
Algorithmica (2023) 85:2028–2064
https://doi.org/10.1007/s00453-022-01077-w

Multistage s–t Path: Confronting Similarity with
Dissimilarity

Till Fluschnik1 · Rolf Niedermeier1 · Carsten Schubert1 · Philipp Zschoche1

Received: 5 November 2020 / Accepted: 28 November 2022 / Published online: 3 January 2023
© The Author(s) 2022

Abstract
Addressing a quest by Gupta et al. (in: Proceedings of the 41st international collo-
quium on automata, languages, and programming (ICALP 2014), vol 8572 of LNCS.
Springer, pp 563–575, 2014), we provide a first, comprehensive study of finding a short
s–t path in the multistage graph model, referred to as theMultistage s–t Path prob-
lem. Herein, given a sequence of graphs over the same vertex set but changing edge
sets, the task is to find short s–t paths in each graph (“snapshot”) such that in the found
path sequence the consecutive s–t paths are “similar”. We measure similarity by the
size of the symmetric difference of either the vertex set (vertex-similarity) or the edge
set (edge-similarity) of any two consecutive paths. We prove that these two variants of
Multistage s–t Path are already NP-hard for an input sequence of only two snap-
shots and maximum vertex degree four. Motivated by this fact and natural applications
of this scenario e.g. in traffic route planning, we perform a parameterized complexity
analysis. Among other results, for both variants, vertex- and edge-similarity, we prove
parameterized hardness (W[1]-hardness) regarding the parameter path length (solution
size). As a further conceptual investigation, we then modify the multistage model by
asking for dissimilar consecutive paths. As one of the main technical results (employ-
ing so-called representative sets known from non-temporal settings), we prove that

Till Fluschnik was supported by the DFG, project TORE (NI 369/18).
An extended abstract appears in the Proceedings of the 31st International Symposium on Algorithms and
Computation (ISAAC 2020). This full version now contains all proofs and details.

B Philipp Zschoche
zschoche@tu-berlin.de

Till Fluschnik
till.fluschnik@tu-berlin.de

Rolf Niedermeier
rolf.niedermeier@tu-berlin.de

Carsten Schubert
carsten.gm.schubert@campus.tu-berlin.de

1 Faculty IV, Algorithmics and Computational Complexity, Technische Universität Berlin, Berlin,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01077-w&domain=pdf
http://orcid.org/0000-0001-9846-0600

Algorithmica (2023) 85:2028–2064 2029

dissimilarity allows for fixed-parameter tractability for the parameter solution size,
contrasting with our W[1]-hardness proof of the corresponding similarity case. We
also provide partially positive results concerning efficient and effective data reduction
(kernelization).

Keywords Temporal graphs · Shortest paths · Parameterized complexity ·
Kernelization · Representative sets in temporal graphs

1 Introduction

Finding short paths is perhaps the most fundamental task in algorithmic graph theory
and network analysis. There are numerous applications, including operations research,
robotics, social network analysis, traffic and transportation, and VLSI design. More
specifically, we are concerned with finding a short path connecting two designated
vertices s and t . It is fair to say that for static graphs the algorithmics (also from a
practical side) of finding short(est) paths is very well understood. This is much less
so when considering path finding in temporal graphs, that is, graphs whose edge sets
changeover time,1 a framework that in recent years receivedmore andmore attention in
the field of network science. For instance, models concerned with disease spreading or
traffic routing typically are more realistic when taking into account that links between
network nodes change over time. In this work, we study path finding in temporal
graphs with the additional (“multistage”) assumption that s–t-paths for consecutive
snapshots of the temporal graph shall be sufficiently “similar”. We confront this with
the opposite view that s–t-paths for consecutive snapshots of the temporal graph shall
be significantly “dissimilar”. Herein, similarity can naturally be measured both by
comparing the edge sets of the s–t paths or by comparing the vertex sets of the s–t
paths. Altogether, we end up with four natural problem variants.

A few words on motivation. Both scenarios address different aspects of robustness
in an environment changing over time. Let us first look at the dissimilarity scenario.
Here one may think of a situation where because of necessary recovery or cleansing
costs (in pandemic times one may think of disinfection measures) one wants to avoid
that subsequent “agents” on the way from start to goal share too many parts of their
routing paths. Moreover, one may also think of applications in the context of so-called
VIP routing, which address security aspects [21, 22]. As to the similarity scenario, one
may think of robustness in the sense of “path maintenance”: every deviation from the
path used before causes additional costs (set up, preparation, checking) and thus shall
be kept at a minimum. This can be interpreted in the spirit of incremental changes
(evolutionary rather than radical changes) [11, 30].

Formally, a temporal graph G = (V , E1, E2, . . . , Eτ) consists of a set V of vertices
and lifetime τ many edge sets E1, E2, . . . , Eτ over V . Finding an s–t path over time,
also known as temporal s–t path, has already been studied [5, 45]. There, however, a
path may use edges from

⋃τ
i=1 Ei , while in our setting we search for path sequences

consisting of τ paths, one for each Ei . With focusing on similar and dissimilar paths

1 Holme and Saramäki [32, 33] and Michail [40] survey algorithmic aspects of temporal graphs.

123

2030 Algorithmica (2023) 85:2028–2064

here, however, we introduce a new view on finding paths in temporal graphs. More
specifically, addressing a quest ofGupta et al. [29], one of the first studies onmultistage
problems, this paper initiates a study of finding short s–t paths in themultistagemodel,
that is, finding a short s–t path in each snapshot (V , Ei) of the temporal graph G such
that consecutive s–t paths do not differ too much; formally, we have the following
(where Π refers to a requested property of two consecutive paths in the solution):

Π Multistage s–t Path (Π -MstP)

Input: A temporal graph G = (V , E1, E2, . . . , Eτ), two distinct vertices s, t ∈ V ,
and two integers k, � ∈ N0.

Question: Is there a sequence (P1, P2, . . . , Pτ) such that Pi is an s–t path in (V , Ei)

with |V (Pi)| ≤ k for all i ∈ {1, . . . , τ }, and distΠ(Pi , Pi+1) ≤ � for all i ∈
{1, . . . , τ − 1}?

The multistage model requests snapshot solutions such that (with respect to time)
consecutive ones are similar to each other. Herein, similarity is measured by the sym-
metric difference of the sets describing the consecutive snapshot solutions. For paths,
there are two natural choices for comparing: the sets of vertices and the sets of edges.
Thus, we obtain two distance measures defined as follows.

distV�V(Pi , Pi+1): = |V (Pi)�V (Pi+1)| (V�V-MstP),

distE�E(Pi , Pi+1): = |E(Pi)�E(Pi+1)| (E�E-MstP).

Confronting the similarity request of the multistage framework with a dissimilarity
request instead leads to the following.

distV∩V(Pi , Pi+1): = |(V (Pi) ∩ V (Pi+1))\{s, t}| (V ∩ V-MstP),

distE∩E(Pi , Pi+1): = |E(Pi) ∩ E(Pi+1)| (E ∩ E-MstP).

Note that we can easily compute each of the four distances in linear time.
In the following, we study the classical and parameterized complexity of all four

variants E�E-MstP, V�V-MstP, V∩V-MstP, and E∩E-MstP. When performing a
parameterized complexity analysis, we do not only aim for a better understanding of
the influence of several natural problem parameters like path length k −1 or the upper
bound � on the distance values between consecutive snapshots, but we alsowant to find
out where (and why) the problem variants are potentially different from each other; in
particular, this means confronting the similarity (also known as classical multistage)
view with the dissimilarity view.

Our Contributions. We introduce four natural variants of the Multistage s–t
Path problem by employing four different ways to measure the distance between
consecutive solutions. Doing so, seemingly for the first time for multistage models in
general, we provide a systematic study on the impact on the algorithmic complexity
when switching between edge and vertex distances on the one hand, and similarity
versus dissimilarity distance measurements on the other hand.

We prove all four problems to be NP-complete, even in the restricted case of
only two snapshots, each snapshot being series–parallel and the underlying graph

123

Algorithmica (2023) 85:2028–2064 2031

Fig. 1 Overview of our results. “p-NP-h.”, “W[1]-h.”, “FPT”, “PK”, and “noPK” respectively abbrevi-
ate para-NP-hard, W[1]-hard, fixed-parameter tractable, polynomial kernel, and “no polynomial kernel
unless NP ⊆ coNP / poly”. Note that � ≤ 2k and k ≤ 2ν↓ + 1

being of maximum degree four. We provide an extensive study on the parameter-
ized complexity landscape of the problems regarding the parameters k (path length),
� (maximum path distance between consecutive snapshots), τ (lifetime), n (num-
ber of graph vertices), ν↓ (vertex cover number of the “underlying graph”), and Δ↓
(maximum vertex degree in the underlying graph); see Fig. 1 for an overview. The
results of our parameterized complexity analysis reveal a clear distinction between
similarity and dissimilarity. When parameterized by the maximum number k of ver-
tices in each s–t path, while E�E-MstP and V�V-MstP are W[1]-hard, E∩E-MstP

and V∩V-MstP are fixed-parameter tractable. To this end, we develop one of the
first uses of the technique of representative sets [24, 41] in the context of temporal
graphs. In addition, we show that, under standard complexity-theoretic assumptions,
the similarity problem V�V-MstP parameterized by the number of vertices has no
polynomial kernel, while the dissimilarity problem V∩V-MstP has one.

RelatedW ork. We studies are within algorithmic temporal graph theory and, more
specifically, contribute and extend a series of studies on themultistagemodel. Notably,
all previous studies (on various basic computational problems) within the multistage
framework adhere to the “similarity view”; we extend this by introducing also a “dis-
similarity view”.

To the best of our knowledge, the multistage model (which is a temporal model
not necessarily only applying to graph problems) first appeared in 2014 in works
of Eisenstat et al. [14] and Gupta et al. [29]. In a nutshell, the model considers a
sequence (I1, . . . , Iτ) of instances of some problem P as input, and it asks for a
“robust” sequence of solutions to the instances in the sense that any two consecutive

123

2032 Algorithmica (2023) 85:2028–2064

solutions are similar. Several classical problems have been studied in the multistage
model, both from an approximate [1–4] and from a parameterized [8, 19, 20, 23,
31, 34] algorithmics point of view. While E�E-MstP and V�V-MstP adhere to
the original multistage model, our two problems E∩E-MstP and V∩V-MstP can be
seen as a novel and natural variation of the multistage model by replacing the goal of
consecutive similarity with consecutive dissimilarity.

Several basic temporal graph problems are closely related to the task of finding a
(short) temporal s–t path (finding an s–t path over time, that is, an s–t path where
the edges along the path have non-decreasing time stamps) [5, 9, 10, 15–18, 35, 36,
45, 47, 48]. While these problems typically are concerned with temporal s–t paths
that may span over several snapshots of the temporal graph, in our multistage-inspired
framework we aim at finding an s–t path in each snapshot.

We mention in passing that there is also somewhat related work on short paths
in multiplex networks (also known as multilayer or multimodal networks) [27]. The
main difference to our scenario is that the temporal aspect imposes an ordering of the
layers whereas the multiplex view does not; in addition, Ghariblou et al. [27] perform
a multiobjective optimization, being particularly interested in Pareto efficiency.

2 Preliminaries

We denote by N and N0 the natural numbers excluding and including 0, respectively.
By log(·) we denote the logarithm to base two. We use basic notation from graph
theory and parameterized algorithmics.

Graph T heor y. An undirected graph G = (V , E) is a tuple consisting of a set V
of vertices and a set E ⊆ {{v,w} | v,w ∈ V , v �= w} of edges. For a graph G, we
also denote by V (G) and E(G) the vertex and edge set of G, respectively. For a vertex
set W ⊆ V , the induced subgraph G[W] is defined as the graph (W , {{v,w} ∈ E |
v,w ∈ W }). A (simple) path P = (V , E) is a graph with a set V = {v1, . . . , vk} of
distinct vertices and edge set E = {{vi , vi+1} | 1 ≤ i < k} (we often represent path P
by the tuple (v1, v2, . . . , vk)); we say that P is a v1–vk path. The length of a path is its
number of edges. For two vertices s, t ∈ V (G), an s–t separator S ⊆ V (G)\{s, t} is
a set of vertices such that there is no s–t path in G − S, where G − S = G[V \S]. We
denote by NG(v) = {w ∈ V | {w, v} ∈ E} the neighborhood of a vertex v in G, and
by deg(v) = |NG(v)| the degree of v in G. Moreover, we denote by Δ (or Δ(G)) the
maximum vertex-degree of G, that is, Δ(G) = maxv∈V deg(v). A vertex cover of G
is a set W of vertices such that G − W contains no edge; we denote by ν (or ν(G))
the smallest size of a vertex cover in G. A graph with distinct terminal vertices s, t
is series–parallel if it can be turned into a single edge by a sequence of contractions
of degree-two vertices except s and t while removing any parallel edge that appears
[13].

T emporal Graph T heory. A temporal graph G = (V , E1, E2, . . . , Eτ) consists
of a set V of vertices and lifetime τ many edge sets E1, E2, . . . , Eτ over V . We also
denote by τ(G) the lifetime of G. The size of G is |G|: = |V | + ∑τ

i=1 |Ei |. The static
graph (V , Ei) is called the i-th snapshot. The underlying graph G↓ of G is the static

123

Algorithmica (2023) 85:2028–2064 2033

graph (V , E1 ∪ · · · ∪ Eτ). The underlying vertex cover number ν↓ is ν(G↓). The
underlying maximum degree Δ↓ is Δ(G↓).

Parameteri zed Complexi ty. Let � denote a finite alphabet. A parameterized
problem L ⊆ {(x, k) ∈ �∗ × N0} is a subset of all instances (x, k) from �∗ × N0,
where k denotes the parameter. A parameterized problem L is (i) fixed-parameter
tractable if there is an algorithm that decides every instance (x, k) for L in f (k)·|x |O(1)

time, (ii) contained in the class XP if there is an algorithm that decides every
instance (x, k) for L in |x | f (k) time, and (iii) para-NP-hard if the problem for some
constant value of the parameter is NP-hard, where f is some computable func-
tion only depending on the parameter. For two parameterized problems L, L ′, an
instance (x, k) ∈ �∗ × N0 of L is equivalent to an instance (x ′, k′) ∈ �∗ × N0
for L ′ if (x, k) ∈ L ⇐⇒ (x ′, k′) ∈ L ′. A problem L is hard for the class W[1]
(W[1]-hard) if for every problem L ′ ∈ W[1] there is an algorithm that maps any
instance (x, k) in f (k) · |x |O(1) time to an equivalent instance (x ′, k′) with k′ = g(k)

for some computable functions f , g. It holds true that FPT ⊆ W[1] ⊆ XP, where FPT
denotes the class of all fixed-parameter tractable parameterized problems. It is believed
that FPT �= W[1], and that hence no W[1]-hard problem is fixed-parameter tractable.
A problem kernelization for a parameterized problem L is a polynomial-time algo-
rithm that maps any instance (x, k) of L to an equivalent instance (x ′, k′) of L (the
kernel) such that |x ′|+k ≤ f (k) for some computable function f ; If f is a polynomial,
we say that the problem kernelization (and kernel) is polynomial. It is well-known that
a decidable parameterized problem is fixed-parameter tractable if and only if it admits
a problem kernelization.

3 Relation Between DistanceMeasures: From Edges to Vertices

Weshow that there are polynomial-timealgorithms that, given an instanceof E�E-MstP

or of E∩E-MstP, construct an equivalent instance of the respective vertex-counterpart.

Proposition 1 There is an algorithm that, on every input (G, s, t, k, �) to E�E-MstP,
computes in O(|G| · �) time an equivalent instance (G′, s, t, k′, �′) of V�V-MstP

such that k′ ∈ O(k · �), �′ ∈ O(�2), Δ(G′↓) = max{Δ(G↓), 2}, and τ(G) = τ(G′).

Proof Let I = (G = (V , E1, . . . , Eτ), s, t, k, �) be an instance of E�E-MstP. Let
initially V ′ = V . For each edge e = {a, b} ∈ E : = E1 ∪ · · · ∪ Eτ , add the set Ve =
{v1e , . . . , v�+1

e } of � + 1 vertices to V ′. For each i ∈ {1, . . . , τ }, set E ′
i to

⋃
e∈Ei

Pe,

where Pe = {{a, v1e }, {v�+1
e , b}}∪⋃

1≤ j≤�{{v j
e , v

j+1
e }}. This finishes the construction

ofG′ = (V ′, E ′
1, . . . , E ′

τ). Finally, set k′ = k+(k−1)(�+1) and �′ = (�+1)2−1.We
claim that I is a yes-instance if and only if I ′: = (G′, s, t, k′, �′) is a yes-instance.

(⇒) Let P = (P1, . . . , Pτ) be a solution to I . For each i ∈ {1, . . . , τ }, con-
struct P ′

i with V (P ′
i) = V (Pi) ∪ {Ve | e ∈ E(Pi)} and E(P ′

i) = {Pe | e ∈ E(Pi)}.
Clearly P ′

i is an s–t path in (V ′, E ′
i). Moreover, |V (P ′

i)| = |V (Pi)| + |{Ve | e ∈
E(Pi)}| ≤ k + (k − 1) · (� + 1) = k′ and |V (P ′

i)�V (P ′
i+1)| ≤ � + (� + 1) ·

|E(Pi)�E(Pi+1)| ≤ � + (� + 1)� = �′.

123

2034 Algorithmica (2023) 85:2028–2064

(⇐) Let P ′ = (P ′
1, . . . , P ′

τ) be a solution to I ′. For each i ∈ {1, . . . , τ }, con-
struct Pi with V (Pi) = V (P ′

i)\{Ve | Pe ⊆ E(P ′
i)} and E(Pi) = {e | Pe ⊆ E(P ′

i)}.
Clearly Pi is an s–t path in (V , Ei). Moreover, note that k∗ := |V (P ′

i) ∩ V | ≤ k,
since otherwise we have too many vertices in P ′

i , contradicting P ′ to be a solution.
Hence, we have that |V (Pi)| = |V (P ′

i) ∩ V | ≤ k. Further note that |{e ∈ E | Ve ⊆
V (P ′

i)�V (P ′
i+1)}| ≤ �, since otherwise |V (P ′

i)�V (P ′
i+1)| ≥ (� + 1) · (� + 1) > �′.

Hence, |E(Pi)�E(Pi+1)| = |{e ∈ E | Ve ⊆ V (P ′
i)�V (P ′

i+1)}| ≤ �. ��
Proposition 2 There is an algorithm that, on every input (G, s, t, k, �) to E∩E-MstP,
computes in O(|G|) time an equivalent instance (G′, s, t, k′, �′) of V∩V-MstP such
that k′ = 2k − 1, �′ = �, Δ(G↓) = max{Δ(G′↓), 4}, and τ(G) = τ(G′).

Proof Let I = (G = (V , E1, . . . , Eτ), s, t, k, �) be an instance of E∩E-MstP,
and denote by E the set E1 ∪ · · · ∪ Eτ . Define for each v ∈ V \{s, t} the
set Vv = V 0

v ∪ V 1
v , where V i

v = {vi } for each i ∈ {0, 1}, and define Vs = {s}
and Vt = {t}. Set V ∗ = ⋃

v∈V Vv . We set V ′ = V ∗ ∪ {xe | e ∈ E}. Next,
for each edge e = {v,w} ∈ E with v,w /∈ {s, t}, let E0

e = {{v0, xe}, {w0, xe}}
and E1

e = {{v1, xe}, {w1, xe}}, and for each edge e = {v,w} ∈ E with v ∈ {s, t}
and w /∈ {s, t}, let E0

e = {{v, xe}, {w0, xe}} and E1
e = {{v, xe}, {w1, xe}}. If e =

{s, t} ∈ E , then set E0
e = E1

e = {{{s, xe}, {xe, t}}. Finally, let Ee = E0
e ∪ E1

e and
E ′

i = ⋃
e∈Ei

Ee. Set k′ = 2k − 1 and �′ = �. This finishes the construction of
instance I ′: = (G′ = (V ′, E ′

1, . . . , E ′
τ), s, t, k′, �′) of V∩V-MstP. Note that I ′ can

be constructed inO(|G|) time. We claim that I is a yes-instance if and only if I ′ is a
yes-instance.

(⇒) Let (P1, . . . , Pτ) be a solution to I .We claim that the sequence (P ′
1, . . . , P ′

τ)

with V (P ′
i) = ⋃

v∈V (Pi)
V i mod 2

v ∪ {xe | e ∈ E(Pi)} and E(P ′
i) = ⋃

e∈E(Pi)
Ei mod 2

e
is a solution to I ′. First, observe that each P ′

i is an s–t path, and |V (P ′
i)| = |V (Pi)| +

|E(Pi)| ≤ 2k − 1. Moreover, |(V (P ′
i) ∩ V (P ′

i+1))\{s, t}| = |{xe | e ∈ E(Pi) ∩
E(Pi+1)}| ≤ � = �′.

(⇐) Let (P ′
1, . . . , P ′

τ) be a solution to I ′ such that for each P ′
i it holds true

that |Vv ∩ V (P ′
i)| ≤ 1. Note that V (P ′

i) = {s, t} � Wi � Xi with Wi ⊆ V ∗\{s, t}
and Xi ⊆ {xe | e ∈ E}. We claim that (P1, . . . , Pτ) with V (Pi) = {v | vi ∈
Wi }∪ {s, t} and E(Pi) = {e | xe ∈ Xi } is a solution to I . First, observe that each Pi is
an s–t path, and |V (Pi)| ≤ k. Moreover, |E(Pi)∩ E(Pi+1)| ≤ |Xi ∩ Xi+1| ≤ �′ = �.

��
Due to Propositions 1 and 2, often we just may prove lower bounds for E�E-MstP

and E∩E-MstP, and upper bounds for V�V-MstP and V∩V-MstP, and transfer the
results to their respective counterparts.

4 NP-Hardness Even for Two Snapshots of MaximumDegree Four

In this section,we prove that all four problems areNP-hard even for only two snapshots
and the maximum underlying vertex-degree being four.

Theorem 1 E�E-MstP and E∩E-MstP, the latter with � = 0, are NP-hard even if G
consists of two snapshots both being series–parallel graphs and Δ(G↓) = 4.

123

Algorithmica (2023) 85:2028–2064 2035

Fig. 2 Illustration of Constructions 1 with a illustrating the first snapshot and b illustrating the second
snapshot, exemplified for clause C1 = (x1 ∨ x j ∨ xi). The edge {a11 , a12} is highlighted in both (a) and (b)

Proof The theorem follows directly from the forthcoming Propositions 3 and 4. ��
We give two polynomial-time many-one reductions from the NP-complete 3-SAT
problem, each employing the following.

Construction 1 Let (X = {x1, . . . , xn}, C = (C1, . . . , Cn)) be an instance of 3-SAT
where w.l.o.g. the number n of variables equals the number of clauses, and let d ≥ 2
denote the most frequent appearance (along the clause sequence) of any literal of some
variable in X . We construct a temporal graph G = (V , E1, E2) as follows (see Fig. 2
for an illustration).

Let V := {s, t}∪{ci
1, . . . , ci

2n | i ∈ {1, 2}}∪{ai
1, . . . , ai

2d | xi ∈ X}∪{bi
1, . . . , bi

2d |
xi ∈ X}. Let Ei,a := ⋃

1≤ j<2d{{ai
j , ai

j+1}} and let Ei,b := ⋃
1≤ j<2d{{bi

j , bi
j+1}}.

Then E1 contains

– the edge
{
s, c11

}
,

– the edge set
⋃

1≤i≤n

{{
c12i−1, ai

1

}
,
{
c12i−1, bi

1

}}
,

– the edge set
⋃

1≤i≤n

{{
c12i , ai

2d

}
,
{
c12i , bi

2d

}}
,

– the edge {t, c12n},
– the edge set

⋃
1≤i<n

{{
c12i , c12i+1

}}
, and

– the edge sets
⋃

1≤i≤n Ei,a and
⋃

1≤i≤n Ei,b.

For E2, for each clause Cq ∈ C we define the vertex set VCq and edge set ECq as
follows. If Cq contains the j-th appearance of the positive literal xi , then add the ver-
tices ai

2 j−1, ai
2 j to VCq and the edges {ai

2 j−1, ai
2 j }, {c22q−1, ai

2 j−1}, {c22q , ai
2 j } to ECq .

If Cq contains the j-th appearance of the negative literal xi , then add bi
2 j−1, bi

2 j to

VCq and the edges {bi
2 j−1, bi

2 j }, {c22q−1, bi
2 j−1}, {c22q , bi

2 j } to ECq . Then, we have

that E2 contains the edges {s, c21}, {t, c22n}, the edge set
⋃

1≤i<n{{c22i , c22i+1}}, and
ECq for each q ∈ {1, . . . , n}. This finishes the construction of G. It is not difficult
to see that (V , E1) and (V , E2) are series–parallel graphs. Moreover, Δ(G↓) = 4.
Set k = 2 + 2n + 2d · n.

123

2036 Algorithmica (2023) 85:2028–2064

Intuitively, if an instance resulting from Constructions 1 is a yes-instance for
E�E-MstP, then the s–t path in the first snapshot selects setting variables to true
or false such that the s–t path in the second snapshot can pass a literal for each clause.
It follows that Constructions 1 is a polynomial-time many-one reduction.

The next two results, Propositions 3 and 4, together prove Theorem 1.

Proposition 3 E�E-MstP is NP-hard even if G consists of two snapshots both being
series–parallel graphs and Δ(G↓) = 4.

Proof Let I = (X = {x1, . . . , xn}, C = (C1, . . . , Cn)) be an instance of 3-SAT
such that the number n of variables equals the number of clauses, and let d denote
the largest number of appearances of any literal of some variable in X . Let I ′ =
(G = (V , E), s, t, k, �) with � = 5n + 2dn + 2 and k = 2 + 2n + 2d · n be the
instance of E�E-MstP obtained from I using Constructions 1. We claim that I is a
yes-instance if and only if I ′ is a yes-instance.

(⇒) Let X ′ ⊆ X be a solution.We construct the paths (P1, P2) as follows. Vertex
set V (P1) contains {s, t} ∪ {c11, . . . , c12n} and V (P2) contains {s, t} ∪ {c21, . . . , c22n}.
For each i ∈ {1, . . . , n}, if xi ∈ X ′, then V (P1) contains the vertices {ai

1, . . . , ai
2d},

and if xi /∈ X ′, then V (P1) contains {bi
1, . . . , bi

2d}. Set E(P1) = E(G[V (P1)]).
Note that P1 is an s–t path and |V (P1)| = 2 + 2n + 2d · n = k. Observe that
for any clause Cq we have VCq ∩ V (P1) �= ∅, since X ′ is a solution. For E(P2),
for each q ∈ {1, . . . , n}, let hi

2 j−1, hi
2 j ∈ VCq ∩ V (P1) with h ∈ {a, b} be with

smallest i ∈ {1, . . . , n}, then E(P2) contains the edges {c22q−1, hi
2 j−1}, {hi

2 j−1, hi
2 j },

and {hi
2 j , c22q}. Note that P2 is an s–t path in (V , E2)with |V (P2)| = 2+2n+2n < k.

It remains to consider E(P1)�E(P2). Let B = {{v,w} | v,w ∈ VCq ∩ V (P2), q ∈
{1, . . . , n}}. Observe that E(P1) ∩ E(P2) = B, since for all other edges in E(P2)\B
we have that at least one endpoint is in {c21, . . . , c22d}, which is disjoint from V (P1).
Hence |E(P1)�E(P2)| ≤ |E(P1) ∪ E(P2)| − |E(P1) ∩ E(P2)| = (2 + 2n + 2dn +
2 + 2n + 2n − 2) − n = 5n + 2dn + 2 = �.

(⇐) Let (P1, P2) be a solution to I ′. Observe that for all i ∈ {1, . . . , n}, V (P1)

contains as a subset either the set {ai
1, . . . , ai

2d} or the set {bi
1, . . . , bi

2d}. Let X ′ = {xi ∈
X | ai

1, . . . , ai
2d ∈ V (P1)}. We claim that the formula of I is true when the variables

in X ′ are set to true. Let Cq be an arbitrary clause from C. Let {c22q−1, v, w, c22q} be
the vertices on the subpath from P2 connecting c22q−1 with c22q , where v,w ∈ VCq .
Note that {v,w} ∈ E(P1), since otherwise |E(P1) ∪ E(P2)| − |E(P1) ∩ E(P2)| >

(2 + 2n + 2dn + 2 + 2n + 2n − 2) − n = �. Hence, if {v,w} = {ai
2 j−1, ai

2 j } for
some i ∈ {1, . . . , n} and j ∈ {1, . . . , 2d − 1}, then xi ∈ X ′, setting Cq to true.
Otherwise, if {v,w} = {bi

2 j−1, bi
2 j } for some i ∈ {1, . . . , n} and j ∈ {1, . . . , 2d − 1},

then xi /∈ X ′, setting Cq to true (xi is negated in Cq). Since Cq was chosen arbitrarily,
it follows that X ′ is a solution to I . ��
Interestingly, Constructions 1 also gives a polynomial-time many-one reduction for
E∩E-MstP. Here the intuition is opposite: the first snapshot path selects setting the
variables to the complement of a satisfying assignment such that the second snapshot
path can pass the “clause gadgets” without passing any edge contained in the first
snapshot path.

123

Algorithmica (2023) 85:2028–2064 2037

Proposition 4 E∩E-MstP is NP-hard even if G consists of two snapshots both being
series–parallel graphs, Δ(G↓) = 4, and � = 0.

Proof Let I = (X = {x1, . . . , xn}, C = (C1, . . . , Cn)) be an instance of 3-SAT such
that the number n of variables equals the number of clauses, and let d denote the largest
appearance of any literal of some variable in X . Let I ′ = (G = (V , E), s, t, k, �)

with � = 0 and k = 2 + 2n + 2d · n be the instance of E∩E-MstP obtained from I
using Constructions 1. We claim that I is a yes-instance if and only if I ′ is a yes-
instance. The proof works analogously to the proof of Proposition 1, except for the
fact that P1 selects the complement of a satisfying assignment.

(⇒) Let X ′ ⊆ X be a solution. We construct the paths (P1, P2) as fol-
lows. Vertex set V (P1) contains {s, t} ∪ {c11, . . . , c12n} and V (P2) contains {s, t} ∪
{c21, . . . , c22n}. Let H be an auxiliary, initially empty vertex set. For each i ∈ {1, . . . , n},
if xi ∈ X ′, then V (P1) contains {bi

1, . . . , bi
2d} and H contains {ai

1, . . . , ai
2d}, and

if xi /∈ X ′, then V (P1) contains {ai
1, . . . , ai

2d} and H contains {bi
1, . . . , bi

2d}. Note
that H ∩ V (P1) = ∅. Set E(P1) = E(G[V (P1)]). Note that P1 is an s–t path
and |V (P1)| = 2 + 2n + 2d · n = k. Observe that VCq ∩ H �= ∅, since X ′ is a
solution. For P2, for each q ∈ {1, . . . , n}, let hi

2 j−1, hi
2 j ∈ VCq ∩ H with h ∈ {a, b}

with smallest i ∈ {1, . . . , n}, then V (P2) contains hi
2 j−1, hi

2 and E(P2) contains

the edges {c22q−1, hi
2 j−1}, {hi

2 j−1, hi
2 j }, and {c22q , hi

2 j }. Note that P2 is an s–t path
in (V , E2) with |V (P2)| = 2 + 2n + 2n < k. It remains to consider E(P1) ∩ E(P2).
Note that E(P1) ∩ E(P2) = ∅, since V (P1) ∩ H = ∅, and V (P2) ∩ VCq ⊆ H for
all q ∈ {1, . . . , n}.

(⇐) Let (P1, P2) be a solution to I ′. Observe that for all i ∈ {1, . . . , n}, P1 con-
tains as a subset either the set {ai

1, . . . , ai
2d} or the set {bi

1, . . . , bi
2d}. Let X ′ = {xi ∈

X | bi
1, . . . , bi

2d ∈ V (P1)}. We claim that X ′ is a solution to I . Let Cq be an arbi-
trary clause from C. Let {c22q−1, v, w, c22q} be the vertices on the subpath from P2

connecting c22q−1 with c22q , where v,w ∈ VCq . Note that {v,w} /∈ E(P1), since other-

wise |E(P1) ∩ E(P2)| > 0. Hence, if {v,w} = {ai
2 j−1, ai

2 j } for some i ∈ {1, . . . , n}
and j ∈ {1, . . . , 2d − 1}, then {bi

2 j−1, bi
2 j } ⊆ V (P1) and hence xi ∈ X ′, set-

ting Cq to true. Otherwise, if {v,w} = {bi
2 j−1, bi

2 j } for some i ∈ {1, . . . , n}
and j ∈ {1, . . . , 2d − 1}, then {ai

2 j−1, ai
2 j } ⊆ V (P1) and hence xi /∈ X ′ setting Cq

to true (xi is negated in Cq). Since Cq was chosen arbitrarily, it follows that X ′ is a
solution to I . ��
Due to Propositions 1 and 2, we get the following from Theorem 1.

Corollary 1 V�V-MstP and V∩V-MstP with � = 0 are NP-hard even if τ = 2
and Δ(G↓) = 4.

Weproved E∩E-MstP andV∩V-MstP to remainNP-hard even if � = 0 and τ = 2.
This leads us to ask whether for a constant value of �+ τ , E�E-MstP or V�V-MstP

remain NP-hard. In fact, we prove this to be true for the vertex-variant. while leaving
open whether E�E-MstP is contained in XP regarding � + τ .

123

2038 Algorithmica (2023) 85:2028–2064

Theorem 2 Even if � = 0 and τ = 2, V�V-MstP is NP-hard and admits no 2o(k) ·
(|G|)O(1)-time algorithm unless the Exponential Time Hypothesis fails.

We give a polynomial-time reduction from the following NP-complete [26] problem.

Hamiltonian Path

Input: An undirected graph G = (V , E).
Question: Is there a Hamiltonian path in G, i.e., a path in G that contains every

vertex of G exactly once?

Construction 2 Let (G = (V , E)) be an instance of Hamiltonian Path and let V =
{v1, v2, . . . , vn}. We construct the temporal graph G = (V ′, E1, E2) with V ′: =
V ∪ {s, t} as follows. Set

E1: = {{s, v1}} ∪ {{vn, t}} ∪
⋃n−1

i=1
{{vi , vi+1}}, and

E2: = E ∪
⋃n

i=1
{{s, vi }, {t, vi }}.

Finally, set k = n + 2 and � = 0.

Proof of Theorem 2 Let I = (G = (V , E)) be an instance of Hamiltonian Path and
let V = {v1, . . . , vn} be enumerated.Moreover, let I ′ = (G = (V ′, E1, E2), s, t, k, �)

be the instance obtained from I usingConstruction 2.We claim that I is a yes-instance
if and only if I ′ is a yes-instance.

(⇒) Let P be a Hamiltonian path in G with endpoints vi and v j . Con-
struct (P1, P2) as follows. Let V (P1) = V ′ and E(P1) = E1. Let V (P2) = V ′
and E(P2) = E(P) ∪ {{s, vi }, {t, v j }}. Since V (P1) = V (P2) = V ′, we have
that |V (P1)| = n + 2 = k and V (P1)�V (P2) = ∅. Hence, (P1, P2) is a solution
to I ′.

(⇐) Let I ′ be a yes-instance of V�V-MstP and let (P1, P2) be a solution. By
the construction of (V , E1) and the fact that (P1, P2) is a solution to I ′, we know
that V (P1) = V (P2) = V ′ . We construct a Hamiltonian path P = (VP , EP) from P2
as follows. Let VP = V (P2)\{s, t}, and let EP = {e ∈ E(P2) | e ∩ {s, t} = ∅}. That
is, P is the subpath of P2 where the neighbors of s and t on P2 form the endpoints. It
follows that P is a path inG containing all vertices inV , and hence, I is ayes-instance.

Finally, note that since k = n +2, and by the fact that Hamiltonian Path admits
no 2o(n) · (n + m)O(1)-time algorithm unless the Exponential Time Hypothesis fails,
the second part of the theorem follows. ��

5 The Role of the Parameter Path Length

In this section, we focus on the parameter k, the maximum number of vertices in
any s–t path. It is not hard to see that all variants allow for an XP-algorithm when
parameterized by the number k of maximal vertices in each path.

123

Algorithmica (2023) 85:2028–2064 2039

Proposition 5 V�V-MstP, V∩V-MstP, E�E-MstP, and E∩E-MstP, are solvable
in Δ

O(k)
max · |G|O(1) time, where Δmax = maxi∈{1,...,τ } Δ((V , Ei)).

Proof The proof is in line with the proof of [23, Proposition 4.2]. We sketch the proof
in the general setup Π -MstP.

Given an instance I = (G = (V , E1, E2, . . . , Eτ), s, t, k, �), construct a directed
graph D = (V ′, A) with vertex set V ′ = V ′

1 � . . .� V ′
τ ∪{s′, t ′} and arc set A together

with a mapping γ : V ′ → (2V , 2(
V
2)) as follows. For each i ∈ {1, . . . , τ } and each s–t

path P of length atmost k−1 in (V , Ei) add a vertex v toV ′
i and set γ (v) = P . It is easy

to verify that a straight-forward search tree algorithm (starting in s and exploring edges
until the path has length k − 1) can enumerate all s–t paths of length k − 1 in (V , Ei)

in O(Δk
max · |Ei |) time, for any i ∈ {1, . . . , τ }. Next, for each i ∈ {1, . . . , τ − 1}, if

for two vertices v ∈ V ′
i and w ∈ V ′

i+1 it holds true that distΠ(γ (v), γ (w)) ≤ �, then
add the arc {v,w}. Finally make s′ adjacent with all vertices in V ′

1, and t ′ adjacent
with all vertices in V ′

τ . This finishes the construction. It is not difficult to see that I
is a yes-instance if and only if there is an s′–t ′ path in D (which can be checked in
time linear in the size of D). ��
We will prove that the parameterization with k distinguishes similarity from dis-
similarity: While E�E-MstP and V�V-MstP are W[1]-hard regarding k (even
regarding k + τ), each of E∩E-MstP and V∩V-MstP turn out to be fixed-parameter
tractable.

5.1 W[1]-Hardness for the Similarity Variant Regarding k + � and �↓

We prove that E�E-MstP is W[1]-hard regarding k + τ even if the upper bound �

on the sizes of consecutive symmetric differences is constant. Due to Proposition 1,
we then obtain the same result for V�V-MstP. The proof is by a parameterized
reduction from the W[1]-complete problem Multicolored Clique parameterized
by the clique size.

Theorem 3 Even if � = 4 and each snapshot is bipartite, E�E-MstP is NP-hard and
W[1]-hard when parameterized by k + τ .

To prove Theorem 3, we reduce from the W[1]-complete problem Multicolored

Clique parameterized by r .

Multicolored Clique

Input: An undirected, r -partite graph G = (V1, . . . , Vr , E).
Question: Is there an r -vertex clique in G?

Intuitively, in each snapshot we order the r parts differently such that any two colors
appear at least once consecutively. Hence, if there is a sequence of s–t paths through
all r parts in each snapshot over the same vertex set, then this witnesses the existence of
each edge of any two vertices from distinct parts. For the ordering of the r parts in the
snapshots, we define the following sequence of permutations where two consecutive
permutations only differ by a swap of two consecutive elements.

123

2040 Algorithmica (2023) 85:2028–2064

Definition 1 For all 1 ≤ i ≤ 1+ (r
2

)
, let πr

i be a permutation of (1, . . . , r) as follows.
Let πr

1 = (1, . . . , r). For i > 1, let πr
i be obtained from πr

i−1 as follows. Let j be the
index such that πr

i−1(j) < πr
i−1(j + 1) and there is no j ′ �= j such that πr

i−1(j ′) <

πr
i−1(j) and πr

i−1(j ′) < πr
i−1(j ′ + 1). Then set πr

i (j) = πr
i−1(j + 1), πr

i (j + 1) =
πr

i−1(j), and πr
i (j ′) = πr

i−1(j ′) for all j ′ ∈ {1, . . . , r}\{ j, j + 1}.
Note that each pair is swapped exactly once, hence we have that πr

1+(r
2)

= (r , r −
1, . . . , 1). Moreover, we have the following.

Observation 1 For all distinct r1, r2 ∈ {1, . . . , r}, there is an i ∈ {1, . . . , 1 + (r
2

)}
such that | j1 − j2| = 1, where πr

i (j1) = r1 and πr
i (j2) = r2.

Next we describe the construction used in the reduction.

Construction 3 Let (G = (V1, . . . , Vr , E)) be an instance of Multicolored

Clique. Let Ei, j ⊆ E denote the set of all edges between Vi and Vj . We con-
struct an instance (G = (V , E1, . . . , Eτ), s, t, k, �) with τ = (r

2

) + 1 of E�E-MstP

as follows. Let V = {s, t} ∪ V1 ∪ · · · ∪ Vr . Add the edge sets
⋃

v∈Vπr
i (1)

{{s, v}} and
⋃

v∈Vπr
i (r)

{{t, v}} to Ei . Moreover, add Eπr
i (j),πr

i (j+1) for all 1 ≤ j < r . Set k = r +2

and � = 4.

Proof of Theorem 3 Let I = (G = (V1, . . . , Vr , E) be an instance of Multicolored

Clique. Let Ei, j ⊆ E denote the set of all edges between Vi and Vj . Let I ′ = (G =
(V , E1, . . . , Eτ), s, t, k, �) be the instance obtained from I using Constructions 3.We
claim that I is a yes-instance if and only if I ′ is a yes-instance.

(⇒) Let I be a yes-instance, and let C ⊆ V1 ∪ · · · ∪ Vr form a multicolored
clique in G. We claim that (P1, . . . , Pτ) with V (Pi) = C ∪ {s, t} and E(Pi) =
E(Gi [V (Pi)]) is a solution to I ′. Note that each Pi is an s–t path with k = r + 2
vertices, since inGi the edge set Eπr

i (j),πr
i (j+1) exists for j ∈ {1, . . . , r−1}.Moreover,

E(Pi)�E(Pi+1) contains at most four edges, since πr
i = (. . . , a, b, c, d, . . .) and

πr
i+1 = (. . . , a, c, b, d, . . .), whereb, c denote the twounique indices that are swapped

from πr
i to πr

i+1.
(⇐) Let P = (P1, . . . , Pτ) be a solution to I ′. Note that |V (Pi) ∩ Vx | = 1 for

all x ∈ {1, . . . , r}, since each Vx forms an s–t separator and |V (P)| ≤ k = r + 2. We
claim that V (Pi) = V (Pj) for all i, j ∈ {1, . . . , τ }. Suppose not, then there exists an
i such that V (Pi) �= V (Pi+1). Then there are at least five edges in E(Pi)�E(Pi+1):
Let πr

i = (. . . , a, b, c, d, . . .) and πr
i+1 = (. . . , a, c, b, d, . . .), then E(Pi)�E(Pi+1)

is a superset of the edge set E ′ containing one edge in Ea,b, one edge in Ea,c, one
edge in Ec,d , and one edge in Eb,d . Moreover, let x be the (smallest) index such
that V (Pi)∩ Vx � v �= v′ ∈ V (Pi+1)∩ Vx . Then E(Pi)�E(Pi+1) contains two edges
incident with v and two edges with v′, where at most two edges intersect with E ′ (in the
case of x ∈ {b, c}). This contradicts the fact thatP is a solution. LetC = V (P1)\{s, t}.
We claim that C forms a multicolored clique in G. First, recall that |C ∩ Vi | = 1
for all i ∈ {1, . . . , r}. Suppose there are v,w ∈ C , v �= w, such that {v,w} /∈ E .
Let v ∈ Vi andw ∈ Vj . Due toObservation 1, there is a snapshotGx that contains Ei, j .
Then Px is not an s–t path in Gx , contradictingP being a solution. Hence, {v,w} ∈ E
for all v,w ∈ C , v �= w. That is, C forms a multicolored clique in G. ��

123

Algorithmica (2023) 85:2028–2064 2041

Due to Proposition 1, we get the following.

Corollary 2 V�V-MstP is W[1]-hard when parameterized by k + τ , even if � is
constant.

By Proposition 5 and since k ≤ n, we know that E�E-MstP and V�V-MstP

are fixed-parameter tractable regarding the number n of graph vertices. Regarding the
parameter number k of path vertices (and even for k+τ), by Theorem3 andCorollary 2
weknow that both problems are inXP yetW[1]-hard. Sincewe can assume k ≤ 2ν↓+1
(recall that ν↓ is the vertex cover number of the underlying graph) in every instance
and naturally ν↓ ≤ n, we can settle the parameterized complexity regarding ν↓:

Theorem 4 When parameterized by ν↓, V�V-MstP with � = 1 and E�E-MstP are
W[1]-hard.

We prove each statement of Theorem 4 separately, both proofs rely on parameterized
reductions from Multicolored Clique.

Proposition 6 E�E-MstP when parameterized by ν↓ is W[1]-hard.

For the subsequent construction, we employ the following.

Definition 2 For r ∈ N, we define for all i, j ∈ {1, . . . , r}, i �= j , the bijection
πr

i, j : {1, . . . , r}\{i, j} → {1, . . . , r − 2} such that for x, y ∈ {1, . . . , r}\{i, j} if
x < y, then πr

i, j (x) < πr
i, j (y).

We now describe the construction in the reduction behind Proposition 6.

Construction 4 Let (G = (V1, . . . , Vr , E))be an instanceofMulticolored Clique

with n = |V1| = · · · = |Vr | and let N : = n · (r
2

)
. We construct a temporal graph G =

(V ′, E1, . . . , Eτ) with τ = 2N as follows (see Fig. 3 for an illustration). Let V ′
initially contain V1, . . . , Vr and s, t . Moreover, V ′ contains the sets A = {a1, . . . , ar }
and B = {b1, . . . , br }. Finally, V ′ contains the sets C1 = {c1i | 0 ≤ i ≤ r} and
C2 = {c2i | 0 ≤ i ≤ r}. We construct the edge set Eodd as follows. It contains the
edges {s, c10}, {c10, a1}, {c1r , br }, and {c1r , t}. Moreover, it contains the edges {bi , c1i },
{c1i , ai+1} for every 1 ≤ i < r . Finally, it contains the edge set

⋃
v∈Vi

{{ai , v}, {bi , v}}
for every i ∈ {1, . . . , r}. We set Ei : = Eodd for each odd i ∈ {1, . . . , τ }. Next, let φ

be a bijection that maps each (i, v, j) to a distinct integer in {1, . . . , N }, where i < j ,
i, j ∈ {1, . . . , r}, v ∈ Vi . We construct the edge set E2φ(i,v, j) as follows. We add the
edges {s, c2r }, {c2r , bi }. Then, bi is connected with allw ∈ Vi . Next, vertex v is adjacent
with a j , and allw ∈ Vi\{v} are adjacent with b j . Next, a j is adjacent to a vertex inw ∈
Vj if and only if {w, v} ∈ E . Vertices b j and ai are adjacent with all vertices in Vj , and
vertex ai is also adjacent with c20. Let π = πr

i, j : {1, . . . , r}\{i, j} → {1, . . . , r − 2}
(see Definition 2). Then c20 is adjacent with aπ−1(1) and c2r−2 is adjacent with bπ−1(r−2)

and with c2r−1 which in turn is adjacent with t . Moreover, for all p ∈ {1, . . . , r − 3}
the vertex c2p is adjacent with aπ−1(p+1) and bπ−1(p). Finally, aπ−1(p) and bπ−1(p)

are adjacent to all vertices in Vπ−1(p). This finishes the construction of E2φ(i,v, j).
Set k = 4r + 3 and � = 4r + 7.

123

2042 Algorithmica (2023) 85:2028–2064

Fig. 3 Illustration of Constructions 4 with a showing an odd snapshot and b showing the even snapshot
G2φ(i,v, j) with edge {a j , w} being present assuming {v, w} ∈ E , and dotted edges may or may not be
present (depending on E)

Observation 2 Let p ∈ {1, . . . , N }. In (V , E2p−1), each vertex in A ∪ B ∪ C1, and
each set Vi is an s–t separator, and in (V , E2p) with p = φ(i, v, j) each vertex
in (A\{a j }) ∪ (B\{b j }) ∪ C2, each set Vi , and the set {a j , b j } is an s–t separator.

Observation 3 Let p ∈ {1, . . . , N }. Every s–t path in (V , E2p) with at most k′ vertices
contains exactly one vertex from each Vi .

Proof For every odd snapshot, the statement is clear by construction. Consider p =
φ(i, v, j) and (V , E2p), and let P be an arbitrary s–t path with at most k vertices. We
know from Observations 2 that every s–t path in (V , E2p) contains every vertex in
(A\{a j })∪ (B\{b j })∪ C2, one vertex from each set Vi , and one vertex from {a j , b j }.
It follows that |V (P)| ≥ 2 + |(A\{a j }) ∪ (B\{b j }) ∪ C2| + r + 1 = 2 + (2r −
2 + (r + 1)) + r + 1 = 4r + 2. Moreover, with the same argument as for the odd
snapshots, it contains exactly one vertex from each set Vq with q ∈ {1, . . . , r}\{i, j}.
So, suppose P contains one more vertex from Vi or Vj . Then P must contain both a j

and b j , since bi and ai can only appear once on any s–t path and {a j , b j } separates Vi

from Vj . Hence |V (P)| = (4r + 2) + 2 = 4r + 4 > k, yielding a contradiction. ��
Since in every snapshot each vertex from C1∪C2 is of degree two or zero, we have

the following.

Observation 4 Let p ∈ {1, . . . , N }. Every s–t path in (V , E2p−1) contains the edge
set E ′

2p−1 consisting of all edges incident with a vertex in {c10, . . . , c1r }. Every s–t path

in (V , E2p) contains the edge set E ′
2p consisting of all edges incident with {c20, . . . , c2r }.

Hence, we have that E2p−1�E2p ⊇ E ′
2p−1∪E ′

2p and |E ′
2p−1∪E ′

2p| = 4r+3 = �−4,
and E2p�E2p+1 ⊇ E ′

2p ∪ E ′
2p+1 and |E ′

2p ∪ E ′
2p+1| = 4r + 3 = � − 4.

123

Algorithmica (2023) 85:2028–2064 2043

Lemma 1 Let P = (P1, . . . , Pτ) be a solution to the instance obtained using Con-
structions 4. Then V (Pp) ∩ V = V (Pq) ∩ V for all p, q ∈ {1, . . . , τ }.

Proof Assume towards a contradiction that there is q = φ(i, v, j) such that
V (P2q−1) ∩ V �= V (P2q) ∩ V or V (P2q) ∩ V �= V (P2q+1) ∩ V . We consider
the first case (the second case is analogous). We know that each Vx is an s–t
separator in (V , E p) for every x ∈ {1, . . . , r} and p ∈ {1, . . . , τ }. Moreover,
we know from Observations 3 that each of P2q−1 and P2q contains exactly one
vertex from each Vx , x ∈ {1, . . . , r}. So, there is a z ∈ {1, . . . , r} such that
there are distinct v′ and v′′ in Vz such that v′ ∈ V (P2q−1) and v′′ ∈ V (P2q).
If z /∈ {i, j}, then {v′, az}, {v′, bz}, {v′′, az}, {v′′, bz} ∈ E2p−1�E2p. If z = i ,
then {v′, bz}, {v′′, bz} ∈ E2p−1�E2p. If z = j , then {v′, a j }, {v′, b j } ∈ E2p−1�E2p.
Let u ∈ V (P2q) ∩ Vi and let w ∈ V (P2q) ∩ Vj . By construction, we know
that {u, a j }, {w, ai }, {u, ai }, {w, b j } ∈ E2p−1�E2p. Hence, E2p−1�E2p contains �−
4 edges each being incident with a vertex in C1 ∪ C2, and at least six further edges,
amounting to � + 2 edges, contradicting the fact that P is a solution. ��

Proof of Proposition 6 Let I = (G = (V1, . . . , Vr , E) be an instance of Multicol-

ored Cliquewith |V1| = · · · = |Vr |, and let I ′ = (G = (V ′, E1, . . . , Eτ), s, t, k, �)

be the instance obtained from I using Constructions 4 in polynomial time. Note that
every edge in

⋃τ
p=1 E p is incident with M : = A ∪ B ∪C1 ∪C2 ∪{s, t}, and hence M

is a vertex cover of the underlying graph of size |M | = 2r + 2r + 2 + 3 = 4r + 5.
Denote by G p = (V , E p) the p-th snapshot of G for every p ∈ {1, . . . , τ }. We claim
that I is a yes-instance if and only if I ′ is a yes-instance.

(⇒) Let W ⊆ V form a multicolored clique. Let Podd be the path in Godd: =
(V , Eodd) with vertex set V (Podd) = A ∪ B ∪ C1 ∪ {s, t} ∪ W , and the edge
set E(Podd) = E(Godd[V (Podd)]). Note that |V (Podd)| = 3r +1+2+r = 4r +3 = k.
Set P2p−1: = Podd for every p ∈ {1, . . . , τ/2}. Next we construct P2p for every p ∈
{1, . . . , τ/2}. Let p = φ(i, v, j). We distinguish two cases whether v ∈ W or not.

Case 1: v ∈ W . Let V (P2p) = A ∪ B\{b j } ∪ C2 ∪ {s, t} ∪ W , and E(P2p) =
E(G2p[V (P2p)]).Note that |V (P2p)| = 4r+2 ≤ k.Moreover, P2p is an s–t path since
the edges {v, a j }, {a j , w} are contained in G2p, wherew ∈ W ∩Vj , since {v,w} ∈ E .

Case 2: v /∈ W . Let V (P2p) = A ∪ B\{a j } ∪ C2 ∪ {s, t} ∪ W , and E(P2p) =
E(G2p[V (P2p)]).Note that |V (P2p)| = 4r+2 ≤ k.Moreover, P2p is an s–t path since
the edges {u, b j }, {b j , w} are contained in G2p, where u ∈ W ∩ Vi and w ∈ W ∩ Vj

since b j is adjacent to every vertex in Vi\{v} and Vj .
It remains to show that |E(P2p−1)�E(P2p)| ≤ � for all p ∈ {1, . . . , τ/2}, and that

|E(P2p)�E(P2p+1)| ≤ � for all p ∈ {1, . . . , τ/2 − 1}. We prove the former, as the
latter follows analogously. Let p = φ(i, v, j). By construction, E(P2p−1)�E(P2p)

contains all edges incident with C1 and C2. Let u ∈ Vi ∩ W , and w ∈ Vj ∩ W . We
consider two cases:

Case 1: u = v. Note that P2p has the subpath bi ua jwai , and hence we
have that E(P2p−1)�E(P2p) contains the edges {u, a j }, {w, ai } ∈ E(P2p) and
the edges {u, ai }, {w, b j } ∈ E(P2p−1). Note that all other edges in E(P2p−1) ∪
E(P2p) not incident to a vertex in C1 ∪ C2 are also in E(P2p−1) ∩ E(P2p).
Hence, |E(P2p−1)�E(P2p)| = 2(r + 1) + 2(r + 1) − 1 + 4 = 4r + 7 = �.

123

2044 Algorithmica (2023) 85:2028–2064

Case 2: u �= v. Note that P2p has the subpath bi ub jwai , and hence we have
that E(P2p−1)�E(P2p) contains the edges {u, b j }, {w, ai } ∈ E(P2p) and the edges
{u, ai }, {w, a j } ∈ E(P2p−1). Note that all other edges in E(P2p−1) ∪ E(P2p)

not incident to a vertex in C1 ∪ C2 are also in E(P2p−1) ∩ E(P2p). Hence,
|E(P2p−1)�E(P2p)| = 2(r + 1) + 2(r + 1) − 1 + 4 = 4r + 7 = �.

It follows that (P1, . . . , Pτ) is a solution to I ′.
(⇐) Let (P1, . . . , Pτ) be a solution to I ′. Due to Lemma 1, we know that V (Pp)∩

V = V (Pq)∩V =: W for all p, q ∈ {1, . . . , τ }.We claim thatW forms amulticolored
clique in G. By Observations 3, we know that |W ∩ Vi | = 1, for all i ∈ {1, . . . , r}.
Let wi ∈ W ∩ Vi denote the corresponding vertex, for all i ∈ {1, . . . , r}. It remains to
show that for each distinct pair wi , w j , we have that {wi , w j } ∈ E . Assume without
loss of generality that i < j , and let p = φ(i, wi , j). Since P2p is an s–t path inG2p, it
contains the subpath wi a jw j , since wi is only adjacent to bi and a j . By construction
of snapshot G2p, we know that {a j , w j } ∈ E(G2p) if and only if {wi , w j } ∈ E .
Hence, the claim follows. ��
For V�V-MstP, we have an even stronger result: the problem is W[1]-hard regard-
ing ν↓ even if the size of any symmetric difference of the vertex sets of consecutive
paths is at most one. The proof is, however, similar to the proof of Proposition 6.

Proposition 7 V�V-MstP when parameterized by ν↓ is W[1]-hard, even if � = 1.

Construction 5 Let (G = (V1, . . . , Vr , E))be an instanceofMulticolored Clique

with n = |V1| = · · · = |Vr | and let N : = n · (r
2

)
. We construct a temporal graph G =

(V ′, E1, . . . , Eτ)with τ = 2N as follows. Let V ′ initially contain V1, . . . , Vr and s, t .
Finally, V ′ contains the sets A = {a0, . . . , ar } and two special vertices x and y.
We construct the edge set Eodd as follows. It contains the edges {s, a0} and {ar , t}.
Finally, it contains the edge set

⋃
v∈Vi

{{ai−1, v}, {ai , v}} for every i ∈ {1, . . . , r}.
We set Ei : = Eodd for each odd i ∈ {1, . . . , τ }. Next, let φ be a bijection that
maps (i, v, j) to {1, . . . , N }, where i < j , i, j ∈ {1, . . . , r}, v ∈ Vi . We construct
the edge set E2φ(i,v, j) as follows. We add the edge {s, ai }. Then, ai is connected with
all w ∈ Vi . Next, v is adjacent with x , and all w ∈ Vi\{v} are adjacent with y. Next,
x is adjacent to a vertex in w ∈ Vj if and only if {w, v} ∈ E . Vertices y and a j are
adjacent with all vertices in Vj , and vertex a j is also adjacent with aπ−1(1), where π =
πr

i, j : {1, . . . , r}\{i, j} → {1, . . . , r −2} (see Definition 2). Then t is adjacent with a0
which in turn is also adjacent with aπ−1(r−2), and for each p ∈ {1, . . . , r −3}, aπ−1(p)

and aπ−1(p+1) are adjacent to all vertices in Vπ−1(p). This finishes the construction
of E2φ(i,v, j). Set k = 2r + 4 and � = 1.

Observation 5 In (V , E2p−1), each vertex in A, and each set Vi is an s–t separator,
and in (V , E2p) with p = φ(i, v, j) each vertex in A, each set Vi , and the set {x, y}
is an s–t separator.

We know that each s–t path in an even snapshot contains s and t , and r +1 vertices
from A, and one of x and y, leaving r vertices. Since each Vi forms an s–t separator,
we have the following.

Observation 6 Every s–t path in (V , E p) with at most k vertices contains exactly one
vertex from each Vi .

123

Algorithmica (2023) 85:2028–2064 2045

Proof of Proposition 7 Let I = (G = (V1, . . . , Vr , E)) be an instance of Multicol-

ored Cliquewith |V1| = · · · = |Vr |, and let I ′ = (G = (V ′, E1, . . . , Eτ), s, t, k, �)

be the instance obtained from I using Constructions 5 in polynomial time. Note that
every edge in

⋃τ
p=1 E p is incident with M : = A ∪ {x, y} ∪ {s, t}, and hence M is a

vertex cover of the underlying graph of size |M | = r + 5. Denote by G p = (V , E p)

the p-th snapshot of G for every p ∈ {1, . . . , τ }. We claim that I is a yes-instance if
and only if I ′ is a yes-instance.

(⇒) Let W ⊆ V be a multicolored clique. Define Podd as the path in Godd =
(V , Eodd) with vertex set V (Podd) = {s, t} ∪ A ∪ W and edge set E(Godd[V (Podd)]).
Note that Podd is an s–t path with 2r + 3 vertices. Set P2p−1: = Podd. For P2p

with p = φ(i, v, j), we set

V (P2p) = V (Podd) ∪
{

{x}, if v ∈ W

{y}, otherwise,
and E(P2p) = E(G2p[V (P2p)]).

Note that P2p is an s–t path, since if v ∈ W , then the edge {x, w} with w ∈
W ∩ Vj exists. Moreover, |V (P2p)| = 2r + 4, and by construction we have
that |V (Pp)�V (Pp+1)| = 1 for all p ∈ {1, . . . , τ − 1}.

(⇐) Let (P1, . . . , Pτ) be a solution to I ′. Due to Observations 6, we know that
each Pi contains exactly one vertex from Vi . In fact, it holds true that V (Pi) ∩ V =
V (Pj)∩ V for all i, j ∈ {1, . . . , τ }: Suppose not, that is, there is an i ∈ {1, . . . , τ −1}
such that w ∈ V ∩ (V (Pi)�V (Pi+1)). In both cases (w ∈ V (Pi)\V (Pi+1) or w ∈
V (Pi+1)\V (Pi)) we get a contradiction to Observations 6. Let W : = V ∩ V (P1).
We claim that W is a multicolored clique in G. Let v ∈ Vi ∩ W and w ∈ Vj ∩ W
with i, j ∈ {1, . . . , r}, i < j , be arbitrary but fixed. Then, path P2φ(i,v, j) contains the
subpath (v, x, w), proving that {v,w} ∈ E . It follows that W is a multicolored clique
in G. ��

We will see in the next section that similar hardness results as Theorems 3 and 4,
Corollary 2 and Proposition 7 are unlikely for E∩E-MstP or V∩V-MstP.

5.2 Fixed-Parameter Tractability for Dissimilarity Variant Regarding k

In stark contrast to Theorems 3 and Corollary 2, we show in this section that
V∩V-MstP and E∩E-MstP can be solved in linear time for constant path lengths;
put differently, they are linear-time fixed-parameter tractable when parameterized by
path length k − 1.

Theorem 5 V∩V-MstP and E∩E-MstP can be solved in 2O(k) · |G| time.

Wedefer the proof ofTheorems 5 towards the end of this section and,moreover, only
describe the algorithm forV∩V-MstP. In a nutshell, the algorithm behind Theorems 5
computes for each snapshot sufficiently many s–t paths such that no matter which
vertices are used in the snapshots beforehand and afterwards, one of these s–t paths

123

2046 Algorithmica (2023) 85:2028–2064

has a small intersection with these vertices. To this end, we introduce q-robust sets2

of s–t paths.

Definition 3 Let G = (V , E) be a graph, s, t ∈ V two distinct vertices, F be a set
of s–t paths of length at most k − 1, and q ∈ N0. We call F q-robust if for each set
X ⊆ (V (G)\{s, t}) of size at most q the following holds: if there is an s–t path in
G − X of length at most k − 1, then there is an s–t path P ∈ F which is an s–t path
in G − X .

To find a solution, it is sufficient to have a 2(k − �)-robust set of s–t paths of length
at most k − 1 for each snapshot of the temporal graph:

Lemma 2 Let I = (G = (V , (Ei)
τ
i=1), s, t, k, �) be an instance of V∩V-MstP and

Fi be a 2(k − �)-robust set of s–t paths of length at most k − 1 in Gi = (V , Ei),
for all i ∈ {1, . . . , τ }. Then, I is a yes-instance if and only if there is a solution
(P1, . . . , Pτ) such that Pi ∈ Fi , for all i ∈ {1, . . . , τ }.
Proof Since the converse is trivially true, we only show that if I is a yes-instance,
then there is a solution (P1, . . . , Pτ) for I such that for all i ∈ {1, . . . , τ } we have
Pi ∈ Fi .

For all p ∈ {1, . . . , τ + 1}, let Sp be the set which contains each solu-
tion (P1, . . . , Pτ) for I where for all j < p we have Pj ∈ F j . Let i : = max{p ∈
{1, . . . , τ + 1} | Sp �= ∅} and (P1, . . . , Pτ) ∈ Si . If i = τ + 1, then we are done.
Hence, assume towards a contradiction that i ≤ τ .

(Case 1): Suppose 1 < i < τ . Let X1 = V (Pi−1)\V (Pi) and X2 =
V (Pi+1)\V (Pi). If X ∈ {X1, X2} is larger than k − �, then remove arbitrary vertices
from X such that |X | = k − �. Note that |V (Pi−1)\X1| ≤ � and |V (Pi+1)\X2| ≤ �.
Observe that Pi is an s–t path of length at most k − 1 in Gi − (X1 ∪ X2). Since
Fi is 2(k − �)-robust, there is an s–t path P ∈ Fi of length at most k − 1
in Gi − (X1 ∪ X2), see Fig. 4 for an illustration. Hence, |V (P) ∩ V (Pi−1)| ≤
|V (P)∩ (V (Pi−1)\X1)| ≤ � and |V (P)∩ V (Pi+1)| ≤ |V (P)∩ (V (Pi+1)\X2)| ≤ �.
Thus, S = (P1, . . . , Pi−1, P, Pi+1, . . . , Pτ) is a solution for I . This contradicts i
being maximal.

(Case 2): If i = 1 (i = τ), then we set X1 = ∅ (X2 = ∅) and conclude analogously
to Case 1 that i is not maximized.

��
The main tool of our algorithm is a fast (“linear-time FPT”) computation of small

sets of s–t paths of length at most k −1 which are q-robust. We believe that such a use
of representative families may become a general algorithmic tool being potentially
helpful for other multistage problems. Formally, we show the following.

Lemma 3 Let G = (V , E) be a graph with two distinct vertices s, t ∈ V , and k, q ∈
N0. We can compute, in 2O(k+q) · |E | time, a q-robust set F of s–t paths of length at
most k − 1 such that |F | ≤ 2q+k .

2 Briefly put, q-robust sets are q-representative families [41], just explicitly coined to s–t paths of length
at most k. This notion shall avoid confusion with the later defined q-representatives of independent sets.

123

Algorithmica (2023) 85:2028–2064 2047

Fig. 4 Illustration of Case 1 in the proof of Lemma2, where |V (Pi+1)\V (Pi)| > k − �

In order to prove Lemma 3, we extend the “representative-family-based” algorithm
for k-Path of Fomin et al. [24] such that we can find s–t paths avoiding a size-at-
most-q set of vertices. The proof of Lemma 3 is deferred to the end of this section.

We use standard terminology from matroid theory [42]. A pair (U , I), where U is
the ground set and I ⊆ 2U is a family of independent sets, is amatroid if the following
holds:

– ∅ ∈ I;
– if A′ ⊆ A and A ∈ I, then A′ ∈ I;
– if A, B ∈ I and |A| < |B|, then there is an x ∈ B\A such that A ∪ {x} ∈ I.

An inclusion-wise maximal independent set A ∈ I of a matroid M = (U , I) is a
basis. The cardinality of the bases of M is called the rank of M . The uniform matroid
of rank r on U is the matroid (U , I) with I = {S ⊆ U | |S| ≤ r}. A matroid (U , I)
is linear or representable over a field F if there is a matrix A with entries in F and the
columns labeled by the elements of U such that S ∈ I if and only if the columns of A
with labels in S are linearly independent overF. Thematrix A is called a representation
of (U , I).

Definition 4 (q-representative family of independent sets) Given a matroid (U , I),
a family S ⊆ I of independent sets, we say that a subfamily Ŝ ⊆ S is a q-
representative of S if for each set Y ⊆ U of size at most q it holds that if there
is a set X ∈ S with X � Y ∈ I, then there is a set X̂ ∈ Ŝ such that X̂ � Y ∈ I.

We are only interested in uniform matroids, hence, to simplify matters we refor-
mulate the definition of representative families.

Definition 5 (q-representative family) Let S = {S1, . . . , St } be a family of sets of
size p over a universe U . A subfamily Ŝ ⊆ S is a q-representative of S if for every
set Y ⊆ U of size at most q it holds that if there is a set X ∈ S disjoint from Y , then
there is a set X̂ ∈ Ŝ disjoint from Y .

For linear matroids, there are fixed-parameter algorithms parameterized by rank
that compute small representatives for large families of independent sets.

Lemma 4 (Fomin et al. [24, Theorem 1.1]) Let M = (U , I) be a linear matroid
of rank p + q given together with its representation matrix AM over a field F.
Let S = {S1, . . . , St } be a family of independents sets of M of size p. For a
given q, a q-representative family Ŝ ⊆ S of size

(p+q
p

)
can be computed in

O
((p+q

p

)
tpω + t

(p+q
p

)ω−1
)

time. Here, ω < 2.373 is the matrix multiplication expo-
nent.

123

2048 Algorithmica (2023) 85:2028–2064

Lemma 5 Given a set U and an integer r , we can compute in O(r · |U |) time a
representation A of the uniform matroid of rank r on U, where p ∈ O(|U |) and A is
over a prime field Fp.

Proof A Vandermonde matrix of size r × |U | in a field with at least |U | distinct
elements suffices as representation of the uniform matroid of rank r on U [39, Section
3.4].

Let p ∈ {|U |, . . . , 2|U |} be a prime number. Such a prime exists by the folklore
Bertrand-Chebyshev theorem and can be computed in O(|U |1/2+o(1)) ≤ O(|U |) time
using the Lagarias-Odlyzko method [44]. Observe that we can perform a primitive
operation in the prime field Fp by first performing the operation in Z and then taking
the result modulo p. Since we only need O(log |U |) many bits to store one element
of Fp, each element of Fp fits into one memory cell of the Word RAM computation
model. Hence, we can perform a primitive operation over Fp in constant time.

Finally, we can compute the Vandermonde matrix of size r ×|U | in O(r · |U |) time,
because each entry is either 1 or an elementary element of Fp or can be computed by
one multiplication from another entry calculated earlier. ��

In a nutshell, we extend the representative family based algorithm for k-Path of
Fomin et al. [24] such that we find s–t paths which can avoid a set of vertices of size
at most q.

Algorithm 1 Let G = (V , E) be a graph with two distinct vertices s, t ∈ V , and
k, q ∈ N0. DefineN i

v to be a (q +k − i)-representative of the family of all sets A ⊆ V
such that there is an s–v path P in G of length i − 1 with V (P) = A.

Our goal is to compute N k
t , as we will construct the desired q-robust set of s–t

paths from it later on. We start by setting N 1
s : = {s} and N 1

v : = ∅ for all v ∈ V ′\{s}.
Then, we compute for all i ∈ {2, . . . , k} (in ascending order)

T i
v : =

⋃

{v,w}∈E ′

⋃

X∈N i−1
w :v /∈X

(X ∪ {v}). (1)

Then (using Lemma 4) we compute a (q + k − i)-representative N i
v of T i

v .

Lemma 6 For all i ∈ {1, . . . , k}, the family N i
v (from Algorithm 1) is of size at most

(q+k−i
i

)
and a (q + k − i)-representative of the family of all sets A ⊆ V such that

there is an s–v path P in G of length i − 1 with V (P) = A.

Proof We will prove this claim by induction. Observe that N 1
v is correctly computed

for all v ∈ V . Now assume that for all j < i ≤ k the family N j
v is of size at most

(q+k− j
j

)
and N j

v is a (q + k − j)-representative of the family of all sets A ⊆ V such
that there is an s–v path P in G of length j − 1 with V (P) = A.

Let Y ⊆ V ′ be a set of size at most (q + k − i) and v ∈ V . Assume there is an s–v
path P of length i − 1 such that Y ∩ V (P) = ∅. Let w ∈ V (P) be the vertex which
is visited by P directly before v (starting from s). Let P ′ be the s–w path of length
i − 2 induced by P without v. Since (Y ∪ {v}) ∩ V (P ′) = ∅ and Y ∪ {v} is a set of
size q + k − (i − 1), we know, by induction hypothesis, that there is an A ∈ N i−1

w

123

Algorithmica (2023) 85:2028–2064 2049

and an s–w path P ′′ of length i − 2 with V (P ′′) = A and (Y ∪ {v}) ∩ V (P ′′) = ∅.
Hence, by Algorithm 1, V (P ′′) ∪ {v} ∈ T i

v . Since Y ∩ V (P ′′) = ∅ and N i
v is an

(q + k − i)-representative of T i
v , we know that N i

v contains a set B such that there

is an s–v path P ′′′ of length i − 1 with V (P ′′′) = B and B ∩ Y = ∅. Hence, N j
v is

indeed a (q + k − i)-representative of the family of all sets A ⊆ V such that there is
an s–v path P in G of length i − 1 with V (P) = A.

The upper bound on the size of N i
v follows from Lemma 4. This completes the

proof. ��
Lemma 7 The family N k

t from Algorithm 1 can be computed in 2O(q+k) · |E | time.

Proof As a preprocessing step, we remove in O(|E |) time via breadth-first search
all vertices which are not on an s–t path. Hence, |V | ≤ |E |. Furthermore, we use
Lemma 5 to compute a representation of the uniform matroid M of rank q + k on V in
O(|E | · (q + k)) time. Then, for each i ∈ {1, . . . , k} and each v ∈ V we compute T i

v

in O(deg(v) · 2q+k) time, since for all w ∈ V the familyN i−1
w is of size at most 2q+k ,

see Lemma 4. Hence, T i
v is of size at most 2q+k deg(v). Computing (with Lemma 4)

the (q + k − i)-representative N i
v of T i

v takes 2O(k+q) · deg(v) time. Hence, by the
Handshaking Lemma, this yields an overall running time of 2O(k+q) · |E | time. ��

In the proof of Lemma 7, one could use Theorem 1.2 instead of Theorem 1.1 from
Fomin et al. [24] to improve the constant hidden in the Big-O notation. However, we
would lose the linear dependency in |E | by doing so.

We are now ready to prove Lemma 3.

Proof of Lemma 3 First, we construct the graph G ′ = (V ′, E ′) where we add k new
dummy vertices d1, . . . , dk to G. Hence, V ′: = V ∪ {d1, . . . , dk} and

E ′: = E ∪ {{v, di } | {v, t} ∈ E, i ∈ {1, . . . , k}}
∪ {{di , di+1} | i ∈ {1, . . . , k − 1}}
∪ {{di , t} | i ∈ {1, . . . , k}}.

Note that for each s–t path P in G of length at most k − 1 there is an s–t path P ′
in G ′ of length exactly k −1 such that V (P) = V (P ′)\{d1, . . . , dk}. Furthermore, for
each s–t path P ′ in G ′ of length exactly k − 1 there is an s–t path P in G of length at
most k − 1 such that V (P) = V (P ′)\{d1, . . . , dk}.

Using Algorithm 1, we compute in 2O(q+k) · |E | time (Lemma 7)N k+1
t for G ′, s, t ,

k, and q. By Lemma 6, we know thatN k
t is of size at most

(q+k
k

)
and a q-representative

of the family of all sets A ⊆ V ′ such that there is an s–v path P in G of length k − 1
with V (P) = A.

Now we compute the desired set F , which we initialize by F : = ∅. Observe, that
during the execution of Algorithm 1, we can store for each set A ∈ T i

v a corresponding
s–v path P in G with V (P) = A, where i ∈ {1, . . . , k}, v ∈ V ′. We now go over all
A ∈ N k

t and their corresponding s–t paths PA of length k − 1 in G ′. Next, we store in
F an s–t path P ′ in G of length at most k −1 such that V (P ′) = V (PA)\{d1, . . . , dk}.
The whole procedure ends after 2O(q+k) · |E | time andF is of size at most |F | ≤ 2q+k .

123

2050 Algorithmica (2023) 85:2028–2064

It remains to show that F is q-robust. Let X ⊆ V of size at most q such that there
is an s–t path P of length at most k − 1 in G − X . Hence, there is an s–t path P ′ in G ′
of length exactly k such that V (P) = V (P ′)\{d1, . . . , dk}. Since X ∩ V (P ′) = ∅,
we know that there is an A ∈ N k

t such that there is an s–v path P ′′ in G ′ of length k
with V (P ′′) = A and A ∩ X = ∅. Thus, we added an s–t path P∗ to F with
V (P∗) = A\{d1, . . . , dk}. Hence, V (P∗) ∩ X and it thus is an s–t path in G − X . ��

Having Lemmas 2, and 3, we are set to prove Theorems 5.

Proof of Theorem 5 We only show the proof for V∩V-MstP. The fixed-parameter
tractability of E∩E-MstP follows from Proposition 2.

Given an instance I = (G = (V , (Ei)
τ
i=1), s, t, k, �) of V∩V-MstP, we first

check whether there is an empty Ei . If this is the case, then I is a no-instance.
Afterwards, we can assume that τ ≤ |G|. For each i ∈ {1, . . . , τ }, we compute in
2O(k+2(k−�))|Ei | = 2O(k)|Ei | time a 2(k − �)-robust set Fi of s–t paths of length at
most k − 1 in Gi = (V , Ei) such that |Fi | ≤ 2O(k), see Lemma 3.

Next, we construct a directed graph G ′ = (V ′, E ′), where beside s, t each path
in Fi has a corresponding vertex, for all i ∈ {1, . . . , τ }. Formally, that is, V ′: =
{s, t} ∪ ⋃τ

i=1 Fi , and E ′: = {(P, P ′) | P ∈ Fi , P ′ ∈ Fi+1, |V (P) ∩ V (P ′)| ≤
�, for some i ∈ {1, . . . , τ − 1}} ∪ {(s, P) | P ∈ F1} ∪ {(P, t) | P ∈ Fτ }. Observe
that |V ′| + |E ′| ≤ 2O(k) · τ . Since

∑τ
i=1 |Ei | ≤ |G|, this yields an overall running

time of 2O(k) · max{τ, |G|} = 2O(k) · |G|.
It remains to show that I is a yes-instance if and only if there is an s–t path in G ′.

We only show that if I is a yes-instance, then there is an s–t path in G ′ since the
converse is easy to verify from the definition of G ′. Let I be a yes-instance. Then, by
Lemma 2, there is a solution (P1, . . . , Pτ) such that Pi ∈ Fi , for all i ∈ {1, . . . , τ }. For
each i ∈ {1, . . . , τ −1}, we have that |V (Pi)∩V (Pi+1)| ≤ �. It follows that G ′ has an
edge from the vertex corresponding to Pi to the vertex corresponding to Pi+1. Hence,
there is an s–t path in G ′ because s is adjacent to all vertices corresponding to a path
in F1 and each vertex corresponding to a path in Fτ is adjacent to t . ��

6 Looking Through the Lens of Efficient Data Reduction

In this section, we study whether (polynomial) problem kernels for our four multistage
s–t path problems exist. We start from the simple observation that every problem
trivially admits a problem kernel of size polynomial in n + τ . When strengthening n
to ν↓, that is, when parameterizing by ν↓+τ , where ν↓ denotes the vertex cover number
of the underlying graph, for E∩E-MstP and V∩V-MstP we prove a polynomial-size
problem kernel (Sect. 6.1) and for E�E-MstP and V�V-MstP we prove a single-
exponential-size problem kernel (Sect. 6.2). We prove that, unless NP ⊆ coNP / poly,
the latter cannot be improved to polynomial size for V�V-MstP and that, when
parameterized by n (i.e., dropping τ from n + τ), none of the four problems admits a
polynomial kernel (Sect. 6.3).

123

Algorithmica (2023) 85:2028–2064 2051

6.1 Polynomial Kernel for the Dissimilarity Variant Regarding �↓ + �

In this section, we prove V∩V-MstP and E∩E-MstP to admit problem kernels of
polynomial size in ν↓ + τ .

Theorem 6 Each of V∩V-MstP and E∩E-MstP admits a problem kernel with at
most τ · (2ν↓ + 2 + (2ν↓

2

)
(3k − 3)) ∈ O(τν3↓) vertices and τ snapshots.

The kernelization behind Theorems 6 basically relies on the following data reduction
rule.

Reduction Rule 1 Let I = (G = (V , E1, E2, . . . , Eτ), s, t, k, �) be an instance of
V∩V-MstP or E∩E-MstP with underlying graph G↓.
1. Compute a vertex cover V ′ of G↓ of size at most 2ν↓.
2. For each pair of distinct vertices v,w ∈ V ′ and each i ∈ {1, . . . , τ }, in N i

vw: =
(N(V ,Ei)(v) ∩ N(V ,Ei)(w))\V ′ mark min{3k − 3, |N i

vw|} vertices.
3. Construct a set V ′′ containing {s, t}∪V ′ and all marked vertices, and then construct

the temporal graph G′ = (V ′′, E ′
1, . . . , E ′

τ), where E ′
i = {{v,w} ∈ Ei | v,w ∈

V ′′}, for all i ∈ {1, . . . , τ }.
4. Output the instance O = (G′, s, t, k, �).

First, we prove that we can efficiently execute Reduction Rules 1.

Lemma 8 Reduction Rules 1 is correct and can be executed in O(nτ · ν2↓) time.

Proof We can compute a 2-approximate vertex cover of the underlying graph in linear
time via a maximal matching (Step 1). Next, we compute for each of the at most

(2ν↓
2

)

pairs of vertices in V ′, in each of the τ snapshots, their neighborhood and mark a
subset therein in linear time. Finally, we can compute the set V ′′, then G′, and then O
to output, each in linear time. Hence, this procedure ends after O(nτ · ν2↓) time.

Let I = (G = (V , (Ei)
τ
i=1), s, t, k, �) be an instance of V∩V-MstP or E∩E-MstP,

and let O = (G′, s, t, k, �) be the output instance of Reduction Rules 1 on I . Further-
more, for all i ∈ {1, . . . , τ }, let Gi and G ′

i respectively denote the i-th snapshot of G
and of G′.

(⇐) Since each path in a snapshot of G′ is also a path in G, we have that if O is
a yes-instance, then I is a yes-instance as well.

(⇒) Now let (P1, . . . , Pτ) be a solution for I . Clearly, if for each i ∈ {1, . . . , τ }
we have that Pi is a path in G ′

i , then (P1, . . . , Pτ) is also a solution for O . For all
p ∈ {1, . . . , τ } let Sp be the set of solutions for I such that Pj is a path in G ′

j , for
all j ∈ {1, . . . , p − 1}. Note that if Sτ+1 is not empty, then O is clearly a yes-
instance. Let i = max{p ∈ {1, . . . , τ } | Sp �= ∅} and let S = (P1, . . . , Pτ) ∈ Si ,
Pi = (v0, v1, . . . , vk′), s = v0, and t = vk′ such that j ismaximumunder the condition
that v0, . . . , v j−1 is a path in G ′

i . We can conclude that v j is not a vertex in G′. Let
V ∗ = V ′ ∪ {s, t} where V ′ is the vertex cover we computed during the execution of
Reduction Rules 1. Hence, v j /∈ V ∗ but v j−1, v j+1 ∈ V ∗, otherwise V ∗ is not a vertex
cover. Let N = (N(V ,E ′

i)
(v j−1) ∩ N(V ,E ′

i)
(v j+1))\V ′. From Reduction Rules 1, we

know that N is of size at least 3k − 3, as v j is not in G′. Now we distinguish into four
cases:

123

2052 Algorithmica (2023) 85:2028–2064

1. If 1 = i = τ , then set X = V (Pi)\{s, t, v j }.
2. If 1 = i < τ , then set X = (V (Pi) ∪ V (Pi+1))\{s, t, v j }.
3. If 1 < i = τ , then set X = (V (Pi−1) ∪ V (Pi))\{s, t, v j }.
4. If 1 < i < τ , then set X = (V (Pi−1) ∪ V (Pi) ∪ V (Pi+1))\{s, t, v j }.
Since all paths in S are of length at most k, we know that X is of size at
most 3k − 4. Hence, there is a vertex w ∈ N\X such that P ′ = (s =
v0, v1, . . . , v j−1, w, v j+1, . . . , vk′ = t) is an s–t path in G ′

i of length k′ ≤ k. More-
over, we note that

– if i > 1, then |V (Pi−1)∩ V (P ′)| ≤ |V (Pi−1)∩ V (Pi)| and |E(Pi−1)∩ E(P ′)| ≤
|E(Pi−1) ∩ E(Pi)|;

– if i < τ , then |V (P ′)∩ V (Pi+1)| ≤ |V (Pi)∩ V (Pi+1)| and |E(P ′)∩ E(Pi+1)| ≤
|E(Pi) ∩ E(Pi+1)|.

Hence, in either case of I and O both being instances of V∩V-MstP or E∩E-MstP,
(P1, . . . , Pi−1, P, Pi+1, . . . , Pτ) is a solution for O . ��
Proof of Theorem 6 Given an instance I = (G = (V , E1, E2, . . . , Eτ), s, t, k, �), we
apply Reduction Rules 1 in polynomial time to obtain the instance O = (G′, s, t, k, �)

being equivalent to I (Lemma 8), containing τ snapshots and at most τ · (2ν↓ + 2 +
(2ν↓

2

)
(3k − 3)) vertices. ��

6.2 Single-Exponential Kernel for the Similarity Variant Regarding �↓ + �

We prove that E�E-MstP and V�V-MstP admit problem kernels of single-
exponential size in ν↓ + τ , proving containment in FPT. As we will see later,
unless NP ⊆ coNP / poly this result for V�V-MstP cannot be improved to size
polynomial in ν↓ + τ .

Theorem 7 Each of E�E-MstP and V�V-MstP admits a problem kernel with at
most 2ν↓ + 4ν↓τ (2ν↓ + 1) vertices and τ snapshots.

To prove Theorem 7, we lift the well-known graph-theoretic notion of (false) twins to
temporal graphs as follows.

Definition 6 Two vertices v,w in a temporal graph G = (V , E1, E2, . . . , Eτ) are
called (false) temporal twins if N(V ,Ei)(v) = N(V ,Ei)(w) for every i ∈ {1, . . . , τ }.
Note that Definition 6 implies an equivalence relation∼ on the vertex set V , where v ∼
w if and only if they are temporal twins, and, hence, a partition of the vertex set into
classes of temporal twins. Moreover, every pair of vertices in the same temporal twin
class is non-adjacent. We show that such a partition is efficiently computable.

Lemma 9 For a temporal graph G = (V , E1, E2, . . . , Eτ), a partition V =
(V1, . . . , Vp) of V into temporal twin classes is computable in O(τ · |V |2) time.

Proof Firstly, we compute all (false) twin classes in the first snapshot (V , E1) in
time linear in |V | + |E1|. Next, for each vertex v ∈ V , check for each w with v ∼
w whether w is a false twin in each snapshot (V , E2), . . . , (V , Eτ), and adjust ∼
accordingly. ��

123

Algorithmica (2023) 85:2028–2064 2053

In a nutshell, given a vertex cover X of our underlying graph, we aim for having
few (i.e., upper-bounded by some single-exponential function in ν↓ + τ) temporal
twin classes in the independent set Y = V \X , where each temporal twin class in turn
contains only few vertices. By definition we have only few temporal twin classes.

Observation 7 Let G = (V , E1, E2, . . . , Eτ) be a temporal graph with partition V =
(X , Y) of V such that Y is an independent set in each snapshot. Then the size of every
partition of Y into temporal twin classes is at most 2|X |τ .

Proof There are at most 2|X | different neighborhoods for any vertex in Y per snapshot.
As there are τ snapshots, there are at most (2|X |)τ many temporal twin classes. ��
We next aim for shrinking temporal twin classes. Note that for every temporal twin
class with q neighbors, any s–t path contains at most q −1 vertices from the temporal
twin class: recall that each temporal twin class forms an independent set, and hence
every s–t path must “alternate” between the class and its neighboring vertices. In
fact, temporal twin classes that are significantly larger than their neighborhood can be
shrunk.

Reduction Rule 2 Let S be a temporal twin class with |S\{s, t}| ≥
max1≤i≤τ |N(V ,Ei)(S)| + 2. Then delete a vertex v ∈ S\{s, t}.
Lemma 10 Reduction Rules 2 is correct and exhaustively applicable in O(τ ·
|V |3) time.

Proof The reduction is clearly applicable in O(τ · |V |3) time. We prove its correct-
ness. To this end, let G and G′ respectively denote the temporal graphs before and
after application of Reduction Rules 2, and let S′: = S\{v, s, t}. Note that |S′| ≥
max1≤i≤τ |N(V ,Ei)(S′)| − 1. Moreover, observe that due to Lemma 9 we can exhaus-
tively apply Reduction Rules 2 in polynomial time. We claim that I = (G, s, t, k, �)

is a yes-instance if and only if I ′ = (G′, s, t, k, �) is a yes-instance.
(⇐) As G′ = G − v, every sequence of s–t paths forming a solution for I ′ is also

a solution to I .
(⇒) Let I be a yes-instance, and assume that every solution to I contains the

vertex v (otherwise we are done). Let P = (P1, . . . , Pτ) be a solution to I such
that v appears latest in the sequence among all solutions. Let Pr1 be the first s–t
path that contains v, and let r1, . . . , rp be a maximal sequence such that v ∈ V (Prq)

for each 1 ≤ q ≤ p. Since |S\{s, t}| ≥ max1≤i≤τ |N(V ,Ei)(S)| + 2 and S forms
an independent set, there is a vertex w ∈ S′ such that w /∈ V (Pr). We claim that
“replacing” v by w in Pr1 , . . . , Prp forms a solution to I where v appears later
than in P , yielding a contradiction. Let rs > r1 denote the smallest index such
that w ∈ V (Prs+1), or rs = rp if no such index exists. For all 1 ≤ q ≤ s, let P ′

rq

be the s–t path with V (P ′
rq

) = (V (Prq)\{v}) ∪ {w} and E(P ′
rq

) = (E(Prq)\{{v, u} |
u ∈ NPrq

(v)}) ∪ {{w, u} | u ∈ NPrq
(v)}. For each i ∈ {1, . . . , τ }\{r1, . . . , rs}, we

set P ′
i = Pi . Observe that |V (P ′

rq
)| = |V (Prq)| and |E(P ′

rq
)| = |E(Prq)|. More-

over, for all 1 ≤ q < rs we have that |V (P ′
rq

)�V (P ′
rq+1

)| = |V (Prq)�V (Prq+1)|
and |E(P ′

rq
)�E(P ′

rq+1
)| = |E(Prq)�E(Prq+1)|. If r1 > 1, then it also holds

123

2054 Algorithmica (2023) 85:2028–2064

true that |V (P ′
r1−1)�V (P ′

r1)| = |V (Pr1−1)�V (Pr1)| and |E(P ′
r1−1)�E(P ′

r1)| =
|E(Pr1−1)�E(Pr1)|. Finally, we consider the case of rs < τ , the cases herein whether
or not w ∈ V (Prs+1).

Case 1: w /∈ V (Prs+1), rs ≤ rq . Then for the vertices we have that
V (P ′

rs
)�V (P ′

rs+1) = ((V (Prs)�V (Prs+1))\{v}) ∪ {w}. For the edges, we have that

E
(
P ′

rs

)�E
(
P ′

rs+1

) = ((E(Prs)�E(Prs+1))\{{v, u} | u ∈ NPrs+1(v)})
∪ {{w, u} | u ∈ NP ′

rs
(w)}.

Case 2: w ∈ V (Prs+1), rs < rq . Then for the vertices we have that
V (P ′

rs
)�V (P ′

rs+1) = ((V (Prs)�V (Prs+1))\{w}) ∪ {v}. For the edges, we have that

E
(
P ′

rs

)�E
(
P ′

rs+1

) = (E(Prs)�E(Prs+1)\{{w, u} | u ∈ NPrs+1(w)})
∪ {{v, u} | u ∈ NPrs+1(v)}.

Case 3: w ∈ V (Prs+1), rs = rq . Then for the vertices we have that
V (P ′

rs
)�V (P ′

rs+1) = (V (Prs)�V (Prs+1))\({w} ∪ {v}). For the edges, we have that

E
(
P ′

rs

)�E
(
P ′

rs+1

) = (
(E(Prs)�E(Prs+1))\

({{v, u} | u ∈ NPrs
(v)} ∪ {{w, u} | u ∈ NPrs+1(w)}))

∪ ({{w, u} | u ∈ NP ′
rs
(w)} ∪ {{w, u} | u ∈ NPrs+1(w)}).

Hence, in either case we have that the sizes of the symmetric differences both for
vertex and edge sets are not increased. It follows that P ′ = (P ′

1, . . . , P ′
τ) is a solution

in which v appears later than in P , contradicting the choice of P . ��
Proof of Theorem 7 First, in G↓ compute (via a maximal matching) a vertex cover X of
size atmost 2ν↓ in linear time. Let V = (X , Y), whereY = V \X is an independent set.
Next, compute all temporal twin classes of Y in polynomial time (Lemma 9). Apply
Reduction Rules 2 exhaustively on every temporal twin class. Due to Lemma 10, this
returns an equivalent instance in polynomial time where every temporal twin class
contains at most |X |+ 1 vertices. Due to Observations 7, there are at most 2|X |τ many
temporal twin classes. In total, the obtained temporal graph contains at most |X | +
2|X |τ (|X | + 1) vertices and τ snapshots. ��

6.3 Lower Bounds on Kernelization Regarding n and �↓ + �

We know that relaxing n to ν↓ in n + τ allows for polynomial and single-exponential
kernelization for dissimilarity and similarity, respectively. We know that dropping n
is not possible (as to para-NP-hardness regarding τ , see Theorem 1). In this section,
we prove that, unless NP ⊆ coNP / poly, dropping τ is not possible either.

Theorem 8 UnlessNP ⊆ coNP / poly, none of E�E-MstP,V�V-MstP,E∩E-MstP,
and V∩V-MstP admits a problem kernel of size polynomial in n.

123

Algorithmica (2023) 85:2028–2064 2055

Theorem 8 will follow from the forthcoming Propositions 8 and 9.
For proving that kernels of polynomial size are unlikely to exist, we use the

cross-composition framework of Bodlaender et al. [7]. The framework, like the
original framework [6, 25], bases upon the complexity-theoretic assumption that
the polynomial time hierarchy does not collapse to its third level, which implies
that NP � coNP / poly [46]. The central notions of the framework are OR- and AND-
cross-compositions, which require the notion of polynomial equivalence relations [7]:
we call R a polynomial equivalence relation on �∗ if we can decide in polynomial
time whether any two x, y ∈ �∗ are R-equivalent, and the number of equivalence
classes in any finite set S ⊆ �∗ is in (maxx∈S |x |)O(1).

Definition 7 ([7]) Given an NP-hard problem L ⊆ �∗, a parameterized problem P ⊆
�∗ ×N, and a polynomial equivalence relationR on the instances of L, an OR-cross-
composition of L into P (with respect toR) is an algorithm that takes p R-equivalent
instances x1 . . . , x p of L and constructs in time (

∑p
i=1 |xi |)O(1) an instance (x, k)

of P such that (i) k ∈ (max1≤i≤p |xi | + log(p))O(1) and (ii) (x, k) ∈ P ⇐⇒ xi ∈ L
for at least one i ∈ {1, . . . , p}.

An AND-cross-composition is an OR-cross-composition where (ii) is replaced by
(x, k) ∈ P ⇐⇒ xi ∈ L for all i ∈ {1, . . . , p}.
The connection is now the following: If a parameterized problem admits an OR-cross-
composition (or AND-cross-composition) and a polynomial problem kernelization,
then NP ⊆ coNP / poly and the polynomial hierarchy collapses to its third level [7,
12].

We call two instances I = (G, s, t, k, �), I ′ = (G′, s′, t ′, k′, �′) R-equivalent
if |V (G)| = |V (G′)|, τ(G) = τ(G′), k = k′, and � = �′.

Proposition 8 There is an algorithm that given p R-equivalent instances I1, . . . , Ip

of E�E-MstP, computes in polynomial time an instance I of E�E-MstP such that
the number of vertices of I is polynomial upper-bounded in the maximum number of
vertices among I1 . . . , Ip and I is a yes-instance if and only if each of I1, . . . , Ip is
a yes-instance.

Construction 6 Let I1 = (G1 = (V , E1
1 , . . . E1

τ), s1, t1, k, �), . . . , Ip = (G1 =
(V , E p

1 , . . . E p
τ), sp, tp, k, �) be p R-equivalent instances of E�E-MstP (note that by

relabeling, we can assume identical vertex sets). Let τ be the lifetime of Gi , for all i ∈
{1, . . . , p}. We construct an instance I = (G′, s, t, k′, �) with G′ = (V ′, E1, . . . , Eτ ′)
and k′ = k+2 and τ ′ = p(τ +k′) as follows. Let V ′ = {s, t}∪V with two new distinct
vertices s and t . Let Etrans = {{v,w} | v,w ∈ V ′}, that is, Etrans describes the edge
set of a clique on V ′. Next, let Êq

r = Eq
r ∪ {{s, sq}, {t, tq}} for every r ∈ {1, . . . , τ }

and q ∈ {1, . . . , p}. For 1 ≤ q ≤ p and 1 ≤ j ≤ τ + k′, we set E(q−1)(τ+k′)+ j = Êq
j

if j ≤ τ , and E(q−1)(τ+k′)+ j = Etrans if j > τ . This finishes the construction. Note
that the construction is computable in polynomial time.

Observation 8 Let G be a clique with two distinct vertices s, t , and let P, P ′ be two s–t
paths each with at most k ∈ N vertices. Then there is a polynomial-time computable
sequence (P = P1, . . . , Pk = P ′) of k s–t paths each with at most k vertices, such
that |E(Pi)�E(Pi+1)| ≤ 4 for all i ∈ {1, . . . , k − 1}.

123

2056 Algorithmica (2023) 85:2028–2064

Proof Let P = (s, v1, . . . , vx , t) and P ′ = (s, v′
1, . . . , v

′
x ′ , t). We consider two cases:

Case 1: x ≤ x ′. Set Pi = (s, v′
1, . . . , v

′
i−1, vi , . . . , vx , t) for every 2 ≤ i ≤ x .

Note that |E(Pi)�E(Pi+1)| ≤ 4 as we switch two vertices yielding four edges.
If x = x ′, then Px = P ′. Otherwise, for 1 ≤ i ≤ x ′ − x , let Px+i =
(s, v′

1, . . . , v
′
x , v

′
x+1, . . . , v

′
x+i , t). Note that |E(Px+i)�E(Px+i+1)| ≤ 4 as we

replace the edge {v′
x+i , t} by the edges {v′

x+i , v
′
x+i+1} and {v′

x+i+1, t}.
Case 2: x > x ′. Set Pi = (s, v′

1, . . . , v
′
i−1, vi , . . . , vx , t) for every 2 ≤ i ≤

x ′. Note that |E(Pi)�E(Pi+1)| ≤ 4 as we switch two vertices yielding four
edges. For 1 ≤ i ≤ x − x ′, let Px+i = (s, v′

1, . . . , v
′
x ′ , vx+1, . . . , vx−i , t). Note

that |E(Px+i)�E(Px+i+1)| ≤ 4 as we replace the edges {vx−i , vx−i−1} and {vx−i , t}
by the edge {vx−i−1, t}.

Finally, if r = max{x, x ′} < k, then set Pi = Pr for all r < i ≤ k (note that since
the paths are identical, their symmetric difference is zero). The sequence is computable
in polynomial time. ��
Proof of Proposition 8 Let I1 = (G1, s1, t1, k, �), . . . , Ip = (Gp, sp, tp, k, �) be p
R-equivalent instances of E�E-MstP with Gq = (V , Eq

1 , . . . Eq
τ) for every q ∈

{1, . . . , p} and � = 4, and let I = (G′, s, t, k′, �) with G′ = (V ′, E1, . . . , Eτ ′)
and k′ = k + 2 be the instance obtained from I1, . . . , Ip using Constructions 6.
Note that |V (G′)| = |V | + 2. We claim that I is a yes-instance if and only if each
of I1, . . . , Ip is a yes-instance.

(⇒) Let (P1, . . . , Pτ ′) be a solution to I . For 1 ≤ q ≤ p and 1 ≤ j ≤ τ , we define
Pq

j = P(q−1)(τ+k′)+ j −{s, t} as the path obtained from P(q−1)(τ+k′)+ j when deleting s
and t .with vertex setV (P(q−1)(τ+k′)+ j)\{s, t} and edge set E(P(q−1)(τ+k′)+ j)\{{s, sq},
{t, tq}}. We claim that for each 1 ≤ q ≤ p, (Pq

1 , . . . , Pq
τ) is a solution for Iq . First

note that for every j ∈ {1, . . . , τ }, Pq
j is an sq–tq path in (V , Eq

j) and |V (Pq
j)| =

|V (P(q−1)(τ+k′)+1)\{s, t}| ≤ k′ − 2 = k. Moreover, for every j ∈ {1, . . . , τ − 1},
|E(Pq

j)�E(Pq
j+1)| = |E(P(q−1)(τ+k′)+ j)�E(P(q−1)(τ+k′)+ j+1)| ≤ � (recall that s is

only adjacent with sq and t is only adjacent with tq). Hence, the claim follows.
(⇐) Let (Pq

1 , . . . , Pq
τ) be a solution for Iq for every q ∈ {1, . . . , p}. For

each q ∈ {1, . . . , p} and each i ∈ {1, . . . , τ }, let P̂q
i be the path obtained

from Pq
i with V (P̂q

i) = V (Pq
i) ∪ {s, t} and E(P̂q

i) = E(Pq
i) ∪ {{s, sq}, {tq , t}}.

Note that P̂q
i is an s–t path and |V (P̂q

i)| = |V (Pq
i)| + 2 ≤ k′, and we have

that |E(P̂q
i)�E(P̂q

i+1)| = |E(Pq
i)�E(Pq

i+1)| ≤ �. Due to Observations 8, for

each q ∈ {1, . . . , p − 1}, we can compute for P̂q
τ and P̂q+1

1 a sequence (P̂q
τ =

Pq,q+1
1 , . . . , Pq,q+1

k′ = P̂q+1
1) of k′ s–t paths such that each path has at most k′

vertices and |E(Pq,q+1
i)�E(Pq,q+1

i+1)| ≤ 4 = � for all i ∈ {1, . . . , k′ − 1}. Next
we construct the path sequence P = (P1, . . . , Pτ ′). For each q ∈ {1, . . . , p},
we set P(q−1)(τ+k′)+ j = P̂q

j for 1 ≤ j ≤ τ , and we set P(q−1)(τ+k′)+τ+ j =
Pq,q+1

j for 1 ≤ j ≤ k′. Clearly, |E(P(q−1)(τ+k′)+τ)�E(P(q−1)(τ+k′)+τ+1)| =
|E(P(q−1)(τ+k′)+τ+k′)�E(Pq(τ+k′)+1)| = 0 by construction for all q ∈ {1, . . . , p}. It
follows that for every i ∈ {1, . . . , τ ′}, Pi is an s–t path with at most k′ vertices, and
for every i ∈ {1, . . . , τ ′ − 1}, it holds true that |E(Pi)�E(Pi+1)| ≤ �. Hence, P is a
solution to I , and the claim follows. ��

123

Algorithmica (2023) 85:2028–2064 2057

Proposition 9 There is an algorithm that given p R-equivalent instances I1, . . . , Ip of
E∩E-MstP, computes in polynomial time an instance I of E∩E-MstP such that n ∈
(|V1|)O(1) and I is a yes-instance if and only if each of I1, . . . , Ip is a yes-instance.

Construction 7 Let I1 = (G1, s1, t1, k, �), . . . , Ip = (Gp, sp, tp, k, �) be p R-
equivalent instances of E∩E-MstP with Gq = (V , Eq

1 , . . . Eq
τ) for all q ∈ {1, . . . , p}

and � = 0. We construct an instance I = (G′, s, t, k′, �) with G′ = (V ′, E1, . . . , Eτ ′)
and k′ = k + 2. Let V ′ = {s, t} ∪ V with two new distinct vertices s, t . Let Etrans =
{{s, t}}, that is, Etrans only contains the edge s, t . Next, let Êq

r = Eq
r ∪{{s, sq}, {t, tq}}

for every r ∈ {1, . . . , τ } and q ∈ {1, . . . , p}. For 1 ≤ q ≤ p and 1 ≤ j ≤ τ + 1,
we set E(q−1)(τ+1)+ j = Êq

j if j ≤ τ , and E(q−1)(τ+1)+ j = Etrans if j = τ + 1. This
finishes the construction. Note that the construction runs in polynomial time.

Proof of Proposition 9 Let I1 = (G1, s1, t1, k, �), . . . , Ip = (Gp, sp, tp, k, �) be p
R-equivalent instances of E∩E-MstP with Gq = (V , Eq

1 , . . . Eq
τ) for every q ∈

{1, . . . , p} and � = 0, and let I = (G′, s, t, k′, �) with G′ = (V ′, E1, . . . , Eτ ′)
and k′ = k + 2 be the instance obtained from I1, . . . , Ip using Constructions 7. Note
that |V (G′)| = |V |+2We claim that I isyes-instance if and only if each of I1, . . . , Ip

is a yes-instance.
(⇒) Let (P1, . . . , Pτ ′) be a solution to I . For 1 ≤ q ≤ p and 1 ≤ j ≤ τ ,

we define Pq
j = P(q−1)(τ+1)+ j − {s, t} as the path obtained from P(q−1)(τ+1)+ j

when deleting s and t , which has vertex set V (P(q−1)(τ+1)+ j)\{s, t} and edge
set E(P(q−1)(τ+1)+ j)\{{s, sq}, {t, tq}}. We claim that for each 1 ≤ q ≤ p,
(Pq

1 , . . . , Pq
τ) is a solution for Iq . First note that for every j ∈ {1, . . . , τ }, Pq

j is

an sq–tq path in (V , Eq
j) and |V (Pq

j)| = |V (P(q−1)(τ+k′)+1)\{s, t}| ≤ k′ − 2 = k.

Moreover, for every j ∈ {1, . . . , τ − 1}, |E(Pq
j) ∩ E(Pq

j+1)| = |E(P(q−1)(τ+1)+ j) ∩
E(P(q−1)(τ+1)+ j+1)| ≤ � (recall that s is only adjacent with sq and t is only adjacent
with tq). Hence, the claim follows.

(⇐) Let (Pq
1 , . . . , Pq

τ) be a solution for Iq for every q ∈ {1, . . . , p}. For
each q ∈ {1, . . . , p} and each i ∈ {1, . . . , τ }, let P̂q

i be the path obtained from Pq
i

with V (P̂q
i) = V (Pq

i) ∪ {s, t} and E(P̂q
i) = E(Pq

i) ∪ {{s, sq}, {tq , t}}. Note
that P̂q

i is an s–t path and |V (P̂q
i)| = |Pq

i | + 2 ≤ k′, and |E(P̂q
i) ∩ E(P̂q

i+1)| =
|E(Pq

i) ∩ E(Pq
i+1)| ≤ �. Let P = (s, t) be the s–t path with vertex set V (P) = {s, t}

and edge set E(P) = {{s, t}}. Nextwe construct the path sequenceP = (P1, . . . , Pτ ′).
For each q ∈ {1, . . . , p}, we set P(q−1)(τ+1)+ j = P̂q

j for 1 ≤ j ≤ τ , and we
set P(q−1)(τ+1)+τ+1 = P . Clearly, |E(P(q−1)(τ+1)+τ) ∩ E(P(q−1)(τ+1)+τ+1)| =
|E(P(q−1)(τ+1)+τ+1)∩ E(Pq(τ+k′)+1)| = 0 by construction for every q ∈ {1, . . . , p},
since P is the only path using only the edge {s, t}. It follows that for every i ∈
{1, . . . , τ ′}, Pi is an s–t path with at most k′ vertices, and for every i ∈ {1, . . . , τ ′ −1},
it holds true that |E(Pi) ∩ E(Pi+1)| ≤ �. Hence, P is a solution to I , and the claim
follows. ��
While Theorem 8 is proven via an AND-cross-composition [7], we prove that
V�V-MstP admits no problem kernel of size polynomial in τ + ν↓ (unless NP ⊆
coNP / poly) via an OR-cross-composition. Recall that ν↓ denotes the vertex cover
number of the underlying graph, and the result can be understood as that relaxing n
in n + τ does not allow for efficient preprocessing.

123

2058 Algorithmica (2023) 85:2028–2064

We prove that, unless NP ⊆ coNP / poly, improving the single-exponential kernel
for V�V-MstP regarding ν↓ + τ to polynomial size is not possible.

Theorem 9 Unless NP ⊆ coNP / poly, V�V-MstP admits no problem kernel of size
polynomial in ν↓ + τ .

To prove Theorem 9, we OR-cross-compose [7] from the following NP-complete [43]
problem.

Positive 1- in- 3 SAT

Input: A set X of variables and a set C of clauses each containing three positive
literals over X .

Question: Is there X ′ ⊆ X such that setting exactly the variables in X ′ to true results
in each clause having exactly one variable set to true?

We call two instances (X , C), (X ′, C′) of Positive 1-in-3 SAT R-equivalent
if |X | = |X ′| and |C| = |C′|. Note that R defines a polynomial equivalence rela-
tion [7]. In particular, we show the following.

Proposition 10 There is an algorithm that given a power p of two R-equivalent
instances I1 = (X1, C1), . . . , Ip = (X p, Cp) of Positive 1- in- 3 SAT, com-
putes in polynomial time an instance I of V�V-MstP such that k + τ + ν↓ ∈
(maxi∈{1,...,p} |Xi | + |Ci | + log(p))O(1) and I is a yes-instance if and only if at least
one of I1, . . . , Ip is a yes-instance.

We use the following Constructions 8 to show Proposition 10, see Fig. 5 for an
illustration. The basic idea of the construction is that the temporal graph has, among
other vertices, a vertex set D = ⋃p

q=1 Dq , where Dq has one vertex for each variable
in the q-th input instance. If we use a vertex from Dq in the s–t path, then we set
the corresponding variable to true. In the first log(p) snapshots, we ensure that each
s–t path can only use vertices from D which come from the same input instance. The
remainder of the snapshots ensures that the clauses are satisfied. Here, the (log(p)+r)-
th snapshot ensures that the r-th clause of some input instance is satisfied with exactly
one variable (vertex). Since we only use variables from one instance, Proposition 10
follows.

Construction 8 Let I1 = (X1, C1), . . . , Ip = (X p, Cp) be p, where p is a power of
two, R-equivalent instances of Positive 1-in-3 SAT where N = |Xi | and M = |Ci |
for all i ∈ {1, . . . , p}. Let Dq = {vq

i | i ∈ {1, . . . , N }} for all q ∈ {1, . . . , p},
and D = ⋃

q∈{1,...,p} Dq . Let A = {ai
0, ai

1 | i ∈ {0, . . . , N }} and B = {bi
0, bi

1 | i ∈
{0, . . . , N }}. Set V = {s, t} ∪ D ∪ A ∪ B. Define for each d ∈ {0, 1} the auxiliary
function

hd(i, r): =
{

ai
d , r odd

bi
d , r even.

We next describe the edge sets E1, . . . , Elog(p) and Elog(p)+1, . . . , Elog(p)+M .
For edge set Er with r ≤ log(p), let Er contain for each d ∈ {0, 1}

123

Algorithmica (2023) 85:2028–2064 2059

Fig. 5 Illustration of Constructions 8 with p input instances. a shows a snapshot (V , Er) with r ≤ log(p).
b shows a snapshot (V , Elog(p)+r) for the r-th clause of each input instance. Observe that the green (bright)
vertices (including s, t) form a vertex cover of the underlying graph

– the edges {s, hd(0, r)}, {t, hd(N , r)}, and
– the edge set

⋃
1≤i≤N {{hd(i − 1, r), hd(i, r)}}.

These sets form two s–t paths in (V , Er). Finally, let Sr
0 be the union of Dq with

the r-th bit of the binary encoding of q − 1 being 0, and Sr
1 be the union of Dq with

the r-th bit of the binary encoding of q −1 being 1. For vq
i ∈ Sr

0, add the edges {h0(i −
1, r), v

q
i } and {h0(i, r), v

q
i }. Similarly, for v

q
i ∈ Sr

1, add the edges {h1(i − 1, r), v
q
i }

and {h1(i, r), v
q
i }.

For edge set Elog(p)+r with r ≤ M , let Elog(p)+r contain the edge {s, h0(0, r)} and
the edge set

⋃
1≤i≤N {{h0(i − 1, r), h0(i, r)}}. Consider the clauses C1

r , . . . , C p
r . For

each Cq
r , if xq

i ∈ Cq
r , then add the edges {h0(N , r), v

q
i }, {vq

i , t}, and if xq
i /∈ Cq

r , then
add the edges {h0(i − 1, r), v

q
i }, {h0(i, r), v

q
i }.

Set k = 2N + 3 and � = 2(N + 1). This finishes the construction.

Observation 9 If (P1, . . . , Pτ) is a solution to I of Constructions 8, then for every r ∈
{1, . . . , τ − 1}
(i) |V (Pr)�V (Pr+1)| = �,
(ii) V (Pr)�V (Pr+1) ⊆ A ∪ B, and
(iii) V (Pr) ∩ D = V (Pr ′) ∩ D for all r ′ ∈ {1, . . . , τ }.
Proof Let r ∈ {1, . . . , τ − 1}. Note that in (V , Er), {h0(i, r), h1(i, r)} is an s–t
separator for each 0 ≤ i ≤ N . Hence, Pr must contain for each 0 ≤ i ≤ N a vertex
from {h0(i, r), h1(i, r)}. The same holds for Pr+1: {h0(i, r +1), h1(i, r +1)} is an s–t
separator for each 0 ≤ i ≤ N , and hence Pr+1 must contain for each 0 ≤ i ≤ N a
vertex from {h0(i, r + 1), h1(i, r + 1)}. Since hd(i, r) �= hd ′(i ′, r + 1) for all i, i ′ ∈
{0, . . . , N } and d, d ′ ∈ {0, 1}, it follows that |V (Pr)�V (Pr+1)| ≥ 2(N + 1) = �.
Since (P1, . . . , Pτ) is a solution, it also holds true that |V (Pr)�V (Pr+1)| ≤ �, and
hence V (Pr)�V (Pr+1) ⊆ A∪ B. This in turn implies that D∩V (Pr)�V (Pr+1) = ∅,
and hence V (Pr) ∩ D = V (Pr ′) ∩ D for all r ′ ∈ {1, . . . , τ }. ��
Lemma 11 If (P1, . . . , Pτ) is a solution to I of Constructions 8, then for all r ∈
{1, . . . , τ } it holds true that ∅ �= V (Pr) ∩ D ⊆ Dq for some q ∈ {1, . . . , p}.

123

2060 Algorithmica (2023) 85:2028–2064

Proof Observe that for each r ∈ {1, . . . , M}, we have that D is an s–t separator in the
snapshot (V , Elog(p)+r), and hence every s–t path must contain a vertex from D. Due
to Observation 9, we know that V (Pr) ∩ D = V (Pr ′) ∩ D for all r , r ′ ∈ {1, . . . , τ }.
Suppose that eachpath from P1, . . . , Pτ contains a vertexv ∈ Dq and avertexv′ ∈ Dq ′

for q �= q ′ in V (Pr). Let r ≤ log(p) be such that the r-th bit of q is d and of q ′ is 1−d
with d ∈ {0, 1} (that is, where their r-th bits differ). For Gr = (V , Er) it holds by
construction that Gr − {s, t} contains two connected components, one containing the
vertex set

⋃N
i=0 hd(i, r), and the other containing the vertex set

⋃N
i=0 h1−d(i, r). Note

that in Gr , v ∈ Dq is only connected to two vertices from
⋃N

i=0 hd(i, r), and v′ ∈ Dq ′

is only connected to two vertices from
⋃N

i=0 h1−d(i, r). Hence, Pr − {s, t} contains
vertices from two connected components, contradicting the fact that Pr is an s–t path
in Gr . ��
Proof of Proposition 10 Let I1 = (X1, C1), . . . , Ip = (X p, Cp) be p, p being a
power of two, R-equivalent instances of Positive 1- in- 3 SAT where N = |X |
and M = |C|. Let I = (G = (V , E1, E2, . . . , Eτ), s, t, k, �) be the instance obtained
by Constructions 8 from I1, . . . , Ip. Observe that A∪ B ∪{s, t} is a vertex cover of the
underlying graph ofG. Hence, we have that k+τ +ν↓ ≤ 2N +3+log(p)+M +N +4.

We claim that I is a yes-instance if and only if at least one of I1, . . . , Ip is a
yes-instance.

(⇐) Let X ⊆ Xq be a solution to Iq , for some q ∈ {1, . . . , p}.
We construct a solution (P1, . . . , Pτ) to I as follows. Set for each r ∈

{1, . . . , log(p)}, where d = 0 if the r-th bit of q − 1 is 0, and 1 otherwise,

V (Pr) =
⋃

xq
i ∈X

{vq
i } ∪ {s, t} ∪

⋃

0≤i≤N

hd(i, r)

E(Pr) = {{s, hd(0, r)}} ∪ {{t, hd(N , r)}}
∪

⋃

xq
i ∈X

{{hd(i − 1, r), v
q
i }, {hd(i, r), v

q
i }}

∪
⋃

xq
i ∈Xq\X

{{hd(i − 1, r), hd(i, r)}}.

Moreover, for each r ∈ {1, . . . , M} set, where xq
j ∈ Xq ∩ Cq

r ,

V (Plog(p)+r) =
⋃

xq
i ∈X

{vq
i } ∪ {s, t} ∪

⋃

0≤i≤N

h0(i, r),

E(Plog(p)+r) = {{s, h0(0, r)}, {h0(j − 1, r), h0(j, r)}, {h0(N , r), v
q
j }, {t, vq

j }}
∪

⋃

xq
i ∈X\{xq

j }
{{h0(i − 1, r), v

q
i }, {h0(i, r), v

q
i }}

∪
⋃

xq
i ∈Xq\X

{{h0(i − 1, r), h0(i, r)}}.

123

Algorithmica (2023) 85:2028–2064 2061

First observe that |V (Pr)| ≤ N +2+ N +1, for all r ∈ {1, . . . , τ }. Second, observe
that |V (Pr)�V (Pr+1)| = �, for all r ∈ {1, . . . , τ − 1}. Finally, we claim that Pr is
an s–t path in (V , Er) for each r ∈ {1, . . . , τ }. For Pr with r ≤ log(p), this follows
by construction. Consider Plog(p)+r with 1 ≤ r ≤ M . Note that X contains exactly
one xq

j with xq
j ∈ Cq

r (j ∈ {1, . . . , N }) and hence the subpath (h0(N , r), v
q
i , t) of

Plog(p)+r exists in (V , Elog(p)+r). By construction the subpath of Plog(p)+r from s to
h0(N , r) also exists.

(⇒) Let (P1, . . . , Pτ) be a solution to I . Due to Lemma 11, we know that for
all r ∈ {1, . . . , τ } it holds true that ∅ �= V (Pr) ∩ D ⊆ Dq for some q ∈ {1, . . . , p}.
Let X = {xq

i | v
q
i ∈ V (P1)}. We claim that X is a solution to Iq , that is, for every

clause Cq
r there is an x ∈ X with x ∈ Cq

r . Consider the snapshot G log(p)+r =
(V , Elog(p)+r). Since Plog(p)+r is an s–t path in G log(p)+r and D is an s–t separator in
G log(p)+r , there is exactly one v ∈ D such that subpath (h0(N , r), v, t) is a subpath
of Plog(p)+r . We know that v ∈ Dq , and hence there is an x ∈ X such that x ∈ Cq

r . ��
Proposition 10 describes an OR-cross-composition from an NP-hard problem to
V�V-MstP parameterized by ν↓ + τ , and hence Theorems 9 follows [7]. We leave
open whether E�E-MstP allows for a problem kernel of size polynomial in ν↓ + τ .

7 Conclusion

On the one extreme, our hardness results exploit that the temporal graph can change
dramatically from one time step to another. On the other extreme, the NP-hard (and
typically parameterized hard)Length-Bounded Disjoint Pathproblem [28] easily
reduces to all four MstP variants with each snapshot having the same edge set. This
leads to the natural question for further islands of computational tractability between
these two extremes. Moreover, for the similarity case, we leave open whether working
with edge distances decisively differs from working with vertex distances.

The models we introduced (and future, more refined models based upon these)
may find several applications as they naturally capture time-dependent route-querying
tasks. Herein, additionally considering edge-lengthsmay be necessary. Besides resolv-
ing questions we explicitly stated as open throughout the text, future work could
address generalizing the “consecutiveness” property by requiring that also short
sequences (as in the time-window model of temporal graphs [37, 38]) of consec-
utive paths are (pairwise) similar or dissimilar. Furthermore, with introducing the
“dissimilarity view” we entered new territory in the context of multistage problems; it
seems natural to also study it for other problems beyond s–t Path. Finally, to analyze
s–t Path in the global multistage3 setting is well-motivated as well [31].

Acknowledgements We thank the referees for their careful reading and constructive comments.

Funding Open Access funding enabled and organized by Projekt DEAL.

3 That is, the total sum over all differences between consecutive paths in the solution is upper-bounded.

123

2062 Algorithmica (2023) 85:2028–2064

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bampis, E., Escoffier, B., Lampis, M., Paschos, V.T.: Multistagematchings. In: Proceedings of the 16th
Scandinavian Symposium andWorkshops on Algorithm Theory (SWAT 2018), vol. 101 of LIPIcs, pp.
7:1–7:13. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2018)

2. Bampis, E., Escoffier, B., Schewior, K., Teiller, A.: Online multistage subset maximization problems.
In: Proceedings of the 27th the Annual European Symposium on Algorithms (ESA 2020), vol. 144 of
LIPIcs, pp .11:1–11:14. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2019a)

3. Bampis, E., Escoffier, B., Teiller, A.: Multistage knapsack. In: Proceedings of the 44th International
Symposium onMathematical Foundations of Computer Science (MFCS 2019), vol. 138 of LIPIcs, pp.
22:1–22:14. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2019b)

4. Bampis, E., Escoffier, B., Kononov, A.V.: LP-based algorithms for multistage minimization prob-
lems. In: Proceedings of the 18th International Workshop on Approximation and Online Algorithms
(WAOA 2020), vol. 12806 of LNCS, pp. 1–15. Springer (2020). https://doi.org/10.1007/978-3-030-
80879-2_1

5. Bentert,M.,Himmel,A.-S.,Nichterlein,A.,Niedermeier,R.: Efficient computationof optimal temporal
walks under waiting-time constraints. Appl. Netw. Sci. 5, 1–26 (2020)

6. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial
kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

7. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition.
SIAM J. Discrete Math. 28(1), 277–305 (2014)

8. Bredereck, R., Fluschnik, T., Kaczmarczyk, A.: When votes change and committees should (not). In:
Proceedings of the 31th International Joint Conference on Artificial Intelligence (IJCAI 2022), pp.
144–150. ijcai.org (2022). https://doi.org/10.24963/ijcai.2022/21

9. Buß, S., Molter, H., Niedermeier, R., Rymar, M.: Algorithmic aspects of temporal betweenness. In:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2020), pp. 2084–2092 (2020)

10. Casteigts, A., Himmel, A.-S., Molter, H., Zschoche, P.: Finding temporal paths under waiting time
constraints. Algorithmica 83(9), 2754–2802 (2021). https://doi.org/10.1007/s00453-021-00831-w

11. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information
retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004). https://doi.org/10.1137/S0097539702418498

12. Drucker, A.: New limits to classical and quantum instance compression. SIAM J. Comput. 44(5),
1443–1479 (2015)

13. Duffin, R.J.: Topology of series–parallel networks. J. Math. Anal. Appl. 10(2), 303–318 (1965)
14. Eisenstat, D., Mathieu, C., Schabanel, N.: Facility location in evolving metrics. In: Proceedings of the

41st International Colloquium on Automata, Languages, and Programming (ICALP 2014), vol. 8572
of LNCS, pp. 459–470. Springer (2014)

15. Enright, J.,Meeks,K.:Deleting edges to restrict the size of an epidemic: a newapplication for treewidth.
Algorithmica 80(6), 1857–1889 (2018)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-80879-2_1
https://doi.org/10.1007/978-3-030-80879-2_1
https://doi.org/10.24963/ijcai.2022/21
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1137/S0097539702418498

Algorithmica (2023) 85:2028–2064 2063

16. Enright, J., Meeks, K., Mertzios, G.B., Zamaraev, V.: Deleting edges to restrict the size of an epidemic
in temporal networks. J. Comput. Syst. Sci. 119, 60–77 (2021). https://doi.org/10.1016/j.jcss.2021.01.
007

17. Erlebach, T., Spooner, J.T.: Faster exploration of degree-bounded temporal graphs. In: Proceedings of
the 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018),
vol. 117 of LIPIcs, pp. 36:1–36:13. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2018)

18. Erlebach, T., Kammer, F., Luo, K., Sajenko, A., Spooner, J.T.: Two moves per time step make a
difference. In: Proceedings of the 46th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2019), vol. 132 of LIPIcs, pp. 141:1–141:14. Schloss Dagstuhl—Leibniz-Zentrum
für Informatik (2019)

19. Fluschnik, T.:Amultistage viewon2-satisfiability. In: Proceedings of the 12th InternationalConference
on Algorithms and Complexity (CIAC 2021), vol. 12701 of LNCS, pp. 231–244. Springer (2021).
https://doi.org/10.1007/978-3-030-75242-2_16

20. Fluschnik, T., Kunz, P.: Bipartite temporal graphs and the parameterized complexity of multistage
2-coloring. In: Proceedings of the 1st Symposium on Algorithmic Foundations of Dynamic Networks
(SAND 2022), vol. 221 of LIPIcs, pp. 16:1–16:18. Schloss Dagstuhl—Leibniz-Zentrum für Informatik
(2022). https://doi.org/10.4230/LIPIcs.SAND.2022.16

21. Fluschnik, T., Kratsch, S., Niedermeier, R., Sorge, M.: The parameterized complexity of the minimum
shared edges problem. J. Comput. Syst. Sci. 106, 23–48 (2019)

22. Fluschnik, T., Morik, M., Sorge, M.: The complexity of routing with collision avoidance. J. Comput.
Syst. Sci. 102, 69–86 (2019)

23. Fluschnik, T., Niedermeier, R., Rohm, V., Zschoche, P.: Multistage vertex cover. Theory Comput. Syst.
66(2), 454–483 (2022). https://doi.org/10.1007/s00224-022-10069-w

24. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families
with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1-29:60 (2016)

25. Fortnow, L., Santhanam,R.: Infeasibility of instance compression and succinct PCPs forNP. J. Comput.
Syst. Sci. 77(1), 91–106 (2011)

26. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.
W. H. Freeman, New York (1979)

27. Ghariblou, S., Salehi, M., Magnani, M., Jalili, M.: Shortest paths in multiplex networks. Nat. Sci. Rep.
7, 2142 (2017)

28. Golovach, P.A., Thilikos, D.M.: Paths of bounded length and their cuts: parameterized complexity and
algorithms. Discrete Optim. 8(1), 72–86 (2011)

29. Gupta,A., Talwar,K.,Wieder,U.:Changing bases:multistage optimization formatroids andmatchings.
In: Proceedings of the 41st International Colloquium on Automata, Languages, and Programming
(ICALP 2014), vol. 8572 of LNCS, pp. 563–575. Springer (2014)

30. Hartung, S., Niedermeier, R.: Incremental list coloring of graphs, parameterized by conservation.
Theor. Comput. Sci. 494, 86–98 (2013)

31. Heeger, K., Himmel, A.-S., Kammer, F., Niedermeier, R., Renken, M., Sajenko, A.: Multistage graph
problems on a global budget. Theor. Comput. Sci. 868, 46–64 (2021). https://doi.org/10.1016/j.tcs.
2021.04.002

32. Holme, P., Saramäki, J. (eds.): Temporal Networks. Springer, Berlin (2013)
33. Holme, P., Saramäki, J. (eds.): Temporal Network Theory. Springer, Berlin (2019)
34. Kellerhals, L., Renken, M., Zschoche, P.: Parameterized algorithms for diverse multistage problems.

In: Proceedings of the 29th Annual European Symposium on Algorithms (ESA 2021), vol. 204,
pp. 55:1–55:17. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/
LIPIcs.ESA.2021.55

35. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks.
J. Comput. Syst. Sci. 64(4), 820–842 (2002)

36. Klobas, N., Mertzios, G.B., Molter, H., Niedermeier, R., Zschoche, P.: Interference-free walks in time:
temporally disjoint paths. In: Proceedings of the 30th International Joint Conference on Artificial
Intelligence (IJCAI 2021), pp. 4090–4096. ijcai.org (2021). https://doi.org/10.24963/ijcai.2021/563

37. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions
over time. Soc. Netw. Anal. Min. 8(1), 61:1-61:29 (2018)

38. Latapy, M., Fiore, M., Ziviani, A.: Link streams: methods and applications. Comput. Netw. 150, 263–
265 (2019)

123

https://doi.org/10.1016/j.jcss.2021.01.007
https://doi.org/10.1016/j.jcss.2021.01.007
https://doi.org/10.1007/978-3-030-75242-2_16
https://doi.org/10.4230/LIPIcs.SAND.2022.16
https://doi.org/10.1007/s00224-022-10069-w
https://doi.org/10.1016/j.tcs.2021.04.002
https://doi.org/10.1016/j.tcs.2021.04.002
https://doi.org/10.4230/LIPIcs.ESA.2021.55
https://doi.org/10.4230/LIPIcs.ESA.2021.55
https://doi.org/10.24963/ijcai.2021/563

2064 Algorithmica (2023) 85:2028–2064

39. Marx, D.: A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410(44),
4471–4479 (2009)

40. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4),
239–280 (2016)

41. Monien, B.: How to find long paths efficiently. Discrete Math. 25, 239–254 (1985)
42. Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)
43. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th ACMSymposium

on Theory of Computing (STOC 1978), pp. 216–226 (1978)
44. Tao, T., Croot, E., III., Helfgott, H.: Deterministic methods to find primes. Math. Comput. 81(278),

1233–1246 (2012)
45. Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., Hejun, W.: Efficient algorithms for temporal path

computation. IEEE Trans. Knowl. Data Eng. 28(11), 2927–2942 (2016)
46. Yap, C.-K.: Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci.

26, 287–300 (1983)
47. Zschoche, P.: Restless temporal path parameterized above lower bounds. CoRR (2022). https://doi.

org/10.48550/arXiv.2203.15862
48. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding small separators

in temporal graphs. J. Comput. Syst. Sci. 107, 72–92 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.48550/arXiv.2203.15862
https://doi.org/10.48550/arXiv.2203.15862

	Multistage s–t Path: Confronting Similarity with Dissimilarity
	Abstract
	1 Introduction
	2 Preliminaries
	3 Relation Between Distance Measures: From Edges to Vertices
	4 NP-Hardness Even for Two Snapshots of Maximum Degree Four
	5 The Role of the Parameter Path Length
	5.1 W[1]-Hardness for the Similarity Variant Regarding k+τ and νdownarrow
	5.2 Fixed-Parameter Tractability for Dissimilarity Variant Regarding k

	6 Looking Through the Lens of Efficient Data Reduction
	6.1 Polynomial Kernel for the Dissimilarity Variant Regarding νdownarrow+τ
	6.2 Single-Exponential Kernel for the Similarity Variant Regarding νdownarrow+τ
	6.3 Lower Bounds on Kernelization Regarding n and νdownarrow+τ

	7 Conclusion
	Acknowledgements
	References

