̃ is
optimal to (BPO). 

We remark that, since ek �= {u}, the index λ is well defined and λ ≥ 1. From now
on let x be any vector {0, 1}V such that xu = ϕ(x). Let μ = μ(x).

Our next main goal is to show the equality

obj(x) =
{
obj′(dropu(x)), if λ ∈ N P ∪ P

obj′(dropu(x)) + ∑λ−1
i=0 pei , if λ ∈ PN ∪ N .

(1)

We define the sets A and B as follows. If xu = 0 let A := ∅. Otherwise, that is if
xu = 1, we define A := {0, 1, . . . , μ}. In order to define B we observe that either
λ ≤ μ or μ = λ − 1. This is because λ − 1 is the index of the last loop {u}. We then
define B := {λ, . . . , μ} if λ ≤ μ, otherwise we set B := ∅, if μ = λ − 1. In order to
prove (1), it suffices to check that

∑

i∈A

pei =
{∑

i∈B p′
ei , if λ ∈ N P ∪ P∑

i∈B p′
ei + ∑λ−1

i=0 pei , if λ ∈ PN ∪ N ,
(2)
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by the definitions of p′ and dropu(x). In the next claim,we study the value of
∑

i∈B p′
ei ,

which is present in (2).

Claim 2 Let λ ≤ μ. IfP ∩ {λ, . . . , μ} = ∅, then

∑

i∈B
p′
ei =

⎧
⎪⎨

⎪⎩

0, if λ ∈ N P∑μ
i=λ pei , if λ ∈ PN and μ ∈ PN

−∑λ−1
i=0 pei , if λ ∈ N or if λ ∈ PN and μ ∈ N ∪ N P.

(3)

IfP ∩ {λ, . . . , μ} �= ∅, then

∑

i∈B
p′
ei =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if λ ∈ N P ∪ P and μ ∈ N ∪ N P∑μ
i=0 pei , if λ ∈ N P ∪ P and μ ∈ P ∪ PN

−∑λ−1
i=0 pei , if λ ∈ PN ∪ N and μ ∈ N ∪ N P∑μ

i=λ pei , if λ ∈ PN ∪ N and μ ∈ P ∪ PN .

(4)

Proof of Claim 2 Observe that
∑

i∈B p′
ei is not trivially equal to zero, since λ ≤ μ.

First, we assume thatP ∩ {λ, . . . , μ} = ∅. In this case we can easily compute the
value of

∑
i∈B p′

ei . Assume first that λ ∈ N P . By Remark 1 it is easy to see that
{λ, . . . , μ}must belong toN P . Then, by definition of p′, it follows that

∑
i∈B p′

ei =
0. Next, consider the case in which λ ∈ PN and μ ∈ PN . From Remark 1, we
can conclude that {λ, . . . , μ} ⊆ PN . By definition of p′, we can observe that∑

i∈B p′
ei = ∑μ

i=λ pei . Next, assume that λ ∈ N . Since λ ∈ N , it is easy to
see that {λ + 1, . . . , μ} ⊆ N P by Remark 1. Hence by definition of p′, we get
that

∑
i∈B p′

ei = p′
eλ = −∑λ−1

i=0 pei . Lastly, let λ ∈ PN and μ ∈ N ∪ N P .
This implies that there must be exactly one index q ∈ N ∩ {λ + 1, . . . , μ}. By
using the definition of p′ we obtain

∑
i∈B p′

ei = ∑q−1
i=λ p′

ei + p′
q + ∑μ

i=q+1 p
′
ei =

∑q−1
i=λ pei − ∑q−1

i=0 pei = −∑λ−1
i=0 pei . This ends the proof of (3).

Next, we assume P ∩ {λ, . . . , μ} �= ∅. We divide
∑

i∈B p′
ei in three parts. Let ι1

be the first index in P ∩ {λ, . . . , μ}, and let ι2 be the last index in P ∩ {λ, . . . , μ}.
Note that it is possible that ι1 = ι2. Then, we observe that

∑

i∈B
p′
ei =

ι1−1∑

i=λ

p′
ei +

ι2−1∑

i=ι1

p′
ei +

μ∑

i=ι2

p′
ei . (5)

Now we study the value of the sums in the right hand side of (5).
We start by showing that

ι2−1∑

i=ι1

p′
ei = 0 . (6)

If it is vacuous, then it is trivially equal to zero. Then we assume that it is not vacuous.
Since ι2 ∈ P , the last index in this sum is in N ∪ N P . Because of the fact that
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the first index of the sum is in P and by definition of p′, we can conclude that all
the profits in

∑ι2−1
i=ι1

p′
ei cancel each other out. Then, (6) holds. From now on, in the

analysis of (5), we will only focus on the values of
∑ι1−1

i=λ p′
ei and

∑μ
i=ι2

p′
ei .

We consider the first of these two sums. We prove that

ι1−1∑

i=λ

p′
ei =

{
0, if λ ∈ N P ∪ P

−∑λ−1
i=0 pei , if λ ∈ PN ∪ N .

(7)

We start with analyzing the case in which λ ∈ N P ∪ P . If λ ∈ P , then ι1 = λ

and the sum is trivially equal to 0. Then we assume that λ ∈ N P . Since ι1 is the
first index inP with ι1 ≥ λ, Remark 1 implies that all indices {λ, . . . , ι1 − 1} belong
to N P . Therefore, by definition of p′, we conclude that

∑ι1−1
i=λ p′

ei = 0. Next, let
λ ∈ PN ∪ N . Here, the indices in {λ, . . . , ι1 − 1} can be in PN , N , or N P .
Moreover, there must be exactly one index q ∈ N ∩ {λ, . . . , ι1 − 1}. Then, we can
see that

∑ι1−1
i=λ p′

ei = ∑q−1
i=λ p′

ei + p′
q + ∑ι1−1

i=q+1 p
′
ei = ∑q−1

i=λ pei − ∑q−1
i=0 pei =

−∑λ−1
i=0 pei . This concludes the proof of (7).

It remains to compute
∑μ

i=ι2
p′
ei . We show that

μ∑

i=ι2

p′
ei =

{
0, if μ ∈ N ∪ N P∑μ

i=0 pei , if μ ∈ P ∪ PN .
(8)

Assume that μ ∈ N ∪ N P . Since ι2 ∈ P , there must be an index q ∈ N ∩
{ι2 +1, . . . , μ}. Then,∑μ

i=ι2
p′
ei = p′

ι2
+∑q−1

i=ι2+1 p
′
ei + p′

eq +∑μ
i=q+1 p

′
ei . By using

the definition of p′ we obtain the following:
∑μ

i=ι2
p′
ei = ∑ι2

i=0 pei + ∑q−1
i=ι2+1 pei −

∑q−1
i=0 pei = 0.We look at the second case, and we assume thatμ ∈ P∪PN . Then,

by definition of ι2 and the fact that μ ∈ P ∪PN , it follows that all indices in {ι2 +
1, . . . , μ} belong toPN . By the definition of p′, we can conclude that

∑μ
i=ι2

p′
ei =

p′
ι2

+∑μ
i=ι2+1 p

′
ei = ∑ι2

i=0 pei +
∑μ

i=ι2+1 pei = ∑μ
i=0 pei . This concludes the proof

of (8).
We conclude that (4) holds, by combining appropriately the different cases of (7)

and (8) into (5). 
We are now ready to prove (1). This proof is divided in two cases, depending on

the value of xu . The first case that we consider is when xu = ϕ(x) = 0. Therefore,
we assume that xu = ϕ(x) = 0. As previously observed, we only need to show that
(2) holds. hence

∑
i∈A pei = 0. Furthermore, ϕ(x) = 0 implies μ ∈ N ∪N P . We

consider the two cases μ = λ − 1 and λ ≤ μ. Consider the case μ = λ − 1. Then∑
i∈B p′

ei is vacuous and equal to 0. Furthermore, if μ ∈ N ∪ N P it means that
λ ∈ N P ∪ P . Hence (2) holds. Next, we assume that λ ≤ μ, which implies that B
is non-empty. IfP ∩ {λ, . . . , μ} = ∅, we get that ∑i∈B p′

ei = 0 if λ ∈ N P by (3).

Therefore (2) is true. Otherwise, if λ ∈ PN ∪ N , then
∑

i∈B p′
ei = −∑λ−1

i=0 pei
since μ ∈ N ∪ N P . Hence (2) holds also in this case. Therefore, we assume that
P ∩ {λ, . . . , μ} �= ∅. We start from the case in which λ ∈ N P ∪ P . From (4), we
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see that
∑

i∈B p′
ei = 0, as μ ∈ N ∪ N P . This concludes the proof of (2) when

λ ∈ N P ∪ P . So now consider λ ∈ PN ∪ N . From (4) we obtain
∑

i∈B p′
ei =

−∑λ−1
i=0 pei in this case. Hence, we can conclude that (2) holds also if λ ∈ PN ∪N .

The remaining case to consider, in order to prove that (1) holds for every x ∈ {0, 1}V ,
is when xu = ϕ(x) = 1. Similarly to the previous case, we just need to show that
(2) holds. Assume xu = ϕ(x) = 1. From xu = 1 we obtain

∑
i∈A pei = ∑μ

i=0 pei .
Because of ϕ(x) = 1, we know thatμ ∈ P∪PN . Once again, we consider the cases
μ = λ−1 and λ ≤ μ. Assume μ = λ−1. Then, we have that B = ∅ and

∑
i∈B p′

ei is
equal 0. Moreover, we have λ ∈ PN ∪N , since μ ∈ P ∪PN . Then, it is easy to
see that (2) is true. Next, we consider the case in which λ ≤ μ. We start from situation
where λ ∈ N P ∪ P . By using Remark 1, we observe that P ∩ {λ, . . . , μ} �= ∅.
Then, we obtain that

∑
i∈B p′

ei = ∑μ
i=0 pei from (4). Hence, (2) holds. Assume now

λ ∈ PN ∪ N . We first observe that it is possible that P ∩ {λ, . . . , μ} = ∅. This
can happen only if λ,μ ∈ PN . In this case

∑
i∈B p′

ei = ∑μ
i=λ pei by (3). It is easy

to see that (2) holds in this case. So assume instead that P ∩ {λ, . . . , μ} �= ∅. Then,∑
i∈B p′

ei = ∑μ
i=λ pei by (4). Therefore, (2) is true. This concludes the proof of (1).

We are finally ready to show that the solution provided by the algorithm is optimal.
Let x̃ be an optimal solution to (BPO) such that x̃u = ϕ(x̃). We know that it exists by
Claim 1. We denote by x∗ the solution returned by the algorithm, which is defined by

x∗
w :=

{
x ′
w, if w �= u

ϕ(x ′), if w = u .

It is easy to see that x∗
u = ϕ(x ′). By the previous argument, it follows that (1) holds

for both x̃ and x∗. Therefore, obj(x∗) = obj′(x ′) and obj(x̃) = obj′(dropu(x̃)), if λ ∈
N P∪P . Similarly, ifλ ∈ PN ∪N , we obtain that obj(x∗) = obj′(x ′)+∑λ−1

i=0 pei
and obj(x̃) = obj′(dropu(x̃))+

∑λ−1
i=0 pei .We are now ready to prove that x∗ is optimal

to (BPO). The optimality of x ′ to (BPO)′ implies that obj′(x ′) ≥ obj′(dropu(x̃)). This
inequality implies obj(x∗) ≥ obj(x̃) in both cases. Note that if λ ∈ PN ∪ N it
suffices to add

∑λ−1
i=0 pei on both sides of the inequality to see this. Hence, we can

conclude that x∗ is an optimal solution to (BPO). ��
We remark that our algorithm is correct even if the profits are allowed to be real

numbers. However, for the purposes of the analysis of the algorithm, we chose to
consider only the setting in which the profits are all integers.

2.4 Analysis of the Running Time

In this section, we show that Acyclic(G, p) runs in strongly polynomial time. We
remark that in this paper we use standard complexity notions in discrete optimization,
and we refer the reader to the book [44] for a thorough introduction. Our analysis is
admittedly crude and provides a loose upper bound of the running time. It could be
further improved by paying particular attention to the data structure and to the exact
number of operations performed in each step. In our analysis, we choose to store the
hypergraph G = (V , E) by its node-edge incidence matrix.
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The running time that we exhibit below is in terms of the time needed to find one
nest point in G, which is denoted by τ . As mentioned in [33], nest points can be found
in polynomial-time by brute force. Once we find one nest point, we also explicitly
know the edges that contain it and their order under set inclusion.

Proposition 6 The algorithm Acyclic(G, p) is strongly polynomial, provided that
G = (V , E) is a β-acyclic hypergraph. In particular, the number of arithmetic oper-
ations performed is O(|V |(τ + |E | + |V | log |E |)).
Proof We first examine the number of arithmetic operations performed by the algo-
rithm. In line 1, there are at most τ operations to find a nest point u and the ordered
sequence of edges it belongs to, that is, e1 ⊆ e2 ⊆ · · · ⊆ ek . Line 2 requires O(|E |)
operations, between sums and comparisons, to compute the setsP ,N ,N P ,PN .
In line 3, there are other O(|E |) operations to remove u from G in order to construct
the hypergraph G ′, since it suffices to drop the u-th row from the incidence matrix.
We observe that we do not remove the columns of edges that might have become
empty. So, the incidence matrix could have some zero columns. Line 4 takes O(|V |)
operations. Next, there are O(|E |) sums in the if condition in line 5. Line 6 can be
performed in constant time. Then, line 7 requires O(|V | + |E |) operations, and line 9
takes O(|V |) operations. Next, finding λ in line 11 requires O(|V | log |E |) operations,
by performing binary search on the ordered edges and checking the nodes they con-
tain. Consider now the construction of p′ in lines 12-13. Line 12 takes O(|V | + |E |)
operations. The profits p′ for the edges eλ, . . . , ek can be constructed with a total
number of O(|E |) operations. Hence, constructing the smaller instance in both cases
takes linear time. It remains to consider the operations needed to construct x∗ from
x ′, see lines 15-16. Line 15 requires O(|V |) operations. Now consider line 16. Using
the definition of the quantity ϕ(x ′), it can be seen that the definition of x∗

u requires
O(|V | log |E |) operations. In fact it suffices to find μ(x ′).

Therefore, each iteration of algorithm performs at most τ + O(|E | + |V | log |E |)
arithmetic operations. Moreover, we observe that Acyclic(G, p) performs |V |
iterations, thanks to Theorem 4. We hence obtain that the total number of arithmetic
operations performed by Acyclic(G, p) is O(|V |(τ + |E | + |V | log |E |)).

To prove that the algorithm Acyclic(G, p) is strongly polynomial, it remains to
show that any integer produced in the course of the execution of the algorithm has size
bounded by a polynomial in |V | + |E | + logU , where U is the largest absolute value
of the profits in the instance (see page 362 in [45]). The numbers that are produced
by the execution of the algorithm are the profits of the smaller instances. The only
arithmetic operations involving the profits are addition and subtraction of the original
profits. In particular, this implies that the numbers produced are integers. Moreover,
only a polynomial number of operations p(|V |, |E |) occur in the algorithm since its
arithmetic running time is polynomial in |V | and |E |. Then, any integer obtained at
the end of the algorithm must have absolute value less than or equal to 2p(|V |,|E |)U .
Its bit size therefore is less than or equal to p(|V |, |E |) + logU . ��

We close this section by observing that the overarching structure of our algorithm,
where nodes are removed one at a time, resembles that of the basic algorithm for
pseudo-Boolean optimization, which was first defined in the sixties [29, 30]. Except
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for this similarity, the two algorithms are entirely different. For example, in the basic
algorithm nodes can be removed in any order, but the running time can be exponential.
On the other hand, in our algorithm the node to be removed must be a nest point
in order for the algorithm to be correct. In particular, this allows us to define the
updated profits and it is key in achieving a polynomial running time. In [13] the authors
show that, if nodes are removed according to a “k-perfect elimination scheme”, the
basic algorithm runs in polynomial time for hypergraphs whose co-occurrence graph
has fixed treewidth. However, analyzing the laminar hypergraph discussed after the
statement of Theorem 1 in Sect. 1.1, it is simple to see that the basic algorithm does
not run in polynomial time over β-acyclic hypergraphs, under any choice of the node
to be removed.

3 Hardness for˛-Acyclic Hypergraphs

In this section,we describe the intractability results for (BPO) overα-acyclic instances,
thereby showing Theorem 3. In order to prove these results, we will use polynomial
reductions fromMax-Cut and Simple Max-Cut to (BPO). We recall that Max-Cut can
be formulated as

max
∑

{u,v}∈E
w{u,v}(xu + xv − 2xuxv)

s.t. x ∈ {0, 1}V ,

where G = (V , E) is the graph representing the instance of Max-Cut and w ∈ Z
E+

[7].
Similarly to theβ-acyclic case, we apply the idea of removing nodes and edges from

ahypergraph.Here,wewill use it to show that the instances obtainedvia the polynomial
reductions fromMax-Cut and Simple Max-Cut to (BPO) are represented by α-acyclic
hypergraphs. Now,we are ready to describe a simple polynomial reduction ofMax-Cut
to (BPO).

Proposition 7 Assume that an instance of Max-Cut is represented by a graph G ′ =
(V , E ′) and a weight vector w ∈ Z

E ′
+ . Then, there exists a polynomial-time reduction

from Max-Cut to (BPO), where the instance of (BPO) is represented by a hypergraph
G = (V , E) with profit vector p ∈ Z

V∪E such that:

(c1) G is α-acyclic;
(c2) All edges in E have cardinality either two or |V |;
(c3) All edges e ∈ E such that |E | = 2 have profit pe = −2we, all edges e ∈ E

such that |E | = |V | have profit pe = 0, and all nodes v ∈ V have profit
pv = ∑

u∈V |{u,v}∈E w{u,v};
(c4) Every vector in {0, 1}V yields the same objective value in the two problems.

Proof Let I be an instance of Max-Cut. We denote by G ′ = (V , E ′) its associated
graph, and by w the weight vector for the edges in E ′. Let ē be a new edge defined
as ē := V . At this point, we construct an instance J of (BPO). The hypergraph
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representing the instance is G = (V , E), where E := E ′ ∪ {ē}. It is easy to see that
it satisfies (c2) by construction. The profit vector of J is p ∈ Z

V∪E , which is defined
as

pi :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

u∈V |{u,v}∈E
w{u,v}, if i = v ∈ V

−2w{u,v}, if i = {u, v} ∈ E ′

0, if i = ē .

Clearly the vector p satisfies condition (c3). Furthermore, it is immediate to see that
solving I is equivalent to J . In particular, the set of feasible solutions is {0, 1}V for
bothMax-Cut and (BPO).Moreover, the objective value obtained by any binary vector
in J coincides with the objective value yielded by the same vector in I . This shows
that (c4) holds. It remains to prove that also (c1) is satisfied. Hence, we show that G
is α-acyclic. We observe that we obtain the empty hypergraph (∅,∅) from G by first
removing all edges e ∈ E ′, and then by removing all nodes. Therefore, by Theorem 2
we can conclude that the hypergraph G is α-acyclic. ��

Next, we present the first hardness result, obtained by reducing Simple Max-Cut
to (BPO) using the polynomial reduction presented in Proposition 7. Simple Max-Cut
is the special case of Max-Cut, in which the weight vector w is restricted to be the
vector of all ones. This problem has been shown to be strongly NP-hard in [41].

Theorem 8 Solving (BPO) is strongly NP-hard, even if G = (V , E) is a hypergraph
that satisfies conditions (c1), (c2), and

(c3’) All edges e ∈ E such that |e| = 2 have profit pe = −2, all edges e ∈ E
such that |e| = |V | have profit pe = 0, and all nodes v ∈ V have profit
pv = |{e ∈ E | v ∈ e, |e| = 2}|

Observe that condition (c3’) coincides with condition (c3), when we adjust the
latter to Simple Max-Cut.

Next, we present the hardness of approximation result. We start by defining the
concept of r -approximation, for any maximization problem P , where r ∈ [0, 1]. Let
ALG be an algorithm that returns a feasible solution to P yielding objective value
ALG(I), for every instance I of P . Now, let us fix I . We denote by l(I ) the minimum
value that the objective function of I can achieve on all feasible points, and byOPT(I)
the optimum value of that instance. Then, we say that an algorithm ALG is a r -
approximation for P if, for every instance I of P , we have that ALG(I )−l(I )

OPT (I )−l(I ) ≥ r . In
particular, when P is Max-Cut, we have that l(I ) = 0 for all instances I . In [42] the
authors show that it is NP-hard to obtain an r -approximation algorithm for Max-Cut,
for r > 16

17 . The next result then follows by reducing Max-Cut to (BPO) using the
reduction in Proposition 7.

Theorem 9 It is NP-hard to obtain an r-approximation algorithm for (BPO), with
r > 16

17 , even if the instance of (BPO) satisfies conditions (c1), (c2), (c3), for some
vector w ∈ Z

E+.
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We observe that the bound on r can be further strengthened if we assume the
validity of the Unique Games Conjecture, first formulated in [46]. In fact, Theorem 1
in [47] states that it is NP-hard to approximate Max-Cut to within a factor greater than
αGW ≈ 0.878, granted that the Unique Games Conjecture and the Majority Is Stablest
Conjecture are true. The constantαGW was originally defined in [48],where the authors
provide an αGW-approximation algorithm for Max-Cut. Lastly, we observe that the
Majority Is Stablest Conjecture was proved to be correct in [49], and therefore this
stronger inapproximability result now only relies on the Unique Games Conjecture.

4 Reduction Scheme for General Hypergraphs

We observe that, even if our algorithm is not able to solve instances over hypergraphs
that contain β-cycles, it is still possible to use it as a reduction scheme. In particular,
we can iteratively remove nest points, which leads to a decrease in the number of
nodes, and possibly edges, of the hypergraph until there are no nest points left. If we
are able to obtain an optimal solution to the smaller problem, we can then use the rules
outlined in the algorithm to construct an optimal solution to the original problem.

In order to better assess if our reduction scheme could be useful in practice, we
ran some computational experiments. We studied the reduction scheme on random
instances, as it is commonly done in the literature [3, 19, 26]. For every instance,
we computed the percentage of removed nodes. First, we explain the setting of our
experiments. We chose the setting of [19], i.e., we decide the number of nodes |V |
and of edges |E | of the hypergraph representing the instance, but we do not make any
restriction on the rank of the hypergraph. We recall that the rank of a hypergraph is the
maximum cardinality of any of its edges. For every edge, its cardinality c is chosen
from {2, . . . , |V |} with probability equal to 21−c. As explained in [19], the purpose
of this choice is to model the fact that a random hypergraph is expected to have more
edges of low cardinality than high cardinality. Then, once c is fixed, the nodes of the
edge are chosen uniformly at random in V with no repetitions. We also make sure
that there are no parallel edges in the produced hypergraph. This will be useful in the
interpretations of the results, as we explain later in the section. The parameters |V |
and |E | have values in the set {25, 50, 75, …, 600}. For every pair (|V |, |E |) we made
250 repetitions and computed the percentage of removed nodes. Then, we took the
average of these percentages. The results of our simulations are shown in Fig. 2. The
values on the x axis correspond to the number of nodes of the hypergraph, whereas
the values on the y axis represent the number of edges. The lighter the cell, the more
nodes are removed for instances with those values of n and m. A legend can be found
to the right of the grid.

From the results, we noticed that the percentage of the removed nodes is related
to the value of the ratio |E |/|V |, where G = (V , E) is the hypergraph representing
the instance. From Fig. 2, it is apparent that the smaller is the ratio |E |/|V |, the more
effective our algorithm is. In particular, we observe that if |E |/|V | = 1, then the
average of nodes removed is 16.72%. However, when |E |/|V | = 1/2, this percentage
is roughly 50%, and if |E |/|V | = 1/4 our algorithm removes on average 86% of the
original nodes.Additional values can be extracted fromFig. 3,which captures the trend
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Fig. 2 Percentage of removed nodes in hypergraphs as a function of |V | and |E |

Fig. 3 Percentage of removed nodes as a function of |E | when n = 300
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Fig. 4 Percentage of removed nodes in graphs as a function of |V | and |E |

of this percentage as a function of |E |. In this figure, the number of nodes |V | is set to
300. We see that the reduction scheme is particularly useful whenever |E |/|V | ≤ 1,
i.e., when the number of edges is bounded by the number of nodes. Furthermore, we
observe that a large subset of the hypergraphs with |E |/|V | ≤ 1 have a highly non-
trivial structure, since they have a huge connected component with high probability.
In fact, the largest connected component of G is of order |V | whenever the fraction
|E |/|V | is asymptotic to a constant c such that c > 1/2. This follows from [50] once
we observe that each edge of a hypergraph connects at least as many nodes as an edge
in a graph. We remark that the authors in [50] do not allow parallel edges, and this is
why we introduced this requirement for our instances.

For denser hypergraphs, i.e., hypergraphs with |E |/|V | > 1, our procedure does
not work as well, and this can be explained by the fact that, for these hypergraphs, it
is more unlikely that a node would be able to satisfy the definition of nest point. For
non-random instances, it should be noted that the outcome of our reduction scheme
depends heavily on the structure of the specific instance.
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Fig. 5 Percentage of removed nodes in graphs as a function of |E | when n = 300

Lastly, we remark that the reduction scheme can be applied also to quadratic
instances, where the corresponding hypergraph is simply a graph, and where nest
points are leaves. We wanted to check if the computational experiments would lead
to comparable findings when G is actually a graph. This is indeed the case, as Fig. 4
indicates.

In fact, the behavior of the percentages of removed nodes is similar to the one in the
hypergraph setting, even if the shift between the light and dark regions is sharper. In
order to unveil better thismore radical performance, we look again at the average of the
percentages of nodes removed as a function of the ratio |E |/|V |. In particular, we look
at the same values of this ratio that we explicitly mentioned in the hypergraph setting,
that is for |E |/|V | ∈ {

1, 1
2 ,

1
4

}
. From the computational experiments we see that these

values are respectively 45.63, 97.56, and 99.88%. To further highlight this behavior in
the graph setting, we fix |V | = 300 and study the average of the percentage of removed
nodes as a function of |E |. From this analysis, the reader can derive additional values
corresponding to the ratio |E |/|V | from Fig. 5.
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