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Abstract
We investigate the queue number of posets in terms of theirwidth, that is, themaximum
number of pairwise incomparable elements. A long-standing conjecture of Heath and
Pemmaraju asserts that every poset of width w has queue number at most w. The
conjecture has been confirmed for posets of width w = 2 via so-called lazy linear
extension.We extend and thoroughly analyze lazy linear extensions for posets of width
w > 2. Our analysis implies an upper bound of (w − 1)2 + 1 on the queue number
of width-w posets, which is tight for the strategy and yields an improvement over the
previously best-known bound. Further, we provide an example of a poset that requires
at least w + 1 queues in every linear extension, thereby disproving the conjecture for
posets of width w > 2.
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1 Introduction

A queue layout of a graph consists of a total order ≺ of its vertices and a partition of
its edges into queues such that no two edges in a single queue nest, that is, there are no
edges (u, v) and (x, y) in a queue with u ≺ x ≺ y ≺ v. If the input graph is directed,
then the total order has to be compatible with its edge directions, that is, it has to be a
topological ordering of it [13, 14]. The minimum number of queues needed in a queue
layout of a graph is commonly referred to as its queue number.

There is a rich literature exploring bounds on the queue number of different classes
of graphs [1, 11, 15, 17–19]. A remarkable work by Dujmović et al. [7] proves that the
queue number of (undirected) planar graphs is constant, thus improving upon previous
(poly-)logarithmic bounds [3, 5, 6] and resolving in the positive an old conjecture by
Heath, Leighton and Rosenberg [11]. For a survey, we refer to [8].

In this paper, we investigate bounds on the queue number of posets. Recall that
a poset P = 〈X ,<〉 consists of a finite set of elements X equipped with a partial
order<; refer to Sect. 2 for formal definitions. The queue number of the poset P is the
queue number of the acyclic digraph G(P) associated with P , called cover digraph,
that contains all non-transitive relations among the elements of X . This digraph can
be visualized using a Hasse diagram, in which elements correspond to points in the
plane and each edge (x, y) is drawn as a y-monotone curve from x to y; see Fig. 1 for
an example.

The study of the queue number of posets was initiated in 1997 by Heath and Pem-
maraju [12], who, among others, provided bounds on the queue number of posets
expressed in terms of their width, that is, the maximum number of pairwise incompa-
rable elements with respect to<. In particular, they observed that the queue number of
a poset of width w cannot exceed w2 and they further posed the following conjecture.

Conjecture 1 (Heath and Pemmaraju [12]) Every poset of width w has queue number
at most w.

Heath and Pemmaraju [12] made a step towards settling the conjecture by providing
a linear upper bound of 4w − 1 on the queue number of planar posets of width w, that
is, of posets whose Hasse diagrams are planar. This bound was recently improved to
3w−2 byKnauer,Micek, andUeckerdt [16],who also gave a planar posetwhose queue
number is exactly w, thus establishing a lower bound. Furthermore, they investigated
(non-planar) posets of width 2, and proved that their queue number is at most 2,

(a) (b)

Fig. 1 a The Hasse diagram of a width-4 poset; gray elements are pairwise incomparable; the chains of a
certain decomposition are shown by vertical lines. b A 2-queue layout with a 2-rainbow formed by edges
(v2, v5) and (v6, v8)

123



1178 Algorithmica (2023) 85:1176–1201

therefore establishing that Conjecture 1 holds when w = 2.1 Note that, in general,
there exist planar posets of width w whose queue number is exactly w [16].
Our Contribution. We present improvements upon the aforementioned results, thus
continuing the study of the queue number of posets expressed in terms of their width,
which is one of the open problems by Dujmović et al. [7].

– For a fixed total order of a graph, the queue number is the size of a maximum
rainbow, that is, of a set of pairwise nested edges [11]. Thus to determine the
queue number of a poset P = 〈X ,<〉 one has to compute a linear extension (that
is, a total order of X complying with <), which minimizes the size of a maximum
rainbow. In Theorem 1 in Sect. 3, we present a width-w poset and a corresponding
linear extension that yields a rainbow of size w2, which suggests that a linear
extension has to be chosen carefully, if one seeks for an upper bound on the queue
number of width-w posets that is strictly less than w2.

– Knauer et al. [16] studied a special type of linear extensions, called lazy linear
extensions, for posets of width 2 to show that their queue number is at most 2.
Thus, it is tempting to generalize and analyze lazy linear extensions for posets of
width w > 2. We provide such an analysis and show that the maximum size of a
rainbow in a lazy linear extension of a width-w poset is at mostw2−w (Theorem 2
in Sect. 3). Furthermore, we show that the bound is worst-case optimal for lazy
linear extensions (Theorem 3 in Sect. 3).

– The above bound already provides an improvement over the existing upper bound
on the queue number of width-w posets by Heath and Pemmaraju [12]. However,
a carefully chosen lazy linear extension, which we call most recently used (MRU),
further improves the bound to (w−1)2+1 (Theorem 4 in Sect. 4). Again we show
this bound to be worst-case optimal for MRU extensions (Theorem 5 in Sect. 4).

– Wedemonstrate a non-planar poset ofwidth 3whose queue number is 4 (Theorem6
in Sect. 5) and generalize this example to width-w posets of queue number w + 1
(Theorem 7 in Sect. 5), thus disproving Conjecture 1.

Paper organization. Section 2 introduces necessary definitions and notations. Lazy
and MRU linear extensions are introduced and studied in Sects. 3 and 4, respectively.
Section 5 is devoted in disproving Conjecture 1. Finally, Sect. 6 concludes the paper
with a list of open problems.

2 Preliminaries

A partial order over a finite set of elements X is a binary relation < that is irreflexive
and transitive. A finite set X together with a partial order < is a partially ordered set
(or simply a poset). Let P = 〈X ,<〉 be a poset. Two elements x and y of X with
x < y or y < x are called comparable; otherwise x and y are incomparable. A subset
of pairwise comparable (incomparable) elements of X is called a chain (antichain,
respectively). The width of poset P is defined as the cardinality of a largest antichain.
For two elements x and y of X with x < y, we say that x is covered by y if there

1 Knauer et al. [16] also claim to reduce the queue number of posets of width w from w2 to w2 − 2�w/2�.
However, as we discuss in Sect. 3.3, their argument is incomplete for w > 2.
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is no element z ∈ X such that x < z < y. Poset P can be naturally associated with
an acyclic digraph G(P), whose vertex-set consists of the elements of X , and there
exists an edge from u to v if u is covered by v; see Fig. 1a. We refer to G(P) as the
cover digraph of P . Observe that by definition G(P) has no transitive edges, that is,
G(P) is transitively reduced.

A linear extension L of poset P is a total order of the elements of X that complies
with <, that is, for every two elements x and y in X with x < y, x precedes y in L .
Given a linear extension L of poset P , we write x ≺ y to denote that x precedes y
in L; if in addition x and y may coincide, we write x � y. We use [x1 . . . x2 . . . xk]
to denote xi ≺ xi+1 for all 1 ≤ i < k; such a subsequence of L is also called a
pattern. Let F = {(xi , yi ); i = 1, 2, . . . , k} be a set of k ≥ 2 independent (that
is, having no common endpoints) edges of G(P). It follows that xi ≺ yi for all
1 ≤ i ≤ k. If [x1 . . . xk . . . yk . . . y1] holds in L , then the edges of F form a k-
rainbow (see Fig. 1b). Edge (xi , yi ) nests edge (x j , y j ), if 1 ≤ i < j ≤ k. To ease
the presentation, in the following we often illustrate patterns as in-line figures, which
allows us to additionally show critical edges on the involved vertices, e.g., a k-rainbow
[x1, . . . , xk, . . . , yk, . . . , y1], along with edges (x1, y1), . . . , (xk, yk), is visualized as
follows:

y1x2x1 xk

· · · · · ·
yk y2

· · · · · · · · · · · ·· · · · · · · · · · · ·

In this visualization, gray dots between two vertices indicate that these vertices are
not necessarily consecutive in the order. Also, note that in several occasions, we do
not illustrate all vertices and edges that may be involved in a pattern, but we rather
focus on a meaningful subset of important ones.

A queue layout of an acyclic digraph G consists of a total order of its vertices
that is compatible with the edge directions of G and of a partition of its edges into
queues, such that no two edges in a queue are nested. The queue number of G is the
minimum number of queues required by its queue layouts. Accordingly, the queue
number of poset P is the queue number of its cover digraph G(P). Equivalently, the
queue number of P is at most k if and only if it admits a linear extension L such that
no (k + 1)-rainbow is formed by some of the edges of G(P) [15]. If certain edges
form a rainbow in L , we say that L contains the rainbow.

Assume now that poset P has width w. Then, it is known that its elements can be
partitioned intow chains [4]. Note that such a partition is not necessarily unique. In the
following, we fix this partition, and treat it as a function C : X → {1, . . . , w} such that
if C(u) = C(v) and u �= v, then either u < v or v < u. We useR, B, and G to denote
specific chains from a chain decomposition. A set of edges of the cover digraph G(P)

of poset P that form a rainbow in a linear extension is called an incoming R-rainbow
TR of size s if it consists of s edges (u1, r1), . . . , (us, rs) such that ri ∈ R for all
1 ≤ i ≤ s and C(ui ) �= C(u j ) for all 1 ≤ i, j ≤ s with i �= j . If s = w, TR is called
complete and is denoted by T ∗

R. An edge e of TR with both endpoints inR is called an
R-self edge. For example, T ∗

R \ {e} is an incomingR-rainbow of size w − 1 without
theR-self edge e. Similar notation is used for chains B and G.
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3 Lazy Linear Extensions

In this section, we formally introduce and study lazy linear extensions. We start by
recalling two elementary properties of (general) linear extensions,whose proofs imme-
diately follow from the fact that the cover digraph of a poset contains no transitive
edges.

Proposition 1 A linear extension of a poset P does not contain pattern [r1 . . . r2 . . . r3],
where C(r1) = C(r2) = C(r3) and (r1, r3) is an edge of G(P).

Proposition 2 A linear extension of a poset P does not contain pattern [r1 . . . r2 . . . b2
. . . b1], where C(r1) = C(r2), C(b1) = C(b2), and (r1, b1) and (r2, b2) are edges of
G(P).

Note that Proposition 2 directly implies that for any linear extension of a poset, the
maximum size of a rainbow is at most w2, as shown by Heath and Pemmaraju [12].

3.1 Motivation

In the following, we show that, for every w ≥ 2, there exists a width-w poset and
a linear extension of it containing a w2-rainbow, which suggests that the bound by
Heath and Pemmaraju [12] is worst-case optimal. Hence, a linear extension has to be
chosen carefully, if one seeks for a bound on the queue number of width-w posets that
is strictly less than w2.

Theorem 1 For every w ≥ 2, there is a width-w poset and a linear extension of it that
results in a rainbow of size w2 for the edges of its cover digraph.

Proof For w ≥ 2, we construct a poset Pw of width w, and we demonstrate a linear
extension of it, which results in a queue layout of G(Pw)withw2 queues. We describe
Pw in terms of its cover digraph G(Pw), which containsw chains C1, . . . , Cw of length
2w that form paths in G(Pw). We denote the j-th vertex of the i-th chain Ci by vi, j ,
where 1 ≤ i ≤ w and 1 ≤ j ≤ 2w. Since each chain is a path in G(Pw), (vi, j , vi, j+1)

is an edge in G(Pw) for every 1 ≤ i ≤ w and 1 ≤ j ≤ 2w − 1. The first and the last
w vertices of each such path partition the vertex-set of G(Pw) into two sets S and T ,
respectively, that is,

S = ∪w
i=1{vi,1, . . . , vi,w} and T = ∪w

i=1{vi,w+1, . . . , vi,2w}.

Observe that each chain has exactly one edge, called the middle edge, connecting a
vertex in S to a vertex in T . In the following,we describe the interchain edges ofG(Pw)

and a specific linear extension of Pw, in which all w middle edges of G(Pw) (refer
to the bold-drawn edges in Fig. 2) and all w(w − 1) interchain edges of G(Pw) (the
colored edges in Fig. 2) form a w2-rainbow. We give the description of the interchain
edges of G(Pw) in an iterative way. Assume that we have introduced the interchain
edges that form the connections between the first i − 1 chains and let Ci be the next
chain to consider. We proceed in two steps.
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Fig. 2 Illustration for the proof of Theorem 1: The cover digraph G(Pw) of a poset Pw with w = 4 and a
linear extension (indicated with gray numbers) of it which yields a rainbow of size 16

First, we introduce the outgoing interchain edges from the vertices of Ci as follows.
For k = 1, . . . , i −1, we connect the k-th vertex vi,k of chain Ci to the (2w− i +1)-th
vertex vi−k,2w−i+1 of chain Ci−k , that is, we introduce (vi,k, vi−k,2w−i+1) in G(Pw).

We next introduce the incoming interchain edges to vertices of Ci as follows. For
k = 1, . . . , i − 1, we connect the (w − i + k)-th vertex of k-th chain Ck to the
(2w − k + 1)-th vertex of chain Ci , that is, we introduce edge (vk,w−i+k, vi,2w−k+1)

in G(Pw). This completes the construction of G(Pw) and thus of poset Pw.
By construction, the interchain edges of G(Pw) connect only vertices from S to

vertices in T , and, from each chain, there is only one (outgoing) interchain edge to
every other chain. This implies that an interchain edge cannot be transitive in G(Pw).
On the other hand, an intrachain edge (u, v) also cannot be transitive because its
source u needs an outgoing interchain edge (which classifies u in S) and its target v

an incoming interchain edge (which classifies v in T ). This implies that (u, v) is a
middle edge. In this case, however, our construction ensures that there are interchain
edges attached to neither u nor v. Thus, G(Pw) is transitively reduced. Since G(Pw)

is by construction acyclic, we conclude that Pw is a poset. Since any two vertices in
the same chain are comparable, the width of Pw equals to the number of sources (or
sinks) of chains, which is w.

To complete the proof, we next describe a linear extension of G(Pw) that contains a
w2-rainbow. For i = 1, . . . , w and for j = 1, . . . , w − 1, the j-th vertex vi, j of chain
Ci is the ((i − 1)(w − 1) + j)-th vertex in the extension. For i = 1, . . . , w, the w-th
vertex vi,w of chain Ci is the (w(w − 1)+w − (i − 1))-th vertex in the extension. For
i = 1, . . . , w and for j = 1, . . . , w, the (w + j)-th vertex vi,w+ j of chain Ci is the
(w2 + jw + (i − 1))-th vertex in the extension. In this linear extension, all interchain
edges (which are in total w(w − 1)) and all middle edges (which are in total w) form
a rainbow of size w2. ��
We conclude this section with the following remark.

Remark 1 Knauer et al. [16] claimed the existence of a width-w poset and its linear
extension containing a w2-rainbow. However, the poset that they claim to require w2
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queues in some linear extension of it is defined on 2w elements. As a result, its cover
digraph cannot have more than w independent edges. Thus, also the largest rainbow
that can be formed by any linear extension is of size at most w, that is, w is an upper
bound on the queue number of this poset.

3.2 General Lazy Linear Extensions

As mentioned in Sect. 3.1, a linear extension of a width-w poset has to be chosen
carefully, if one seeks for a bound on the queue number of width-w posets that is
strictly less than w2. In this section, we present and analyze such an extension, which
we call lazy.

Assume that a width-w poset P = 〈X ,<〉 is given with a decomposition C into w

chains. Intuitively, a lazy linear extension is constructed incrementally starting from a
minimal element of the poset. In every iteration, the next element is chosen from the
same chain, if possible. Formally, for i = 1, . . . , n, assume that we have computed a
lazy linear extension L for i − 1 vertices of G(P) and let vi−1 be last vertex in L (if
any). To determine the next vertex vi of L , we compute the following set consisting
of all source-vertices of the subgraph of G(P) induced by X \ L:

S = {v ∈ X \ L : � edge (u, v) in G(P) with u ∈ X \ L}. (1)

If there is a vertex u in S with C(u) = C(vi−1), we set vi = u; otherwise vi is freely
chosen from S; see Algorithm 1. Observe that the definition of a lazy linear extension
for poset P depends on the chosen chain partition C. For the example of Fig. 1a,
observe that v1 ≺ v4 ≺ v2 ≺ v3 ≺ v6 ≺ v7 ≺ v5 ≺ v8 is a lazy linear extension. It
is easy to see that Algorithm 1 can be implemented in O(n + m) time, where n and
m are the number of vertices and edges of G(P), respectively, assuming that a chain
partition is given as a part of the input.

Lemma 1 If a lazy linear extension L of a poset P = 〈X ,<〉 contains the pattern
[r1 . . . b . . . r2], where C(r1) = C(r2) �= C(b), then there exists some x ∈ X with
C(x) �= C(r1) between r1 and r2 in L, such that x < r2.
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Proof Since b appears between r1 and r2 in L (by the pattern [r1 . . . b . . . r2]), the
cover digraph G(P) of P contains an edge from a vertex x with C(x) �= C(r1) to a
vertex y ∈ C(r1) that is between r1 and r2 in L (notice that x may or may not coincide
with b). Since the edge belongs to G(P), it follows that x < y ≤ r2. ��
Lemma 2 A lazy linear extension of a poset P = 〈X ,<〉 does not contain pattern

where (u1, r1), . . . , (uw−1, rw−1) form an incoming C(r)-rainbow of size w − 1, such
that C(r) �= C(ui ) for all 1 ≤ i ≤ w − 1 and C(r) �= C(b).

Proof Assume, to the contrary, that there is a lazy linear extension L containing the
pattern. Since [r . . . b . . . rw−1] holds in L , byLemma1, there is an element x ∈ X with
C(x) �= C(rw−1) between r and rw−1 in L such that x < rw−1. Since C(x) �= C(rw−1),
there is 1 ≤ j ≤ w − 1 such that C(x) = C(u j ), which implies u j < x . Thus:

Since u j < x < rw−1 ≤ r j , there is a path from u j to r j in G(P). It follows that
the edge (u j , r j ) is transitive in G(P), which is a contradiction to the fact that G(P)

is transitively reduced. ��
Theorem 2 The maximum size of a rainbow formed by the edges of G(P) in a lazy
linear extension of a poset P of width w is at most w2 − w.

Proof Assume, to the contrary, that there is a lazy linear extension L that contains a
(w2 − w + 1)-rainbow T . By Proposition 2 and the pigeonhole principle, T contains
at least one complete incoming rainbow of size w; denote it by T ∗

R and the corre-
sponding chain by R. By Proposition 1, the R-self edge of T ∗

R is innermost in T ∗
R.

Thus, if (u1, r1), . . . , (uw, rw) are the edges of T ∗
R and uw ∈ R, then, without loss of

generality, we may assume that the following holds in L:

We next show that (uw, rw) is the innermost and (uw−1, rw−1) is the second inner-
most edge in T . Assume, to the contrary, that there exists an edge (x, y) in T that does
not belong to T ∗

R (that is, C(y) �= R) and that is nested by (uw−1, rw−1). Regardless
of whether (x, y) nests (uw, rw) or not, we deduce the following:
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Togetherwith uw ∈ R and y /∈ R, we apply Lemma2,which yields a contradiction.
Since (uw, rw) and (uw−1, rw−1) are the two innermost edges of T , it follows that T
does not contain another complete incoming rainbow of size w.

Hence, each of the remaining w − 1 incoming rainbows has size exactly w − 1.
Consider vertex uw−1, and, let, without loss of generality, C(uw−1) = B. By Propo-
sition 1, B �= R. We claim that the (inclusion-maximal) incoming B-rainbow TB
does not contain the B-self edge. Assuming the contrary, this B-self edge nests
(uw−1, rw−1) because (uw, rw) and (uw−1, rw−1) are the two innermost edges of
T . Since C(uw−1) = B, we obtain a contradiction by Proposition 1. Thus, TB is a B-
rainbow of size w − 1 containing no B-self edge. All edges of TB nest (uw−1, rw−1),
which yields the forbidden pattern of Lemma 2 formed by vertices of TB, uw−1 ∈ B,
and rw−1 ∈ R; a contradiction. ��
In the following theorem we show that our analysis is tight, that is, there are posets of
width w and corresponding lazy linear extensions containing (w2 − w)-rainbows.

Theorem 3 For every w ≥ 2, there exists a width-w poset, which has a lazy linear
extension resulting in a rainbow of size w2 − w for the edges of its cover digraph.

Proof Forw ≥ 2,we construct a poset Pw ofwidthw, andwe demonstrate a lazy linear
extension Lw of it, which results in a queue layout of G(Pw) with w2 − w queues.
We describe Pw in terms of its cover digraph G(Pw). We define G(Pw) recursively
based on the graph G(Pw−1) of width w − 1, for which we assume that it admits a
lazy linear extension Lw−1, such that the edges of G(Pw−1) form a rainbow of size
exactly (w − 1)2 − (w − 1) in Lw−1. Since G(Pw−1) has width w − 1, its vertex-set
can be partitioned into w − 1 chains C1, . . . , Cw−1 [4]. As an invariant property in the
recursive definition of G(Pw), we assume that the first and the last vertices in Lw−1
belong to two different chains of the partition, say without loss of generality to C1 and
Cw−1, respectively.

In the base casew = 2, the cover digraph G(P2) consists of five vertices v1, . . . , v5
and four edges (v1, v2), (v1, v5), (v3, v4), and (v4, v5). It is not difficult to see that
G(P2) has width 2 and, for the chain partition C1 = {v1, v2}, C2 = {v3, v4, v5}, the
linear extension v1 ≺ . . . ≺ v5 is a lazy linear extension of it, which satisfies the
invariant property and results in a 2-rainbow formed by (v1, v5) and (v3, v4).

Graph G(Pw) is obtained by augmenting G(Pw−1) with 6w − 4 vertices. Hence,
G(Pw) contains 3w2 − w − 5 vertices in total. We further enrich the chain partition
C1, . . . , Cw−1 of G(Pw−1) by one additional chain Cw in G(Pw); see Fig. 3. In partic-
ular, chain Cw contains 2(w − 1) vertices vw,1, . . . , vw,2w−2 that form a path in this
order in G(Pw). Chain C1 of G(Pw−1) is enriched with five additional vertices v1,1,
v1,2, v1,2, v1,3, and v1,4 in G(Pw), such that v1,1 is connected to v1,2, v1,2 is connected
v1,2 and v1,2 is connected to the first vertex of chain Ci in Lw−1 for all 1 ≤ i ≤ w −1,
the last vertex of C1 in Lw−1 is connected to v1,3, and v1,3 is connected to v1,4. For
i = 2, . . . , w − 2, chain Ci of G(Pw−1) is enriched with four vertices vi,1, vi,2, vi,3,
and vi,4 in G(Pw), such that vi,1 is connected to vi,2, vi,2 is connected to the first
vertex of chain Ci in Lw−1, the last vertex of chain Ci in Lw−1 is connected to vi,3,
and vertex vi,3 is connected to vi,4. Finally, chain Cw−1 is enriched with five vertices
vw−1,1, vw−1,2, vw−1,3, vw−1,3, and vw−1,4, such that vertex vw−1,1 is connected to
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Fig. 3 Illustration for Theorem 3; q denotes the number of vertices of G(Pw−1), that is, q = 3(w − 1)2 −
(w − 1) − 5

vw−1,2, vw−1,2 is connected to the first vertex of Cw−1 in Lw−1, the last vertex of Cw−1
in Lw−1 is connected to vw−1,3, vw−1,3 is connected to vi,3 for all 1 ≤ i ≤ w − 1
and vi,3 is connected to vw−1,4 for all 1 ≤ i ≤ w. We complete the construction of
G(Pw) by adding the following edges (colored orange in Fig. 3): (i)(vi,1, vw,w+i−1)

for all 1 ≤ i ≤ w − 1, (ii)(vw,i , vw−i,4) for all 1 ≤ i ≤ w − 1.
The construction ensures that G(Pw) contains no transitive edges and that its

width is w, since all the newly added vertices either are comparable to vertices of
C1, . . . , Cw−1 or belong to the newly introduced chain Cw. Hence, Pw is a well-defined
width-w poset. Now, consider the following linear extension Lw of G(Pw):

vw,1, . . . , vw,w−1, vw−1,1, vw−1,2, . . . v1,1, v1,2, v1,2, Lw−1, vw−1,3, vw−1,3,

vw,w, . . . , vw,2w−2, vw−2,3, vw−2,4, . . . , v1,3, v1,4, vw−1,4

It can be easily checked that Lw is a lazy linear extension of G(Pw), under the
invariant property that the first and the last vertices of Lw−1 belong to two different
chains in {C1, . . . , Cw−1}, which we assume to be C1 and Cw−1, respectively. Note
that, since the first vertex of Lw belongs to Cw while its last vertex to Cw−1, the
invariant property is maintained in the course of the recursion. We complete the proof
by observing that thew−1 edges stemming from the firstw−1 vertices of Cw towards
the last vertices of the chains C1, . . . , Cw−1 and the w − 1 edges stemming from the
first w −1 vertices of C1, . . . , Cw−1 towards the last w −1 vertices of chain Cw form a
rainbow of size 2w−2 in Lw (see the orange edges in Fig. 3), which nests the rainbow
of size (w − 1)2 − (w − 1) of Lw−1. Thus, we have identified a rainbow of total size
w2 − w in Lw, as desired. ��
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Fig. 4 Illustration a poset of width 4 together with a chain partition C1, . . . ,C4

3.3 A note for the upper bound ofw2 − 2�w/2� by Knauer et al.

In the following, we discuss an issue in the approach by Knauer et al. [16] to derive
the upper bound ofw2−2�w/2� on the queue number of posets of widthw. Knauer et
al. used a simple form of the lazy linear extension to prove that the queue number of a
poset of width 2 is at most 2. Using this result, they derived the bound ofw2−2�w/2�
on the queue number of a poset P of widthw by pairing up chains of the chain partition
of P . The pairing yields �w/2� pairs, each of which induces a poset of width 2, and
thus admits a lazy linear extension in which the maximum rainbow is of size 2.

The critical step is to combine the linear extensions of the pairs to a linear extension
of the original poset by “respecting all these partial linear extensions”, as stated in [16].
The step is problematic even for w = 4. To see this, consider the poset illustrated in
Fig. 4 through its cover digraph. This poset has width 4 and C1, . . . , C4 is a chain
partition. It is not difficult to see that the poset induced by C1 and C2 admits the
following lazy linear extension:

L1 : v2 ≺ v6 ≺ v1 ≺ v5.

The poset induced by C3 and C4 admits the following lazy linear extension:

L2 : v3 ≺ v4 ≺ v8 ≺ v7.

According to [16], the two linear extensions, L1 and L2, are combined into a linear
extension L of the original poset. In particular, the following holds in L:

– v1 ≺ v8, due to edge (v1, v8),
– v8 ≺ v7, since this holds in L2,
– v7 ≺ v6, due to edge (v7, v6).

By transitivity, it follows that v1 ≺ v6 must hold in L . However, v6 ≺ v1 holds in
L1, a contradiction. We conclude that a crucial argument is missing in [16]. It is not
clear how to avoid such a problem for an approach in which two linear extensions are
combined into a single one.
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4 MRU Extensions

In this section, we define a special type of lazy linear extensions, which we call
most recently used, or simply MRU. Let P = 〈X ,<〉 be a width-w poset and C a
decomposition of it into w chains. For i = 1, . . . , n, assume that we have computed
a linear extension L for i − 1 vertices of G(P), which are denoted by v1, . . . , vi−1.
To determine the next vertex vi of L , we compute set S of Eq. 1. Among all vertices
in S, we select one from the most recently used chain (if any). Formally, we select
a vertex u ∈ S such that C(u) = C(v j ) for the largest 1 ≤ j < i . If such a vertex
does not exist, we choose vi arbitrarily from S; see Algorithm 2. For the example of
Fig. 1a, observe that v1 ≺ v4 ≺ v2 ≺ v3 ≺ v6 ≺ v5 ≺ v7 ≺ v8 is an MRU extension.
In particular, after vertex v6, a lazy linear extension may contain either v5 or v7, while
an MRU linear extension contains vertex v5.

In what follows, we prove the main result of the section, providing a worst-case
optimal upper bound on the size of a rainbow in an MRU linear extension of a poset.
The proof of Theorem 4 is based on analyzing the largest incoming rainbows and
bounding (from above) their sizes. To this end, we describe certain forbidden patterns
in the order, namely Lemmas 5, 6, 7, 8, and 9. The analysis relies on two auxiliary
claims (Proposition 3 and Lemma 4), which we discuss next.

For a linear extension L of poset P = 〈X ,<〉 and two elements x and y in X , let
C[x, y] be the subset of chains whose elements appear between x and y (inclusively)
in L , that is, C[x, y] = {C(z) : x � z � y}.
Lemma 3 Let L be an MRU extension of a width-w poset P containing pattern
[r1 . . . r2 . . . b], such that C(r1) = C(r2) �= C(b) and there is no element in L between
r1 and r2 from chain C(r1). If C[r1, r2] = C[r1, b], then r2 < b.

Proof Assume, to the contrary, that there is some b for which r2 < b does not hold.
Without loss of generality, let b be the first (after r2) of those elements in L . Since
C[r1, r2] = C[r1, b], there are elements between r1 and r2 in L from chain C(b). Let
b1 be the last such element in L . Hence, r1 ≺ b1 ≺ r2 ≺ b. Consider the incremental
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construction of L . Since there is no element between r1 and r2 in L from chain C(r1),
the chain of b was “more recent” than the one of r2, when r2 was chosen as the next
element. Thus, there is an edge (x, b) in G(P) with r2 ≺ x in L , that is, when r2
was chosen as the next element, b was not part of set S of Eq. (1). Since b is the first
element that is not comparable to r2, then r2 < x holds. Hence, r2 < b; a contradiction
to our assumption that r2 < b does not hold. ��
Corollary 1 Let L be an MRU extension of a width-w poset P containing pattern
[r1 . . . r2], such that C(r1) = C(r2) and there is no element in L between r1 and r2
from chain C(r1). If |C[r1, r2]| = w, then r2 is comparable to all subsequent elements
in L.

Lemma 4 An MRU extension L of a width-w poset P does not contain the following
pattern, even if uk = b1:

where

– C(ui ) �= C(u j ) for 1 ≤ i, j ≤ w with i �= j ,
– (u1, r1), . . . , (uk, rk) form an incoming R-rainbow of size k for some 1 ≤ k ≤ w,
– between b1 and b2 in L, there is an element from R but no elements from B =
C(b1) = C(b2).

Proof Since there are no elements between b1 and b2 in L from B and since C(ui ) �=
C(u j ) for 1 ≤ i, j ≤ w with i �= j , one of u1, . . . , uk belongs to B. Let ui be this
element with 1 ≤ i ≤ k, that is, C(ui ) = B. Since (u1, r1), . . . , (uk, rk) form an
incoming R-rainbow, (ui , ri ) is an edge of G(P). Notice that [ui . . . b1 . . . b2 . . . ri ]
holds in L and that ui = b1 may hold if i = k.

Our proof is by induction on |C| − |C[b1, b2]|, which ranges between 0 and w − 2.
In the base case |C| − |C[b1, b2]| = 0, that is, |C[b1, b2]| = w. By Corollary 1, b2 is
comparable to all subsequent elements in L . In particular, b2 < ri , which implies that
(ui , ri ) is transitive in G(P), since ui ≤ b1 < b2 < ri ; a contradiction.

Assume |C| − |C[b1, b2]| > 0. Let r0 be the first vertex from R after b2 in L , that
is, r0 � rk . If there are no elements between b2 and r0 from C \ C[b1, b2] (that is,
C[b1, b2] = C[b2, r0]), then by Proposition 3 it follows that b2 < r0, which implies
ui ≤ b1 < b2 < r0 ≤ ri . Thus, edge (ui , ri ) is transitive in G(P); a contradiction.
Therefore, we may assume that there are elements between b2 and r0 in L from
C \ C[b1, b2]. Let g1 be the first such element; denote C(g1) = G. Since between
b1 and b2 in L there is an element from R (that is, R ∈ C[b1, b2]), G �= R holds.
Similarly,G �= B. Let (u�, r�) be the edge of the incomingR-rainbowwith C(u�) = G;
notice that such an edge exists as G ∈ C \ C[b1, b2]. Since r0 is the first element from
R after b2 in L , r0 � r�. Thus, [u� . . . b1 . . . b2 . . . g1 . . . r0 . . . r�] holds in L such that
C(u�) = G /∈ {R,B}. Let g2 be the last element between u� and b1 from G, that is,
u� � g2 ≺ b1 in L . Now, consider the pattern:
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which satisfies the conditions of the lemma, since between g2 and g1 in L there is
an element of R (namely, the one between b1 and b2 in L) and no elements of G
(by the choice of g1 and g2). Further, |C| − |C[g2, g1]| < |C| − |C[b1, b2]|, since
{G} = C[g2, g1] \ C[b1, b2]. By the inductive hypothesis, the aforementioned pattern
is not contained in L . Thus, also the initial one is not contained in L . ��
In the next five lemmas, we study configurations that cannot appear in a rainbow
formed by the edges of G(P) in an MRU extension.

Lemma 5 Let R and B be different chains of a width-w poset. Then a rainbow in an
MRU extension of the poset does not contain all edges from

T ∗
R ∪ {(b1, b2)},

where b1, b2 ∈ B and T ∗
R is a complete incoming R-rainbow.

Proof Assume, to the contrary, that a rainbow T contains an incoming R-rainbow
formed by edges (u1, r1), . . . , (uw, rw) and an edge (b1, b2) with b1, b2 ∈ B. As
in the proof of Theorem 2, we can show that (uw−1, rw−1) and (uw, rw) are the
two innermost edges of T and C(uw) = R. Assume, without loss of generality, that
uk ≺ b1 ≺ uk+1 in L for some 1 ≤ k ≤ w − 1, which implies that rk+1 ≺ b2 ≺ rk .
Thus, the following holds in L:

By Proposition 1, there are no elements from B between b1 and b2. Hence, the
conditions of Lemma 4 hold for the pattern; a contradiction. ��
Lemma 6 Let R and B be different chains of a width-w poset. Then a rainbow in an
MRU extension of the poset does not contain all edges from

T ∗
R \ {(r1, r2)} ∪ T ∗

B \ {(b1, b2)},

where r1, r2 ∈ R, b1, b2 ∈ B, and T ∗
R, T ∗

B is a complete incoming R-rainbow and
B-rainbow, respectively.

Proof Let TR be an incomingR-rainbow of sizew−1 without theR-self edge; define
TB symmetrically. Assume, to the contrary, that a rainbow T in an MRU extension L
contains both TR and TB. Let (uw−1, rw−1) and (vw−1, bw−1) be the innermost edges
of TR and TB in T , respectively. Without loss of generality, assume that (vw−1, bw−1)

nests (uw−1, rw−1). This implies the following in L:
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By Lemma 2 applied to TB, there are no elements from B between vw−1 and rw−1
in L . Consider edge (ui , ri ) of TR such that ui ∈ B. Element ui ensures that there are
some elements preceding vw−1 in L that belong to B. Let b� be the last such element
in L , that is, b� � vw−1. Symmetrically, let br be the first element from B following
rw−1 in L , that is, rw−1 ≺ br � bw−1, and we have:

By the choice of b� and br , we further know that, between b� and br , there are no ele-
ments from B, but there is an element fromR, namely rw−1. Let (u1, r1), . . . , (uk, rk)

be the edges of TR that nest both b� and br in L , that is, u1 ≺ . . . ≺ uk ≺ b� ≺ br ≺
rk ≺ . . . ≺ r1 holds in L . Assuming that uw = rw−1, we conclude that the following
holds in L:

Since, between b� and br there are no elements from B, but there is an element
fromR, we have the forbidden pattern of Lemma 4; a contradiction. ��
Lemma 7 LetR,B,G be pairwise different chains of a width-w poset. Then a rainbow
in an MRU extension of the poset does not contain all edges from

T ∗
R \ {(g1, r)} ∪ T ∗

B \ {(g2, b)},

where g1, g2 ∈ G, r ∈ R, b ∈ B, and T ∗
R, T ∗

B is a complete incoming R-rainbow and
B-rainbow, respectively.

Proof Assume, to the contrary, that a rainbow T contains both TR and TB as
in the statement of the lemma. Let (u1, r1), . . . , (uw−1, rw−1) be the edges of
TR and (v1, b1), . . . , (vw−1, bw−1) be the edges of TB, where (uw−1, rw−1) and
(vw−1, bw−1) isR- and B-self edge, respectively. By Proposition 1, (uw−1, rw−1) and
(vw−1, bw−1) are innermost edges in TR and TB. Without loss of generality, assume
that (vw−1, bw−1) nests (uw−1, rw−1), and that vw−1 appears between vertices uk and
uk+1 of TR, which implies that rk+1 ≺ bw−1 ≺ rk . Hence, the following holds in L:

By Proposition 1, there is no vertex of B between vw−1 and bw−1 in L . If there is
a vertex from G between vw−1 and bw−1 in L , then we have the forbidden pattern of
Lemma 4, since C(ui ) �= G for all 1 ≤ i ≤ w − 1.
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Otherwise, by Lemma 1, there is some x /∈ B between vw−1 and bw−1 in L , such
that x < bw−1. As mentioned above, x /∈ G either. Thus, the incoming B-rainbow
contains edge (vi , bi ), which nests (vw−1, bw−1), such that C(vi ) = C(x). Since
vi < x < bw−1 < bi , the edge (vi , bi ) is transitive; a contradiction. ��
Lemma 8 Let R,B,G be pairwise different chains of a width-w poset P = 〈X ,<〉.
Then a rainbow in an MRU extension of G(P) does not contain all edges from

T ∗
B \ {(b1, b2)} ∪ T ∗

R \ {(mr , r)} ∪ T ∗
G \ {(mg, g)},

where b1, b2 ∈ B, mr ∈ X \ R, r ∈ R, mg ∈ X \ G, g ∈ G, and T ∗
B, T ∗

R, T ∗
G is a

complete incoming B-rainbow, R-rainbow G-rainbow, respectively.

Proof Assume, to the contrary, that a rainbow T contains three incoming rainbows, TB ,
TR, andTG , as in the statement of the lemma.Without loss of generality, assume that the
G-self edge (g1, g2) is nested by theR-self edge, (r1, r2); that is, r1 ≺ g1 ≺ g2 ≺ r2.

Denote the edges of TB by (ui , bui ), for 1 ≤ i ≤ w − 1, and assume that the
following holds in L for some k ≤ w − 1:

Suppose there exists a vertex x ∈ B, such that r1 ≺ x ≺ r2; then r1 and r2 together
with x and edges of TB form the forbidden pattern of Lemma 4. Thus, there are no
vertices from B between r1 and r2 in L , and (uk, buk ) is the innermost edge of TB in
T . Therefore, we can find two consecutive vertices in chain B, b′ and b′′, such that
b′ ≺ r1 ≺ r2 ≺ b′′ � buk . Here b′ exists because, by Lemma 7, at least one of the
two edges, (b, r), (b, g), is in T as part of TR, TG , respectively. Further, by Lemma 2,
the interval between uk and buk does not contain pattern [uk . . . b . . . x . . . buk ], where
b ∈ B, x /∈ B. Thus, b′ ≺ uk and the interval of L between b′′ and buk contains
vertices only from B (b′′ = buk is possible):

Now, if there exists a vertex from C(mr ) between b′ and b′′, then [b′ . . . r1 . . . b′′]
together with the edges of TR form the forbidden pattern of Lemma 4. Thus, there are
no vertices from C(mr ) between b′ and b′′.

Finally, consider vertices r1 and r2 that are consecutive inR. By Lemma 1 and the
fact that r1 ≺ g1 ≺ r2, there is x /∈ C(mr ) between r1 and r2 such that x < r2. Since
x /∈ C(mr ), rainbow TR contains edge (y, ry) for some ry ∈ R such that C(y) = C(x).
Edge (y, ry) is transitive, as y < x < r2 < ry ; a contradiction. ��
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Lemma 9 Let R,B,G be pairwise different chains of a width-w poset P = 〈X ,<〉.
Then a rainbow in an MRU extension of G(P) does not contain all edges from

T ∗
B \ {(mb, b)} ∪ T ∗

R \ {(mr , r)} ∪ T ∗
G \ {(mg, g)},

where mb ∈ X \ B, b ∈ B, mr ∈ X \ R, r ∈ R, mg ∈ X \ G, g ∈ G, and T ∗
B, T ∗

R, T ∗
G

is a complete incoming B-rainbow, R-rainbow G-rainbow, respectively.

Proof Assume, to the contrary, that a rainbow T contains three incoming rainbows
TB, TR, and TG , as in the statement of the lemma for some MRU extension L of the
poset. By Lemma 7, C(mb), C(mr ), and C(mg) are pairwise distinct chains.

Without loss of generality, assume that the R-self edge, (r1, r2), nests the B-self
edge, (b1, b2), which in turn nests the G-self edge, (g1, g2). Namely, r1 ≺ b1 ≺ g1 ≺
g2 ≺ b2 ≺ r2. Denote the edges of TB by (ui , bui ) for 1 ≤ i ≤ w − 1, and assume
that

holds in L for some k ≤ w − 1. If there is a vertex from C(mb) between r1 and r2 in
L , then the forbidden pattern of Lemma 4 is formed by [r1 . . . b1 . . . r2] and edges of
TB. Otherwise, by Lemma 1, there is some x /∈ C(mb) between b1 and b2 such that
x < b2. Since |TB| = w − 1, TB contains edge (y, by) for some by ∈ B such that
C(y) = C(x). Since y < x < b2 < by , (y, by) is transitive; a contradiction. ��
We are now ready to state the main result of this section.

Theorem 4 The maximum size of a rainbow formed by the edges of G(P) in an MRU
extension of a poset P of width w is at most (w − 1)2 + 1.

Proof When w = 2, the theorem holds for any lazy linear extension by Theorem 2
and thus for MRU. Hence, we focus on the case w ≥ 3. Assume, to the contrary, that
an MRU extension contains a rainbow T of size greater than (w − 1)2 + 1. Let TB,
TR, TG be the largest incoming rainbows in T corresponding to chains B, R, and G,
respectively. Assume, without loss of generality, that |TB| ≥ |TR| ≥ |TG |. By the
pigeonhole principle, we have |TB| ≥ |TR| ≥ w − 1. We claim that |TB| = w − 1.
Indeed, if |TB| = w, then by Lemma 5, TR does not contain the R-self edge. Thus,
T contains T ∗

B and T ∗
R \ {(r1, r2)} with r1, r2 ∈ R; a contradiction by Lemma 6.

Thus, |TB| = |TR| = |TG | = w − 1 follows, and we distinguish cases based on the
number of self edges in TB, TR, and TG . If each of them contain its self edge, then we
have the forbidden configuration of Lemma 9. If two of TB, TR, and TG contain a self
edge, then we have the forbidden configuration of Lemma 8. Finally, if at most one
of TB, TR, and TG contains a self edge, say TB, then TR and TG form the forbidden
configuration of Lemma 6. This concludes the proof. ��

Now we discuss the time complexity of Algorithm 2, that is, the time needed to
compute an MRU linear extension of a width-w poset P . We assume a chain partition

123



Algorithmica (2023) 85:1176–1201 1193

Fig. 5 Illustration for Theorem 5; q denotes the number of vertices of G(Pw−1), that is, q = 3(w−1)2 −7

is given. In order to build an MRU extension L , we maintain the active elements
(having no incoming edges) in a priority queue Q; notice that at every step of the
algorithm there are at most w active elements, as they are all mutually incomparable.
The elements are ordered by the largest index in L of an element from the same chain.
At every iteration of the algorithm, we select the top element u from Q, remove its
outgoing edges from the poset, and add new active elements to Q. It is easy to see that
at each iteration processing of element u takes logw + outdeg(u) time, where outdeg
denotes the out-degree of the element. Summing over all steps, we getO(n logw+m),
where n and m are the number of vertices and edges in G(P), respectively.

Weconclude this section by showing that our analysis is tight, that is, there are posets
of width w and corresponding MRU extensions of them containing ((w − 1)2 + 1)-
rainbows.

Theorem 5 For every w ≥ 2, there exists a width-w poset that has an MRU extension
resulting in a rainbow of size (w − 1)2 + 1 for the edges of its cover digraph.

Proof As in the proof of Theorem 3, we describe poset Pw in terms of its cover digraph
G(Pw). Similar to the proof of Theorem3,G(Pw) is defined recursively based on graph
G(Pw−1), which is of widthw−1, and thus its vertex-set admits a partition intow−1
chains C1, . . . , Cw−1. As an invariant property in the recursive definition of G(Pw),
we now assume that G(Pw−1) admits an MRU extension Lw−1 resulting in a rainbow
of size (w − 1)2 + 1 for the edges of G(Pw−1), in which for every 1 ≤ i < w the first
vertex of Ci appears before the first vertex of Ci+1 in Lw−1, while the last vertex of Ci

appears after the last vertex of Ci+1 in Lw−1. Note that this property is stronger than
the corresponding one we imposed in the recursive definition of the poset supporting
Theorem 3. The base graph G(P2) is exactly the same as the one in the proof of
Theorem 3, and it is not difficult to see that v1 ≺ · · · ≺ v5 is an MRU extension of it
satisfying also the stronger invariant property.

The first step in the construction of graph G(Pw) based on G(Pw−1) is exactly
the same as in the proof of Theorem 3 but without the edge (v1,1, vw,w), which is
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now replaced by (v1,2, vw,w); see Fig. 5. In a second step, we introduce a vertex vw,0
being the first vertex in the path formed by the vertices of chain Cw. This vertex is
also connected to vi,2, for all 1 ≤ i ≤ w − 1. Finally, we add the following edges to
G(Pw), namely, for all 1 ≤ i < j ≤ w − 1, we connect vi,3 to v j,4. Note that G(Pw)

is acyclic and transitively reduced as desired, while its width is w. We construct an
appropriate linear extension Lw of it as follows:

[v1,1, . . . , vw−1,1, vw,0, vw,1, . . . , vw,w−1, vw−1,2, vw−2,2, . . . v1,2, v̄1,2, Lw−1,

v̄w−1,3, vw−1,3, vw−2,3, . . . , v1,3, v1,4, . . . vw−1,4, vw,w+1, vw,2w−2]

It can be easily checked that Lw is an MRU extension of G(Pw), under the strong
invariant property. In particular, at vertex v1,2 of the aforementioned extension chains,
C1, . . . , Cw are in this order from themost recent to the least recent one. By the invariant
property, at vertex vw−1,3, chains C1, . . . , Cw are in the reverse order, that is, from the
least recent to the most recent one. Since, for the first vertices of every chain in Lw, it
holds v1,1 ≺ · · · ≺ vw−1,1 ≺ vw,0, while for the corresponding last vertices it holds
v1,4 ≺ · · · ≺ vw−1,4 ≺ vw,2w−2, the strong invariant property is maintained in Lw.

We complete the proof by observing that the w − 1 edges stemming from the first
w−1 vertices of Cw towards the last vertices of the chains C1, . . . , Cw−1 and thew−2
edges stemming from the first w − 2 vertices of C2, . . . , Cw−1 towards the last w − 2
vertices of chain Cw form a rainbow of size 2w −3 in Lw (refer to the orange edges in
Fig. 5), which nests the rainbow of size (w − 2)2 + 1 of Lw−1. Hence, we identified
a rainbow of total size (w − 1)2 + 1 in Lw, as desired.

��

5 A Counterexample to Conjecture 1

In this section, we describe our approach to disprove Conjecture 1. Central to our
counterexample is the following poset, which we describe in terms of its cover digraph
G(p, q); see Fig. 6a. For p ≥ q − 3, graph G(p, q) consists of 2p + q vertices
a1, . . . , ap, b1, . . . , bq , and c1, . . . , cp that form three chains of lengths p, q, and p,
respectively. For all 1 ≤ i ≤ p and for all 1 ≤ j ≤ q, the edges (ai , ai+1), (b j , b j+1)

and (ci , ci+1) form the intrachain edges of G(p, q). Graph G(p, q) also contains the
following interchain edges: (i) (ai , ci+3) and (ci , ai+3) for all 1 ≤ i ≤ p − 3, and (ii)
(ai , bi ) and (ci , bi ) for all 1 ≤ i ≤ q.

We denote by ˜G(p, q) the graph obtained by adding (b1, ap) and (b1, cp) to
G(p, q). It is easy to verify that both G(p, q) and ˜G(p, q) are transitively reduced,
acyclic, and of width 3.

For i = 1, . . . , q − 3, we denote by Ta(i) the subgraph of G(p, q) induced
by the vertices ai , . . . , ai+6 and the vertex ci+3. Accordingly, Tc(i) is the sub-
graph of G(p, q) induced by the vertices ci , . . . , ci+6 and the vertex ai+3; see
Fig. 6b. We further denote by Xa(i) the subgraph of G(p, q) induced by the vertices
ai+1, . . . , ai+4, ci , . . . , ci+5 and symmetrically by Xc(i) the subgraph of G(p, q)

induced by the vertices ai , . . . , ai+5, ci+1, . . . , ci+4; see Fig. 6c.
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(a)

(b)

(c)

Fig. 6 Illustration of graph ˜G(p, q) and its subgraphs Ta(i) and Xa(i)

The following lemma guarantees the existence of a 3-rainbow, when there exists
an edge, say (u, v), that “nests” Ta(i) in a linear extension of G(p, q), that is, when
u ≺ ai ≺ · · · ≺ ai+6 ≺ v. We denote this configuration by [u, Ta(i), v].
Lemma 10 In every linear extension of G(p, q), each of Ta(i) and Tc(i) requires 2
queues for all i = 1, . . . , q − 3.

Proof We give a proof only for Ta(i), as the case with Tc(i) is symmetric.
Let L be a linear extension of G(p, q). Since (ai , cL.) and (ci+3, ai+6) are edges

of G(p, q), ai ≺ ci+3 ≺ ai+6 holds in L .
If ai+3 ≺ ci+3, then [ai . . . ai+2 . . . ai+3 . . . ci+3] holds in L and thus (ai , ci+3)

and (ai+2, ai+3) form a 2-rainbow.
Otherwise, [ci+3 . . . ai+3 . . . ai+4 . . . ai+6] holds and thus (ci+3, ai+6) and

(ai+3, ai+4) form a 2-rainbow. ��
The next lemma establishes some properties of Xa(i).

Lemma 11 In every linear extension of G(p, q), in which one of the following five
statements holds Xa(i) requires 3 queues:

(i) ai+1 ≺ ci+1 ≺ ai+2 ≺ ci+2,
(ii) ci+1 ≺ ai+1 ≺ ci+2 ≺ ai+2,

(iii) ai+3 ≺ ci+3 ≺ ai+4 ≺ ci+4,
(iv) ci+3 ≺ ai+3 ≺ ci+4 ≺ ai+4,
(v) ci ≺ ai+1 ≺ ci+2 ≺ ai+3 ≺ ci+4.

Proof Let L be a linear extension of G(p, q) satisfying one of (i)(v). We consider
each of the cases of the lemma separately in the following.

(i) Assume ai+1 ≺ ci+1 ≺ ai+2 ≺ ci+2. Since ci+2 ≺ cl ≺ ci+4, if
ci+3 ≺ ai+3, then the edges (ci+1, ai+4), (ai+2, ai+3) and (ci+2, ci+3) form
a 3-rainbow, since [ci+1 . . . ai+2 . . . ci+2 . . . ci+3 . . . ai+3 . . . ai+4] holds in L .
Hence, we may assume that ai+3 ≺ ci+3 holds in L . We distinguish two
cases depending on whether ai+3 ≺ ci+2 or ci+2 ≺ ai+3. In the former case,
the edges (ai+1, ci+4), (ci+1, ci+2) and (ai+2, ai+3) form a 3-rainbow, since
[ai+1 . . . ci+1 . . . ai+2 . . . ai+3 . . . ci+2 . . . ci+4] holds in L . In the latter case, in
which ci+2 ≺ ai+3, the relative order in L is [ai+1 . . . ci+1 . . . ai+2 . . . ci+2 . . .
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ai+3 . . . ci+3]. Since ci+3 ≺ ci+4 ≺ ci+5, we distinguish possible positions for
ai+4.

– If ai+3 ≺ ai+4 ≺ ci+3, then (ai+2, ci+5), (ci+2, ci+3) and (ai+3, ai+4) form
a3-rainbow, since [ai+2 . . . ci+2 . . . ai+3 . . . ai+4 . . . ci+3 . . . ci+5]holds in L .

– If ci+3 ≺ ai+4 ≺ ci+4, then (ai+1, ci+4), (ci+1, ai+4) and (ci+2, ci+3) forma
3-rainbow, since [ai+1 . . . ci+1 . . . ci+2 . . . ci+3 . . . ai+4 . . . ci+4] holds in L .

– If ci+4 ≺ ai+4 ≺ ci+5, then (ai+2, ci+5), (ai+3, ai+4) and (ci+3, ci+4) forma
3-rainbow, since [ai+2 . . . ai+3 . . . ci+3 . . . ci+4 . . . ai+4 . . . ci+5] holds in L .

– If ci+5 ≺ ai+4, then (ci+1, ai+4), (ai+2, ci+5) and (ci+2, ci+3) form a 3-
rainbow, since [ci+1 . . . ai+2 . . . ci+2 . . . ci+3 . . . ci+5 . . . ai+4] holds in L .

(ii) Assume ci+1 ≺ ai+1 ≺ ci+2 ≺ ai+2. If ai+3 ≺ ci+3, then (ai+1, ci+4),
(ci+2, ci+3) and (ai+2, ai+3) form a 3-rainbow, since [ai+1 . . . ci+2 . . . ai+2 . . .

ai+3 . . . ci+3 . . . ci+4] holds in L . Hence, we may assume ci+3 ≺ ai+3. On
the other hand, if ai+4 ≺ ci+4, then (ai+2, ci+5), (ci+3, ci+4) and (ai+3, ai+4)

form a 3-rainbow, since [ai+2 . . . ci+3 . . . ai+3 . . . ai+4 . . . ci+4 . . . ci+5] holds in
L . Hence, we may further assume ci+4 ≺ ai+4, which together with our pre-
vious assumption implies that the underlying order in L is [ci+1 . . . ai+1 . . .

ci+2 . . . ci+3 . . . ci+4 . . . ai+4]. The case is then concluded by the observation
that (ci+1, ai+4), (ai+1, ci+4) and (ci+2, ci+3) form a 3-rainbow, as desired.

(iii) It can be proved symmetrically to (i).
(iv) It can be proved symmetrically to (ii).
(v) Assume ci ≺ ai+1 ≺ ci+1. By part (i) of Proposition 11, ai+2 ≺ ci+1 or ai+2 �

ci+2. In the former case, edges (ai+1, ci+4), (ai+2, ai+3), and (ci+1, ci+2) form
a 3-rainbow, since [ai+1 . . . ai+2 . . . ci+1 . . . ci+2 . . . ai+3 . . . ci+4] holds in L
(recall ai+3 ≺ ci+4). In the latter case, a 3-rainbow is formed by the edges
(ci , ai+3), (ci+1, ci+2), and (ai+1, ai+2), since [ci . . . ai+1 . . . ci+1 . . . ci+2 . . .

ai+2 . . . ai+3] holds in L . Thus, we have ci+1 ≺ ai+1 ≺ ci+2. Again by part (ii)
of Proposition 11, ai+2 ≺ ci+2, which yields a 3-rainbow formed by the edges
(ci , ai+3]), (ai+1, ai+2) and (ci+1, ci+2), since [ci , ci+1, ai+1, ai+2, ci+2, ai+3]
holds in L .

The above case analysis completes the proof. ��
In the following, we prove that for sufficiently large values of p and q, graph

˜G(p, q) does not admit a 3-queue layout. For a contradiction, assume that ˜G(p, q)

admits a 3-queue layout and let L be its linear extension. Intuitively, we distinguish
two cases depending on the length of edge (b1, cp) in L . If the edge is “short” (that
is, b1 is close to cp in L), then we use Lemma 12 to show the existence of a 4-
rainbow. In the opposite case, the edge (b1, cp) nests a large subgraph of ˜G(p, q).
By Proposition 11, the subgraph that is nested requires 3 queues, which together with
the long edge (b1, cp) yields a 4-rainbow. Both cases contradict the assumption that
˜G(p, q) admits a 3-queue layout.

Lemma 12 G(14, 6) requires 4 queues in every linear extension with c14 ≺ b1.

Proof Let L be a linear extension of G(14, 6) with c14 ≺ b1; see Fig. 7. Since c14 ≺
b1, [c1 . . . c14 . . . b1 . . . b6] holds in L . Consider vertex a3. Since (a3, c6) belongs to
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Illustrations for the proofs of Lemma 12 and Theorem 6

G(14, 6), a3 ≺ c6. If a3 ≺ c2, then configuration [a3, c2, Tc(3), b2, b3] follows; see
Fig. 7a. In other words, Tc(3) induced by the vertices c3, . . . , c9 and a6 is nested
by two independent edges, which yields a 4-rainbow by Proposition 10. Similarly, if
c4 ≺ a3 ≺ c6, then we have a 4-rainbow by the configuration [c4, a3, Tc(6), b3, b4];
see Fig. 7b. Hence, only the case c2 ≺ a3 ≺ c4 is left to be considered.

Now, consider vertex a5. Since (c2, a5) and (a5, c8) belong to G(14, 6), c2 ≺ a5 ≺
c8. If c2 ≺ a5 ≺ c4, then we have [a5, c4, Tc(5), b4, b5]; see Fig. 7c. If c6 ≺ a5 ≺ c8,
then we have [c6, a5, Tc(8), b5, b6]; see Fig. 7d. In both cases, a 4-rainbow is implied.
Hence, only the case c4 ≺ a5 ≺ c6 is left to be considered. This case together with the
leftover case c2 ≺ a3 ≺ c4 from above implies that Condition (v) of Proposition 11 is
fulfilled for Xa(2); see Fig. 7e. But in this case configuration [c1, Xa(2), b1] yields a
4-rainbow, as desired. ��
Similarly, we prove the following property of G(6, 2).

Lemma 13 G(6, 2) requires 3 queues in every linear extension.

Proof Let L be an arbitrary linear extension of G(6, 2). We will prove that L contains
a 3-rainbow. We distinguish the cases based on the relative order of a2 with respect
to c1, . . . , c6. Since the roles of a’s and c’s in G(6, 2) are interchangeable, we can
assume without loss of generality that c2 ≺ a2; hence, c2 ≺ a2 ≺ c5.

(i) Consider first the case in which c2 ≺ a2 ≺ c3. It follows from Proposi-
tion 11.(ii) that a3 ≺ c3. Hence, c2 ≺ a1, as otherwise the edges (a1, c4),
(c2, c3), and (a2, a3) form a 3-rainbow, since [a1 . . . c2 . . . a2 . . . a3 . . . c3 . . . c4]
holds in L . Similarly, if b2 ≺ a4, then the edges (c1, a4), (c2, b2), and (a1, a2)
form a 3-rainbow, since [c1 . . . c2 . . . a1 . . . a2 . . . b2 . . . a4] holds in L . Thus,
a4 ≺ b2. Now, if b2 ≺ c4, then the edges (a1, c4), (a2, b2), and (a3, a4)
form a 3-rainbow, since [a1 . . . a2 . . . a3 . . . a4 . . . b2 . . . c4] holds in L; other-
wise, [c2 . . . a1 . . . a2 . . . a3 . . . c4 . . . b2] holds in L , which implies that the edges
(c2, b2), (a1, c4), and (a2, a3) from a 3-rainbow .

(ii) Consider now the case in which c3 ≺ a2 ≺ c4. In particular, consider the
placement of b2:

(a) if a2 ≺ b2 ≺ a4 then b2 ≺ c4 (otherwise [c1 . . . c2 . . . c3 . . . c4 . . .

b2 . . . a4] yields a 3-rainbow) and a4 ≺ c4 (otherwise [c1 . . . c3 . . . a2
. . . b2 . . . c4 . . . a4] also yields a 3-rainbow). Hence, the relative order is
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Fig. 8 Illustration of graph G(6, 2) of Lemma 13

[c1 . . . c2 . . . c3 . . . a2 . . . b2 . . . a4 . . . c4]. Consider the placement of a1 in
this relative order. If a1 ≺ c1, then the edges (a1, c4), (c1, a4), and (c2, b2)
form a 3-rainbow, since [a1 . . . c1 . . . c2 . . . b2 . . . a4 . . . c4] holds in L; if
c1 ≺ a1 ≺ c2, then the edges (c1, a4), (a1, a2), and (c2, c3) form a
3-rainbow, since [c1 . . . a1 . . . c2 . . . c3 . . . a2 . . . a4] holds in L; finally, if
c2 ≺ a1, then the edges (c1, a4), (c2, b2), and (a1, a2) form a 3-rainbow,
since [c1 . . . c2 . . . a1 . . . a2 . . . b2 . . . a4] holds in L .

(b) if a4 ≺ b2 ≺ a6, then the edges (c3, a6), (a2, b2), (a3, a4) form a 3-rainbow,
since [c3 . . . a2 . . . a3 . . . a4 . . . b2 . . . a6] holds in L;

(c) if a6 ≺ b2, then the edges (c2, b2), (c3, a6), (a3, a4) form a 3-rainbow, since
[c2 . . . c3 . . . a3 . . . a4 . . . a6 . . . b2] holds in L .

(iii) Finally, consider the case in which c4 ≺ a2 ≺ c5. As above, consider the
placement of b2:

(a) if a2 ≺ b2 ≺ a4, then the edges (c1, a4), (c2, b2), and (c3, c4) form a 3-
rainbow, since [c1 . . . c2 . . . c3 . . . c4 . . . b2 . . . a4] holds in L;

(b) if a4 ≺ b2 ≺ a6, then the edges (c3, a6), (a2, b2), and (a3,4 ) form a 3-
rainbow, since [c3 . . . a2 . . . a3 . . . a4 . . . b2 . . . a6] holds in L;

(c) if a6 ≺ b2, then the edges (c2, b2), (c3, a6), and (a2, a3) form a 3-rainbow,
since [c2 . . . c3 . . . a2 . . . a3 . . . a6 . . . b2] holds in L .

By the cases above, we obtain that G(6, 2) does not admit a queue layout with at most
2 queues. ��

We are now ready to show that ˜G(p, q), with p = 31 and q = 22, is a counterex-
ample to Conjecture 1 when w = 3.

Theorem 6 ˜G(31, 22) requires 4 queues in every linear extension.

Proof Assume for a contradiction that ˜G(31, 22) admits a 3-queue layout and let L
be its linear extension. If c14 ≺ b1 in L , then the subgraph of ˜G(31, 22) induced
by vertices a1, . . . , a14, c1, . . . , c14, b1, . . . , b6 is isomorphic to G(14, 6) and, by
Lemma 12, requires 4 queues; a contradiction. Hence, b1 ≺ c14 holds in L .
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Symmetric as above, if c31 ≺ b18, the subgraph of ˜G(31, 22) induced by vertices
a17, . . . , a30, c17, . . . , c30, b17, . . . , b22 is isomorphic to G(14, 6) and by Lemma 12
requires 4 queues; a contradiction. Hence, b18 ≺ c31 holds in L .

Consider the subgraph of ˜G(31, 22) induced by vertices a17, . . . , a22, c17, . . . ,
c22, b17, b18, which is isomorphic to G(6, 2); see Fig. 7f. We show that b1 precedes
all the vertices of this subgraph, while all the vertices of this subgraph precede c31.
Since (b1, c31) is an edge of ˜G(31, 22), by Lemma 13, we derive a contradiction. In
particular, b1 ≺ a17 (since b1 ≺ c14 and (c14, a17) is an edge of ˜G(31, 22)), b1 ≺ c17
(since b1 ≺ c14), and clearly b1 ≺ b17. Similarly, a22 ≺ c31 (since (a22, c25) is an
edge of ˜G(31, 22) and c25 ≺ c31), c22 ≺ c31, b18 ≺ c31. ��

To prove that Conjecture 1 does not hold for w > 3, we need an auxiliary lemma,
which is implicitly used in [16].

Lemma 14 Let Pw be a width-w poset with queue number at least k. Then, there exists
a poset Pw+1 of width w + 1 whose queue number is at least k + 1.

Proof Let G(Pw) be the cover digraph of Pw. We define the poset Pw+1 by defining its
cover digraph G(Pw+1) as follows. Digraph G(Pw+1) is constructed from two copies
of G(Pw) and three new vertices, s, t , and v. In particular, let H1 and H2 be two
copies of G(Pw). We first add directed edges from the sinks of H1 to the sources of
H2, which ensures that in any linear extension of G(Pw+1), all vertices of H1 precede
those of H2. Afterwards, we connect vertex s to all sources, and vertex t to all sinks.
Observe that the former belong to H1, while the latter belong to H2. Finally, we add
two directed edges (s, v) and (v, t). By construction, s is a global source, and t is a
global sink in G(Pw+1). It is not difficult to see that G(Pw+1) is a poset. Since v is
incomparable to all vertices defining the width of G(Pw) in both H1 and H2, the width
of poset Pw+1 is at least w + 1. However, since all sinks of H1 are connected to the
sources of H2, the width of Pw+1 is exactly w + 1. As already observed, in any linear
extension of G(Pw+1), all vertices of H1 must precede all vertices of H2. This implies
that either edge (s, v) nests all edges of H1 or edge (v, t) nests all edges of H2. Thus,
the queue number of Pw+1 is at least k + 1. ��
Theorem 6 and Lemma 14 imply the following:

Theorem 7 For every w ≥ 3, there is a width-w poset with queue number at least
w + 1.

6 Conclusions

In this paper, we explored the relationship between the queue number and the width
of posets. We disproved Conjecture 1, and we focused on two natural types of linear
extensions, lazy and MRU. That led to an improvement of the upper bound on the
queue number of posets. We deem important to note that in a follow-up of our work,
Felsner, Ueckerdt, and Wille [9] further improved the lower bound of w + 1 on the
queue number of width-w posets tow2/8 forw ≥ 4 (which is an improvement only for
w ≥ 9). Their result improves the recursive step of our construction, Lemma 14, and it
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can be combined with the graph supporting Theorem 6 as the base case. In view of the
aforementioned result, a natural future direction is to further reduce the gap between
the lower bound of w2/8, and the upper bound of (w − 1)2 + 1 on the queue number
of posets of width w > 2. In particular, it is unknown whether the queue number of
width-3 posets is four or five. It is also intriguing to ask whether Conjecture 1 holds
for planar width-w posets, whose best-known upper bound is currently 3w − 2 [16].
We believe that this question can be answered in the positive, as we conjecture below.

Conjecture 2 The queue number of a planar width-w poset is at most w.

Another related open problem is on the stack number of directed acyclic graphs
(DAGs). The stack number is defined analogously to the queue number except that no
two edges in a single stack cross. Heath et al. [13, 14] asked whether the stack number
of upward planar DAGs is bounded by a constant. While the question has been settled
for some subclasses of planar digraphs [10], the general problem remains unsolved.
This is in contrast with the stack number of undirected planar graphs, which has been
shown recently to be exactly four [2, 20].
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