
Algorithmica (2023) 85:1202–1250
https://doi.org/10.1007/s00453-022-01064-1

The Complexity of Routing Problems in
Forbidden-Transition Graphs and Edge-Colored Graphs

Thomas Bellitto1,2 · Shaohua Li2 · Karolina Okrasa2,3 ·Marcin Pilipczuk2 ·
Manuel Sorge2

Received: 2 October 2021 / Accepted: 10 November 2022 / Published online: 4 December 2022
© The Author(s) 2022

Abstract
The notion of forbidden-transition graphs allows for a robust generalization of walks
in graphs. In a forbidden-transition graph, every pair of edges incident to a com-
mon vertex is permitted or forbidden; a walk is compatible if all pairs of consecutive
edges on the walk are permitted. Forbidden-transition graphs and related models have
found applications in a variety of fields, such as routing in optical telecommunica-
tion networks, road networks, and bio-informatics. A widely-studied special case are
edge-colored graphs, where a compatible walk is forbidden to take two edges of the
same color in a row. We initiate the study of fundamental problems on finding paths,
cycles and walks in forbidden-transition graphs from the point of view of parameter-
ized complexity, including an in-depth study of tractability with regards to various
graph-width parameters. Among several results, we prove that finding a simple com-
patible path between given endpoints in a forbidden-transition graph is W [1]-hard

This research is a part of a project that have received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme Grant Agreement 714704.
Parts of Manuel Sorge’s work were performed while visiting TU Wien, Vienna, Austria.

B Karolina Okrasa
k.okrasa@mini.pw.edu.pl

Thomas Bellitto
thomas.bellitto@lip6.fr

Shaohua Li
S.Li@mimuw.edu.pl

Marcin Pilipczuk
malcin@mimuw.edu.pl

Manuel Sorge
m.sorge@uw.edu.pl

1 Sorbonne Université, CNRS, LIP6, Paris, France

2 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland

3 Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01064-1&domain=pdf
https://orcid.org/0000-0003-1414-3507

Algorithmica (2023) 85:1202–1250 1203

when parameterized by the vertex-deletion distance to a linear forest (so it is also
hard when parameterized by pathwidth or treewidth). On the other hand, we show an
algebraic trick that yields tractability when parameterized by treewidth for finding a
compatible Hamiltonian cycle in the edge-colored graph setting.

Keywords Graph algorithms · Fixed-parameter tractability · Parameterized
complexity

1 Introduction

Graphs have proved to be an extremely useful tool to model routing problems in a
very wide range of applications. However, we sometimes need to express constraints
on the permitted walks that are stronger than what the standard graph model allows
for. For example, in a road network, there can be a crossroad where drivers are not
allowed to turn right. In this case, many walks in the underlying graph without tran-
sition restrictions would correspond to routes that a driver is not allowed to use. To
overcome this limitation, Kotzig introduced forbidden-transition graphs [39]. Let G
be an undirected graph. A transition in G is an unordered pair of adjacent edges.
Every time a walk in G uses two edges uv and vw consecutively, we say that the walk
uses the transition {uv, vw}. A transition system of G is a set of transitions in G. A
forbidden-transition graph is a tuple (G, T) of a graph G together with a transition
system T of G.1 We say that a transition is permitted if it is in T and it is forbidden
otherwise. We say a walk is compatible with T , or T -compatible, if all the transitions
it uses are permitted, that is, they are in T . We omit reference to T when it is clear from
the context. For notational clarity, it is sometimes useful to refer to the transitions T (v)

of a specific vertex v ∈ V (G), that is, T (v) = {{e, f } ∈ T | e ∩ f = {v}}.
Since their introduction, forbidden-transition graphs and relatedmodels have found

applications in a variety of fields, such as routing in optical telecommunication
networks [2], road networks [6], and bio-informatics [16]. Problems of routing,
connectivity, and robustness in those graphs have received a lot of attention but unfor-
tunately, those problems generally turn out to be algorithmically very difficult, even on
very restricted subclasses of graphs. In [49], Szeider famously proved that even deter-
mining the existence of a compatible (elementary) path between two given vertices
of a forbidden-transition graph is NP-complete. Similarly, many known results about
forbidden-transition graphs are proofs of NP-completeness of problems that are poly-
nomially solvable on standard graphs (e.g. [1], [7], [18], [27], [28], [34], [35], [49]).

A very interesting specific case of compatible walks in forbidden-transition graphs
are properly colored walks in edge-colored graphs. Here, a graph is given together
with a coloring of its edges and we say that a walk is properly colored if it does not
use consecutively two edges of the same color. These graphs have been introduced
by Dorninger in [16] to study chromosome arrangements. The problem of properly
colored Hamiltonian cycles was the first problem explicitly studied on edge-colored

1 Our notation rather suggests that (G, T) is a permitted-transition graph but we use forbidden transitions
in keeping with convention in the literature.

123

1204 Algorithmica (2023) 85:1202–1250

graphs and this problem and its variants (such as longest elementary cycle or spanning
trails among many others) are especially well studied in the literature. We refer the
reader to [30] or [5] for surveys on these problems and to [4], [13], [14], [31], [40] or
[41] for recent developments.

We remark that edge-colored graphs with two colors generalize directed graphs in
the following sense. Assume that the colors are red and blue, take a directed graph
G, and replace every arc e = (u, v) ∈ E(G) with a new vertex xe, a blue edge uxe
and a red edge vxe. One can observe that each properly colored walk in the resulting
graph corresponds to a walk inG ′ that respects arc directions (but may go backwards).
Using this observation, for most of the problems asking for paths, cycles, and walks,
it is easy to provide a reduction from the directed graph setting to an edge-colored
setting with two colors.

Because of their expressiveness and wide range of applications, the study of
forbidden-transition graphs is a fast-emerging field and has been the subject of grow-
ing attention in the past decades but we are still very far from understanding them as
well as regular graphs. Our aim in this paper is to study the parameterized complexity
of some knownNP-complete problems concerning existence of paths, cycles, or walks
(which is the natural class of problems in this context), in general forbidden-transition
graphs as well as in the specific case of edge-colored graphs. We specifically focus on
some problems of great practical interest, such as the existence of an elementary path
or the length of a shortest path between given vertices, the problem of Hamiltonian
cycles, or linkage problemswherewe try to connect pairs of vertices by vertex- or edge-
disjoint paths. A very rich toolbox already exists to study fixed-parameter tractability
in standard graphs (see [15] for example) but the generalization of these concepts to
forbidden-transition graphs is widely unexplored and raises many challenges that we
hope to see get more attention in the future.

1.1 Our Results

In Sect. 3, we study the problem of shortest compatible paths between two vertices s
and t in a forbidden-transition graph. Recall that determining whether there exists a
compatible path between s and t is known tobeNP-complete [49].A simple application
of the color-coding technique shows that this problem is fixed-parameter tractable
when parameterized by the length of the path. We improve upon this observation
by showing that the complexity of finding a shortest compatible path from s to t is
actually fixed-parameter tractable when parameterized by the length of the detour that
the forbidden transitions impose. In other words, determining whether there exists a
compatible path of length at most d(s, t)+k where d(s, t) is the length of the shortest
path between s and t in the underlying graph with no forbidden transitions, is fixed-
parameter tractable when parameterized by k. Our algorithm follows the main ideas
of the algorithm for the Exact Detour problem by Bezáková et al. [10].

In Sect. 4, we turn our attention to graph-width parameters. The rich ecosystem
of relevant graph-width parameters is depicted in Fig. 1; see [24, 44, 51] for the
corresponding boundedness and unboundedness relations on treecut-width.

123

Algorithmica (2023) 85:1202–1250 1205

Fig. 1 A hierarchy of graph-width parameters considered in this work. An arrow from a to b represents
the fact that a bound on parameter b imposes a bound on parameter a, but there exist families of graphs
with bounded a and unbounded b. A parameter a is green and dashed if detecting a compatible s-t path
is fixed-parameter tractable with respect to a; the parameter is red and solid if this problem is W[1]-hard
(Color figure online)

First, we focus on the NP-complete problem of determining whether there exists a
compatible path between s and t in a forbidden-transition graph. Since the problem is
fixed-parameter tractable when parameterized by the length of the path (see Sect. 3),
it is also fixed-parameter tractable when parameterized by the vertex cover number or
the treedepth of the graph, as bounding the vertex cover number or the treedepth of the
graph by k bounds the length of the longest simple path by 2k or 2k − 1, respectively.
Our main result is a negative one: the problem becomes W [1]-hard if one makes one
step further to the parameter modulator to a linear forest, i.e., the number of vertices
one has to remove from the graph to turn it into a union of vertex-disjoint paths. A
small tweak of the reduction shows that finding a Hamiltonian cycle isW [1]-hard with
respect to the size of a modulator to treewidth 2. Our reduction in particular implies
hardness for the parameters pathwidth and treewidth (for both the compatible path and
Hamiltonian cycle problems). The reduction is technically involved and is the main
negative result in this paper.

On the other hand, we show that if one considers parameters based on edge cuts
(as opposed to vertex cuts, like in treewidth), one can obtain nontrivial tractability
results. Treecut-width is a width notion based on edge cuts, introduced by Wollan
[51], and playing the role of treewidth in the world of the immersion relation. We
prove that the problem of finding a compatible s-t path is fixed-parameter tractable
when parameterized by the treecut-width of the graph. More precisely, the problem
can be solved in time kO(k2) · n3 where k denotes the treecut-width.

In the light of the hardness in general forbidden-transition graphs of detecting s-t
paths, the most fundamental connectivity problem, we move to the special case of
properly colored paths in edge-colored graphs. As finding a (simple) properly colored
path between given endpoints in an edge-colored graph is polynomial-time solvable,
we focus on the problemof finding aHamiltonian cycle.We introduce a novel algebraic
trick that shows that in edge-colored graphs, finding a properly colored Hamiltonian
cycle is fixed-parameter tractable when parameterized by the treewidth of the graph.
More specifically, the problem can be solved in time 2O(k) · (|V (G)| + |V (T)| + �)

where k is the treewidth, T is the tree of the decomposition and � is the number of
different colors the edges can have. The crucial property of the result is that �, the
number of colors, is not required to be bounded in the parameter and does not appear
in the exponential part of the running-time bound (an exponential dependency on both
k and � is not hard to achieve).

123

1206 Algorithmica (2023) 85:1202–1250

After discussing graph-width notions, in Sect. 5, we move to the Disjoint

Paths problem. In this problem, we are given a directed graph and a sequence
(s1, t1), (s2, t2), . . . , (sr , tr) of terminal pairs; the goal is to find compatible paths
P1, P2, . . . , Pr such that Pi starts in si and ends in ti and the paths Pi are pairwise
edge- or vertex-disjoint. In the undirected graph setting, the fixed-parameter tractabil-
ity (parameterized by the number of requests r) of this problem is a milestone result
in the Graph Minors series of Robertson and Seymour [48].

Observe that beyond undirected graphs the problem quickly becomes hard. As
discussed, the setting of properly colored paths in edge-colored graphs generalizes
directed graphs, and the Disjoint Paths problem for r = 2 is NP-hard in directed
graphs [23]. Furthermore, in general graphs with transitions the case r = 1 is NP-hard.
Hence, we focus on the specific case where the path Pi is required to be a shortest
si -ti path, even in the unrestricted graph. In directed graphs, a tractability result for
this problem has been obtained by Bérczi and Kobayashi [9] for r = 2. This problem
is currently a very active topic and new algorithms have been found very recently
for several variants in the case r = 2. Polynomial algorithms have been developed
by Gottschau et al. [26] and by Kobayashi and Sako [37] for undirected graphs with
non-negative weighted edges and by Bang-Jensen et al. [3] in the directed unweighted
case where paths do not have to be shortest but have bounded lengths. At the point of
writing, the complexity of the problem was still open for r ≥ 3. In the meantime, it
was shown that finding r disjoint shortest paths in undirected, unweighted graphs is
indeed polynomial-time solvable for each fixed r [8, 42].

In the light of the status described above, in this work we focus on the case r = 2 in
directed forbidden-transition graphs. Extending the results of Bérczi and Kobayashi
[9], we show that the problem remains polynomial-time solvable both in the edge- and
vertex-disjoint case. The arguments are presented in Sect. 5.

2 Preliminaries

For each n ∈ N we use [n] to denote {1, 2, . . . , n}. Unless stated otherwise, all graphs
are undirected, without self-loops and parallel edges.

2.1 Graphs

Let G be an undirected graph. By V (G) and E(G) we denote the vertex and edge set
of G, respectively. For each v ∈ V (G) we denote by EG(v) the set of edges in G that
are incident with v in G. We omit the subscript G if it is clear from the context. A
walk in G is a sequence (v1, e1, v2, e2, . . . , e�, v�+1) where vi s are vertices of G, ei s
are edges of G, and for every 1 ≤ i ≤ �, the vertices vi and vi+1 are the two endpoints
of the edge ei . A walk is closed if its first vertex is also its last vertex. The length of
a walk W equals �, the number of edges in W . A path is a walk in which no vertex
occurs twice, a cycle is a closed walk in which no vertex occurs twice except the first
and last vertex. Usually we will denote paths and cycles simply by their sequence of

123

Algorithmica (2023) 85:1202–1250 1207

vertices. By distG(s, t) we mean the length of a simple s-t path in G (ignoring any
transitions).

For a graph G, a tree decomposition of G is a pair (T , β) where T is a tree and
β : V (T) → 2V (G) such that the following holds: (i) for every v ∈ V (G), the set
{t ∈ V (T) | v ∈ β(t)} induces a nonempty connected subtree of T , and (ii) for every
uv ∈ E(G), there exists t ∈ V (T) with u, v ∈ β(t). That is, the function β assigns to
every node t ∈ V (T) a subset β(t) ⊆ V (G), often called a bag. It is often convenient
to root T at an arbitrary vertex. The width of a tree decomposition (T , β) equals
maxt∈V (T) |β(t)| − 1, and the treewidth of a graph is the minimum possible width of
its tree decomposition.

2.2 Parameterized Complexity

A parameterized problem is a set of instances of the form (x, k), where x ∈ �∗ for
a finite alphabet set �, and k ∈ N is the parameter. A parameterized problem Q is
fixed-parameter tractable and in the class FPT, if there exists an algorithm that on
input (x, k) decides if (x, k) is a yes-instance of Q in time f (k)nO(1), where f is a
computable function independent of n = |x |; an algorithm with this running time is
called fixed-parameter algorithm. A parameterized reduction from a parameterized
problem L ⊆ �∗ × N with parameter k to a parameterized problem L ′ ⊆ �∗ × N

with parameter k′ is a g(k) · |I |O(1)-time computable function f : �∗ × N → �∗ ×
N : (I , k) → (I ′, k′) such that k′ ≤ h(k) for some computable function h and
(I , k) ∈ L ⇔ (I ′, k′) ∈ L ′. A hierarchy of fixed-parameter intractability, the W-
hierarchy

⋃
t≥0 W[t], was introduced based on the notion of parameterized reduction,

in which the 0th level W[0] is the class FPT. It is commonly believed that W[1] �=
FPT. A parameterized problem Q is in the parameterized complexity class XP, if there
exists an algorithm that on input (x, k) decides if (x, k) is a yes-instance of Q in time
f (k) · n f (k), where f is a computable function independent of n = |x |. For more
discussion on parameterized complexity, we refer to the literature [15, 17, 22, 46].

3 Detours

AsSzeider [49] proved, it isNP-hard to determinewhether a given forbidden-transition
graph (G, T) contains a compatible s-t path for two given vertices s and t . This of
course implies that it is NP-hard to check whether there is a compatible s-t path of at
most some given length. In contrast, it is polynomial-time solvable to decide whether
there is a compatible s-t pathwhich has length atmost distG(s, t). This can for example
be seen by using the following strategy. Construct the line graph H of G. (That is, H
has vertex set E(G) and two vertices in H are adjacent if the corresponding edges in
G share an endpoint.) For each vertex v ∈ V (G) and each pair e, f of edges incident
to v such that e and f are not compatible, remove the edge e f from H . Introduce two
new vertices s′ and t ′ into H and make them adjacent to every vertex corresponding to
an edge incident in G with s or t , respectively. Finally, check whether H contains an
(ordinary) s′-t ′ path of length at most distG(s, t)+1. However, we note that the above

123

1208 Algorithmica (2023) 85:1202–1250

method does not combine well with graph width parameters considered in this work
(recall Fig. 1); if G is a star on n + 1 vertices, both, its vertex cover and treecut-width
are equal to one, while line graph H of G contains a clique of size n.

In this section we improve on the above observation by showing that checking
for compatible s-t paths which are marginally longer than distG(s, t) can also be
done efficiently. That is we are going to show the fixed-parameter tractability of the
following problem.

ComDetour

Parameter: k ∈ N

Input: An instance (G, T , s, t, k) where (G, T) is a forbidden-transition graph,
s, t ∈ V (G), and k ∈ N.

Question: Does there exist a T -compatible s-t path in G of length at most
distG(s, t) + k?

For notational convenience, we slightly generalize the notion of an x-y path as fol-
lows. For a given graphG and x, y ∈ V (G)∪E(G), we say that a path (v1, v2, . . . , v�)

inG is an x-y path, if (i) x = v1 ∈ V (G) or x = v1v2 ∈ E(G) and (ii) y = v� ∈ V (G)

or y = v�−1v� ∈ E(G).
We first show fixed-parameter tractability of the ComPath problem, which will

be later used as a black box in our algorithm for ComDetour. The algorithm for
ComPath uses a standard color-coding approach (see [15]), slightly modified to track
the transitions.

ComPath

Parameter: k ∈ N

Input: An instance (G, T , x, y, k) where (G, T) is a forbidden-transition graph,
x, y ∈ V (G) ∪ E(G), and k ∈ N.

Task: Decide whether there exists a T -compatible x-y path in G of length at most
k. If so, return the length of a shortest such path.

The algorithm can be presented using random colorings but this would complicate
the analysis later. We instead use the notion of perfect hash families. Let n, k ∈ N and
letU be a set of size n. A k-perfect hash family ofU is a familyF of functions fromU
to [k] such that for each subset S ⊆ U of size at most k there exists a function f ∈ F
such that f (S) = [k] (that is, f is injective on S). Naor, Schulman, and Srinivasan
[45] showed that a k-perfect hash family of size ekkO(log k) log n can be computed in
ekkO(log k)n log n time; see also [15, Section 5.6.1].

Theorem 3.1 There exists an algorithm solving ComPath on n-vertex graphs in time
2O(k)nO(1).

Proof Let (G, T , x, y, k) be the input instance. First, consider the case where x, y ∈
V (G). The algorithm works as follows. We start by coloring the vertices in G using a
family of perfect hash functions. Compute a (k − 1)-perfect hash family F of V (G)

in ekkO(log k)n log n time. Iterate over all elements f ∈ F and for each such element

123

Algorithmica (2023) 85:1202–1250 1209

f proceed as follows. Generate a coloring of V (G) by starting with coloring x and y
with two unique colors, say 1 and k + 1 and then coloring the rest of vertices of G
with colors 2, . . . , k, according to the values assigned by f . That is, put the color of
a vertex v ∈ V (G) \ {x, y} to be f (v) + 1. Let c : V (G) → [k + 1] be the resulting
coloring and for each i ∈ [k + 1] denote by Ci the set c−1(i). Observe that it suffices
to prove the following claim. �

Claim Let x, y ∈ V (G). There exists an algorithm to test whether there exists a
colorful T -compatible x-y path with at most k + 1 vertices in time 2knO(1).

Proof (of Claim)We use the following dynamic programming approach that computes
a table D: for a set S of at least two elements, such that {1} ⊆ S ⊆ [k + 1], and an
edge uv ∈ E(G) we define a boolean variable D[S, u, v]. We want it to be equal to
TRUE if and only if there exists a colorful compatible x-uv path, whose vertices are
colored with all colors from S.

For S = {1, i} observe that D[S, u, v] = TRUE if and only if u = x and v ∈
N (x)∩Ci . Thus, these entries of D can be computed in linear time. Next, for every S
with {1} ⊆ S ⊆ [k + 1] and |S| ≥ 3 and for every e = uv ∈ E(G) we compute
D[S, u, v] as follows:

D[S, u, v] =

⎧
⎪⎨

⎪⎩

∨{D[S \ {c(v)}, w, u] :
{wu, e} ∈ T (u), wu ∈ E(G)} if c(v) ∈ S \ {1},

FALSE otherwise.

Observe that this is a correct way of computing the entries D[S, u, v]. As to the running
time, the number of possible sets S is bounded by 2k (as 1 is always included in S).
Thus, D[S, u, v] can be computed in 2knO(1) time. We say that S ⊆ [k + 1] is good if
it contains 1 and k + 1. Observe that a compatible x-y path of length at most k exists
if and only if there exist uv ∈ E(G) and a good set S, such that D[S, u, v] = TRUE
(note that in such a case v = y). Let S be the set of all triples (S, u, v) such that S
is good and D[S, u, v] = TRUE. If S is empty, then clearly there is no T -compatible
x-y path of length at most k in G. Otherwise, we return the value of |S| − 1 for the
smallest S such that (S, u, v) ∈ S for some uv ∈ E(G).

As a result, the running time of the whole algorithm is ekkO(log k)n log n +
ekkO(log k) log n · 2knO(1) = 2O(k)nO(1). Analogously, if we search for a colorful
T -compatible x-y path when {x, y} ∩ E(G) �= ∅, we give unique colors to the sec-
ond and/or last but one vertex of a potential path and slightly modify computation of
the table D and we look for an optimal solution in S that respects the corresponding
conditions. �

We are ready to prove the fixed-parameter tractability of ComDetour. Our algo-
rithm for ComDetour is based on the work of Bezáková et al. [10] that shows
that computing s-t paths of length exactly dist(s, t) + k in ordinary graphs is fixed-
parameter tractable with respect to k. The basic idea is that in such a path there are at
most k segments in which no “progress” is made towards reaching t . These k segments
can be determined locally by applying the algorithm for ComPath from above. The

123

1210 Algorithmica (2023) 85:1202–1250

remaining parts can be computed by ordinary dynamic programming as for computing
shortest paths.

Theorem 3.2 There exists an algorithm solving ComDetour in n-vertex graphs in
time 2O(k)nO(1).

Proof Let (G, T , s, t, k) be the input instance of ComDetour and let d = distG(s, t).
We can clearly assume thatd > k, as otherwisewe can computewhether (G, T , s, t, k)
is a yes-instance using the algorithm for ComPath with parameter d + k ≤ 2k. For
each i ∈ [|V (G)|] ∪ {0} we define the i-th layer Xi := {x ∈ V (G) : distG(s, x) = i}.
Clearly {s} = X0 and t ∈ Xd . Note that each compatible s-t-path of length at most
d + k must be contained in the graph induced by X = ⋃

i∈{0,1,...,d+k} Xi , therefore
we can safely assume that X = V (G). For two distinct layers Xi , X j , we say that Xi

is higher (resp. lower) than X j if i > j (resp i < j). We use the following notation:
An edge xy ∈ E(G) is called inter-layer if there exist i, j ∈ [d + k] ∪ {0} such that
i �= j , x ∈ Xi , and y ∈ X j . If an edge is not inter-layer, we call it within-layer. For
two vertices p, q ∈ V (G) such that dist(s, p) < dist(s, q) we denote by G(p,q] the
subgraph of G induced by {p} ∪ {x ∈ V (G) : dist(s, p) < dist(s, x) ≤ dist(s, q)}.
We also define G(p,∞) to be the the subgraph of G induced by {p} ∪ {x ∈ V (G) :
dist(s, x) > dist(s, p)}.

The algorithm uses a dynamic-programming procedure that computes a table D.
Table D is indexed by the inter-layer edges ofG. For every inter-layer edge xy ∈ E(G)

such that y belongs to a higher layer than x , the entry D[xy] contains the length � of
a shortest compatible xy-t path in G(x,∞) if it exists and if dist(s, x) + � ≤ d + k;
otherwise D[xy] = ∞. Note that it suffices to compute the entries of the table D
because we can then look up whether there is a solution in the entries corresponding
to the edges incident with s (which are all inter-layer edges). We first compute the
entries for edges with the highest layers and then for edges in successively lower
layers. Intuitively, when filling D for a specific inter-layer edge uv, we can rely on the
fact that each solution path using uv will contain an inter-layer edge wx in a higher
layer and it will reach wx from uv in at most 2k steps. Thus, when filling the table for
uv, we may refer to the correct entry for wx and compute the path between uv and
wx using a call to the algorithm for ComPath.

At the beginning of the procedure we initialize the table, putting D[xy] = ∞ for
every inter-layer edge xy ∈ E(G). Next, we compute entries of D for the last 2k + 1
layers: for every inter-layer edge xy ∈ E(G) such that distG(s, x) ≥ d − k − 1 and
distG(s, y) > d − k − 1, solve the ComPath instance (G(x,∞), T , xy, t, 2k + 1). If
for some xy the result is a path of length � such that distG(s, x) + � ≤ d + k, then
we set D[xy] = �. Observe that this will fill D[xy] with the correct value according
to the definition of D.

Then, we inductively fill in earlier layers by carrying out the following computation
steps:

(1) For every integer m from d − k − 1 down to 0 and for every pair of vertices x, u
such that distG(s, x) = m andm < distG(s, u) ≤ m+k+1 we do the following:

(a) For every pair of edges e, f ∈ E(G(x,u]) such that e = xy (so e is an inter-layer
edge) and f = vu for some vertices y, v ∈ V (G(x,u]), we do the following:

123

Algorithmica (2023) 85:1202–1250 1211

(i) We solve the ComPath instance (G(x,u], T , e, f , 2k).
(ii) If the answer is negative, we continue with the next pair of candidates

for e and f .
(iii) If the answer is positive, let r be the returned path length. Observe that

r ∈ [2k].
(iv) Let

p = min{D[g] : g is an inter-layer edge and f g ∈ T (u)}.

If dist(s, x)+r+ p ≤ d+k and D[e] > r+ p, thenwe put D[e] = r+ p.

For later reference, let ν = minv∈NG (s) D[sv]. We accept if and only if ν ≤
distG(s, t) + k. Computing a single entry D[xy] takes time 2O(k)nO(1), and since
there are less than n2 of them, 2O(k)nO(1) is the complexity of the whole algorithm.

We now show the correctness of the algorithm. Observe first, that each table
entry D[e] only receives a non-infinity value if there is a compatible e-t path of length
at most d + k; this is ensured by the way the entries are filled in step (iv). Moreover,
each non-infinity entry D[e] contains the length of some compatible e-t path. Thus,
the algorithm accepts only if there is a compatible s-t path of length at most d + k. In
particular, if there exists no such path, then the answer is correct. Moreover, if there
exists a compatible s-t path in G of length �� ≤ d + k, then ν ≥ ��.

Now assume that there exists a compatible s-t path in G of length �� such that �� ≤
d + k. It remains to show that ν ≤ ��. We prove the stronger statement that for each
inter-layer edge xy we have that D[xy] is at most the length, �, of a shortest compatible
xy-t path in G(x,∞) that satisfies distG(s, x) + � ≤ d + k or ∞ if no such path exists.
The proof is by induction on d − m where m is the layer of x . By the above, the
statement holds for m ≥ d − k. Now assume that m < d − k. If there is no suitable
compatible xy-t path, the statement clearly holds. Otherwise, let P be such a path. We
claim that it suffices to show that on P there exist consecutive vertices v, u, z such
that the following properties hold.

(P1) m < distG(s, u) ≤ m + k + 1.
(P2) distG(s, u) < distG(s, z).
(P3) Let P[u, t] be the subpath of P from u to t . Then P[u, t] is contained in G(u,∞).
(P4) There are at most 2k edges on P between (incl.) xy and vu.

Let e = xy, f = vu, and g = uz. If the above claim is true, then in Step (1) above we
will guess x and u by (P1); in Step (a) we will guess e and f by definition of e; we
will find an e- f path at most as long as the corresponding subpath of P in Step (i) by
(P4); and we will consider D[g] in the minimum in Step (iv) by (P2) and since P is
compatible. Furthermore, D[g] is at most the length, �u , of P[u, t]: By (P3), P[u, t]
is a path in G(u,∞). To see that it satisfies the condition on its length let �′ = � − �u .
Observe that distG(s, u) − distG(s, x) ≤ �′ and thus we have distG(s, u) + �u ≤
distG(s, x) + �′ + �u = distG(s, x) + � ≤ d + k. Hence indeed, P[u, t] satisfies
distG(s, u) + �u ≤ d + k, certifying that D[g] is at most the length of P[u, t]. Thus
D[e] will receive a value that is at most the length of P in Step (iv), as required.

Before proving the claim, let us observe the following. Say that an inter-layer edge
h is a back edge if P traverses the vertex in h that is in a larger layer before the other

123

1212 Algorithmica (2023) 85:1202–1250

vertex in h. Observe that the length of P is d+a+2bwhere a is the number of within-
layer edges in P and b the number of back edges in P . Thus, we have a + b ≤ k. In
particular, there are at most k layers in which P contains at least two vertices. We will
use this fact below.

It remains to prove our claim above. Since there are at most k layers in which P
contains at least two vertices, in the layers m + 1,m + 2, . . . ,m + k + 1 there is at
least one vertex, u, on P such that u is the only vertex of P in u’s layer. We claim that
u together with the vertex, v, that precedes u on P and the vertex, z, that succeeds u
on P satisfy the properties in the claim. Clearly, (P1) is satisfied. Since u is the only
vertex of P on u’s layer, also (P2) is satisfied. For the same reason, (P3) is satisfied.
Finally, suppose that (P4) does not hold, that is, there are more than 2k edges between
xy and vu on P . Then the length, �, of P is at least 2k + 1 + distG(u, t). However,
then distG(s, x) + � ≥ distG(s, x) + 2k + 1+ distG(u, t) > d + k, a contradiction to
the fact that distG(s, x) + � ≤ d + k. Thus, the claim holds, meaning that ν ≤ �� and
the algorithm is correct. �

4 Graph-Width Parameters

In this section we give our results pertaining to graph-width measures. As outlined in
the introduction, finding a compatible s-t path of length at most k is fixed-parameter
tractable with respect to k (see Theorem 3.1). Because the length of a simple path is
upper-bounded by functions of the smallest size of a vertex cover and of the treedepth,
tractability for these two parameters also follows. It is thus interesting to prove analo-
gous tractability results for smaller and thus stronger parameters such as the treewidth
of the input graph. However, in Sect. 4.1 we give a limit to this avenue: We prove that
detecting compatible s-t paths and related problems are W[1]-hard with respect to the
size ofmodulators to constant treewidth. In particular, this impliesW[1]-hardness with
respect to the pathwidth and the treewidth. Thus the natural dynamic-programming
approaches that give fixed-parameter tractability in the ordinary graph setting likely do
not work when taking transitions into account. It is interesting to note the contrast to
the dynamic-programming approach for computing short detours (Theorem 3.2). The
latter worked because the interface of a dynamic-programming enty consists of two
single vertices and their transitions, whereas in the treewidth and pathwidth cases we
would have to consider for each vertex in a separator all possible (unbounded number
of) transitions.

On the positive side, if we focus on decompositional parameters that are based
on edge cuts, rather than vertex separators, we can obtain tractability: In Sect. 4.2 we
show that detecting compatible s-t paths is fixed-parameter tractablewith respect to the
treecut-width. Furthermore, the more restricted case of edge-colored graphs allows for
efficient algorithms, too: In Sect. 4.3 we give a fixed-parameter algorithm for detecting
properly colored Hamiltonian cycles in edge-colored graphs when parameterized by
the treewidth.

123

Algorithmica (2023) 85:1202–1250 1213

4.1 Modulator to Linear Forest

Let G be an undirected graph. A modulator to a linear forest of G is a vertex subset
S ⊆ V (G) such that G − S is a disjoint union of paths. The distance k of G to a
linear forest is the minimum size, k, of a modulator to a linear forest. Note that the
distance to a linear forest upper bounds the size of a minimum feedback-vertex set
and the treewidth and hence W[1]-hardness for these two parameters is implied by
W[1]-hardness for k. A modulator to treewidth two of G is a vertex subset S ⊆ V (G)

such that G − S has treewidth at most two. The distance of G to treewidth two is the
minimum size of a modulator to treewidth two. Analogously, the distance to treewidth
two upper bounds the treewidth and hence W[1]-hardness for treewidth is implied by
W[1]-hardness for the distance to treewidth two.

In this section, we first show that finding long paths or cycles is W[1]-hard with
respect to the distance k to a linear forest. Moreover, assuming the Exponential Time
Hypothesis (ETH), no f (k) · no(k/ log k)-time algorithm can exist. Informally, the ETH
states that 3- SAT on n-variable formulas cannot be solved in 2o(n) time, see [32, 33].
We obtain the following.

Theorem 4.1 Let (G, T) be forbidden-transition graph and s, t two vertices in G.
Let � be a positive integer and let k be the distance of G to a linear forest. For
each of the following, it is W[1]-hard with respect to k to decide and, moreover, an
f (k) · no(k/ log k)-time decision algorithm contradicts the ETH:

(i) whether G contains a compatible s-t path, and
(ii) whether G contains a compatible cycle.

Proof We first give a reduction to prove hardness of Item (i). We then modify the
construction to obtain Item (ii).

Our reduction is from the Partitioned Subgraph Isomorphism (PSI) problem.
Herein, we are given two graphs G and H , where V (H) = [nH] for some positive
integer nH , and a vertex coloring col : V (G) → V (H) of the vertices ofG with colors
that one-to-one correspond to the vertices of H . Moreover, each vertex of H is incident
with at least one edge and for each edge {u, v} ∈ E(G) we have col(u) �= col(v).
We want to decide whether H is isomorphic to a subgraph of G while respecting
the colors, that is, whether there is an injective mapping φ : V (H) → V (G) such
that for all u ∈ V (H) we have col(φ(u)) = u and for all {u, v} ∈ E(H) we have
{φ(u), φ(v)} ∈ E(G). In that case, we also say that φ is a subgraph isomorphism from
H into G. In the following we let mH = |E(H)|. Observe that nH ≤ 2mH since each
vertex of H is incident with at least one edge. Since PSI contains Multicolored

Clique [20] as a special case, PSI is W[1]-hard with respect to mH . Moreover, Marx
[43, Corollary 6.3] observed that an f (mH) · no(mH / logmH)-time algorithm for PSI
would contradict the ETH.

Intuitively, our construction works as follows (see also Fig. 2 for an illustration):
We first build a path from s to a vertex t1. This path is the concatenation of nH subpaths
P1, . . . , PnH where each subpath is associated with a vertex of H . The subpath Pi

contains a vertex for each edge ofG incident to a vertex colored i . We then use an extra

123

1214 Algorithmica (2023) 85:1202–1250

Fig. 2 An illustration of our construction. We use colors to denote edges that have to be used consecutively
because of the set of permitted transitions. For example, the two dark yellow edges correspond to a vertex
u of G in the vertex-selection gadget for vertex i of H and the four blue edges correspond to an edge e of G
in the edge-selection gadget for the pth edge of H (Color figure online)

vertex and an appropriate transition system so that one can choose any vertex v of G
with color i and connect the endpoints of Pi with a compatible path that skips exactly
those vertices of Pi that denote an edge adjacent to v. This comes down to choosing
φ(i) = v. Finally, we connect t1 to t by a sequence of gadgets each associated with
an edge of H . Choosing a path through a gadget comes down to mapping an edge
uv of H to an edge wx of G. Our transition system then requires the path in the
gadget to visit the two vertices of P that denote the edge wx , which can only be done
without repeating vertices if those vertices have been skipped between s and t1. This
means that the endpoints of wx have to be the vertices we chose as φ(u) and φ(v). By
ensuring that there is an edge between φ(u) and φ(v), we prove that φ is a subgraph
isomorphism. We now continue with the formal description.

Construction 4.1 Let (G, H , col) be an instance of PSI, where V (H) = [nH]. For
each i ∈ [nH] define Vi = {v ∈ V (G) | col(v) = i}.

For each i ∈ [nH] define Ei = {e ∈ E(G) | ∃u ∈ Vi : u ∈ e}. We construct a
forbidden-transition graph (G�, T) as follows, see Fig. 2 for an illustration. We begin
with G� being empty. We will specify T by giving the permitted-transition sets T (v)

for the individual vertices v ∈ V (G�). Below, we specify T (v) only for a subset of
V (G�). For all the remaining vertices v, we put T (v) = (E(v)

2

)
(recall that E(v) is the

set of edges in G� that are incident with v). Introduce new vertices s, t, t1 into G�. We
construct the vertex-selection gadgets as follows.

Introduce a path P from s to t1 intoG�; we specify the number of vertices on P indi-
rectly below. For each internal vertex v ∈ V (P) put T (v) = {{{u, v}, {v,w}}} where
u and w are the neighbors of v in P . Additional edges and transitions for the vertices
on P will be introduced below. Partition P into nH disjoint paths P1, . . . , PnH ; we
specify the number of vertices in each of these paths in the next step.

For each i ∈ [nH], proceed as follows. Let (eia)a∈[ri] be an ordering of Ei such
that, for each v ∈ Vi , the edges in E(v) form a segment in (eia) (observe that such an
ordering exists since the endpoints of each edge in E(G) have two different colors).

123

Algorithmica (2023) 85:1202–1250 1215

Set the number of vertices in Pi to ri + 4. For each a ∈ [ri] denote the a+ 2-th vertex
on Pi by xia . We say that vertex xia corresponds to the edge e

i
a of G. (We keep the first

two and last two vertices of Pi unnamed.)
Next, introduce a vertex yi and for each vertex v ∈ Vi proceed as follows. Let

pre(v) be the vertex in Pi that directly precedes on Pi the first vertex corresponding
to an edge in EG(v). Similarly, let post(v) be the vertex in Pi that directly succeeds
on Pi the last vertex corresponding to an edge in EG(v). For later, it is useful to
observe that all vertices on Pi strictly between pre(v) and post(v) correspond to edges
in EG(v). Now add the edges {pre(v), yi } and {yi ,post(v)} to G� and the transition
{{pre(v), yi }, {yi ,post(v)}} to T (yi). Moreover, add the following transitions:

– {{u,pre(v)}, {pre(v), yi }} to T (pre(v)) where u is the vertex on Pi preceding
pre(v) (if any), and

– {{yi ,post(v)}, {post(v), w}} to T (post(v)), wherew is the vertex on Pi succeed-
ing post(v).

This finishes the construction of the vertex-selection gadgets, but further edges and
transitions may be introduced later to the vertices of P .

We now construct the edge-verification gadgets. Let (e1, . . . , emH) be an arbitrary
ordering of the edges in E(H). For each p ∈ [mH] proceed as follows. Introduce three
vertices z p1 , z

p
2 , and z

p
3 . Let {i, j} = ep where i > j . For each edge e ∈ Ei ∩ E j of G

proceed as follows. Let a(e) be the index of e in the ordering (eia) defined for vertex i
when constructing the vertex-selection gadget. Similarly, let b(e) be the index of e in
the ordering (e ja) defined for j . Introduce the following edges into G�:

{z p1 , xia(e)}, {xia(e), z
p
2 }, {z p2 , x j

b(e)}, and {x j
b(e), z

p
3 }.

Furthermore, add the following transitions:

– {{z p1 , xia(e)}, {xia(e), z
p
2 }} to T (xia(e)),

– {{z p2 , x j
b(e)}, {x j

b(e), z
p
3 }} to T (x j

b(e)), and

– {{xia(e), z
p
2 }, {z p2 , x j

b(e)}} to T (z p2).

To conclude the construction of the edge-verification gadgets, add the following
edges: {t1, z11}; for each p ∈ [mH−1] the edge {z p3 , z p+1

1 }; and {zmH
3 , t}. This concludes

the construction of G� and T (G�) (recall that for vertices v for which we left T (v)

unspecified we put T (v) = (E(v)
2

)
).

Observe that Construction 4.1 can be carried out in polynomial time. We claim that
the distance to linear forest of G� is at most nH +3mH ≤ 5mH . Let Z = {z p1 , z p2 , z p3 |
p ∈ [mH]} and Y = {yi | i ∈ [nH]}. Note that the only vertices in G� − (V (P)∪ {t})
are in Y ∪ Z . Moreover, no edges between two vertices on P have been introduced
into G�. Thus, Y ∪ Z is a modulator to a linear forest and G� has distance at most
5mH to a linear forest. If Lemma 4.1 is correct, by the properties of PSI it thus follows
that deciding whether a graph has a compatible s-t path is W[1]-hard with respect to
the distance, k, to a linear forest, and that an f (k)no(k/ log k)-time decision algorithm
contradicts the ETH. We next show the correctness of Lemma 4.1.

123

1216 Algorithmica (2023) 85:1202–1250

Correctness.We now show that (G�, T) contains a compatible s-t path if and only
if there is a subgraph isomorphism from H into G.

Suppose first that there is a subgraph isomorphism φ from H into G. Construct an
s-t walk P� by concatenating the following path segments (observe while reading the
construction, that P� is compatible):

1. The subpath on P from s to pre(φ(1)).
2. The three vertices pre(φ(1)), y1, post(φ(1)).
3. For each i = 2, 3, . . . , nH take:

(a) The subpath on P from post(φ(i − 1)) to pre(φ(i)).
(b) The three vertices pre(φ(i)), yi , post(φ(i)).

4. The subpath on P from post(φ(nH)) to t1.
5. For each p = 1, 2, . . . ,mH , let ep be the pth edge of H according to the ordering

of E(H) fixed in Lemma 4.1, let ep = {i, j}, where i > j , let e = {φ(i), φ(j)},
let a(e) be the index of e in the ordering (eia) and b(e) the index of e in the ordering

(e ja). Take the vertices z
p
1 , x

i
a(e), z

p
2 , x

j
b(e), and z p3 .

6. The edge {zmH
3 , t}.

This concludes the construction of P�. Suppose, for a contradiction, that P� is not
a path, that is, there is a vertex v in G� which is contained twice in P�. Since V (G)

is partitioned into V (P), Y , Z , and {t} and each vertex of Y and Z occurs only once
in the definition of P�, we have v ∈ V (P). Since each segment in the construction
of P� is a path, the two occurrences must be in different segments. Observe that all
segments of P� in steps 1 to 4 that are contained in V (P) are pairwise disjoint subpaths
of P . Furthermore, all vertices in V (P) used in the segments constructed in step 5 are
pairwise distinct. Thus, there is one occurrence of v in steps 1 to 4, and one in step 5.
Moreover, v corresponds to some edge e of G. However, according to the steps 1 to 4,
vertex v corresponds to some edge which is not incident to a vertex in φ(V (H)) and,
according to step 5, vertex v corresponds to some edge which is incident to a vertex
in φ(V (H)), a contradiction. Thus, indeed, P� is a compatible s-t path, as required.

Now suppose that (G�, T) contains a compatible s-t path P�. Obviously, P� starts
with a subsegment of P . By construction of the transitions on vertices on P , at each
internal vertex of P , the path P� may either continue on P or go to some vertex of Y .
Moreover, whenever P� traverses a vertex of Y , it immediately returns to P with
the next vertex. Path P� hence begins with a segment which starts at s, alternatingly
contains a sequence of vertices on P and a vertex of Y , and ends at t1. Let Y ′ =
Y ∩V (P�) (we show below that Y ′ = Y). Observe that, for each vertex yi ∈ Y ′, there
exists v ∈ Vi such that P� contains the edges {pre(v), yi } and {yi ,post(v)}, by the
transitions defined for yi . Define a (partial) function φ : V (H) → V (G) as follows.
For each i ∈ [nH] such that yi ∈ Y ′ put φ(i) = v, where v is as defined above. For
later, put P�

1 to be the segment of P� from s to t1 and put P�
2 to be the segment of

P� from t1 to t . Observe that P�
1 contains precisely all vertices of P except those that

correspond to edges in G which are incident to the vertices of φ(Y ′).
To show that φ is total and that φ is a subgraph isomorphism from H into G, we

now argue that P�
2 contains z p2 for each p ∈ [mH]. Since P�

2 is a path, it starts with
the edge {t1, z11}. Moreover, by the edges and transitions of the vertices z p1 , x

i
a , z

p
2 , and

123

Algorithmica (2023) 85:1202–1250 1217

z p3 (p ∈ [mH], i ∈ [nH], a ∈ N), whenever P�
2 traverses a vertex z p1 , p ∈ [mH], it

next traverses some vertex xia , then the vertex z p2 , some vertex x j
b , and the vertex z p3

for some i, j ∈ [nH] where i > j . Moreover, after z p3 , path P�
2 traverses either z p+1

1
(if p < mH) or t (if p = mH) because the only other vertices that P�

2 may traverse

after z p3 are vertices x j
a′ and, by their transitions, P�

2 would then have to contain z p2 a
second time. Concluding, P�

2 contains z p2 for each p ∈ [mH].
Let p ∈ [mH] and let ep be the pth edge of H according to the ordering of E(H)

fixed in Lemma 4.1. Let ep = {i, j} with i > j . As argued above P�
2 contains z p2 . Let

xia and x j
b be the vertices that P�

2 traverses before and after z p2 . By the transitions of

z p2 , the vertices x
i
a and x j

b correspond to the same edge of G. Denote this edge by f p.
We now show that the edges f p, p ∈ [mH], ensures that φ is total and a subgraph
isomorphism.

First, to see that φ is total, recall that each vertex i ∈ V (H) is incident with at least
one edge. Say i is incident with edge ep. Let xia be the vertex that corresponds to an
edge in G incident with a vertex of color i and that led to the definition of f p, that is,
P�
2 traverses xia before or after z

2
p. Now recall that P�

1 contains all vertices of P except
those that correspond to the edges incident with vertices in φ(Y ′). Since P�

1 and P�
2

are internally vertex-disjoint, i ∈ Y ′. It thus follows that φ is total.
To see that φ is a subgraph isomorphism, take any edge ep ∈ E(H). Consider the

edge f p and the two vertices xia and x j
b that led to the definition of f p, that is, xia

and x j
b are traversed either before or after z2p. By the construction of the edges of z2p,

we have ep = {i, j}. We again use the property that P�
1 contains all vertices of P

except those that correspond to the edges incident with vertices in φ(Y ′). Since xia and
x j
b are not in P�

1 , they correspond to an edge incident with both φ(i) and φ(j), that
is, f p = {φ(i), φ(j)}. Thus, indeed φ is a subgraph isomorphism, as required. This
concludes the proof of Theorem 4.1 Item (i). The remaining parts are proved below.

Cycles. We now adapt Construction 4.1 to obtain Theorem 4.1 Item (ii). To this
end, we simply add the edge {s, t} to G� (and update the permitted transitions of s and
t to allow for combining {s, t} with every other edge). Call the resulting graph G�

C .
Observe that G�

C − (Y ∪ Z) is a path with vertex set V (P) ∪ {t}, and hence G�
C has

distance to a linear forest at most 5mH .
We claim that there is a compatible s-t path inG� if and only if there is a compatible

cycle in G�
C . The forward direction is trivial. For the backward direction, let C�

be a compatible cycle in G�
C . We show that C� contains {s, t}. For a contradiction,

assume it does not. Thus, C� is a cycle in G�. By the transitions of the vertices in
P , cycle C� does not contain an edge in P nor does it contain a vertex in Y . Let
G�

1 = (V (G�) \ Y , E(G�) \ E(P)) and observe that C� is a cycle in G�
1. Observe that

V (P) is an independent set in G�
1. Thus each cycle (not necessarily compatible) can

be written as z p2 , xia, z
p
1 , xib, z

p
2 or z p2 , xia, z

p
3 , xib, z

p
2 for the corresponding values of

p, i , a, and b. However, by the transitions of z p2 , none of these cycles is compatible, a
contradiction. Thus, C� contains {s, t}. Hence, removing {s, t} from C� gives an s-t
path in G�, concluding the proof. �

We note that Theorem 4.1 immediately implies the following.

123

1218 Algorithmica (2023) 85:1202–1250

Corollary 4.1 Let (G, T) be forbidden-transition graph and s, t two vertices in G.
Let � be a positive integer and let k be the distance of G to a linear forest. For
each of the following, it is W[1]-hard with respect to k to decide and, moreover, an
f (k) · no(k/ log k)-time decision algorithm contradicts the ETH:

(i) whether G contains a compatible s-t path of length at least � (or at most �), and
(ii) whether G contains a compatible cycle of length at least � (or at most �).

To put Corollary 4.1 in a wider context, note that, in contrast, deciding whether G
contains an s-t path of length at least � in ordinary graphs (without transitions) is
fixed-parameter tractable with respect to treewidth (and, hence, also, parameterized
by the distance to linear forest), see e.g., [15, Theorem 7.10].

We now adapt Construction 4.1 to prove that it is W[1]-hard with respect to the dis-
tance to treewidth two to check whether there is a compatible Hamiltonian cycle. This
problem is, again, fixed-parameter tractable in ordinary graphs when parameterized
by treewidth.

Theorem 4.2 Let G be a graph and k′ its distance to treewidth two. It is W[1]-hard
with respect to k′ to decide whether G contains a compatible Hamiltonian cycle and,
moreover, an f (k′) · no(k′/ log k′)-time decision algorithm contradicts the ETH.

Proof To prove this theorem, we use Construction 4.1 and add a gadget that allows an
s-t path in G� to collect all so-far untraversed vertices, wherein we use transitions to
not disturb the structure of G�. The basic observation that we use is that the path P�

we have constructed in the correctness proof for detecting s-t paths above contains all
vertices of G� except segments of the path P . The idea now is to add a path Q which
runs “parallel” to P (like a skewed ladder) and which starts after t and ends in s. Using
transitions we allow the solution in each vertex v of Q to either continue to the next
vertex of Q or to traverse the vertex parallel to v on P and then immediately return to
the next vertex after v on Q. This allows the solution to traverse all vertices it missed
on the traversal from s to t . Since Q is parallel to P , removing Y ∪ Z will result in a
graph of treewidth two.

The formal construction is as follows. Construct a forbidden-transition graph
(G�

1, T1) from (G�, T) by initially putting (G�
1, T1) = (G�, T). Let n = |V (P)| − 2.

Add a path Q consisting of n + 1 vertices to G�
1 and identify the first and last vertex

of Q with s and t , respectively. Let v1, v2, . . . , vn be the internal vertices of P and
t = u1, u2, . . . , un+1 = s the vertices of Q. For each i ∈ [n] proceed as follows. Add
the edges {ui , vi }, and {vi , ui+1}. Then, update the transition system T1 by adding the
transitions {{ui , vi }, {vi , ui+1}} to T1(vi). This finishes the construction of G�

1 and its
transition system (as before, for all vertices with unspecified transition systems we
allow all transitions).

Let G̃�
1 = G�

1 − (Y ∪ Z ∪{s, t}). We claim that G̃�
1 has treewidth two. Observe that

this graph consists only of the vertices in P and Q except for s and t . Now observe
that, by the definition of the edges between P and Q, the following bags give a path
decomposition for G̃�

1 of width two. Note that we specify a bag containing t = u1 for
easier notation:

{u1, u2, v1}, {u2, v1, v2}, . . . , {ui , ui+1, vi }, {ui+1, vi , vi+1}, . . . ,

123

Algorithmica (2023) 85:1202–1250 1219

{un−1, un, vn−1}, {un, vn−1, vn}.

Thus Y ∪Z∪{s, t} is amodulator ofG�
1 to treewidth two,meaning thatG�

1 has distance
to treewidth two at most 5mH + 2, as required.

We claim that (G�
1, T1) contains a compatible Hamiltonian cycle if and only if

(G�, T) contains a compatible s-t path. Take a compatible s-t path P� in (G�, T).
Observe that in the correctness proof for detecting compatible s-t paths we have
argued that P� contains all vertices in Y and Z . In other words, the only vertices of
G�

1 that P� does not contain are in P and Q. To obtain a compatible Hamiltonian
cycle in (G�

1, T1) from P�, simply extend the path after arriving at t by following
Q and visiting vertices in V (G�

1) \ Q as needed in order to visit all vertices of G�
1.

In the other direction, by the updated transitions, a compatible Hamiltonian cycle in
G�

1 decomposes into two s-t paths, one path containing vertices of Q (and a subset
of vertices in P), and another path contained in G�, as claimed. This concludes the
proof of W[1]-hardness of detecting compatible Hamiltonian cycles with respect to
the distance to treewidth two and thus concludes the proof of Theorem 4.2. �

4.2 Treecut-Width

In this section we are going to prove that the ComPath problem is fixed-parameter
tractable with respect to treecut-width of G; the treecut-width is defined below. In
the ComPath problem we get a forbidden-transition graph (G, TG) and two vertices
s, t ∈ V (G), and we want to decide whether there exists a compatible s-t path in G.
The notion of treecut-width of a graph was introduced by Wollan [51]. In this section,
to keep the notation succinct, we will sometimes refer to a forbidden-transition graph
(G, TG) simply as G and say that G has transition system TG .

Basic definitions and previous results.We now define treecut-width and the associ-
ated treecut decompositions, and we recap the relevant previous results on computing
them. Consider a graphG (without transitions) and let v ∈ V (G) be a vertex of degree
at most two. To suppress a vertex v ∈ V (G) means (i) to add an edge between v’s two
neighbors (possibly creating a parallel edge) and (ii) to delete v. For a partition A∪ B
of the vertex set of G such that both A and B are non-empty, we denote by E(A, B)

the cut-set between A and B, i.e., the set {uv ∈ E(G) : u ∈ A, v ∈ B}. Recall that
for a vertex v of G by EG(v) we denote the set of edges incident with v (we omit
the subscript if it is clear from the context). We define shrinking a (not necessarily
connected) set Q ⊆ V (G) into q as an operation which replaces Q in G by a single
new vertex q, and adds an edge qv for every edge uv ∈ E(G) such that u ∈ Q and
v /∈ Q. Note that this may create parallel edges.

A treecut decomposition of a graph G is a pair (T ,X) such that T is a rooted tree
and X = {Xt }t∈V (T) is a partition of vertices of G in which we allow sets Xt to be
empty. For a node t , let Tt be the subtree of T rooted in t . Let Yt := ⋃

t ′∈V (Tt) Xt ′ and
Zt := V (G) \ Yt . For a non-root node t , let Et := E(Yt , Zt), and for a root r , we set
Er := ∅. We denote the vertices from Yt by y1, y2, y3, . . ., and the vertices from Zt

by z1, z2, z3,

123

1220 Algorithmica (2023) 85:1202–1250

Fig. 3 i A graph G and its tree-cut decomposition (T ,X) depicted in blue, with a distinguished node t .
The left child of t is thin, while the right child is bold. ii The torso Ht of (T ,X) at t , and iii the 3-center
of Ht (Color figure online)

The torso of (T ,X) at a node t is a graph Ht , constructed as follows. If T consists
of a single node t , then the torso at t is G. Otherwise, let C1, . . . ,C� be the sets of
the vertices of G corresponding to the connected components of T \ {t}. We construct
the torso by shrinking Ci into ci for each i ∈ [�]. Note that a torso may have parallel
edges. The 3-center H̃t of a torso Ht is the graph obtained from Ht by suppressing
vertices of degree at most two which belong to the set V (Ht) \ Xt . The width of a
treecut decomposition (T ,X) is max{|Et |, |V (H̃t)| : t ∈ V (T)}. The treecut-width
of G is the minimum width of a treecut decomposition of G (see Fig. 3).

Theorem 4.3 (Kim et al. [36]) There exists an algorithm that, given a graph G and
k ∈ N, either outputs a treecut decomposition of G of width at most 2k or correctly
reports that G has treecut width larger than k in time 2O(k2 log k) · |V (G)|2.

A non-root node t of a treecut decomposition (T ,X) is thin if |Et | ≤ 2 and it is
bold otherwise. Denote by At and Bt , respectively, the set of all bold and thin children
of t . A treecut decomposition of G is nice if for every thin node t ∈ V (T) we have
that N (Yt) ∩ (

⋃{Yb : bis a sibling oft in T }) = ∅.
Theorem 4.4 (Ganian et al. [24]) There exists an algorithm working in time
O(|V (G)|3) which transforms any rooted treecut decomposition (T ,X) of G into
a nice treecut decomposition of the same graph, without increasing its width or num-
ber of nodes.

The following property of nice decompositions is extremely useful in designing the
dynamic programming algorithms.

Theorem 4.5 (Ganian et al. [24]) Let t be a node of a nice treecut decomposition of
width k. Then |At | ≤ 2k + 1.

Auxiliary problems and algorithms. To show that ComPath is fixed-parameter
tractable with respect to the treecut-width we provide a dynamic-programming algo-
rithm on the treecut decomposition. In the individual steps of the dynamic programwe
will need to solve themore general problemof finding compatible vertex-disjoint paths

123

Algorithmica (2023) 85:1202–1250 1221

between given pairs of vertices.We now introduce this problem and a restricted variant
that occurs in a special case of the dynamic program, andwe provide a fixed-parameter
algorithm for the more restricted variant.

Let G be a graph. We say that W is a set of terminal pairs of G, if it consists of
pairwise-disjoint two-element subsets of V (G). IfW is clear from the context, we also
simply call the elements of W terminal pairs and each of them consists of terminals.
Recall that by TG we denote the transition system of G (again, we omit the subscript
if it is clear from the context).

Compatible Vertex- Disjoint Paths (ComVDP)
Parameter: The treecut-width, k, of G.

Input:An instance (G, TG ,W) where (G, TG) is a forbidden transition graph and
W is a set of terminal pairs of G.

Question:Are there pairwise vertex-disjoint TG-compatible paths inG connecting
each pair in W?

Below we will also say that a set of pairwise disjoint paths as above is a solution to
the instance (G, TG ,W). Clearly, an instance (G, TG , s, t) of ComPath is equivalent
to an instance (G, TG , {{s, t}}) of ComVDP.

Our dynamic-programming approach is inspired by the XP-algorithm for finding
edge-disjoint paths between given pairs of terminals, described by Ganian and Ordy-
niak [25]. However, we need modified dynamic-programming records and a more
careful analysis to be able to ensure that subsolutions respect the transitions.

We first show fixed-parameter tractability of a simpler variant of ComVDP, called
SComVDP, with additional assumptions on the structure of the input: Essentially, the
vertex set is partitioned into a small set of arbitrary structure and a possibly large set of
maximum degree two. A fixed-parameter algorithm for SComVDP will later be used
when solving the general case.

SComVDP

Parameter: |A| ∈ N

Input:An instance (G, TG ,W) of ComVDP and a partition of V (G) into two sets
A, B such that B consists of vertices of degree at most 2.

Question:Are there pairwise vertex-disjoint TG-compatible paths inG connecting
each pair in W?

Observe that each instance of SComVDP has treecut-width at most |A|. Indeed, we
may construct a treecut decomposition ofG as follows: All vertices of A are contained
in a bag Xr and each vertex b ∈ B forms a separate bag Xb. We define T to be a star,
with r as its center and root. It is straightforward to verify that (T , {Xt }t∈{r}∪B) is a
treecut decomposition of G of width |A|.

Wenowgeneralize the notion of suppressing a vertex to forbidden-transition graphs.
Let (G, T) be a forbidden-transition graph and v a vertex of degree at most 2 in G. If
v is of degree 0 or 1, or T (v) does not contain any transition, we delete v. Otherwise,
T (v) consists of a single transition, say {uv, vw}.

123

1222 Algorithmica (2023) 85:1202–1250

Fig. 4 An operation of suppressing a vertex v. The transition systems are represented by blue arcs near
common vertices of the edges (Color figure online)

– If uw /∈ E(G), then we proceed as follows.We add uw to E(G). In each transition
of T (u)we replace uv with uw and in each transition of T (w)we replace vw with
uw. That is, if there is a transition t in T (u) (resp. in T (w)) with t = {uv, ux}
(resp. with t = {vw,wx}) for a vertex x ∈ V (G) \ {u, v, w}, then we put T (u) :=
T (u)\{{uv, ux}}∪{{uw, ux}} (resp. T (w) := T (w)\{{vw,wx}}∪{{uw,wx}}).

– If uw ∈ E(G), then we add an edge uwv , parallel to uw. Then, for each vertex
x ∈ V (G) \ {u, v, w}, if {ux, uv} ∈ T (u) then we add {ux, uwv} to T (u) and if
{wx, vw} ∈ T (w) then we add {wx, uwv} to T (w).

Regardless of whether uw ∈ E(G), we remove v fromG (and remove the correspond-
ing transitions).

Note that in ordinary graphs (without transitions), deleting a parallel edge preserves
the existence of a solution that consists of pairwise vertex-disjoint edges. However,
in our case we need parallel edges to handle transitions, see Fig. 4. Using them, the
transitions in a forbidden-transition graph (G ′, T ′) obtained from (G, T) by suppress-
ing v such that NG(v) = {u, w} are defined in such a way that we are allowed to use
the original edge uw of G in a compatible path S in (G ′, T ′) if and only if S is a
compatible path also in (G, T) or a path obtained from S by replacing the edge uw by
two consecutive edges uv, vw is compatible in (G, T). This implies that suppressing
a non-terminal vertex v is a safe reduction rule, that is, it preserves the existence of a
solution to ComVDP or SComVDP.

We are now ready to solve SComVDP.

Lemma 4.2 There exists an algorithm solving SComVDP in time kO(k) · nO(1), where
k = |A| and n = |V (G)|.
Proof Let J = (G, T ,W) be an instance of SComVDP. We start with simple sanity
checks. First, observe that if |W | > n then J is clearly a no-instance as we cannot
find more than n vertex-disjoint paths in G. Similarly, if there exists a vertex which
belongs to more than one pair in W , then J must be a no-instance. Performing the
sanity checks takes O(n2) time.

Consider a vertex v ∈ B. If v does not belong to any pair in W and is not adjacent
to any vertex by a parallel edge, then we suppress it. Recall that this preserves the
solution. If v does not belong to any pair in W but is adjacent to a vertex by a parallel
edge, we remove it, as it cannot be used by any path in a solution.

123

Algorithmica (2023) 85:1202–1250 1223

Therefore, we can assume that for each vertex v ∈ B there exists a unique vertex
v′ ∈ V (G) with v′ �= v such that {v, v′} ∈ W . For every v ∈ B such that N (v) ⊆ B,
we check whether v′ ∈ N (v). If yes, we can safely remove v and v′ fromG and {v, v′}
from W . Otherwise, we report that J is a no-instance – since all vertices in B are
terminal vertices, there is no way to connect v and v′. After this step, each vertex in B
must have a neighbor in A. Moreover, observe that there is no {v, v′} ∈ W such that
v, v′ ∈ B and v′ ∈ N (v), so each path in a potential solution must intersect A.

Next, if |B| > 2|A| we report that J is a no-instance. Indeed, in order for J to
be a yes-instance, since each vertex in B is a terminal, and each path in the solution
containing a vertex of B must also contain a vertex of A, for each two vertices in
B there must exist a vertex in A. Thus, |V (G)| ≤ 3k, and an algorithm guessing the
partition of the vertex set into the desired paths solves the instance in kO(k) ·nO(1) time
(as the number of edges in G is bounded by n2). The statement now follows. �

We emphasize that solving SComVDP will be the only moment where non-simple
graphs (that is, graphs with parallel edges) appear in our algorithm. Since it will be
used as a last step, to solve a reduced instance of the original problem, in the remaining
part we describe the procedure only for simple graphs.

Before we proceed with the algorithm, we introduce a notion which will be useful
when handling transitions. Let G ′ be an induced subgraph of G. We say that a family
C := {C1, . . . ,C�} consisting of disjoint subsets of E

(
V (G ′), V (G) \ V (G ′)

)
is

terminable (with respect to G ′) if for every i ∈ [�] set Ci is either (i) a singleton or
(ii) contains exactly two edges uu′ and vv′ such that u′, v′ ∈ V (G ′) and u′ �= v′.
We omit reference to the graph G that contains G ′ if it is clear from the context. We
now define the operation of terminating a terminable set C. Intuitively, this operation
returns a modified G ′ in which all edges in the subsets of C are added and, if two edges
were from the same subset of C, then their endpoints outside of G ′ are merged into
one vertex and the transition over this vertex is made to be allowed (see Fig. 5).

Definition 4.1 LetG be a simple graphwith transition system TG . Consider an induced
subgraph G ′ of G and let C := {C1, . . . ,C�} be terminable with respect to G ′. We
define the operation of terminating C in G ′ which results in a graph G ′

C with transition
system TG ′

C as follows. The resulting graph G ′
C has vertex set V (G ′) ∪ V ′, where the

elements of V ′ are c(C1), . . . , c(C�). The edge set of G ′
C is defined as follows.

E(G ′
C) := E(G ′) ∪ {uc(Ci) : u ∈ V (G ′)

and there exists an edge inCi adjacent to u inG}.

For simplicity we will sometimes write ci instead of c(Ci), if it causes no confusion.
The transition system TG ′

C of G ′
C is defined as follows.

– If u /∈ V ′, then for w, z ∈ N (u) a transition {wu, uz} belongs to TG ′
C (u) if and

only if

– w, z /∈ V ′ and {wu, uz} ∈ TG(u), or
– w /∈ V ′, z = ci ∈ V ′ and {wu, e} ∈ TG(u), where e is the unique edge from
Ci adjacent to u, or

123

1224 Algorithmica (2023) 85:1202–1250

Fig. 5 An example of terminating a family C (orange) with respect to G′ (Color figure online)

– w = ci , z = c j ∈ V ′, for i �= j , and {e, f } ∈ TG(u), where e and f are,
respectively, the unique edges from Ci and C j adjacent to u.

– If u = ci ∈ V ′, then TG ′
C
(u) contains all unordered pairs of edges incident with u.

Note that since each Ci has at most 2 elements, all vertices from V ′ have degree at
most 2.

Observe that after terminating some C in G ′, we always obtain a simple graph.
Moreover, the following observation is straightforward.

Observation 4.3 Let G ′ be an induced subgraph of G and let C = {C1, . . . ,C�} be a
terminable set with respect to G ′. Let P = (p1, p2, . . . , pm) be a compatible path in
G such that at least one pi belongs to V (G ′). Denote by e1, e2, . . . , er the edges of
E(V (G ′), V (G) \ V (G ′)) ∩ P in the order in which they appear in P.

1. If p1, pm ∈ V (G ′) and for each odd j ∈ [r − 1] we have {e j , e j+1} ∈ C then
there exists a compatible p1-pm path in G ′

C .
2. If p1 ∈ V (G ′) (resp. p1 /∈ V (G ′)), and for some i, i ′ ∈ [�] and even (resp. odd)

j ∈ [r − 1] we have Ci = {e j },Ci ′ = {e j+1} ∈ C, then there exists a compatible
ci -ci ′ path in G ′

C ,
3. If for some i ∈ [�] we have Ci = {e1} ∈ C (resp. Ci = {er } ∈ C), then there exists

a compatible p1-ci path (resp. ci -pm path) in G ′
C .

Algorithm overview. The algorithm will compute the solution to ComVDP by
dynamic programming over (T ,X) in a leaf-to-root fashion. In a fixed node t of
T , we consider the possible partitions of Et into four sets I (internal), F (foreign), L
(leaving), andU (unused). Intuitively, the edges in sets I , F , and L will correspond to
edges in the solution paths: paths with both terminals in Yt use edges in I , paths with
both terminals in Zt use edges in F and paths with one terminal y ∈ Yt and another
one z ∈ Zt use one edge of L (which is supposed to be the first edge on the solution
path from y to z which belongs to Et) and their other edges should belong to F . For
each such partition we consider all possible records, that is, ways in which a potential
solution could behave on Et (see Definition 4.2).

If now t is a leaf, for every such record we check whether it is valid, i.e., whether
we can extend the potential solution corresponding to it to a graph created from the

123

Algorithmica (2023) 85:1202–1250 1225

input graphG by terminating some family of subsets of Et with respect toG[Xt]. This
can be done using an algorithm that solves SComVDP. Otherwise, t has a child t ′. If
t ′ is thin, we use a reduction rule to handle it. If t ′ is bold, for each valid record of t ′,
we perform a simplification – we terminate some family of subsets of Et ′ with respect
to G[Zt ′]. Then, after simplifying every bold child of t , we can again check whether
it is valid, by terminating some family of subsets of Et and solving SComVDP.

Notions for dynamic programming. We now introduce the notions used in our
dynamic-programming approach and give results that we will later need to prove the
correctness. Let (G, TG ,W) be an instance of ComVDP and let (T ,X) be a treecut
decomposition ofG of width k. For a set X ⊆ V (G), byW [X]we denote the subset of
terminal pairs fromW with both elements in X . For a node t ∈ V (T) let Gt = G[Yt].
An unmatched terminal for t is a vertex x ∈ Yt such that there exists a vertex y ∈ Zt

satisfying {x, y} ∈ W . We let Ut be the set of unmatched terminals for t . We will use
the fact that the number of unmatched terminals is bounded by the width of (T ,X) in
every yes-instance:

Observation 4.4 If (G, TG ,W) is a yes-instance, then for each node t of T the number
|Ut | of unmatched terminals is at most k.

Proof Consider a solution to the instance and observe that this solution witnesses that
there is a flow between Ut and Zt of value at least |Ut |. Since Et is a Yt -Zt cut in G
containing at most k edges and Ut ⊆ Yt , we have |Ut | ≤ |Et | ≤ k. �
Since Observation 4.4 is easily checkable in polynomial time, we will from now on
assume that for each node t of T we have |Ut | ≤ k.

As mentioned, we are going to describe a dynamic-programming procedure on the
treecut decomposition (T ,X). Below we introduce a basic notion which will be used
to store the information about partial solutions.

Definition 4.2 A record R for t ∈ V (T) is a tuple (σ, I,F , λ) consisting of the
following elements.

– Function σ is a partition of Et into sets I (internal), F (foreign), L (leaving), and
U (unused), such that for every v ∈ V (G) we have |EG(v) ∩ (I ∪ F ∪ L)| ≤ 2.
Moreover, for each vertex v ∈ V (G) with |E(v)∩ (I ∪ F ∪ L)| = 2 either (i) both
elements of E(v) ∩ (I ∪ F ∪ L) belong to exactly one of I or F , or (ii) v ∈ Zt

and one element of E(v) ∩ (I ∪ F ∪ L) belong to to F and another one to L .
– Set I is a perfect matching between the elements from I , such that if {yi zi , y j z j } ∈
I then yi �= y j (recall that yi , y j denote vertices in Yt and zi , z j vertices in Zt).

– SetF is a perfectmatchingbetween the elements from F , such that if {yi zi , y j z j } ∈
F then zi �= z j .

– Finally, λ is a bijection between Ut and L .

Observe that the conditions on σ together with the conditions on the matchings I
and F ensure that I ∪ {{e} : e ∈ F ∪ L} is terminable with respect to the subgraph
G[Yt] of G and that F ∪ {{e} : e ∈ I ∪ L} is terminable with respect to the subgraph
G[Zt] of G.

Let R(t)denote the set of all possible records for t .Observe that |R(t)| ≤ 4k ·(k!)3 =
kO(k), as there are at most 4k possibilities for σ , there are at most k! possibilities each

123

1226 Algorithmica (2023) 85:1202–1250

for the matchings I and F , and at most k! possibilities for λ because there are at most
k unmatched terminals by Observation 4.4.

Intuitively, the matchings should capture, in case of edges in I , which edge is used
by path to leave Yt and then to come back, and in case of edges in F , by which edge
we enter Yt and which one is then used to leave. Finally, λ says by which edge we
leave Yt for the first time. Below we introduce a notion which will help to formalize
this intuition.

Definition 4.3 For an instance (G, T ,W), a node t of a treecut decomposition (T ,X)

of G and a record R = (σ, I,F , λ) ∈ R(t), we construct a corresponding instance
(GR, TR,WR)of ComVDP as follows.LetC = {C1, . . . ,C�} := I∪{{e} : e ∈ F∪L}.
Let the graph GR , together with the transition system TR , be obtained by terminating
C in Gt . Denote by VR = {c(C1), . . . , c(C�)} the set of vertices V (GR) \ V (Gt). The
set WR contains

(i) every element of W [Yt],
(ii) the pair {ci , c j } for every ci , c j ∈ VR such that Ci ∪ C j ∈ F , and
(iii) the pair {a, ci } for every a ∈ Ut and ci ∈ VR such that Ci = {λ(a)}.
Note that the set C was defined in such a way that the pairs added to WR are disjoint.

A record R is valid, if its corresponding instance (GR, TR,WR) is a yes-instance
of ComVDP. A corresponding instance should capture how the potential solution we
construct behaves on Gt .

Definition 4.4 Let (T ,X) be a treecut decomposition of G, let t ∈ V (T) and let
J = (G, T ,W) be an instance of ComVDP. Assume that there exists a solution S =
{P1, P2, . . . , P|W |} to J . We say that solution S corresponds to a record (σ, I,F , λ)

for the node t , if the following conditions are satisfied for every ai -bi path Pi ∈ S
such that E(Pi) ∩ Et �= ∅. Let ei1, ei2, . . . , eiri denote the elements of Pi ∩ Et in the
order of their appearance on Pi .

1. If ai , bi ∈ Yt , then {eij , eij+1} ∈ I for each odd j ∈ [ri − 1].
2. If ai , bi ∈ Zt , then {eij , eij+1} ∈ F for each odd j ∈ [ri − 1].
3. If ai ∈ Yt , bi ∈ Zt , then λ(ai) = ei1 (note that in this case ai is an unmatched

terminal, that is, ai ∈ Ut) and {eij , eij+1} ∈ F for each even j ∈ [ri − 1].
4. An edge e ∈ Et belongs to U if and only if e /∈ ⋃

i∈[|W |] E(Pi).

The dynamic-programming procedure on the treecut decomposition (T ,X) of G
computes the set D(t) of valid records for a node t of T . In other words, in D(t) we
store the information about these behaviors of a potential solution on Et , which can
be extended to Gt . Note that (G, T ,W) is a yes-instance of ComVDP if and only if
D(r) = {(∅,∅,∅,∅)}.

The last operation which will be used in the algorithm is the simplification of an
instance. Intuitively, for a record R, the simplified instance is a smaller instance of the
ComVDP problem which is equivalent to the original instance J assuming that, if J is
an yes-instance, then R corresponds to some solution for J . Note that the construction
of the simplified instance can be seen as dual to the construction of the corresponding
instance.

123

Algorithmica (2023) 85:1202–1250 1227

Definition 4.5 Let (T ,X) be a treecut decomposition of G, let t ∈ V (T) and let
J = (G, T ,W) be an instance of ComVDP. The operation of simplification of the
instance J in node t in accordance with record R = (σ, I,F , λ) ∈ R(t) returns an
instance (GQ, TQ,WQ) as follows. Let C = {C1, . . . ,C�} := F ∪ {{e} : e ∈ I ∪ L}.
Graph GQ and its transition system TQ are obtained by doing the termination of C
with respect to G[Zt]. Let VQ := {c(C1), . . . , c(C�)}. The set of terminal pairs WQ

contains

(i) every element of W [Zt],
(ii) the pair {ci , c j } for every ci , c j ∈ VQ such that Ci ∪ C j ∈ I, and
(iii) the pair {ci , b} for every {a, b} ∈ W with a ∈ Ut , b ∈ Zt , and ci ∈ VQ such that

Ci = {λ(a)}.
Observe that each vertex in VQ has degree at most 2, and the degree of vertex in

V (GQ) \ VQ is at most its degree in G.
The following lemmata reveal how the introduced notions are related to each other.

Lemma 4.5 Let (T ,X) be a treecut decomposition of G and let J = (G, T ,W) be
an instance of ComVDP which admits a solution S. Then for every node t ∈ V (T)

there exists a unique record R ∈ R(t) such that S corresponds to R.
On the other hand, if S corresponds to some record R, then R must be valid.

Proof It is clear that for a fixed S and t there exists an unique R = (σ, I,F , λ) ∈ R(t)
satisfying conditions 1.-4. in the Definition 4.4.

The fact that there exists a solution to the corresponding instance of R follows from
the construction of the corresponding instance and Observation 4.3. �
Lemma 4.6 Consider an instance J = (G, T ,W) of ComVDP. Let (T ,X) be a
treecut decomposition of G, let t be a fixed node of T , and let R = (σ, I,F , λ) ∈ R(t).
Let JQ be the result of the simplification of J in t in accordance with R.

1. If JQ admits a solution and R is valid, then J admits a solution.
2. If S is a solution to J and S corresponds to R, then JQ admits a solution.

Proof Let JQ = (GQ, TQ,WQ). Recall that V (GQ) = V (G[Zt]) ∪ VQ , VQ =
{c(C1), c(C2), . . . , c(C�)} and C = {C1,C2, . . . ,C�} is a set terminated with respect
to G[Zt]. Note that in both statements of the lemma, R must be valid – in the
first one by assumption and in the second one it follows from Lemma 4.5. Let thus
JR = (GR, TR,WR) be a yes-instance corresponding to R, obtained by terminating
C′ = {C ′

1,C
′
2, . . . ,C

′
�′ }. Let VR = {c′(C ′

1), c
′(C ′

2), . . . , c
′(C ′

�′)} (we will also write
c′
i instead of c′(C ′

i)) and let SR be a solution to JR .
For the first statement, assume that SQ is a solution to JQ . For each {a, b} ∈ W

we construct a compatible a-b path P∗ to include in a solution for J as follows.
We iteratively construct a sequence P∗ of elements of V (GR) ∪ V (GQ) with the
property that, at each iteration, two consecutive vertices of P∗ either form an edge
from E(GR) ∪ E(GQ) or from Et . We claim that, at the end of the procedure, P∗ is
a compatible a-b path in G.

We first consider the case in which a, b ∈ Yt . Observe that there is an a-b path
P ∈ SR in GR . We start with P∗ being the consecutive vertices of P . If there are no

123

1228 Algorithmica (2023) 85:1202–1250

vertices from the set VR in P , then P∗ is the desired a-b path in G. Otherwise, we
proceed to Step 1.

Step 1 (Replacing vertices from VR): Denote by e1, e2, . . . , em the edges from
E(Yt , VR) ∩ E(P) in the order in which they appear on P . Since a, b ∈ Yt and by the
construction of JR we must have {e1, e2}, {e3, e4}, . . . , {em−1, em} ∈ I. This implies
that for each i ∈ {1, 3, . . . ,m−1} there exists a c({ei })-c({ei+1}) path in SQ ; call this
path Pi,i+1. We replace each element of VR adjacent to edges ei and ei+1 in P∗ by the
interior vertices of Pi,i+1. Observe that the result respects the transitions of G by the
definition of termination of a set. Observe that in this way we may have added some
vertices from VQ to the sequence P∗. If this has happened, we take care of them in
Step 2.

Step 2 (Replacing vertices from VQ): Let e′
1, e

′
2, . . . , e

′
m′ be the edges from

E(Zt , VQ) ∩ E(Pi,i+1) in the order in which they appear on Pi,i+1. By the con-
struction of JQ we have {e′

1, e
′
2}, . . . , {e′

m′−1, e
′
m′ } ∈ F . Moreover, for each j ∈

{1, 3, . . . ,m′ − 1} there exists a c′({e′
j })-c′({e′

j+1}) path Pj, j+1 in SR . We replace
each element of VQ adjacent to edges e′

j and e′
j+1 in P∗ by the interior vertices of

the c({e′
j })-c({e′

j+1}) path P ′
j, j+1 from SR . Observe again that the result respects the

transitions of G by the definition of termination of a set. Again, in Step 2 we can add
to the sequence some vertices from VR . If this happens, we go back to Step 1.

Since the paths in SR and SQ are pairwise disjoint, we never add a vertex to P∗
twice. Moreover, |VR |, |VQ | ≤ k, so after at most 2k iterations, we obtain an a-b path
P∗ which uses only vertices from Yt ∪ Zt , as required.

The case in which a, b ∈ Zt is analogous; the only difference is that the initial path
P∗ is taken from SQ , and therefore it can contain vertices from VQ and, in that case,
we start with Step 2. If a ∈ Yt and b ∈ Zt , we start with the c′({λ(a)})-b path P∗ from
SQ and, before performing Step 1, we replace c′({λ(a)}) in P∗ by the vertices of the
a-c({λ(a)}) path in SR .

It is straightforward to verify that we use every path from SR and SQ at most once
when we construct paths for all terminal pairs {a, b}. Therefore, since SR and SQ are
sets of pairwise vertex-disjoint paths, we obtain a set S of pairwise vertex-disjoint
paths in G connecting each pair in W .

For the second statement, observe that if S is a solution to J , then we can derive a
construction of every a-b path in GQ from Observation 4.3 (analogously to the proof
of Lemma 4.5). �

The algorithm. We are now ready to show how to proceed with a given instance
J = (G, T ,W) of the ComVDP problem. Let (T ,X) be a treecut decomposition of
G.

Observe that if t is a leaf of T and R ∈ R(t), the corresponding instance
(GR, TR,WR) of R is an instance of SComVDP. Indeed, since Yt = Xt , Yt has
at most k elements and the vertices in VR are of degree at most 2. This means that to
compute the set D(t) for a leaf t , for every element R of R(t) we find a corresponding
instance and solve SComVDP on it. Since |R(t)| ≤ kO(k), we obtain the following.

Lemma 4.7 There is an algorithm which takes as input a ComVDP instance
(G, TG ,W), a treecut decomposition (T ,X) of G of width k and a leaf t ∈ V (T),
and computes D(t) in time kO(k) · n2.

123

Algorithmica (2023) 85:1202–1250 1229

Next, we proceed to the non-leaf nodes. A dynamic programming step will consist
of three stages. For a non-leaf node t , we again construct a corresponding instance,
but since its size does not have to be bounded by some function of k, we apply some
further modifications. First, we apply a reduction rule for each of the thin children
(see below). Then we perform a simplification for each bold child t ′ of t and each
R ∈ R(t). After these, we argue that the graph obtained this way (for a fixed record
R) is again an instance of SComVDP, which can be solved efficiently.

Assume we solve an instance (G, TG ,W) and let t ∈ V (T) be a non-leaf node.
The safeness of the following reduction rule follows directly from its definition.

Reduction Rule 1 Assume that T is a nice decomposition and let s ∈ V (T) be a thin
child of t . If D(s) is empty, we report a no-instance. Otherwise, we proceed with the
first option that applies on the following list. Herein, by terminating a terminable set
C, we mean to replace G by the result of the termination of C with respect to G[Zs].
(In particular, this means to remove Ys from G.)

1. If Es = {yi zi }, and:
– if ((yi zi → L),∅,∅, a �→ yi zi) ∈ D(s), for some {a, b} ∈ W such that Us =

{a}, then we terminate {{yi zi }} and we replace {a, b} in W with {c({yi zi }), b}.
– if ((yi zi → U),∅,∅,∅) ∈ D(s) and Us = ∅, then we remove Ys from G.

2. If Es = {yi zi , y j z j }, Us = ∅, and:
– if ((yi zi , y j z j → F),∅, {yi zi , y j z j },∅) ∈ D(s), then we terminate C =

{{yi zi , y j z j }}.
– if ((yi zi , y j z j → U),∅,∅,∅) ∈ D(s), then we remove Ys from G.
– if ((yi zi , y j z j → I), {yi zi , y j z j },∅,∅) ∈ D(s), then we terminate the pair

{{yi zi }, {y j z j }} and we add {c({yi zi }), c({y j z j })} to W.

3. If Es = {yi zi , y j z j }, Us = {a}, and {a, b} ∈ W, and:

– if ((yi zi → L, y j z j → U),∅,∅, a �→ yi zi) ∈ D(s)and ((y j z j → L, yi zi →
U),∅,∅, a �→ y j z j) ∈ D(s), then we terminate {{yi zi , y j z j }} and we add
{c({yi zi , y j z j }), b} to W.

– if (yi zi → L, y j z j → U),∅,∅, a �→ yi zi) ∈ D(s), thenwe terminate {{yi zi }}
and we add {c({yi zi }), b} to W.

4. If Es = {yi zi , y j z j }, Us = {a1, a2}, and {a1, b1}, {a2, b2} ∈ W and:

– if ((yi zi , y j z j → L),∅,∅, a1 �→ yi zi , a2 �→ y j z j) ∈ D(s) and
((yi zi , y j z j → L),∅,∅, a1 �→ y j z j , a2 �→ yi zi) ∈ D(s), then we terminate
{{yi zi , y j z j }}. Let c = c({yi zi , y j z j }). We add to G a twin c′ of c, copying the
transitions on the incident edges, and we add {c, b1} and {c′, b2} to W.

– if ((yi zi , y j z j → L),∅,∅, a1 �→ yi zi , a2 �→ y j z j) ∈ D(s), then we termi-
nate {{yi zi }, {y j z j }} and add {c({yi zi }), b1} and {c({y j z j }), b2} to W.

5. In all other cases, we report that (G, T ,W) is a no-instance.

�
Finally, we are ready to prove the following.

123

1230 Algorithmica (2023) 85:1202–1250

Lemma 4.8 There is an algorithm which takes an instance J = (G, T ,W) of
ComVDP, a nice treecut decomposition (T ,X) of G of width k and a non-leaf node
t ∈ V (T), and computes D(t) in time kO(k) · n2, assuming that for each child t ′ of t
the set D(t ′) is already computed.

Proof First, we loop over all possible R ∈ R(t); recall that |R(t)| ≤ kO(k). For a fixed
R, we compute the corresponding instance JR = (GR, TR,WR) of ComVDP. Recall
that VR is a subset of vertices of GR , which was added to Gt during the construction
of JR and each vertex in VR has degree at most two.

For the computed instance JR , we apply the above reduction rule for each of the
thin children of t ∈ V (T). Note that each vertex v added to GR during any of these
reductions for thin children (denote the set of these vertices by BB) is of degree at most
two. Moreover, since the treecut decomposition of our graph is nice, N (v) ⊆ Xt ∪VR .

Then we loop over all possible functions μ that map each element t ′ of At to some
element of D(t ′). By Theorem 4.5, there are at most 2k + 1 elements of At , so there
are at most (kO(k))2k+1 = kO(k2) such functions. For the current R andμ, we perform
for each t ′ ∈ At the simplification according to μ(t ′). Denote by J̃ = (G̃, T̃ , W̃) the
instance obtained from JR after applying this sequence of simplifications (i.e., G̃ is
induced by vertices from Xt ∪VR ∪ BB and all VQ’s coming from the simplifications).

We claim that J̃ is an instance of SComVDP. Indeed, we observed that after the
simplification process, the degree of a vertexwhichwas not added during the procedure
is at most its degree in the original graph. So the only vertices whichmight have degree
bigger than 2 are the ones which belong to Xt . We thus can compute whether J̃ is a
yes-instance in kO(k) + O(n2) time using Lemma 4.2.

We claim that J̃ is a yes-instance if and only if R is valid. To see that, first assume
that R ∈ R(t) is a valid record. Thus JR admits a solution. By Lemma 4.5, this means
that there exists a valid record Rt ′ ∈ D(t ′) for each child t ′ of t . The reduction rule for
thin children is safe and thus the solution is preserved. For the bold children, consider
an iteration in which μ assigns Rt ′ to t ′, for each t ′ ∈ At . The second statement of
Lemma 4.6 implies that the sequence of simplifications (starting from the instance
JR), consecutively in each node t ′ ∈ At , preserves the existence of a solution, so J̃ is
a yes-instance of SComVDP.

Conversely, assume that the algorithm adds R to D(t), so the instance J̃ of
SComVDP is a yes-instance. Then by thefirst statement of Lemma4.6, all the instances
obtained in the sequence of simplifications are also yes-instances. Since the reduc-
tion rule for thin children is safe, the corresponding instance JR of R must be also a
yes-instance. Therefore, our algorithm computes correctly the set of valid records for
t .

The procedure takes time kO(k2) times the time needed to solve an instance of
SComVDP; together kO(k2) · n2. �

We conclude the section with the following theorem.

Theorem 4.6 There is an algorithm which takes as input a ComVDP instance
(G, T ,W) and returns an answer in time kO(k2) · n3.

123

Algorithmica (2023) 85:1202–1250 1231

Proof We start by computing a treecut decomposition of width 2k. By Theorem 4.3
this can be done in time kO(k2) · n2. Then we use Theorem 4.4 to obtain a nice
treecut decomposition in time O(n3). We compute the set of valid records for each
leaf of T in time kO(k2) · n2 (Lemma 4.7) and then for each non-leaf, by leaf-to-root
recursion, in time kO(k2) · n3 (Lemma 4.8). We return a positive answer if and only if
D(r) = {(∅,∅,∅,∅)}, where r is the root of T . �

4.3 Edge-Colored Graphs and Treewidth

Our main result on properly colored paths and cycles in edge-colored graphs of
bounded treewidth is as follows:

Theorem 4.7 Given an undirected graph G with an edge coloring λ : E(G) → [�]
and a tree decomposition (T , β) of G of width less than k, one can verify if G admits a
properly coloredHamiltonianCycle in deterministic time 2O(k) ·O(|V (G)|+|V (T)|+
�).

Themain highlight of Theorem4.7 is the lack of the dependency on � in the exponential
part of the running time bound (see below as to why this is). For sake of simplicity,
we do not analyze in detail the base of the exponent in the running time bound of the
algorithm of Theorem 4.7.

The structure of the algorithm of Theorem 4.7 follows the outline of the typical
rank-based algorithms for connectivity problems on graphs of bounded treewidth [11].
We refer to [15, Chapter 11] for an exposition of the rank-based approach in the case
of Steiner Tree and to [53] for a different short exposition of the presented approach
for Hamiltonian Cycle.

We start with describing a naive approach and then show how to reduce its com-
plexity.

A separation of a graph G is a pair (A, B) of subgraphs of G such that each edge
of G belongs to exactly one of the subgraphs A or B. The order of the separation
(A, B) is |V (A) ∩ V (B)|. A partial solution for a separation (A, B) is a subgraph
P of A that is a family of vertex-disjoint paths with both endpoints in V (A) ∩ V (B)

and such that every vertex of V (A) \ V (B) is on one of the paths. Clearly, if C is a
Hamiltonian cycle in G and (A, B) is a separation in G with V (B) \ V (A) �= ∅, then
C ∩ A := (V (C) ∩ V (A), E(C) ∩ E(A)) is a partial solution for (A, B). If P is a
partial solution for (A, B) and Q is a partial solution for (B, A), then we say that P
and Q fit each other if P ∪ Q is a Hamiltonian cycle in G.

The trace of a partial solution P for (A, B) is a pair (fP , MP) where

– fP : V (A) ∩ V (B) → {0, 1, 2} and fP (v) is the degree of v in P;
– MP is a matching on the vertex set f −1

P (1), matching endpoints of the paths of P .

Note that the set of possible traces for (A, B) is the same as the set of possible traces
for (B, A). Two traces (fP , MP) and (fQ, MQ) fit each other if

– fP (v) + fQ(v) = 2 for every v ∈ V (A) ∩ V (B); and
– MP � MQ is a single cycle on vertex set f −1

P (1) = f −1
Q (1).

123

1232 Algorithmica (2023) 85:1202–1250

The following observation is straightforward.

Lemma 4.9 If P is a partial solution for (A, B) and Q is the partial solution for
(B, A), then P fits Q if and only if the trace of P fits the trace of Q.

Lemma 4.9 is the base of the naive algorithm for Hamiltonian cycle on graphs of
bounded treewidth. Given a tree decomposition (T , β), where T is a rooted tree, for
a node t ∈ V (T) we use the following notation:

– Vt is the union of β(s) over all descendants s of t (including t),
– V̄t := (V (G) \ Vt) ∪ β(t),
– Gt is the subgraph G[Vt] \ E(G[β(t)]),
– Ḡt is the subgraph G[V̄t].

Note that (Gt , Ḡt) is a separation. The algorithm, in the bottom-up fashion, computes
for every t ∈ V (T) the familyA(t) of all traces (f , M) for which there exists a partial
solution for (Gt , Ḡt)with trace (f , M). If thewidth of the decomposition is less than k,
then the number of possible traces is 2O(k log k), yielding 2O(k log k) ·(|V (G)|+|V (T)|)
running time bound of the algorithm.

This naive algorithm can be easily adjusted to accommodate edge colors. Assume
that we are given an edge coloring λ : E(G) → [�] and look for a properly colored
Hamiltonian cycle. In the definition of a partial solution, we require all paths of P to
be properly colored. Furthermore, partial solutions P for (A, B) and Q for (B, A) fit
each other if their union is a properly colored Hamiltonian cycle, that is, for every
vertex v ∈ V (A) ∩ V (B) that is an endpoint of both a path of P and a path of Q, the
edge of P incident with v and the edge of Q incident with v are of different colors. To
accommodate this, the colored trace for a partial solution P is a triple (fP , MP , ζP)

where fP andMP have the meaning as before and ζP : f −1
P (1) → [�] assigns to every

vertex v of degree 1 in P the color of the unique edge of P incident with v. Then,
(fP , MP , ζP) and (fQ, MQ, ζQ) fit each other if and only if (fP , MP) and (fQ, MQ)

agree as before and also ζP (v) �= ζQ(v) for every v ∈ f −1
P (1) = f −1

Q (1). Again, we
have a straightforward analog of Lemma 4.10:

Lemma 4.10 If P is a partial solution for (A, B) and Q is the partial solution for
(B, A) in an edge-colored graph G, then P fits Q if and only if the colored trace of P
fits the colored trace of Q.

Note that there are at most 2O(k log k)�k possible colored traces for a separation of order
at most k. By following the standard dynamic programming algorithm forHamiltonian
cycle on graphs of bounded treewidth (see e.g. [53]), we obtain the following.

Theorem 4.8 Given an undirected graph G with an edge coloring λ : E(G) →
[�] and a tree decomposition (T , β) of G of width less than k, one can verify if G
admits a properly colored Hamiltonian Cycle in deterministic time 2O(k(log k+log �)) ·
O(|V (G)| + |V (T)| + �).

We now introduce the rank-based approach. Fix a separation (A, B) and fix a
function f : V (A) ∩ V (B) → {0, 1, 2}. Let Z := f −1(1); for every trace (f , M), M
is a matching on vertex set Z . A cut of Z is an unordered pair {Z1, Z2} such that Z1

123

Algorithmica (2023) 85:1202–1250 1233

and Z2 form a partition of Z ; a cut agrees with a matching M on Z if no edge of M
connects the two sides of a cut. Note that there are 2|Z |−1 cuts.

For two matchings M1 and M2 on Z , let M[M1, M2] be 1 if M1 � M2 is a single
cycle and 0 otherwise. For a matching M and a cut C , let C[M,C] be 1 if M agrees
with C and 0 otherwise. The crux of the rank-based approach lies in the following
identity (see e.g. Lemma 11.9 of [15]):

Lemma 4.11 IfM and C are treated as matrices over F2, then

M = C · CT .

Let A be a family of traces for (A, B). We say that A′ ⊆ A represents A if for every
trace τ , if there exists a trace τ1 ∈ A fitting τ , then there exists a trace τ2 ∈ A′ fitting
τ .

Assume that all elements of A have f as the first coordinate. Let M[A, ·] be the
submatrix of M induced by the rows of the matchings {M | (f , M) ∈ A}. Then, if
A′ ⊆ A is such thatM[A′, ·] spans the same subspace asM[A, ·], thenA′ represents
A. By the factorization of Lemma 4.11, we infer that:

Lemma 4.12 Assume that A is a family of traces for (A, B) with the same first coor-
dinate f . If A′ ⊆ A is such that C[A′, ·] spans the same subspace as C[A, ·], then
A′ represents A.

Consequently, we can improve the naive algorithm for the Hamiltonian Cycle

problem as follows. At node t ∈ V (T), replaceA(t) with a subsetA′(t) representing
A(t) as folows: for every possible f : β(t) → {0, 1, 2}, restrict A(t) to A(t, f) con-
sisting of traces with the first coordinate f , computeA′(t, f) ⊆ A(t, f) representing
A(t, f) using Lemma 4.12 and a Gaussian elimination on C[A(t, f), ·] over F2, and
declare A′(t) = ⋃

f A′(t, f) to be a set representing A(t). Note that A′(t, f) is of

size at most 2| f −1(1)|−1 as the number of columns of C is 2| f −1(1)|−1; hence A′(t) is
of size at most

|β(t)|∑

k=0

(|β(t)|
k

)

2k−12|β(t)|−k ≤ 4|β(t)| ≤ 4k .

By now-standard methods (see, e.g., the exposition of [53]), one can compute in a
bottom-up fashion representativesA′(t) for t ∈ V (T); the computation at note t takes
into account the representatives at children of t and takes time 2O(k) per child.

By following the same outline, to prove Theorem 4.7, it suffices to show the fol-
lowing:

Lemma 4.13 Let G be a graph with edge coloring λ : E(G) → [�], (A, B) be a
separation of order k, and A be a family of colored traces for (A, B). Then, there
exists a polynomial-time algorithm that, given A and integers k and �, finds a subset
A′ ⊆ A that represents A and is of size at most 6k .

By partitioning A according to the first coordinate, it suffices to prove the following:

123

1234 Algorithmica (2023) 85:1202–1250

Lemma 4.14 Let G be a graph with edge coloring λ : E(G) → [�], (A, B) be a
separation of order k, f : V (A) ∩ V (B) → {0, 1, 2}, and A be a family of colored
traces for (A, B) with the first coordinate f . Then, there exists an algorithm that,
given A, f , and integers k and �,in time polynomial in the input size and 2k , finds a
subset A′ ⊆ A that represents A and is of size at most 4k .

The rest of this section is devoted to the proof of Lemma 4.14.
Let a be such that 2a > � and let F = F2a be the field of characteristic 2 with

2a elements. Operations on F can be done in time polynomial in a = O(log �).
Furthermore, F2 ⊆ F. We replace the range of colors [�] with non-zero elements of
F: for every color i ∈ [�] we pick a distinct non-zero element ai ∈ F. Henceforth, we
assume that λ and all functions ζP for (f , MP , ζP) ∈ A have range {ai | i ∈ [�]} ⊆
F \ {0}.

Let Z = f −1(1). For two functions ζP , ζQ : Z → F, define

π(ζP , ζQ) =
∏

v∈Z
(ζP (v) − ζQ(v)).

Note that π can be treated as a 2|Z |-variate multilinear polynomial of degree |Z | with
variables (ζP (v))v∈Z and (ζQ(v))v∈Z . Furthermore, we have that

π(ζP , ζQ) = 0 ⇔ ∃v∈ZζP (v) = ζQ(v). (1)

For a function ζP : Z → F, define a |Z |-variate multilinear polynomial

πζP ((xv)v∈Z) = π(ζP , {v �→ xv | v ∈ Z}).

Consider a matrix D with rows indexed by possible colored traces (f , MP , ζP) for
(A, B) and columns by all 2|Z | multilinear monomials on variables (xv)v∈Z . The row
D[(f , MP , ζP), ·] contains the coefficients of πζP .

Let C′ be a matrix with rows indexed by possible colored traces (f , MP , ζP) for
(A, B) and columns by all cuts of Z . The rowC′[(f , MP , ζP), ·] equalsC[(f , MP), ·],
where every element is treated as an element of F. Finally, let E be a matrix with rows
indexed by possible colored traces τ for (A, B) and E[τ, ·] is the tensor product of
C′[τ, ·] and D[τ, ·]. Note that E has 2|Z |−1 · 2|Z | = 22|Z |−1 columns.

Lemma 4.14 follows from the following lemma by applying Gaussian elimination
on the rows of E corresponding to the elements of A.

Lemma 4.15 Let A′ ⊆ A be such that E[A′, ·] spans the same subspace as E[A, ·].
Then, A′ represents A.

Proof Let τQ = (fQ, MQ, ζQ) be a colored trace for (B, A) and let τP =
(f , MP , ζP) ∈ A be a trace fitting τQ . Note that f

−1
Q (1) = Z .

Let v1 be a vector over F with elements indexed by all cuts of Z with value 1 if the
corresponding cut agrees with MQ and 0 otherwise. By Lemma 4.11, C[(f , M), ·] ·
v1 �= 0 if and only if the trace (f , M) fits (fQ, MQ).

123

Algorithmica (2023) 85:1202–1250 1235

Let v2 be a vector over F with elements indexed by all 2|Z | multilinear monomials
over variables (xv)v∈Z ; the value of v2 at monomial

∏
v∈I xv for I ⊆ Z equals∏

v∈I ζQ(v). For a colored trace (f , MR, ζR), by (1), we have that ζR(v) �= ζQ(v) for
every v ∈ Z if and only if D[(f , MR, ζR), ·] · v2 �= 0.

Consequently, for a colored trace τ = (f , MR, ζR), we have that τ fits τQ if and only
ifC′[τ, ·]·v1 �= 0 andD[τ, ·]·v2 �= 0. The latter is equivalent toE[τ, ·]·(v1⊗v2) �= 0,
where v1 ⊗ v2 is the tensor product of v1 and v2.

Since τP fits τQ , E[τP , ·] · (v1 ⊗ v2) �= 0. Since E[A′, ·] spans the same subspace
as E[A, ·], there exist elements τ1, τ2, . . . , τr ∈ A′ and coefficients λ1, . . . , λr , such
that

E[τP , ·] =
r∑

i=1

λiE[τi , ·].

Since E[τP , ·] · (v1 ⊗ v2) �= 0, there exists 1 ≤ i ≤ r such that λi �= 0 and E[τP , ·] ·
(v1 ⊗ v2) �= 0. Hence, τi fits τQ and we have τi ∈ A′. This finishes the proof of the
lemma. �
Recall that E has 22|Z |−1 ≤ 4|Z | columns. Hence, with Gaussian elimination one can
findA′ as in Lemma 4.15 of size at most 4|Z |. This finishes the proof of Theorem 4.7.

5 Two Disjoint Shortest Paths

In this section, we present polynomial-time algorithms for vertex-disjoint and edge-
disjoint cases of 2- DSPP with transition restrictions when every directed
cycle has positive length. First, we give the formal definition of this problem.

Directed Two Disjoint Shortest Paths Problem (2- DSPP)

with transition restrictions

Input: A directed graph G = (V , E) with transition system T , a length function
w : E → R≥0 and two pairs of vertices (s1, t1),(s2, t2) in G.

Task: Find two disjoint (vertex-disjoint or edge-disjoint) paths P1 and P2 in G
such that for both i = 1, 2, path Pi is a shortest path (even in the graph G with no
transition restrictions) from si to ti and Pi is also T -compatible.

Our algorithm is an adaption of the algorithm for Directed Two Disjoint

Shortest Paths Problem (assuming that every dicycle in G has positive length)
of Bérczi and Kobayashi [9], which reduces the problem of Edge Disjoint 2- DSPP

to finding a path in a graph G constructed from the input graph G. Roughly speaking,
we show that transition restrictions are not a barrier for using the same strategy. Note
that in this section we consider directed graphs with parallel edges. Transitions and
transition systems for directed graphs are defined in the natural way analogous to the
undirected case.

We follow the notations from the paper ofBérczi andKobayashi [9] for convenience.
We define Ei to be the set of edges that appear in some shortest path (without transition

123

1236 Algorithmica (2023) 85:1202–1250

restrictions) from si to ti for i = 1, 2. By this definition, an si -ti path is a shortest T -
compatible si -ti path if and only if it consists of edges of Ei and is also T -compatible
for i = 1, 2. Thus the edge-disjoint (vertex-disjoint) 2- DSPP with transition

restrictions is equivalent tofinding twoedge-disjoint (vertex-disjoint)T -compatible
paths P1 and P2 such that Pi is from si to ti , E(Pi) ⊆ Ei and Pi satisfies the transition
restrictions for i = 1, 2. Each set Ei can be computed in polynomial time using the
method from the paper of Bérczi and Kobayashi [9]. First, we compute the distance
di (v) from si to v for i = 1, 2, using Dijkstra’s algorithm. Let Ei = {uv | di (v) −
di (u) = w(uv)}. Then Ei = {uv ∈ Ei | there exists a path from v to ti in Ei }.

Theorem 5.1 If the length of every directed cycle is positive, both edge-disjoint and
vertex-disjoint variants of 2- DSPP with transition restrictions can be solved
in polynomial time.

Corollary 5.1 If the length of every edge is positive, both edge-disjoint and vertex-
disjoint variants of 2- DSPP with transition restrictions can be solved in
polynomial time.

For a set F of directed edges, let F be the set of edges obtained by revers-
ing all edges of F , that is, F = {vu | uv ∈ F}. For a directed edge e = uv,
let e = vu denote the edge obtained by reversing e. For two paths P and Q
with consecutive edges ep1 , ep2 , . . . , ep|P| and, respectively, e

q
1 , e

q
2 , . . . , e

q
|Q| such that

head(ep|P|) = tail(eq1), by P · Q we denote the concatenation of paths P and Q, i.e.,

P · Q = ep1 , ep2 , . . . , ep|P|, e
q
1 , e

q
2 , . . . , e

q
|Q|. Note that if P and Q are vertex-disjoint

except for head(ep|P|) = tail(eq1), then P · Q is a path, too.

5.1 Edge-Disjoint Case

Weshow that the edge-disjoint case of 2- DSPP with transition restrictions can
be solved in polynomial time. We use the method of Bérczi and Kobayashi [9], which
reduces the problem of Edge Disjoint 2- DSPP to finding a path in an auxiliary
graph G suitably constructed from the input graph G. Based on that, we just need to
delete edges of G which correspond to forbidden transitions of G with respect to T
and it suffices to find the path in the remaining subgraph of G.

Ordinary graphs.We repeat the procedure of Bérczi and Kobayashi [9] briefly here
for consistency (see Fig. 6). Let G be a graph (without transition systems T) such
that the length of every dicycle in G is positive. First, we compute Ei for i = 1, 2.
Then we create four new vertices s′

1, s
′
2, t

′
1, t

′
2, create four edges s

′
1s1, s

′
2s2, t1t

′
1, t2t

′
2

of length 0 respectively, and add s′
i si , ti t

′
i to Ei for i = 1, 2. Let E0 = E1 ∩ E2, E∗

1 =
E1\E0, E∗

2 = E2\E0.We remove all edges of E(G)\(E1∪E2), contract all edges of
E0 and reverse all edges of E∗

2 . Finallywe get a new graphG∗ = (V ∗, E∗ = E∗
1∪E∗

2).
Let V0 ⊆ V be the set of vertices that are newly created after contracting E0. For
v ∈ V0, we use Gv to denote the subgraph of G − (E(G) \ (E1 ∪ E2)) induced by the
vertices corresponding to v before contracting. For an edge e ∈ E∗, let f (e) ∈ E(G)

be the edge corresponding to e before the contracting and reversing operations.

123

Algorithmica (2023) 85:1202–1250 1237

Fig. 6 A digraph G and its corresponding graph G∗ (to simplify the picture, we omitted the lengths of
edges). Here, edges in E1 are fat, and the edges of E2 are dashed. Set V0 is a singleton, denoted by gray
vertex s2, that corresponds to the gray subgraph Gs2 of G

Fig. 7 A path in G that
corresponds to the solution of
the instance G depicted in Fig. 6

Note that si , ti ∈ V (G) might be the endpoints of edges of E0 for i = 1, 2. In this
case, although we might contract the edges incident to si , ti ∈ V (G) and replace these
vertices with new vertices. Therefore, we slightly abuse the notation and use si and ti
to denote the vertex adjacent to s′

i and t ′i respectively in G∗ for i = 1, 2, for the sake
of simplicity.

The following two lemmas show that Gv is acyclic for every v ∈ V0 and G∗ is
acyclic.

Lemma 5.1 (Bérczi, Kobayashi, [9]) The edge set Ei forms nodicycle inG for i = 1, 2.

Lemma 5.2 (Bérczi, Kobayashi, [9]) In the graph G, suppose that C is a dicycle in
E1 ∪ E2. Then E1 ∩ E(C) ⊆ E2 and E2 ∩ E(C) ⊆ E1.

Then we define a new digraph G whose vertex set is W = E∗
1 × E∗

2 . There is a
directed edge from (e1, e2) to (e′

1, e
′
2) if one of three cases holds.

(i) e1 = e′
1 and headG∗(e2) = tailG∗(e′

2) = v. There is no path from headG∗(e1) to v

in G∗. Moreover, if v ∈ V0, then Gv contains a path from tailG(e′
2) to headG(e2).

(ii) e2 = e′
2 and headG∗(e1) = tailG∗(e′

1) = v. There is no path from headG∗(e2) to v

in G∗. Moreover, if v ∈ V0, then Gv contains a path from headG(e1) to tailG(e′
1).

(iii) headG∗(e2) = tailG∗(e′
2) = headG∗(e1) = tailG∗(e′

1) = v. If v ∈ V0, then Gv

contains two edge-disjoint paths from headG(e1) to tailG(e′
1) and from tailG(e′

2)

to headG(e2) respectively.

Finally the following lemma reduces the edge-disjoint version of 2- DSPP to finding
a path in G from (s′

1s1, t
′
2t2) to (t1t ′1, s2s′

2) (see Fig. 7).

Lemma 5.3 (Bérczi, Kobayashi, [9]) There is a directed path in G from (s′
1s1, t

′
2t2) to

(t1t ′1, s2s′
2) if and only if G has two edge-disjoint paths P1 and P2 such that Pi is from

s′
i to t

′
i and Pi ⊆ Ei for i = 1, 2.

Handling transitions. To solve the edge-disjoint version of Directed Two Dis-

joint Shortest Paths Problem (2- DSPP) with transition restrictions,
we will show that it suffices to (i) delete these edges in G that correspond to forbidden

123

1238 Algorithmica (2023) 85:1202–1250

transitions (or non-T -compatible paths) of G, and (ii) find a path in the remaining
graph of G from (s′

1s1, t
′
2t2) to (t1t ′1, s2s′

2). For every edge in G, we check whether it
corresponds to forbidden transitions according to the following three cases and delete
the edge if it corresponds to forbidden transitions. Suppose the edge is from some
vertex (e1, e2) ∈ W to another vertex (e′

1, e
′
2) ∈ W .

• The edge is of type (i), i.e., e1 = e′
1 and headG∗(e2) = tailG∗(e′

2) = v. If v ∈ V0,
let Gs be the subgraph of G consisting of all edges of Gv together with f (e2) and
f (e′

2). In this case, if there is no T -compatible paths in Gs from tailG(f (e′
2)) to

headG(f (e2)), then remove the edge from G. If v /∈ V0 and {e′
2, e2} /∈ TG(v), then

remove the edge from G.
• The edge is of type (ii), i.e., e2 = e′

2 and headG∗(e1) = tailG∗(e′
1) = v. If

v ∈ V0, let Gs be the subgraph of G consisting of all edges of Gv together with
f (e1) and f (e′

1). In this case, if v ∈ V0 and there is no T -compatible path in Gs

from tailG(f (e1)) to headG(f (e′
1)), then remove the edge from G. If v /∈ V0 and

{e1, e′
1} /∈ TG(v), then remove the edge from G.

• The edge is of type (iii), i.e., headG∗(e2) = tailG∗(e′
2) = headG∗(e1) =

tailG∗(e′
1) = v. If v ∈ V0, let Gs be the subgraph of G consisting of all edges of

Gv together with f (e1), f (e′
1), f (e2) and f (e′

2). In this case, if G
s does not con-

tain two T -compatible edge-disjoint paths such that one path is from tailG(f (e1))
to headG(f (e′

1)) and the other path is from tailG(f (e′
2)) to headG(f (e2)), then

remove the edge from G. If v /∈ V0 and {e1, e′
1} /∈ TG(v) or if v /∈ V0 and

{e′
2, e2} /∈ TG(v), then remove the edge from G.

We need to check whether there exists a T -compatible path between two given
vertices in a (direced) forbidden-transition graph. Szeider shows a dichotomy of NP-
complete and linear-time solvable for the problem of finding a T -compatible path
between two given vertices of an (undirected) graph [49]. In contrast, the following
lemma shows that in a directed acyclic graph,we can find a T -compatible path between
two given vertices in polynomial time.

Lemma 5.4 In a directed acyclic graph G = (V , E) with transition system TG, we
can compute if there is a directed T -compatible path P from s to t for s, t ∈ V (G) in
polynomial time.

Proof We construct a directed graph G̃ as follows. First create two vertices s0, t0.
Then for every edge e ∈ E(G), create a vertex ve. For any two edges e, e′ ∈ E(G),
create an edge veve′ if ee′ ∈ E(TG(v)) for some v ∈ V (G). Finally, create edges
s0ve for every e ∈ E(G) such that tailG(e) = s and create edges ve′ t0 for every
e′ ∈ E(G) such that headG(e′) = t . We claim that we can find a directed path P ′
from s0 to t0 in G̃ if and only if there is a directed T -compatible path P from s to t
in G. For the “if” direction, suppose that there is such a path P = e1, e2, . . . , e� in
G, where e1, . . . , e� are the consecutive edges of P . Then we can obviously get the
path P ′ = s0ve1 , ve1ve2 , . . . , ve� t0 by the definition of G̃. For the “only if” direction,
suppose that there is a directed path P ′ = s0vei1 , vei1 vei2 , . . . , vei� t0 in G̃. Then
P = ei1 , ei2 , . . . , ei� is a directed T -compatible walk from s to t in G. Since G is
acyclic, P is also a path. This completes the proof of the claim.We can build the graph

123

Algorithmica (2023) 85:1202–1250 1239

G̃ in O(|E |2)-time and find an s0t0 path in G̃ using DFS in O(|E |2) time. Thus the
lemma holds. �

For v ∈ V0, by Lemma 5.1, there is no dicycle in Gv . Moreover, observe that
we cannot have a vertex in V (G) \ V (Gv) adjacent to more than one edge from
E(Gs) \ E(Gv), so Gs is also acyclic. So we can decide whether or not to remove the
edges of type (i) or (ii) from G in polynomial time according to Lemma 5.4. For the
edges of type (iii), we need to compute if there are two edge-disjoint T -compatible
paths in a directed acyclic graph. We show that it can be done in polynomial time and
the algorithm is an adaption of the algorithm of finding two vertex-disjoint paths in
DAG by Perl and Shiloach [47].

Lemma 5.5 In a directed acyclic graph G = (V , E) with transition system TG, we
can solve the edge-disjoint version of 2- DSPP with transition restrictions in
polynomial time.

Proof First we modify the graph G as follows. We create four vertices s′
1, s

′
2, t

′
1, t

′
2 and

update V (G) as V (G) ← V (G)∪{s′
1, s

′
2, t

′
1, t

′
2}. We create four edges s′

1s1, s
′
2s2, t1t

′
1,

t2t ′2 and update E(G) as E(G) ← E(G) ∪ {s′
1s1, s

′
2s2, t1t

′
1, t2t

′
2}. Also, for i = 1, 2,

we update TG(si) as

TG(si) ← TG(si) ∪ {{e, e′} | e = s′
i si and tailG(e′) = si },

and we update TG(ti) as

TG(ti) ← TG(ti) ∪ {{e, e′} | e′ = ti t
′
i and headG(e) = ti }.

For every vertex v ∈ V (G), define the level �(v) as the length of a longest directed path
in G starting from v. Since G is acyclic, this can be computed by repeatedly removing
a vertex of G. Then we create a graph G̃ as follows. Let the vertex set of G̃ be
V (G̃) = {(e1, e2) | e1, e2 ∈ E(G) and e1 �= e2}. For every (e1, e2), (e′

1, e
′
2) ∈ V (G̃),

create an edge from (e1, e2) to (e′
1, e

′
2) if one of the following cases holds:

(1) e1 = e′
1, �(headG(e2)) ≥ �(headG(e1)), {e2, e′

2} ∈ TG(headG(e2)).
(2) e2 = e′

2, �(headG(e1)) ≥ �(headG(e2)), {e1, e′
1} ∈ TG(headG(e1)).

(3) e1 = e′
1 = t1t ′1, �(headG(e2)) < �(t ′1), {e2, e′

2} ∈ TG(headG(e2)).
(4) e2 = e′

2 = t2t ′2, �(headG(e1)) < �(t ′2), {e1, e′
1} ∈ TG(headG(e1)).

We claim that there are two T -compatible edge-disjoint paths P1 and P2 in G such
that Pi is from s′

i to t
′
i for i = 1, 2 if and only if there is a path P from (s′

1s1, s
′
2s2) to

(t1t ′1, t2t ′2) in G̃.

(“only if” direction): Let P1 = e01, e
1
1, . . . , e

p+1
1 and e01 = s′

1s1, e
p+1
1 = t1t ′1. Let

P2 = e02, e
1
2, . . . , e

q+1
2 and e02 = s′

2s2, e
q+1
2 = t2t ′2. For any i ∈ {0, 1, . . . , p+ 1}, j ∈

{0, 1, . . . , q + 1} such that (i, j) �= (p + 1, q + 1), one of the following four cases
must hold.

• i ≤ p and j ≤ q, �(headG(ei1)) ≤ �(headG(e j2)) and there is an edge in G̃ from

(ei1, e
j
2) to (ei1, e

j+1
2).

123

1240 Algorithmica (2023) 85:1202–1250

• i ≤ p and j ≤ q, �(headG(ei1)) ≥ �(headG(e j2)) and there is an edge in G̃ from

(ei1, e
j
2) to (ei+1

1 , e j2).

• i = p + 1 and j ≤ q, �(headG(e j2)) < �(t ′1) and there is an edge in G̃ from

(ep+1
1 , e j2) to (ep+1

1 , e j+1
2).

• j = q + 1 and i ≤ p, �(headG(ei1)) < �(t ′2) and there is an edge in G̃ from

(ei1, e
q+1
2) to (ei+1

1 , eq+1
2).

As a result, there is a path P from (s′
1s1, s

′
2s2) to (t1t ′1, t2t ′2) in G̃. This finishes the

proof for “only if” direction.
(“if” direction): Suppose that there exists a path P from (s′

1s1, s
′
2s2) to (t1t ′1, t2t ′2)

in G̃. Let P = (e01, e
0
2), (e

1
1, e

1
2), . . . , (e

r
1, e

r
2) such that (s′

1s1, s
′
2s2) = (e01, e

0
2) and

(er1, e
r
2) = (t1t ′1, t2t ′2). We construct two edge-disjoint T -compatible paths P1, P2 as

follows. First we initialize P1 = e01, P2 = e02. Then for i = 0, . . . , r − 1, we update
P1 and P2 according to the following cases:

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2) is of type (1). Then P2 ←

P2 · ei+1
2 .

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2) is of type (2). Then P1 ←

P1 · ei+1
1 .

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2) is of type (3). Then P2 ←

P2 · ei+1
2 .

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2) is of type (4). Then P1 ←

P1 · ei+1
1 .

By the definition of edges of G̃, we get that P1 and P2 are two T -compatible edge-
disjoint paths in G such that Pi is from s′

i to t
′
i for i = 1, 2. We can construct a graph

G̃ in O(|E |3) time and find a path from (s′
1s1, s

′
2s2) to (t1t ′1, t2t ′2) in O(|E |3) time.

Thus the lemma holds. �
Thus we can also decide whether or not to remove an edge of type (iii) from G in

polynomial time and let Ĝ be the remaining subgraph ofG. The following lemma shows
that we can reduce edge-disjoint version of 2- DSPP with transition restric-

tions to finding a path from (s′
1s1, t

′
2t2) to (t1t ′1, s2s′

2) in Ĝ.

Lemma 5.6 There is a directed path in Ĝ from (s′
1s1, t

′
2t2) to (t1t ′1, s2s′

2) if and only if
G has two edge-disjoint T -compatible paths P1 and P2 such that Pi is from s′

i to t ′i
and Pi ⊆ Ei for i = 1, 2.

Proof (“if” direction) Suppose that G has two edge-disjoint T -compatible paths P1
and P2 such that Pi is from s′

i to t
′
i and Pi ⊆ Ei for i = 1, 2. E(P1)\E0 forms a directed

path P∗
1 in G∗ from s′

1 to t ′1. E(P2) \ E0 forms a directed path P∗
2 in G∗ from t ′2 to

s′
2. Let P

∗
1 = e01, e

1
1, ..., e

p+1
1 and e01 = s′

1s1, e
p+1
1 = t1t ′1. Let P∗

2 = e02, e
1
2, ..., e

q+1
2

and e02 = t ′2t2, e
q+1
2 = s2s′

2. It follows that ei1 ∈ E∗
1 for i = 0, 1, ..., p + 1 and

e j2 ∈ E∗
2 for j = 0, 1, ..., q + 1. By the proof of Lemma 5.3 (interested readers

could refer to the proof of Lemma 8 in [9]), there is a directed path P in G from

123

Algorithmica (2023) 85:1202–1250 1241

(s′
1s1, t

′
2t2) to (t1t ′1, s2s′

2) such that every edge of P is of one of the three types: (i)

from (ei1, e
j
2) to (ei1, e

j+1
2) (i ∈ {0, ..., p + 1}, j ∈ {0, ..., q}); (ii) from (ei1, e

j
2)

to (ei+1
1 , e j2) (i ∈ {0, ..., p}, j ∈ {0, ..., q + 1}); (iii) from (ei1, e

j
2) to (ei+1

1 , e j+1
2)

((i ∈ {0, ..., p}, j ∈ {0, ..., q})). Since P1 and P2 are T -compatible, by the rules we
construct Ĝ, we can see that all edges of P in G remains in Ĝ. This completes the proof
for “if direction”.

(“only if” direction) Suppose that there is a directed path P from (e01, e
0
2) =

(s′
1s1, t

′
2t2) to (er1, e

r
2) = (t1t ′1, s2s′

2) in Ĝ that goes through (e01, e
0
2), (e11, e

1
2), . . .,

(er1, e
r
2) consecutively. Since Ĝ is a subgraph of G, by Lemma 5.3, there exists two

edge-disjoint paths P1 and P2 in G such that Pi is from s′
i to t ′i and Pi ⊆ Ei

for i = 1, 2 in G. Moreover, again from the proof of Lemma 5.3, it follows that

ei1 ∈ E(P1) and ei2 ∈ E(P2). By the rule we construct Ĝ, for an edge from (ei1, e
i
2)

to (ei+1
1 , ei+1

2) (i ∈ {0, ..., r − 1}), there is a T -compatible subpath of P1 from
tailG(f (ei1)) to headG(f (ei+1

1)) if ei1 �= ei+1
1 or there is a T -compatible subpath

of P2 from tailG(f (ei+1
2)) to headG(f (ei2)) if e

i
2 �= ei+1

2 . It follows that P1 and P2 are
also T -compatible. This finishes the proof for “only if” direction. �

Since Ĝ is a subgraph of G and G contains at most |E |2 vertices, we can detect a
path in Ĝ in polynomial time. Thus Lemma 5.6 shows that we can solve edge-disjoint
version of 2- DSPP with transition restrictions in polynomial time assuming
that every cycle in the input graph has positive length.

5.2 Vertex-Disjoint Case

When computing vertex-disjoint version of 2- DSPP in the paper of Bérczi and
Kobayashi [9], they create a new digraph G2 as follows: for every vertex v ∈ V create
two vertices v+ and v−. Create an edge v−v+ with w(v−v+) = 0. Create an edge
u+v− if there is an edge uv in G and let w(u+v−) = w(uv). Thus vertex- disjoint
2- DSPP in G is reduced to edge-disjoint variant of 2- DSPP in G2. However, this
method does not work in the forbidden-transitions setting because part of the infor-
mation of transitions will be lost after creating the new graph G2.

In order to keep the information of transitions, we first modify G as follows. We
compute the set E1 and E2 of G. Remove all edges of E(G) \ (E1 ∪ E2) from
E(G) and all isolated vertices from V (G). When removing the edges or vertices we
update the transition system accordingly. Then create four new vertices s′

1, s
′
2, t

′
1, t

′
2

and four edges s′
1s1, s

′
2s2, t1t

′
1, t2t

′
2 all with length 0. Add s′

i si and ti t ′i to Ei for
i = 1, 2. Thus a shortest path from si to ti corresponds to a shortest path from s′

i
to t ′i starting with the edge s′

i si and ending with the edge ti t ′i . We update TG(si) by
adding {{e, e′} | e = s′

i si and tailG(e′) = si } to it for i = 1, 2. Let TG(ti) = {{e, e′} |
headG(e) = ti and e′ = ti t ′i } for i = 1, 2.

Then we create a graph G ′ as follows. For every vertex v ∈ V (G) \ {s′
1, s

′
2, t

′
1, t

′
2},

create two vertices v+ and v−. We also create four vertices s′
1, s

′
2, t

′
1, t

′
2 in G ′ and

create four edges s′
1s

−
1 , s′

2s
−
2 , t+1 t ′1, t

+
2 t ′2 in G ′ all with length 0. For every vertex v ∈

V (G)\ {s′
1, s

′
2, t

′
1, t

′
2}, let in1(v), . . . , inrv (v) be the incoming edges of v. Then create

123

1242 Algorithmica (2023) 85:1202–1250

rv parallel edges e1(v), . . . , erv (v) with tailG ′(e j (v)) = v− and headG ′(e j (v)) = v+
in G ′ for j = 1, . . . , rv such that each of the edges is of length 0. If there is an
edge uv = in p(v) in G for some p ∈ [rv] and u, v /∈ {s′

1, s
′
2, t

′
1, t

′
2}, create an edge

in p(v
−) = u+v− in G ′ and let w(u+v−) = w(uv). Next, we define the transition

system for G ′ as follows. TG ′(v−) = {{in j (v
−), e j (v)} | j ∈ [rv]}. For every e, e′ ∈

(E1∪ E2)\{t1t ′1, t2t ′2} ⊆ E(G) such that e = uv = in p(v), e′ = vw (let ê = v+w−),
if {e, e′} ∈ TG(v), then {ep(v), ê} ∈ TG ′(v+). In particular, let ei = t+i t ′i for i = 1, 2.
If e = uti = inq(ti) ∈ E(G) for some q ∈ [rti], then {eq(ti), ei } ∈ TG ′(t+i).

We also need to compute the set of edges E ′
i that exist in some shortest path

(without transitions) from s′
i to t ′i for i = 1, 2. By this definition, obviously

s′
i s

−
i , s−

i s
+
i , t−i t+i , t+i t ′i ∈ E ′

i for i = 1, 2.

Lemma 5.7 For u, v ∈ V (G) \ {s′
1, s

′
2, t

′
1, t

′
2}, uv ∈ Ei if and only if u+v− ∈ E ′

i for
i = 1, 2. Moreover, if some incoming edge of v− belongs to E ′

i , then all of the parallel
edges v−v+ belong to Ei for i = 1, 2.

Proof Suppose that P1 = s1, w, ..., u, v, ..., t1 is a shortest path from s1 to t1 in
G. We claim that P ′

1 = s′
1, s

−
1 , s+

1 , w−, w+, ..., u−, u+, v−, v+, ..., t−1 , t+1 , t ′1 is a
shortest path from s′

1 to t
′
1 in G

′. For contradiction, suppose the claim is not true. Then
we can find a path P ′

0 = s′
1, s

−
1 , s+

1 , w−
1 , w+

1 , ..., w−
� , w+

� , t−1 , t+1 , t ′1 in G ′ such that
w(P ′

0) < w(P ′
1) = w(P1). Then there is a path P0 = s1, w1, ..., w�, t1 in G such that

w(P0) = w(P ′
0) < w(P1), contradicting that P1 is a shortest path from s1 to t1.

Suppose that P ′
1 = s′

1, s
−
1 , s+

1 , w−, w+, ..., u−, u+, v−, v+, ..., t−1 , t+1 , t ′1 is a
shortest path from s′

1 to t
′
1 in G

′. We claim that P1 = s1, w, ..., u, v, ..., t1 is a shortest
path from s1 to t1 in G. For contradiction, suppose that the claim is not true. Then
there exists a path P0 = s1w1...w�t1 in G such that w(P0) < w(P1) = w(P ′

1). Thus
there is a path

P ′
0 = s′

1, s
−
1 , s+

1 , w−
1 , w+

1 , ..., w−
� , w+

� , t−1 , t+1 , t ′1

inG ′ such thatw(P ′
0) = w(P0) < w(P ′

1), contradicting that P
′
1 is a shortest path from

s′
1 to t

′
1 in G ′.

Similarly we can show that P2 = s2, w, ..., u, v, ..., t2 is a shortest path from s2 to
t2 in G if and only if

P ′
2 = s′

2, s
−
2 , s+

2 , w−, w+, ..., u−, u+, v−, v+, ..., t−2 , t+2 , t ′2

is a shortest path from s′
2 to t ′2 in G ′. It follows that for u, v ∈ V (G) \ {s′

1, s
′
2, t

′
1, t

′
2},

uv ∈ Ei if and only if u+v− ∈ E ′
i for i = 1, 2.

For i = 1, 2, as w(v−v+) = 0, we have that di (v+) = di (v−) + w(v−v+). Since
some ingoing edge of v− belongs to E ′

i , there is a v−t ′i path in E ′
i . It follows that there

is also a v+t ′i path in E ′
i . By the definition of E

′
i , all of the parallel edges v−v+ belong

to E ′
i . �

It’s not hard to verify that Lemma 5.1 and Lemma 5.2 also apply to G ′, but we will
also state them here for clarity.

123

Algorithmica (2023) 85:1202–1250 1243

Lemma 5.8 (Bérczi, Kobayashi, [9]) The edge set E ′
i forms no dicycle in G ′ for i =

1, 2.

Lemma 5.9 (Bérczi, Kobayashi, [9]) In the graph G ′, suppose that C is a dicycle in
E ′
1 ∪ E ′

2. Then E ′
1 ∩ E(C) ⊆ E ′

2 and E ′
2 ∩ E(C) ⊆ E ′

1.

Let E ′
0 = E ′

1 ∩ E ′
2, E

∗
1 = E ′

1 \ E ′
0, E

∗
2 = E ′

2 \ E ′
0. We contract all edges of E ′

0
and get a graph G ′′ = (V ′′, E ′′). For an edge e ∈ E ′′, let f (e) ∈ E(G ′) denote the
edge corresponding to e before the contracting operations. We need to compute the
new transition system of G ′′ as follows. Let V ′

0 ⊆ V ′′ be the set of vertices that are
newly created after contracting E ′

0. For v ∈ V ′
0, we use G

′
v to denote the subgraph of

G ′−(E(G ′)\(E ′
1∪E ′

2)) induced by the vertices corresponding to v before contracting.
For every u ∈ V (G ′′) \ V ′

0, if f (e) f (e′) ∈ TG ′(u) then {e, e′} ∈ TG ′′(u). Let v ∈ V ′
0

and headG ′′(e) = tailG ′′(e′) = v. If there is a T -compatible path in the subgraph
of G ′ consisting of all edges of G ′

v together with f (e) and f (e′) from tailG ′(f (e))
to headG ′(f (e′)), then {e, e′} ∈ TG ′′(v). By Lemma 5.8, there is no dicycle in G ′

v .
Moreover, the subgraph of G ′ consisting of all edges of G ′

v together with f (e) and
f (e′) is also acyclic. So we can compute TG ′′(v) for every v ∈ V ′

0 in polynomial time
according to Lemma 5.4. Since E∗

1 ∩ E∗
2 = ∅, then we can reverse all edges of E∗

2 (the
lengths of edges unchanged) with E∗

1 unchanged.We get a new graphG∗ = (V ∗, E∗),
such that V ∗ = V ′′ and E∗ = E∗

1 ∪ E∗
2 .

Then we also need to compute the new transition systems of G∗. If e, g ∈ E∗
1

and {e, g} ∈ TG ′′(v) for some v ∈ V ′′, then {e, g} ∈ TG∗(v). If e, g ∈ E∗
2 and

{e, g} ∈ TG ′′(v) for some v ∈ V ′′, then {ḡ, ē} ∈ TG∗(v). Here we use ē, ḡ ∈ E∗
2 to

denote the reverse of e, g respectively.
Claim After reversing the edges of E∗

2 , there is no dicycle in G∗.

Proof (of claim) Suppose for contradiction that there is a dicycle C in G∗. By
Lemma 5.8, E(C) � E∗

1 , E(C) � E∗
2 . It follows that E(C) ∩ E∗

1 �= ∅ and
E(C) ∩ E∗

2 �= ∅. Then by Lemma 5.9, E(C) should have been contracted in G ′′,
contradicting that C is a dicycle in G∗. �

We define a new digraph G as follows. Let W = E∗
1 × E∗

2 be its vertex set. For
(e1, e2), (e′

1, e
′
2) ∈ W , there is a directed edge from (e1, e2) to (e′

1, e
′
2) if one of three

cases hold.

(i) e1 = e′
1, headG∗(e2) = tailG∗(e′

2) = v and {e2, e′
2} ∈ TG∗(v). There is no path

from headG∗(e1) to v in G∗.
(ii) e2 = e′

2, headG∗(e1) = tailG∗(e′
1) = v and {e1, e′

1} ∈ TG∗(v). There is no path
from headG∗(e2) to v in G∗.

(iii) headG∗(e2) = tailG∗(e′
2) = headG∗(e1) = tailG∗(e′

1) = v and both {e1, e′
1}

and {e2, e′
2} are in TG∗(v). Furthermore, if v ∈ V0, let Gs be the subgraph of

G ′ consisting of all edges of G ′
v together with f (e1), f (e′

1), f (e2) and f (e′
2).

Then Gs contains two T -compatible vertex-disjoint paths such that one path is
from tailG ′(f (e1)) to headG ′(f (e′

1)) and the other path is from tailG ′(f (e′
2)) to

headG ′(f (e2)).

123

1244 Algorithmica (2023) 85:1202–1250

In the third case above, we claim that vmust belong to V ′
0. Suppose for contradiction

that v /∈ V ′
0. Clearly, v /∈ {s′

1, s
′
2, t

′
1, t

′
2}, as in must be both, head and tail of some

edges. So there are two remaining cases. The first case is that v = u− for some u ∈
V (G). Then all outgoing edges of u− in G ′′ are parallel edges, that is, headG ′′(e2) =
headG ′′(e′

1). Then e
′
1 and e2 form a cycle in G∗, contradicting that G∗ is acyclic. The

second case is that v = u+ for some u ∈ V (G). Then all ingoing edges of u+ in
G ′′ are parallel edges, that is, tailG ′′(e′

2) = tailG ′′(e1). Then e1 and e′
2 form a cycle

in G∗, contradicting that G∗ is acyclic. Thus v must belong to V ′
0. Then we need

to solve the vertex-disjoint version of 2- DSPP with transition restrictions in
the acyclic graph G ′

v ∪ {e1, e′
1, e2, e

′
2}. The following lemma shows that we can do

it in polynomial time. The algorithm is an adaption of the algorithm of finding two
vertex-disjoint paths in DAG given by Perl and Shiloach [47].

Lemma 5.10 In a directed acyclic graph G = (V , E) with transition system TG, we
can solve the vertex-disjoint version of 2- DSPP with transition restrictions

in polynomial time.

Proof First we modify the graph G as follows. We create four vertices s′
1, s

′
2, t

′
1, t

′
2 and

update V (G) as V (G) ← V (G)∪{s′
1, s

′
2, t

′
1, t

′
2}. We create four edges s′

1s1, s
′
2s2, t1t

′
1,

t2t ′2 and update E(G) as E(G) ← E(G) ∪ {s′
1s1, s

′
2s2, t1t

′
1, t2t

′
2}. Also, for i = 1, 2,

we update TG(si) as

TG(si) ← TG(si) ∪ {{e, e′} | e = s′
i si and tailG(e′) = si },

and we update TG(ti) as

TG(ti) ← TG(ti) ∪ {{e, e′} | e′ = ti t
′
i and headG(e) = ti }.

For every vertex v ∈ V (G), define the level �(v) as the length of a longest directed
path in G starting from v. This can be computed by repeatedly removing a vertex of
G. Then we create a graph G̃ as follows. Let the vertex set of G̃ be V (G̃) = {(e1, e2) |
e1, e2 ∈ E(G) and e1 �= e2}. For every (e1, e2), (e′

1, e
′
2) ∈ V (G̃), create an edge from

(e1, e2) to (e′
1, e

′
2) if one of the following cases holds:

(1) e1 = e′
1, �(headG(e2)) ≥ �(headG(e1)), {e2, e′

2} ∈ TG(headG(e2)),
headG(e′

2) �= tailG(e1) and headG(e′
2) �= headG(e1).

(2) e2 = e′
2, �(headG(e1)) ≥ �(headG(e2)), {e1, e′

1} ∈ TG(headG(e1)),
headG(e′

1) �= tailG(e2) and headG(e′
1) �= headG(e2).

(3) e1 = e′
1 = t1t ′1, �(headG(e2)) < �(t ′1), {e2, e′

2} ∈ TG(headG(e2)).
(4) e2 = e′

2 = t2t ′2, �(headG(e1)) < �(t ′2), {e1, e′
1} ∈ TG(headG(e1)).

We claim that there are two T -compatible vertex-disjoint paths P1 and P2 in G such
that Pi is from s′

i to t
′
i for i = 1, 2 if and only if there is a path P from (s′

1s1, s
′
2s2) to

(t1t ′1, t2t ′2) in G̃.

(“only if” direction): Let P1 = e01, e
1
1, . . . , e

p+1
1 and e01 = s′

1s1, e
p+1
1 = t1t ′1. Let

P2 = e02, e
1
2, . . . , e

q+1
2 and e02 = s′

2s2, e
q+1
2 = t2t ′2. For any i ∈ {0, 1, . . . , p+ 1}, j ∈

{0, 1, . . . , q + 1}, such that (i, j) �= (p + 1, q + 1), one of the following four cases
must hold.

123

Algorithmica (2023) 85:1202–1250 1245

• i ≤ p and j ≤ q, �(headG(ei1)) ≤ �(headG(e j2)), then there is an edge in G̃ from

(ei1, e
j
2) to (ei1, e

j+1
2).

• i ≤ p and j ≤ q, �(headG(ei1)) ≥ �(headG(e j2)), then there is an edge in G̃ from

(ei1, e
j
2) to (ei+1

1 , e j2).

• i = p + 1 and j ≤ q, �(headG(e j2)) < �(t ′1), then there is an edge in G̃ from

(ep+1
1 , e j2) to (ep+1

1 , e j+1
2).

• j = q + 1 and i ≤ p, �(headG(ei1)) < �(t ′2), then there is an edge in G̃ from

(ei1, e
q+1
2) to (ei+1

1 , eq+1
2).

As a result, there is a path P from (s′
1s1, s

′
2s2) to (t1t ′1, t2t ′2) in G̃. This finishes the

proof for “only if” direction.
(“if” direction): Suppose that there exists a path P from (s′

1s1, s
′
2s2) to (t1t ′1, t2t ′2)

in G̃. Let P = (e01, e
0
2), (e

1
1, e

1
2), . . . , (e

r
1, e

r
2), such that (e01, e

0
2) = (s′

1s1, s
′
2s2) and

(er1, e
r
2) = (t1t ′1, t2t ′2). We construct two vertex-disjoint T -compatible paths P1, P2 as

follows. First we initialize P1 = e01, P2 = e02. Then for i = 0, . . . , r − 1, we update
P1 and P2 according to the following cases:

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2) is of type (1). Then P2 ←

P2 · ei+1
2 .

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2) is of type (2). Then P1 ←

P1 · ei+1
1 .

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2) is of type (3). Then P2 ←

P2 · ei+1
2 .

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2) is of type (4). Then P1 ←

P1 · ei+1
1 .

By the definition of edges of G̃, we get that P1 and P2 are two T -compatible vertex-
disjoint paths in G such that Pi is from s′

i to t
′
i for i = 1, 2. We can construct a graph

G̃ in O(|E |3) time and find a path from (s′
1s1, s

′
2s2) to (t1t ′1, t2t ′2) in O(|E |3) time.

Thus the lemma holds. �
By the results above, we can construct G in polynomial time. Now we show that we

can solve the vertex-disjoint version of 2- DSPP with transition restrictions in
G by finding a path in G from (s′

1s
−
1 , t ′2t

+
2) to (t+1 t ′1, s

−
2 s

′
2). Note that s

−
i , t+i ∈ V (G ′)

might be the endpoints of edges of E ′
0 for i = 1, 2. In this case, although we might

contract the edges incident to s−
i , t+i ∈ V (G ′) and replace these vertices with new

vertices, we slightly abuse s−
i , t+i to denote the vertex adjacent to s′

i , t
′
i respectively in

G∗ for i = 1, 2 for the sake of simplicity.

Lemma 5.11 There is a directed path in G from (s′
1s

−
1 , t ′2t

+
2) to (t+1 t ′1, s

−
2 s

′
2) if and

only if G ′ has two vertex-disjoint T -compatible paths P1 and P2 such that Pi is from
s′
i to t

′
i and Pi ⊆ E ′

i for i = 1, 2.

Proof (“if” direction) Suppose that G ′ has two vertex-disjoint T -compatible paths P1
and P2 such that Pi is from s′

i to t ′i and Pi ⊆ E ′
i for i = 1, 2. Recall that we contract

123

1246 Algorithmica (2023) 85:1202–1250

the edges of E ′
0 in G

′ and reverse the edges of E∗
2 in G

′′ to get G∗. So by the definition
of transition systems of G ′′ and G∗, the set E(P1)\ E ′

0 forms a directed T -compatible

path P∗
1 in G∗ from s′

1 to t ′1, and the set E(P2) \ E ′
0 forms a directed T -compatible

path P∗
2 in G∗ from t ′2 to s′

2. Let P
∗
1 = e01, e

1
1, . . . , e

p+1
1 and e01 = s′

1s
−
1 , ep+1

1 = t+1 t ′1.
Let P∗

2 = e02, e
1
2, . . . , e

q+1
2 and e02 = t ′2t

+
2 , eq+1

2 = s−
2 s

′
2. It follows that e

i
1 ∈ E∗

1 for

i = 0, 1, . . . , p + 1 and e j2 ∈ E∗
2 for j = 0, 1, . . . , q + 1. Since G∗ is acyclic, for

any i = 0, 1, . . . , p + 1 and for any j = 0, 1, . . . , q + 1, at least one of the following
three cases holds.

(1) There is no directed path from headG∗(ei1) to headG∗(e j2) in G∗.
(2) There is no directed path from headG∗(e j2) to headG∗(ei1) in G∗.
(3) headG∗(ei1) = headG∗(e j2).

By the definition of G, the following statements hold.

• If (1) holds and j �= q + 1, then G has an edge from (ei1, e
j
2) to (ei1, e

j+1
2).

• If (2) holds and i �= p + 1, then G has an edge from (ei1, e
j
2) to (ei+1

1 , e j2).

• If (3) holds, then G has an edge from (ei1, e
j
2) to (ei+1

1 , e j+1
2).

We can see that if i = p + 1 then (1) holds and if j = q + 1 then (2) holds. As a
result, there is an edge from (ei1, e

j
2) to (ei+1

1 , e j2), (ei1, e
j+1
2) or (ei+1

1 , e j+1
2) in G if

(i, j) �= (p + 1, q + 1). It follows that starting from (ei1, e
j
2) with i = 0, j = 0, we

can find a directed path ending at (ep+1
1 , eq+1

2) through increasing i by 1, increasing
j by 1 or increasing both i and j by 1 iteratively. This concludes the proof for “if
direction”.

(“only if” direction) Suppose that there is a directed path from (e01, e
0
2) =

(s′
1s

−
1 , t ′2t

+
2) to (er1, e

r
2) = (t+1 t ′1, s

−
2 s

′
2) in G that goes through (e01, e

0
2), (e11, e

1
2), …,

(er1, e
r
2) consecutively. We construct two T -compatible paths P1, P2 in G ′ as follows.

First we initialize P1 = e01, P2 = e02. Then for i = 0, ..., r − 1, we update P1 and P2
according to the following three cases:

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2) is of type (i), namely ei1 =

ei+1
1 , headG∗(ei2) = tailG∗(ei+1

2) = v and {ei2, ei+1
2 } ∈ TG∗(v). There is no path

from headG∗(ei1) to v in G∗. If v ∈ V ′
0, let Q be the T -compatible path in the

subgraph ofG ′ consisting of all edges ofG ′
v together with f (ei2) and f (ei+1

2) from

tailG ′(f (ei+1
2)) to headG ′(f (ei2)). Then P2 ← f (ei+1

2) ·Q \{ f (ei2), f (ei+1
2)} · P2.

Otherwise, if v /∈ V ′
0, P2 ← f (ei+1

2) · P2.
• Suppose that the edge from (ei1, e

i
2) to (ei+1

1 , ei+1
2) is of type (ii), namely ei2 = ei+1

2 ,
headG∗(ei1) = tailG∗(ei+1

1) = v and {ei1, ei+1
1 } ∈ TG∗(v). There is no path from

headG∗(ei2) to v inG∗. If v ∈ V ′
0, let Q be the T -compatible path in the subgraph of

G ′ consistingof all edges ofG ′
v togetherwith f (ei1) and f (ei+1

1) from tailG ′(f (ei1))
to headG ′(f (ei+1

1)). Then P1 ← P1 · Q \ { f (ei1), f (ei+1
1)} · f (ei+1

1). Otherwise,
if v /∈ V ′

0, P1 ← P1 · f (ei+1
1).

• Suppose that the edge from (ei1, e
i
2) to (ei+1

1 , ei+1
2) is of type (iii), namely

headG∗(ei1) = tailG∗(ei+1
1) = headG∗(ei2) = tailG∗(ei+1

2) = v and {ei1, ei+1
1 } ∈

123

Algorithmica (2023) 85:1202–1250 1247

TG∗(v), {ei2, ei+1
2 } ∈ TG∗(v). If v ∈ V ′

0, let G
s be the subgraph of G ′ consist-

ing of all edges of G ′
v together with f (e1), f (e′

1), f (e2) and f (e′
2). There are

two T -compatible vertex-disjoint paths in Gs , namely Q1 from tailG ′(f (ei1)) to

headG ′(f (ei+1
1)) and Q2 from tailG ′(f (ei+1

2)) to headG ′(f (ei2)). Then P1 ←
P1 ·Q1\{ f (ei1), f (ei+1

1)}· f (ei+1
1) and P2 ← f (ei+1

2)·Q2\{ f (ei2), f (ei+1
2)}·P2.

Otherwise, if v /∈ V ′
0, then P1 ← P1 · f (ei+1

1) and P2 ← f (ei+1
2) · P2.

As a result, we construct two vertex-disjoint T -compatible paths P1 and P2 such that
Pi is from s′

i to t ′i and Pi ⊆ E ′
i for i = 1, 2. This finishes the proof for “only if”

direction. �

Since G contains O(|E |3) edges, we can detect a path in G in polynomial time. Thus
Lemma 5.11 shows that the vertex version of 2- DSPP with transition restric-

tions can be solved in polynomial time assuming that every cycle in the input graph
has positive length.

6 Conclusions

Weinitiated exploring theparameterized complexity offindingpaths, cycles, andwalks
in forbidden-transition and edge-colored graphs. Let us contemplate a few promising
directions to take the exploration further.

First, a combinatorially interesting problem eluded us during this research: TheNP-
hardness reduction of Szeider [49] for finding a (simple) path between two vertices
of a forbidden-transition graph can be easily modified to prove that it is also NP-hard
to find a (simple) compatible cycle in a forbidden-transition graph. In contrast, in
edge-colored graphs finding any properly colored cycle is polynomial-time solvable
[29, 52]. But what about finding a long properly colored cycle? More precisely, given
an edge-colored graph G and an integer k we ask whether G admits a simple properly
colored cycle of length at least k. Is this problem fixed-parameter tractable when
parameterized by k? As the notion of properly colored walks in edge-colored graphs
generalizes walks in directed graphs, the problem in question is more general than
finding a cycle of length at least k in a directed graph.

For the fundamental problemoffinding compatible s-t pathsweobtained essentially
three positive results; each leads to natural follow-up questions. First, it is not hard to
obtain fixed-parameter tractability when the length of the path is explicitly bounded
by the parameter or implicitly so, as in the case of the treedepth and vertex-cover
parameters.We have focused here only on some salient graph parameters, in particular,
graph-width parameters. It may be useful to systematically explore the hierarchy of
graph parameters and classify for which parameters the problem remains tractable
[50].

Second, we obtained fixed-parameter tractability parameterized by the length of
the detour over the shortest s-t path. A natural question is whether one can improve
on this result by considering larger lower bounds on the length of the compatible s-t
path. For example, we can obtain a larger lower bound by subdividing every edge of

123

1248 Algorithmica (2023) 85:1202–1250

the input graph, replacing every vertex v by a set of length-two paths corresponding
to the transitions of v, and then computing a shortest s-t path in the resulting graph.

Third, we obtained tractability for the treecut-width parameter. Other edge-cut
based parameters are known [12, 19] and it would be interesting to see which of them
lead to fixed-parameter algorithms, or improved running times, for finding compatible
s-t paths.

Next, it is interesting to deconstruct our hardness result, to obtain potential paths
to tractability [21, 38]. Our hardness result shows that finding compatible s-t paths is
hard even on graphs that are close to trees in terms of vertex-deletion. However, the
reduction works only if the size of the transition system and the number of vertices
with forbidden transitions is not bounded by a parameter. It would hence be interesting
to analyze the complexity with respect to these two parameters.

Finally, we observed in Sect. 5, that finding r disjoint shortest paths is polynomial-
time solvable for r = 2 even if the paths are required to be compatible with a transition
system. In the case of undirected graphs without forbidden transitions, this problem
is polynomial-time solvable for each fixed r [8, 42]. However, the problem is open for
every r ≥ 3 in the case of directed graphs without forbidden transitions. This problem
could be very interesting to generalize to forbidden-transition graphs, as it would be
harder to design polynomial algorithms, but hardness would be easier to prove.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abouelaoualim, A., Das, K.C., Faria, L., Manoussakis, Y., Martinhon, C.A.J., Saad, R.: Paths and trails
in edge-colored graphs. Theor. Comput. Sci. 409(3), 497–510 (2008)

2. Ahmed, M., Lubiw, A.: Shortest paths avoiding forbidden subpaths. In Proceedings of the 26th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2009), pp. 63–74, (2009)

3. Bang-Jensen, J., Bellitto, T., Lochet, W., Yeo, A.: The directed 2-linkage problem with length con-
straints. Theoret. Comput. Sci. 814, 69–73 (2020)

4. Bang-Jensen, J., Bellitto, T., Yeo, A.: Supereulerian 2-edge-coloured graphs. Technical report,
arXiv:2004.01955 [math.CO], (2020)

5. Bang-Jensen, J., Gutin, G.Z.: Digraphs - Theory, Algorithms and Applications. Springer, Berlin (2009)
6. Bellitto, T.: Separating codes and traffic monitoring. Theoretical Computer Science, Selected papers

presented at the 11th InternationalConference onAlgorithmicAspects of Information andManagement
(AAIM 2016) vol. 717, pp. 73–85 (2018)

7. Bellitto, T., Bergougnoux, B.: On minimum connecting transition sets in graphs. In Brandstädt, A.,
Köhler, E., Meer, K. (eds.) Proceedings of the 44th International Workshop on Graph-Theoretic Con-
cepts in Computer Science (WG 2018), volume 11159 of Lecture Notes in Computer Science, pp.
40–51. Springer (2018)

8. Bentert, M., Nichterlein, A., Renken, M., Zschoche, P.: Using a geometric lens to find k disjoint
shortest paths. In Bansal, N., Merelli, E.,Worrell, J. (eds.) 48th International Colloquium on Automata,

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2004.01955

Algorithmica (2023) 85:1202–1250 1249

Languages, and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in
Informatics (LIPIcs), pp. 26:1–26:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik

9. Bérczi, K., Kobayashi, Y.: The directed disjoint shortest paths problem. In Pruhs, K., Sohler, C. (eds.)
Proceedings of the 25th Annual European Symposium on Algorithms (ESA 2017), volume 87 of LIPIcs,
pp. 13:1–13:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

10. Bezáková, I., Curticapean, R., Dell, H., Fomin, F.V.: Finding detours is fixed-parameter tractable.
SIAM J. Discret. Math. 33(4), 2326–2345 (2019)

11. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algo-
rithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

12. Brand, C., Ceylan, E., Ganian, R., Hatschka, C., Korchemna, V.: Edge-cut width: An algorithmically
driven analogue of treewidth based on edge cuts. InBekos,M.A.,Kaufmann,M. (eds.)Graph-Theoretic
Concepts in Computer Science, Lecture Notes in Computer Science, pp. 98–113. Springer, Berlin
(2022)

13. Contreras-Balbuena, A., Galeana-Sánchez, H., Goldfeder, I.A.: A new sufficient condition for the
existence of alternating hamiltonian cycles in 2-edge-colored multigraphs. Discret. Appl. Math. 229,
55–63 (2017)

14. Contreras-Balbuena, A., Galeana-Sánchez, H., Goldfeder, I. A.: Alternating hamiltonian cycles in
2-edge-colored multigraphs. Discrete Math. Theor. Comput. Sci., 21(1), (2019)

15. Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer, Berlin (2015)

16. Dorninger, D.: Hamiltonian circuits determining the order of chromosomes.Discret. Appl.Math. 50(2),
159–168 (1994)

17. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Berlin (2013)
18. Dvorák, Z.: Two-factors in orientated graphswith forbidden transitions.Discret.Math. 309(1), 104–112

(2009)
19. Eiben, E., Ganian, R., Hamm, T., Jaffke, L., Kwon, O.-J.: A unifying framework for characterizing and

computing width measures. In 13th Innovations in Theoretical Computer Science Conference (ITCS
2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 63:1–63:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

20. Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-
interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)

21. Fellows, M.R., Jansen, B.M.P., Rosamond, F.: Towards fully multivariate algorithmics: Parameter
ecology and the deconstruction of computational complexity. Eur. J. Comb. 34(3), 541–566 (2013)

22. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
23. Fortune, S.,Hopcroft, J.E.,Wyllie, J.: Thedirected subgraphhomeomorphismproblem.Theor.Comput.

Sci. 10, 111–121 (1980)
24. Ganian, R., Kim, E. J., Szeider, S.: Algorithmic applications of tree-cut width. In Italiano, G.F.,

Pighizzini, G., Sannella, D. (eds.) Proceedings of the 40th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS 2015), volume 9235 of Lecture Notes in Computer
Science, pp. 348–360. Springer, Berlin (2015)

25. Ganian, R., Ordyniak, S.: The power of cut-based parameters for computing edge disjoint paths. In
International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 190–204. Springer,
Berlin (2019)

26. Gottschau, M., Kaiser, M., Waldmann, C.: The undirected two disjoint shortest paths problem. Oper.
Res. Lett. 47(1), 70–75 (2019)

27. Gourvès, L., Lyra, A., Martinhon, C.A.J., Monnot, J.: Complexity of trails, paths and circuits in arc-
colored digraphs. Discret. Appl. Math. 161(6), 819–828 (2013)

28. Gourvès, L., Lyra, A., Martinhon, C.A.J., Monnot, J., Protti, F.: On s-t paths and trails in edge-colored
graphs. Electr. Notes Discrete Math. 35, 221–226 (2009)

29. Grossman, J.W., Häggkvist, R.: Alternating cycles in edge-partitioned graphs. J. Comb. Theory Ser. B
34(1), 77–81 (1983)

30. Gutin, G., Kim, E. J.: Properly coloured cycles and paths: results and open problems. In Graph The-
ory, Computational Intelligence and Thought, Essays Dedicated to Martin Charles Golumbic on the
Occasion of His 60th Birthday, pp. 200–208, (2009)

31. Gutin, G.Z., Jones, M., Sheng, B., Wahlström, M., Yeo, A.: Chinese postman problem on edge-colored
multigraphs. Discret. Appl. Math. 217, 196–202 (2017)

123

1250 Algorithmica (2023) 85:1202–1250

32. Impagliazzo, R., Paturi, R.: Complexity of k-SAT. In Proceedings of the 14th Annual IEEE Conference
on Computational Complexity (CCC 1999), pp. 237–240, (1999)

33. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? In Pro-
ceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS 1998), pp.
653–662 (1998)

34. Kanté, M.M., Laforest, C., Momège, B.: Trees in graphs with conflict edges or forbidden transitions. In
Chan, T.H., Lau, L.C., Trevisan, L. (eds.) Proceedins of the 10th International Conference on Theory
and Applications of Models of Computation (TAMC 2013), volume 7876 of Lecture Notes in Computer
Science, pp. 343–354. Springer, Berlin (2013)

35. Kanté, M.M., Moataz, F.Z., Momège, B., Nisse, N.: Finding paths in grids with forbidden transitions.
In Mayr, E.W. (ed.) Proceedings of the 41st International Workshop on Graph-Theoretic Concepts
in Computer Science (WG 2015), volume 9224 of Lecture Notes in Computer Science, pp. 154–168.
Springer, Berlin (2015)

36. Kim, E.J., Oum, S.-I., Paul, C., Sau, I., Thilikos, D.M.: An fpt 2-approximation for tree-cut decompo-
sition. Algorithmica 80(1), 116–135 (2018)

37. Kobayashi, Y., Sako, R.: Two disjoint shortest paths problem with non-negative edge length. Oper.
Res. Lett. 47(1), 66–69 (2019)

38. Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing intractability-a multivariate complex-
ity analysis of interval constrained coloring. J. Discrete Algorithms 9(1), 137–151 (2011)

39. Kotzig, A.: Moves without forbidden transitions in a graph. Matematický časopis 18(1), 76–80 (1968)
40. Li, R., Broersma, H., Xu, C., Zhang, S.: Cycle extension in edge-colored complete graphs. Discret.

Math. 340(6), 1235–1241 (2017)
41. Li, R., Broersma, H., Zhang, S.: Properly edge-colored theta graphs in edge-colored complete graphs.

Graphs Comb. 35(1), 261–286 (2019)
42. Lochet, W.: A polynomial time algorithm for the k-disjoint shortest paths problem. In Marx, D. (ed.)

Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Con-
ference, January 10–13, 2021, pp. 169–178. SIAM

43. Marx, D.: Can you beat treewidth? Theory Comput. 6(1), 85–112 (2010)
44. Marx, D., Wollan, P.: Immersions in highly edge connected graphs. SIAM J. Discret. Math. 28(1),

503–520 (2014)
45. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In Proceedings

of 36th Annual IEEE Symposium onFoundations of Computer Science (FOCS ’95), pp. 182–191 (1995)
46. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
47. Perl, Y., Shiloach, Y.: Finding two disjoint paths between two pairs of vertices in a graph. J. ACM

25(1), 1–9 (1978)
48. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Ser.

B 63(1), 65–110 (1995)
49. Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discret. Appl. Math. 126(2–3),

261–273 (2003)
50. Weller, M., Sorge, M., Contributors: The Graph Parameter Hierarchy. Accessed (October 2022)
51. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb. Theory Ser. B 110,

47–66 (2015)
52. Yeo, A.: A note on alternating cycles in edge-coloured graphs. J. Comb. Theory Ser. B 69(2), 222–225

(1997)
53. Ziobro, M., Pilipczuk, M.: Finding hamiltonian cycle in graphs of bounded treewidth: experimental

evaluation. ACM J. Exp. Algorithmics 24(1), 2.7:1-2.7:18 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	The Complexity of Routing Problems in Forbidden-Transition Graphs and Edge-Colored Graphs
	Abstract
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Graphs
	2.2 Parameterized Complexity

	3 Detours
	4 Graph-Width Parameters
	4.1 Modulator to Linear Forest
	4.2 Treecut-Width
	4.3 Edge-Colored Graphs and Treewidth

	5 Two Disjoint Shortest Paths
	5.1 Edge-Disjoint Case
	5.2 Vertex-Disjoint Case

	6 Conclusions
	References

