
Algorithmica (2023) 85:544–562
https://doi.org/10.1007/s00453-022-01037-4

An Improved Upper Bound on the Queue Number of Planar
Graphs

Michael Bekos1 ·Martin Gronemann2 · Chrysanthi N. Raftopoulou3

Received: 8 December 2021 / Accepted: 8 September 2022 / Published online: 28 September 2022
© The Author(s) 2022

Abstract
A k-queue layout is a special type of a linear layout, in which the linear order avoids
(k+1)-rainbows, that is, k+1 independent edges that pairwise form a nested pair. The
optimization goal is to determine the queue number of a graph, which is defined as
the minimum value of k for which a k-queue layout is feasible. Recently, Dujmović et
al. [J. ACM, 67(4), 22:1–38, 2020] showed that the queue number of planar graphs is
at most 49, thus settling in the positive a long-standing conjecture by Heath, Leighton
and Rosenberg. To achieve this breakthrough result, their approach involves three
different techniques: (1) an algorithm to obtain 2-queue layouts of outerplanar graphs,
(2) an algorithm to obtain 5-queue layouts of planar 3-trees, and (3) a decomposition
of a planar graph into so-called tripods. In this work, we push further each of these
techniques to obtain the first non-trivial improvement of the upper bound on the queue
number of planar graphs from 49 to 42.

Keywords Linear layouts · Queue number · Planar graphs

B Michael Bekos
bekos@uoi.gr

Martin Gronemann
mgronemann@ac.tuwien.ac.at

Chrysanthi N. Raftopoulou
crisraft@mail.ntua.gr

1 Department of Mathematics, University of Ioannina, University Campus, 45110 Ioannina,
Greece

2 Algorithms and Complexity Group, TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria

3 School of Applied Mathematics and Physical Sciences, National Technical University of Athens,
Iroon Polytexneiou 9, Zografou, 15780 Athens, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01037-4&domain=pdf
http://orcid.org/0000-0002-3414-7444

Algorithmica (2023) 85:544–562 545

1 Introduction

Linear layouts of graphs have a long tradition of study in different contexts, including
graph theory and graph drawing, as they form a framework for defining different
graph-theoretic parameters with several applications; see, e.g., [1]. In this regard, one
seeks to find a total order of the vertices of a graph that reaches a certain optimization
goal [2–4]. In this work, we focus on a well-studied type of linear layouts, called queue
layout [5–8], in which the goal is to minimize the size of the largest rainbow, namely,
a set of independent edges that are pairwise nested. Equivalently, the problem asks for
a linear order of the vertices and a partition of the edges into a minimum number of
queues (called queue number), such that no two independent edges in the same queue
are nested [7]; see Fig. 1b.

Queue layouts of graphs were introduced by Heath and Rosenberg [7] in 1992 as
the counterpart of stack layouts (widely known also as book embeddings), in which
the edges must be partitioned into a minimum number of stacks (called stack number),
such that no two edges in the same stack cross [9]; see Fig. 1c. Since their introduction,
queue layouts of graphs have been a fruitful subject of intense research with several
important algorithmic and combinatorial results proposed over the years [6, 8, 10–14];
for an introduction, we refer the reader to [15].

The most intriguing problem in this research field is undoubtedly the problem of
specifying the queue number of planar graphs, that is, the maximum queue number
over all planar graphs. This problem dates back to 1992, when Heath, Leighton and
Rosenberg conjectured that the queue number of planar graphs is bounded [6].Notably,
despite the different efforts [11, 16, 17], this conjecture remained unanswered formore
than two decades. That only changed in 2019 with a breakthrough result of Dujmović,
Joret, Micek, Morin, Ueckerdt andWood [5, 18], whomanaged to settle in the positive
the conjecture, as they showed that the queue number of planar graphs is at most 49.
The best-known corresponding lower bound is 4 due to Alam et al. [10].

It is immediate to see, however, that the gap between the currently best-known
lower and upper bounds is rather large, which implies that the exact queue number of
planar graphs is, up to the point of writing, still unknown. Note that this is in contrast
with the stack number of planar graphs, which was recently shown to be exactly 4 [19,
20]. Also, the existing gap in the bounds on the queue number of planar graphs gives
the intuition that it is unlikely the upper bound of 49 by Dujmović at al. [5] is tight,
even though in the last two years no improvement appeared in the literature.

(a) (b) 2-queue layout (c) 2-stack layout

Fig. 1 a A planar straight-line drawing of the octahedron graph and b–c different linear layouts of it

123

546 Algorithmica (2023) 85:544–562

1.1 Our Contribution

We verify the aforementioned intuition by reducing the upper bound on the queue
number of planar graphs from 49 to 42 (see Theorem 7 in Sect. 5). This improvement
requires non-trivial adjustments to each of the three algorithms that are involved in the
approach by Dujmović at al. [5], namely: (i) an algorithm to obtain 2-queue layouts of
outerplanar graphs by first computing straight-line drawings of them in which the y-
distance of any two adjacent vertices is either 1 or 2 [21]; see Sect. 4.1, (ii) an algorithm
to obtain 5-queue layouts of planar 3-trees [10]; see Sect. 4.2, and (iii) a decomposi-
tion of a planar graph into so-called tripods [5]; see Sect. 4.3. Although we assume
familiarity with these algorithms, in Sect. 3 we outline their most important aspects.
For preliminary notions and standard terminology refer to Sect. 2.

2 Preliminaries

A drawing of a graph maps each vertex to a distinct point of the Euclidean plane
and each edge to a Jordan curve connecting its endpoints. A drawing of a graph is
planar, if no two edges cross (except at common endpoints). A graph that admits a
planar drawing is called planar; see Fig. 1a. A planar drawing partitions the plane into
topologically connected regions called faces; its unbounded one is called outer face. A
combinatorial embedding of a planar graph is an equivalence class of planar drawings
that are pairwise topologically equivalent, that is, they define the same set of faces up to
an orientation-preserving homeomorphism of the plane. A planar graph together with
a combinatorial embedding is a plane graph. A graph that admits a planar drawing, in
which all vertices are incident to its outer face, is called outerplanar. It is known that
outerplanar graphs have treewidth at most 2. A planar graph with treewidth at most 3
is commonly referred to as a planar 3-tree. Planar 3-trees are subgraphs of maximal
planar 3-trees, which are recursively defined as follows. In the base case, the graph is
a 3-cycle. Otherwise, there exists a vertex of degree 3 whose removal yields a maximal
planar 3-tree with one vertex less.

A linear layout of a graph is defined by a total order of its vertices and an objective
over its edges. We denote the (total) vertex order of a simple undirected graph G by
≺, such that for any two vertices u and v of G, u ≺ v if and only if u precedes
v in the order. Let F be a set of k ≥ 2 independent edges (ui , vi) of G, that is,
F = {(ui , vi) : i = 1, . . . , k}. If u1 ≺ . . . ≺ uk ≺ vk ≺ . . . ≺ v1, then we say that
the edges of F form a k-rainbow, while if u1 ≺ v1 ≺ . . . ≺ uk ≺ vk , then the edges of
F forma k-necklace. The edges of F forma k-twist, ifu1 ≺ . . . ≺ uk ≺ v1 ≺ . . . ≺ vk ;
see Fig. 2. Finally, two independent edges that form a 2-rainbow (2-necklace, 2-twist)
are referred to as nested (disjoint, crossing, respectively).

There are several types of linear layouts of graphs in the literature, with queue
layouts being among the most studied of them. Formally, a k-queue layout of a graph
G consists of a vertex order ≺ of G and a partition of the edges of G into k sets of
pairwise non-nested edges with respect to ≺, called queues. A preliminary result by
Heath and Rosenberg [7] states that a graph admits a k-queue layout if and only if it
admits a vertex order in which no (k + 1)-rainbow is formed. The queue number of a

123

Algorithmica (2023) 85:544–562 547

u1 u2 u3 v3 v2 v1

(a)

u1 v1 u2 v2 u3 v3

(b)

u1 u2 u3 v1 v2 v3

(c)

Fig. 2 Illustration of a a 3-rainbow, b a 3-necklace, and c a 3-twist

(a) (b)

Fig. 3 Introducing a degree-2 vertex v along the upper envelope, when its two neighbors u and w are
connected with a a span-1 edge, and b a span-2 edge

graph G, denoted by qn(G), is the minimum k, such that G admits a k-queue layout.
Accordingly, the queue number of a class of graphs is the maximum queue number
over all its members.

3 Outline of the Involved Techniques

In this section, we summarize the main aspects of the three algorithms mentioned in
Sect. 1 that are involved in the approach by Dujmović et al. [5] to achieve the bound
of 49 on the queue number of planar graphs. The first is an algorithm by Dujmović,
Pór, andWood [21] to compute 2-queue layouts of outerplanar graphs (Sect. 3.1). The
second one is by Alam et al. [10] to compute 5-queue layouts of planar 3-trees (Sect.
3.2). The last one is the actual algorithm by Dujmović et al. [5] to compute 49-queue
layouts of planar graphs (Sect. 3.3).

3.1 Outerplanar Graphs

As already stated, the main ingredient of the algorithm by Dujmović, Pór and Wood
[21] is the construction of a straight-line drawing �(G) of a maximal outerplane graph
G that can be transformed into a 2-queue layout of G. The recursive construction of
�(G) maintains the following invariant properties:

(O.1) The cycle delimiting the outer face consists of two strictly x-monotone paths,
referred to as upper and lower envelopes, respectively.

(O.2) The y-coordinates of the endvertices of each edge differ by either 1 (span-1
edge) or 2 (span-2 edge).

Tomaintain Invariants (O.1) and (O.2), Dujmović et al. adopt an approach according to
which, at each recursive step, a vertex of degree 2 is added to the already constructed

123

548 Algorithmica (2023) 85:544–562

drawing; see Fig. 3. The base of the recursion consists of a triangle1 that can be
trivially drawn with two span-1 edges and one span-2 edge satisfying Invariants (O.1)
and (O.2). Assume that G has n > 3 vertices. Since G is biconnected outerplane, it
contains a vertex v of degree 2. Removing v yields a biconnected outerplane graph
G ′ with n − 1 vertices, which admits a drawing �(G ′) satisfying Invariants (O.1) and
(O.2). By Invariant (O.1), none of the edges on the outer face is drawn vertically in
�(G ′). To obtain drawing �(G) of G, vertex v is inserted into �(G ′) as follows. Let u
and w be the neighbors of v in G. Since G is maximal outerplane, (u, w) is an edge of
G that lies on the outer face of �(G ′). By Invariant (O.2), (u, w) is either a span-1 or a
span-2 edge. Assume that (u, w) is along the upper envelope of �(G ′); the case where
it is along the lower envelope is symmetric.Assumefirst that (u, w) has span 1 in�(G ′)
and without loss of generality that y(u) = y(w)+1. Then, vertex v is placed such that
y(v) = y(u) + 1 and x(v) = 1

2 (x(u) + x(w)); see Fig. 3a. Hence, (u, v) and (v,w)

have span 1 and 2, respectively, which implies that Invariant (O.2) is maintained. Since
(the non-vertical) edge (u, w) of the upper envelope of �(G ′) is replaced by the x-
monotone path u → v → w in �(G), Invariant (O.1) is also maintained. Assume now
that (u, w) has span 2 in �(G ′) and without loss of generality that y(u) = y(w) + 2.
Then, vertex v is placed such that y(v) = y(u)−1 and x(v) = 3x(w)+x(u)

4 ; see Fig. 3b.
This implies that both edges (u, v) and (v,w) have span 1. Similarly to the previous
case, one can argue that Invariants (O.1) and (O.2) are maintained.

Finally, drawing �(G) is transformed into a 2-queue layout of G as follows:

(i) for any two vertices u and v of G, u ≺ v if and only if either y(u) > y(v), or
y(u) = y(v) and x(u) < x(v) in �(G), and

(ii) the edges assigned to the first (second) queue in the layout are those with span
1 (span 2, respectively) in �(G).

3.2 Planar 3-trees

Alam et al. [10] adopt a peeling-into-levels approach [22] to produce a 5-queue layout
of a maximal plane 3-tree H . Initially, the vertices of H are partitioned into levels
L0, . . . , Lλ with λ ≥ 1, such that L0-vertices are incident to the outer face of H ,
while Li+1-vertices are in the outer face of the subgraph of H obtained by the removal
of all vertices in L0, . . . , Li , for i = 0, . . . , λ − 1. The edges of H are partitioned
into level and binding edges, depending on whether their endpoints are on the same
or on consecutive levels respectively. Let Hi be the subgraph of H induced by the
edges of level Li , where i = 0, . . . , λ. Since H is a maximal plane 3-tree, each
connected component of Hi is an internally triangulated outerplane graph. Therefore,
it is embeddable in two queues. This implies that each connected component c of Hi+1
(which is outerplane) lies in the interior of a triangular face of Hi . As a result there
are exactly three vertices of Hi that are connected to vertices of c. The construction
of the 5-queue layout of H satisfies the following invariant properties:

(T.1) In the linear order ≺H, all vertices of level Li precede all vertices of level Li+1
for every i = 0, . . . , λ − 1;

1 In [21], Dujmović et al. consider a single edge at the base of the recursion. To ease the presentation, we
slightly modify their approach.

123

Algorithmica (2023) 85:544–562 549

(T.2) Vertices of each connected component of level Li appear consecutively in ≺H
for every i = 0, . . . , λ;

(T.3) All level edges of H are assigned to two queues denoted by Q0 and Q1;
(T.4) For every i = 0, . . . , λ − 1, the binding edges between vertices of Li and

Li+1 are assigned to three queues Q2, Q3 and Q4 as follows. For each con-
nected component c of Hi+1, let x , y and z be its three neighbors in Hi so that
x ≺H y ≺H z. Then, the binding edges between Li and Li+1 with one endpoint
in c are assigned toQ2,Q3 orQ4 if their other endpoint is x , y or z, respectively.

3.3 General Planar Graphs

Dujmović et al. [5] present an algorithm to produce a 49-queue layout of a (general)
plane graph. Central in their algorithm is the notion of an H -partition2, defined as
follows. Given a graph G, an H -partition of G is a partition of the vertices of G into
sets Ax with x ∈ V (H), called bags, such that for each edge (u, v) of G with u ∈ Ax

and v ∈ Ay either x = y holds or (x, y) is an edge of H . In the former case, (u, v)

is called intra-bag edge, while in the latter case it is called inter-bag edge. A BFS-
layering of G is a partitionL = (V0, V1, . . .) of its vertices according to their distance
from a specific vertex of G. In other words, it is a special type of H -partition, where
H is a path and each bag Vi corresponds to a layer. In this special type of H -partition,
an intra-bag edge is called intra-layer, while an inter-bag edge is called inter-layer3.
An H -partition has layered-width � with respect to a BFS-layering L if each bag of
H has at most � vertices on each layer of L.

The following lemma is the main tool of the algorithm by Dujmović et al. [5],
since it yields a construction of a queue-layout of a graph G, whose number of queues
depends on the layered-width of an H -partition of G and the queue number of H .

Lemma 1 (Dujmović et al. [5]) For all graphs G and H , if H admits a k-queue
layout and G has an H -partition of layered-width � with respect to some layering
L = (V0, V1, . . .) of G, then G admits a

(
3�k + � 3

2��
)
-queue layout using vertex

order
−→
V0,

−→
V1, . . . , where

−→
Vi is some order of Vi . In particular,

qn(G) ≤ 3� qn(H) + � 3
2��. (1)

In the original proof of Lemma 1 (see [5, Lemma 9]), the order of the vertices of G on
each layer ofL is defined as follows. Let x1, . . . , xh be the vertices of H as they appear
in a k-queue layout QL(H) of H , that is, x1≺H . . . ≺H xh , and let Ax1 , . . . , Axh be

the corresponding bags of the H -partition. Then, the order
−→
Vi of each layer Vi of L

with i ≥ 0 is:

−→
Vi = Ax1 ∩ Vi , Ax2 ∩ Vi , . . . , Axh ∩ Vi

2 To avoid confusion with notation used earlier, note that, in the scope of the algorithm by Dujmović et al.
[5], graph H denotes a plane 3-tree, as we will shortly see.
3 Dujmović et al. [5] refer to the intra- and inter-layer edges as intra- and inter-level edges, respectively.
We adopt the terms intra- and inter-layer edges to avoid confusion with the different type of leveling used
in the algorithm of Alam et al. [10].

123

550 Algorithmica (2023) 85:544–562

(a) Intra-bag edges (b) Inter-bag edges

Fig. 4 Illustration of a Intra-bag edges; the intra-layer ones are red, while the inter-layer ones are blue, and
b inter-bag edges; the intra-layer ones are green, while the inter-layer ones are purple (forward) and orange
(backward). In both subfigures, a bag is illustrated as a gray box, in which vertices of different layers (that
are part of the bag) are drawn at different horizontal lines; the white vertices indicate that the intersection
of a layer with the content of a bag may consist of more than four vertices; the edges towards these vertices
have not been illustrated (Color figure online)

where each subset Ax j ∩Vi is ordered arbitrarily, for j = 1, . . . , h. This gives the total
order ≺G for the vertices of G. The edge-to-queue assignment, which completes the
construction of the queue layout QL(G) of G, exploits the following two properties:

(P.1) Two intra-bag edges of G nest in ≺G, only if they belong to the same bag; see
blue and red edges in Fig. 4a.

(P.2) Two inter-layer edges ofG nest in≺G, only if their endpoints belong to the same
pair of consecutive layers of L; see blue, purple and orange edges in Fig. 4.

Recall that the edges ofG are classified into four categories given by the bags of the H -
partition and the layers of L, namely, intra-layer intra-bag edges, inter-layer intra-bag
edges, intra-layer inter-bag edges and inter-layer inter-bag edges. The edge-to-queue
assignment is based on these four categories. We start with the intra-bag edges of G,
that is, edges whose endpoints belong to the same bag; see Fig. 4a.

(E.1) Intra-layer intra-bag edges of G are assigned to at most � �
2� queues, as the

queue number of K� is � �
2� [22]; see red edges in Fig. 4a.

(E.2) Inter-layer intra-bag edges of G are assigned to at most � queues, as the
queue number of K�,� is �, when all vertices of the first bipartition precede
those of the second; see blue edges in Fig. 4a.

The remaining edges of G are the inter-bag edges that connect vertices of differ-
ent bags; see Fig. 4b. Inter-layer inter-bag edges are further partitioned into two
categories. Let (u, v) be an inter-layer inter-bag edge with u ∈ Ax ∩ Vi and
v ∈ Ay ∩ Vi+1, for some i ≥ 0 and x �= y. Then (u, v) is forward, if x ≺H y
holds in QL(H), otherwise, (u, v) is backward; see purple and orange edges in Fig.
4b, respectively. For all inter-bag edges, in total, 3�k queues suffice.

(E.3) Intra-layer inter-bag edges ofG are assigned to at most �k queues; on each layer,
an edge of H corresponds to a subgraph of K�,�, where all vertices of the first
bipartition precede those of the second; see green edges in Fig. 4b.

123

Algorithmica (2023) 85:544–562 551

(E.4) Forward inter-layer inter-bag edges of G are assigned to at most �k queues; for
two consecutive layers, an edge of H corresponds to a subgraph of K�,�, where
all vertices of the first bipartition precede those of the second; see purple edges
of Fig. 4b.

(E.5) Symmetrically all backward inter-layer inter-bag edges of G are assigned to at
most �k queues; see orange edges in Fig. 4b.

The next property follows from the edge-to-queue assignment of inter-bag edges of
G. Details can be found in the proof of Lemma 9 in [5].

(P.3) For 1 ≤ i ≤ r , let (ui , vi) be an edge of G, such that ui ≺G vi , ui ∈ Axi and
vi ∈ Ayi . If all these r edges belong to one of (E.3)-(E.5) and form an r -rainbow
in ≺G, while edges (x1, y1), . . . , (xr , yr) of H are assigned to the same queue
in QL(H), then r ≤ � and either u1, . . . , ur or v1, . . . , vr belong to the same
bag of the H -partition of G.

In order to bound the parameters k and � used in Lemma 1, the fact that G is maximal
plane is being exploited. To this end, a few more ingredients are needed. A vertical
path of G in a BFS-layering L is a path P = v0, . . . , vκ of G consisting only of edges
of the BFS-tree of L and such that if v0 belongs to Vi in L, then v j belongs to Vi+ j ,
with j = 1, . . . , κ . Further, we say that v0 and vκ are the first and last vertices of
P . A tripod of G consists of up to three pairwise vertex-disjoint vertical paths in L
whose last vertices form a clique of size at most 3 in G. We refer to this clique as the
base of the tripod. Dujmović et al. [5] describe a recursive algorithm that partitions
the vertices of G into tripods, whose bases are triangular faces of G. In particular,
they show that for any BFS-layering L, G admits an H -partition with the following
properties:

(P.4) H is a planar 3-tree and thus QL(H) is a k-queue layout with k ≤ 5 [10].
(P.5) Its layered-width � is at most 3, since each bag induces a tripod in G.

Properties (P.4) and (P.5) along with Eq. (1) imply that the queue number of planar
graphs is at most 3 · 3 · 5 + � 3

2 · 3� = 49.

4 Refinements of the Involved Techniques

In this section, we present refinements of the algorithms outlined in Sect. 3 that will
allow us to reduce the upper bound on the queue number of planar graphs from 49 to
42.

4.1 Outerplanar Graphs

The initial algorithm by Dujmović et al. [21], outlined in Sect. 3.1, produces outer-
planar straight-line drawings that satisfy Invariants (O.1) and (O.2). Our modification
ensures two additional properties that are stated in Lemma 2. To achieve this, besides
(O.1) and (O.2), we maintain a third invariant:

(O.3) The lower envelope consists of a single edge.

123

552 Algorithmica (2023) 85:544–562

To maintain Invariant (O.3), we observe that a biconnected maximal outerplane graph
G with at least four vertices, contains at least two non-adjacent degree-2 vertices.
Let x be such a degree-2 vertex of G, which we assume to be fixed in the recursive
construction of�(G). In particular, by our previous observation,we can always remove
a degree-2 vertex that is different from x at every recursive step. This ensures that x
will eventually appear in the triangle T that is drawn at the base of the recursion.
We draw T , such that x is its bottommost vertex while its two incident edges are of
span-1 and span-2 as follows. Let y and z be the other two vertices of T . We draw x ,
y and z at points (2, 0), (0, 1) and (1, 2), respectively. This implies that (x, y) forms
the lower envelope of T , while (y, z) and (z, x) form the upper one. This guarantees
that Invariant (O.3) is maintained at the base of the recursion. Let G ′ be the subgraph
of G obtained by removing a degree-2 vertex v from G with v �= x . We recursively
compute a drawing �(G ′) of G ′ that satisfies Invariant (O.3), such that the edge (x, y)
of T forms the lower envelope of �(G ′). Since (x, y) belongs to the outer face of G, it
follows that v is incident to two vertices of the upper envelope of �(G ′). So, after the
addition of v to �(G ′) in order to obtain �(G), the lower envelope of �(G) consists
only of edge (x, y), as desired. This concludes the construction of �(G) satisfying all
three Invariants (O.1), (O.2) and (O.3).

In the following, we focus on proving two properties of drawing �(G), that are
summarized in Lemma 2. Let 〈u, v, w〉 be a face of �(G) such that y(u) − y(w) = 2
and y(u) − y(v) = y(v) − y(w) = 1. We refer to vertices u, v and w as the top,
middle and bottom vertex of the face, respectively4.

Lemma 2 Let G be a biconnected maximal outerplane graph, and let �(G) be an
outerplanar drawing of G satisfying Invariants (O.1)–(O.3). Then, each vertex of G is

(a) the top vertex of at most two triangular faces of �(G), and
(b) the middle vertex of at most two triangular faces of �(G).

Proof For (a), consider a vertex u ofG. If u is the top vertex of a face, then u is incident
to a span-2 edge (u, v) with y(u) > y(v). By Invariant (O.3), u is a successor of v

in the recursive approach by Dujmović et al. [21], namely, when u is placed in the
recursively constructed drawing, vertex v belongs to its upper envelope.We now claim
that u cannot be incident to two span-2 edges (u, v) and (u, v′) with y(u) > y(v) and
y(u) > y(v′), that is, with the properties mentioned above; this claim implies part
(a) of the lemma. Assuming the contrary, by Invariant (O.2), when u is placed in the
drawing at most one edge incident to u has span 2. So, at most one of (u, v) and (u, v′)
is drawn when u is placed in the drawing, which implies that at least one of v or v′,
say v′, is a successor of u. Thus, y(u) < y(v′) holds; a contradiction.

For (b), assume for a contradiction that G contains a vertex u, which is the middle
vertex of three triangular faces, say T1, T2 and T3, of �(G). For a significantly small
constant ε > 0, let p1 = (x(u) − ε, y(u)) and p2 = (x(u) + ε, y(u)), and consider
the two horizontal rays r1 and r2 emanating from vertex u, such that r1 and r2 contain
points p1 and p2, respectively. Since u is middle vertex for T1, T2 and T3, it follows
by Invariant (O.2) that the span-2 edge of each of T1, T2 and T3 crosses either r1 or

4 Alam et al. [10] refer to the middle vertex of a triangular face in �(G) as its anchor.

123

Algorithmica (2023) 85:544–562 553

r2; by the choice of ε, we may assume that if a span-2 edge of one of the faces T1, T2
and T3 crosses r1 (r2), then point p1 (p2, respectively) lies in the interior of this face.
On the other hand, by outerplanarity, each of the points p1 and p2 can be contained
in at most one of T1, T2 and T3; a contradiction. ��

Note that part (a) of Lemma 2 requires Invariant (O.3), that is, it does not necessarily
hold for all drawings obtained by the algorithm by Dujmović et al. [21]. On the other
hand, part (b) of Lemma2 is a property of the original algorithmas it holds for drawings
that do not necessarily satisfy Invariant (O.3).

4.2 Planar 3-trees

To maintain Invariant (T.3), Alam et al. [10] use the algorithm by Dujmović et al. [21]
to assign the level edges of L0, . . . , Lλ of the input plane 3-tree H to two queues Q0
and Q1, since on each level these edges induce a (not necessarily connected) outer-
plane graph. In our approach we adopt the modification for the algorithm byDujmović
et al. [21] introduced in Sect. 4.1. As Invariants (O.1) and (O.2) are preserved, queues
Q0 and Q1 still suffice for the level edges of H . We exploit Invariant (O.3), that our
modification additionally satisfies, to derive an important property of the produced
queue layout, as stated in Lemma 3.

Tomaintain Invariant (T.4), Alam et al. [10] adopt the following assignment scheme
for the binding edges between L j and L j+1 to queues Q2, Q3 and Q4, for each
j = 0, . . . , λ − 1. Consider a binding edge (u, v) with u ∈ L j and v ∈ L j+1. Then,
vertex u belongs to a connected component Cu of the subgraph Hj of H induced by
the level-L j vertices. Similarly, vertex v belongs to a connected component Cv of the
corresponding subgraph Hj+1 of H . Furthermore, Cu is outerplane and its 2-queue
layout has been computed by the algorithm by Dujmović et al. [21], while Cv resides
in the interior of a triangular face Tv of Cu in the embedding of H , such that u is on
the boundary of Tv . In the edge-to-queue assignment scheme by Alam et al. [10], edge
(u, v) is assigned toQ2,Q3 orQ4 if and only if u is the middle, top or bottom vertex of
Tv , respectively [10]. For a vertex u ∈ L j with j = 0, . . . , λ−1, we denote by N2(u),
N3(u) and N4(u) the neighbors of u in L j+1 such that the edges connecting them to u
are assigned to queues Q2, Q3 and Q4, respectively. The next property follows from
Lemma 2.

Lemma 3 For j = 0, . . . , λ−1, let u ∈ L j be a vertex of H in our modification of the
peeling-into-levels approach by Alam et al. [10]. Then, the vertices of N2(u) precede
those of N3(u) in ≺H. Also, the vertices of N2(u) belong to at most two connected
components of Hj+1 (residing within distinct faces of Hj); the same holds for the
vertices of N3(u).

Proof The first part of the lemma is proven in [10], although it is not explicitly stated
as part of Invariants (T.1)–(T.4). For the second part, consider a binding edge (u, v)

with v ∈ N2(u); a similar argument applies when v ∈ N3(u). By the definition of
N2(u), vertex u is the top vertex of the triangular face Tv of Hj , in which the connected
component Cv of Hj+1 that contains v resides. Since by Lemma 2a vertex u can be

123

554 Algorithmica (2023) 85:544–562

(a) (b)

Fig. 5 Tripod τ with parents τ1, τ2 and τ3. In a τ shares no vertex with τ1, τ2, τ3 and in b τ shares a vertex
with τ3

the top vertex of at most two triangular faces of Hj , there exist at most two connected
components of Hj+1, to which vertex v can belong. ��

4.3 General Planar Graphs

Dujmović et al. [5] recursively compute the bags (that is, the tripods) of the H -partition.
In this recursive approach, each newly discovered tripod τ is adjacent to at most three
other tripods τ1, τ2 and τ3 already discovered. We say that τ1, τ2 and τ3 are the parents
of τ ; see Fig. 5a. Also, each non-empty vertical path of τ is connected to only one of
its parents via an edge of the BFS-tree used to construct the BFS-layering L (black
in Fig. 5a). This property gives rise to at most three sub-instances (gray in Fig. 5a),
which are processed recursively to compute the final tripod decomposition.

Note that, in general, one or more vertical paths of a tripod may have no vertices;
see Fig. 5b.We refer to such a tripod as degenerated. In addition, we call a degenerated
tripod empty if it shares a vertex with each of its parents. Hence, empty tripods have
no vertices and as a result do not contribute to H . To avoid considering degenerated
tripods that are not empty explicitly, we introduce an appropriate augmentation of the
input graph. More precisely, let f be the base triangle of a non-empty degenerated
tripod τ , and let T be the BFS tree that was used to compute τ . We augment G by
adding a triangle f ′ in the interior of face f . By an appropriate triangulation, we
can obtain a triangulated plane graph G ′ that contains G as a subgraph, such that all
vertices of f ′ are leaves of T , which gives rise to a BFS tree T ′ of G ′. In this way, face
f of G gets three leaves of T ′ inside it, one attached to each vertex of f . Hence, the
base triangle of the corresponding tripod in G ′ is not degenerated. This allows us to
assume without loss of generality in the following that, in the tripod decomposition,
either each tripod is empty or non-degenerated, that is, no vertical path of it is empty.

For i = 1, 2, 3, let p1i , p
2
i and p3i be the three vertical paths of tripod τi . Up to

renaming, we assume that τ lies in the cycle bounded by (parts of) p11, p
2
1, p

1
2, p

2
2, p

1
3

and p23 as in Fig. 5a. The next properties follow by planarity and the BFS-layering:

(P.6) There is no edge connecting a vertex of τ to a vertex of p3i for i = 1, 2, 3; see
the dotted edge in Fig. 6.

123

Algorithmica (2023) 85:544–562 555

Fig. 6 Illustration for
Properties (P.6) and (P.8). Dotted
and dashed edges would
introduce crossings

(P.7) Let v
p
i be the vertex of vertical path p of τ on layer Vi of L. For two vertical

paths p and q of τ , edge (v
p
i , v

q
j) belongs to G only if |i − j | ≤ 1.

(P.8) For vertical paths p and q of τ , atmost one of the edges (v
p
i , v

q
i+1) and (v

p
i+1, v

q
i)

exists in G; see the dashed edges of Fig. 6.

Note that Properties (P.6), (P.7), and (P.8) hold even if τ has less than three parents,
or if the cycle bounding the region of τ does not contain two vertical paths of each
parent tripod.

In the original algorithm by Dujmović et al. [5], each vertex vτ in H corresponds
to a non-empty tripod τ in G, and an edge (vτ , vτ ′) exists in H , if τ is a parent of
τ ′ in G, or vice versa. By construction, H is a connected partial planar 3-tree, which
is arbitrarily augmented to a maximal planar 3-tree H ′. Then, the algorithm by Alam
et al. [10] is employed to compute a 5-queue layout of H ′ as required by Lemma 1.
Here, we adopt a particular augmentation to guarantee an additional property for the
graph H ′ (see Lemma 4). Similarly to the original approach, we contract the vertices
of each non-empty tripod τ of G to a single vertex vτ . However, in our modification,
we keep self-loops that occur when an edge of G has both endpoints in τ (unless this
edge belongs to one of its vertical paths), as well as, parallel edges that occur when
two vertices of τ have a common neighbor not in τ . Two important properties of this
contraction scheme that follow directly from planarity are given below; see Fig. 7.

(P.9) The edges around each contracted vertex vτ appear in the same clockwise cyclic
order as they appear in a clockwise traversal along τ in G.

(P.10) The edges having at least one endpoint on the same vertical path of τ appear
consecutively around vτ ; see Fig. 7b.

Note that the aforementioned contraction scheme creates self-loops and pairs of paral-
lel edges. We focus on homotopic self-loops and pairs of parallel edges, which contain
no vertex either in the interior or in the exterior region that they define. We remove
such self-loops and keep one copy of such parallel edges. Then, we subdivide each
(non-homotopic) self-loop twice, and for each edge with multiplicity m > 1, we sub-
divide all but one of its copies. In this way, each vertex vτ corresponding to a tripod
τ in G always lies in the interior of a separating 3-cycle C that contains all the ver-
tices corresponding to its parent tripods on its boundary. To see this, observe that if
τ has three parent τ1, τ2 and τ3, then C is formed by vτ1 , vτ2 and vτ3 , such that vτ is

123

556 Algorithmica (2023) 85:544–562

(a) (b)

Fig. 7 a A tripod τ in G where the edges incident to its three vertical paths are drawn dotted, and b the
result after contracting τ to vτ

connected to each of them. If τ has two parent τ1 and τ2, then C is formed by vτ1 ,
vτ2 and a subdivision vertex, such that vτ is connected to vτ1 and vτ2 . Finally, if τ has
only one parent τ1, then C is formed by vτ1 and two subdivision vertices, such that vτ

is connected to vτ1 . Since subdivision vertices are of degree 2, the result is a simple
(possibly not maximal) planar 3-tree, which is a supergraph of H . To derive H ′, we
augment it to maximal by adding edges, while maintaining its embedding [23]. We
are now ready to state the additional property that H ′ has.

Lemma 4 Let vτ and vτp be two vertices of H ′ that correspond to a tripod τ and
to a parent tripod τp of τ in G. If Li and L j are the levels of vτ and vτp in the
peeling-into-levels approach for H ′, then i ≥ j .

Proof Let C be the inclusion-minimal separating 3-cycle of H ′ containing vτ in its
interior and all vertices that correspond to the parent tripods of τ on its boundary.
Let Lk , Ll and Lm be the levels of the three vertices of C , with k ≤ l ≤ m, in the
peeling-into-levels approach for H ′. As τp is a parent of τ , j ∈ {k, l,m} holds. Since
C is a 3-cycle and since each edge in the peeling-into-level approach is either level or
binding, m ≤ k + 1 holds. The fact that vτ lies in the interior of C and is connected
to each of the vertices in H ′ corresponding to its parent tripods in G, implies that vτ

is on level Lk+1, that is, i = k + 1. So, j ≤ m ≤ k + 1 = i holds. ��
As in the original algorithm by Dujmović et al. [5], we compute a 5-queue layout

QL(H ′) of H ′. However, we use our modification of the algorithm by Alam et al.
[10] described in Sect. 4.2. Denote by x1, . . . , xh the vertices of the subgraph H of
H ′ as they appear in QL(H ′), that is, we ignore subdivision vertices introduced when
augmenting H to H ′. Let also Q0, . . . ,Q4 be the queues of QL(H ′) as described in
Invariants (T.1)–(T.4). To compute the linear layout QL(G) of G, we use Lemma 1,
which orders the vertices of each layer Vi of the BFS-layering L, with i ≥ 0, as:

−→
Vi = Ax1 ∩ Vi , Ax2 ∩ Vi , . . . , Axh ∩ Vi ,

where Ax1, . . . , Axh are the bags, that is, the tripods, of the H -partition of G. Unlike
in the original algorithm, we do not order the vertices in each subset Ax j ∩ Vi , with
j ∈ {1, . . . , h}, arbitrarily. Instead, we carefully choose their order; we describe this

123

Algorithmica (2023) 85:544–562 557

choice in the rest of this section. Let τ be the tripod of bag Ax j . Then, Ax j ∩Vi contains
at most one vertex of each vertical path of τ . We will order the three vertical paths of
τ , which defines the order of the (at most three) vertices of Ax j ∩ Vi for every i ≥ 0.

Let Ll be the level of vτ in the peeling-into-levels of H ′, with 0 ≤ l < λ, that is,
we assume that vτ is not a vertex of the last level Lλ of H ′. By Lemma 3, there are at
most four connected components c1s , c

2
s , c

1
t and c

2
t of the subgraph H ′

l+1 of H
′ induced

by the vertices of Ll+1, such that the edges connecting vτ to vertices of c1s and c
2
s (c

1
t

and c2t) belong toQ2 (Q3, respectively). Let c be one of c1s , c
2
s , c

1
t and c

2
t ; since c is a

connected component of H ′
l+1, it may contain vertices that correspond to tripods in G

(that is, not subdivision vertices introduced while augmenting H to H ′). We refer to
the union of these vertices of G as the tripod-vertices of c, namely, the tripod-vertices
of c are the vertices of G contained in the tripods of G that correspond to the vertices
of c. By Invariant (T.1), vτ precedes the vertices of c1s , c

2
s , c

1
t and c2t in QL(H ′).

Also by Invariant (T.2), we may assume that the vertices of c1s (c1t) precede those of
c2s (c2t , respectively). Additionally, Lemma 3 ensures that the vertices of c2s precede
those of c1t .

Since an edge (vτ , vτ ′) exists in H , if τ is a parent of τ ′, or vice versa, by Lemma
4, for each vertex vτ ′ of H that is a neighbor of vτ in one of c1s , c

2
s , c

1
t and c

2
t , it follows

that τ is a parent of τ ′. By Property (P.6), there is a vertical path of τ in G, say p, such
that no tripod-vertex of c2s is adjacent to it in G. Similarly, there is a vertical path of
τ in G, say q, such that no tripod-vertex of c2t is adjacent to it in G. Note that p and
q might be the same vertical path of τ .

We now describe the order of the three vertical paths of τ . We only specify the first
one; the other two can be arbitrarily ordered:

(i) if the tripod-vertices of c1s and c
2
s are connected to all three vertical paths of τ in

G, then p is the first vertical path of τ ;
(ii) if the tripod-vertices of c1t and c

2
t are connected to all three vertical paths of τ in

G, then q is the first vertical path of τ ;
(iii) otherwise, any vertical path of τ can be first.

Before proving formally that Cases (i) and (ii) cannot apply simultaneously (which
implies that the order of the vertical paths of τ is well-defined), we state two important
implications of choosing the first vertical path of τ .

(P.11) By assuming that all vertices of c1s precede those of c
2
s , if tripod-vertices of c

1
s

and c2s are connected to all three vertical paths of τ , then tripod-vertices of c2s
are not connected to the first vertical path of τ .

(P.12) Also, under the assumption that all vertices of c1t precede those of c
2
t , if tripod-

vertices of c1t and c2t are connected to all three vertical paths of τ , then tripod-
vertices of c2t are not connected to the first vertical path of τ .

We now prove that Cases (i) and (ii) in the selection of the first vertical path of τ cannot
apply simultaneously. Assume for a contradiction that the tripod-vertices of c1s and c

2
s

are connected to all three vertical paths of τ , and also that the tripod-vertices of c1t and
c2t are connected to all three vertical paths of τ . Since vτ is the top vertex of the two
triangular faces f 1t and f 2t that contain c1t and c

2
t in their interior in �(H ′

l), it follows
that the edges connecting vτ to c1t and c

2
t appear consecutively around vτ in the cyclic

123

558 Algorithmica (2023) 85:544–562

(a) (b) (c)

Fig. 8 Illustrations for: a–b the fact that Cases (i) and (ii) in the selection of the first vertical path of τ

cannot apply simultaneously, and c the proof of Lemma 5

order of the binding edges between levels Ll and Ll+1 of H ′; refer to the blue edges of
Fig. 8a. Also, since vτ is the middle vertex of the two triangular faces f 1s and f 2s that
contain c1s and c

2
s in their interior in �(H ′

l), we can assume that the edges connecting
vτ to c1s immediately precede the edges connecting vτ to c1t and c2t , while the edges
connecting vτ to c2s immediately follow them; refer to the green edges of Fig. 8a.
Note that since we have assumed that the vertices of c1s precede the vertices of c

2
s , our

assumption on the order of the edges around vτ is a property of the algorithm by Alam
et al. [10]. Now, if the tripod-vertices of c1s and c2s are connected to all three vertical
paths of τ , and the same holds for the tripod-vertices of c1t and c

2
t , then Property (P.10)

implies that in G the edges connecting vertices of τ to tripod-vertices of c1t and c2t
alternate with edges connecting vertices of τ to tripod-vertices of c1s and c2s ; see e.g.
Fig. 8b. Hence, the cyclic order of the edges around vτ in H ′ is not the same as the
cyclic order of the edges incident to vertices of τ along a clockwise traversal of τ in
G, contradicting Property (P.9). Hence, Case (i) and (ii) cannot apply simultaneously,
as we initially claimed.

5 Reducing the Bound

To reduce the upper bound on the queue number of planar graphs, we turn our atten-
tion to the analysis of the required number of queues for the intra-bag inter-layer
edges (E.2), as well as for the inter-bag edges (that is, either intra-layer (E.3) or inter-
layer (E.4)–(E.5)); refer to Section 3.3.

For intra-bag inter-layer edges (E.2), the original algorithm by Dujmović et al. [5]
uses three queues, since the layered width � is 3; see blue edges in Fig. 4a. We prove
that no three intra-bag inter-layer edges form a 3-rainbow, implying that the upper
bound on the queue number of planar graphs can be improved from 49 to 48. Note that
this first improvement does not require any of the modifications presented in Sect. 4.

Lemma 5 In the queue layout computed by the algorithm by Dujmović et al. [5], no
three intra-bag inter-layer edges of G form a 3-rainbow.

Proof Assume to the contrary that there exist three such edges (u1, v1), (u2, v2) and
(u3, v3) forming a 3-rainbow inQL(G) such that u1 ≺G u2 ≺G u3 ≺G v3 ≺G v2 ≺G

123

Algorithmica (2023) 85:544–562 559

v1. By Property (P.1) these edges belong to the same bag A of the H -partition, while
by Property (P.2) their endpoints belong to two consecutive layers Vi and Vi+1 of L,
for some i ≥ 0. The underlying linear order implies that vertices u1, u2 and u3 belong
to Vi , while v1, v2 and v3 belong to Vi+1. The order of A∩ Vi and A∩ Vi+1 is u1 ≺G

u2 ≺G u3 and v3 ≺G v2 ≺G v1; see Fig. 8c. Let p1, p2 and p3 be the first, second
and third vertical paths of tripod τ forming A. Then, (u1, v3) ∈ p1, (u2, v2) ∈ p2 and
(u3, v1) ∈ p3. However, (u1, v1) and (u3, v3) contradict Property (P.8). Hence, there
is no 3-rainbow formed by intra-bag inter-layer edges of G. ��
For inter-bag edges (E.3)–(E.5), the algorithm byDujmović et al. [5] uses 3·15 queues,
since the layered width � is 3 and the best known upper bound on the queue number
k of planar 3-trees is 5; see green, purple and orange edges in Fig. 4b. We exploit
Property (P.3) to prove that 3 · 13 queues suffice for inter-bag edges. This further
improves the upper bound on the queue number of planar graphs from 48 to 42. Note
that this proof is more involved than the previous one and requires all modifications
presented in Sect. 4.

Lemma 6 In the queue layout computed by our modification of the algorithm by Duj-
mović et al. [5], the inter-bag edges of G do not form a 40-rainbow.

Proof To prove the statement, it suffices to show that the inter-bag edges of G that
belong to each of (E.3), (E.4) and (E.5) form at most a 13-rainbow. We focus on the
edges of (E.3), that is, on the intra-layer inter-bag edges of G; a similar argument
applies for the other two types of edges, that is, forward and backward inter-layer
inter-bag edges. We partition the edges of (E.3) into five parts E0

3 , . . . , E
4
3 , such that

for i = 0, . . . , 4, part Ei
3 contains the following type-(E.3) edges of G:

Ei
3 = {(u, v) ∈ (E.3) : u ∈ Ax , v ∈ Ay, (x, y) ∈ Qi }.

By Property (P.3), and since � = 3, the edges of Ei
3 can form an r -rainbow with r ≤ 3

(this property actually implies the initial bound of 3 · 5 = 15 queues for all intra-layer
inter-bag edges of G by Dujmović et al. [5]). We next prove that neither the edges of
E2
3 nor the edges of E

3
3 form a 3-rainbow, which yields the desired reduction from 15

to 13 on the size of the maximum rainbow formed by all edges of (E.3). Assume that
this is not true, say for the edges of E2

3 ; a symmetric argument applies for the edges of
E3
3 . Let (u1, v1), (u2, v2) and (u3, v3) be three edge of E2

3 that form a 3-rainbow, such
that u1 ≺G u2 ≺G u3 ≺G v3 ≺G v2 ≺G v1. Since (u1, v1), (u2, v2) and (u3, v3) are
of type (E.3), that is, intra-layer edges, their endpoints u1, u2, u3, v1, v2 and v3 all
belong to the same layer of the BFS-layering L of G5. Assuming that ui ∈ Axi and
vi ∈ Ayi , it follows that (xi , yi) is an edge of H assigned to Q2 and xi ≺H yi , for
i = 1, 2, 3.

5 Note that if we had assumed that (u1, v1), (u2, v2) and (u3, v3) belonged to one of (E.4) or (E.5), that is,
inter-layer edges, vertices u1, u2 and u3 would all belong to one layer, while vertices v1, v2 and v3 would
belong to the next layer. In what follows, we will only use the fact that vertices u1, u2 and u3 belong to the
same layer and that vertices v1, v2 and v3 belong to the same layer, without discriminating whether the two
layers are the same or not.

123

560 Algorithmica (2023) 85:544–562

By Property (P.3), either x1 = x2 = x3 or y1 = y2 = y3 holds. First, we prove
that x1 = x2 = x3 always holds. Assume for a contradiction that, without loss of
generality, x1 �= x2. Then, y = y1 = y2 = y3 holds. Since the edges of Q2 are
binding in the peeling-into-levels decomposition of H ′ and since x1 ≺H x2 ≺H y,
vertices x1 and x2 belong to level L j of H ′, while y belongs to level L j+1, for some
0 ≤ j < λ. By Property (T.4), y has only one neighbor on level L j such that the edge
connecting y to this neighbor is assigned to Q2. This contradicts the fact that both
edges (x1, y) and (x2, y) are assigned to Q2, since x1 �= x2 and x1 and x2 belong to
L j . Hence x = x1 = x2 = x3 holds.

Now, since the edges ofQ2 are binding edges in the peeling-into-levels decomposi-
tion of H ′, and since, for i = 1, 2, 3 , x ≺H yi , it follows that vertex x belongs to level
L j of H ′, while vertex yi belongs to level L j+1, for some 0 ≤ j < λ. Let τ be the
tripod of bag Ax and let τ1, τ2, τ3 be the tripods of Ay1 , Ay2 and Ay3 , respectively. Note
that vertices y1, y2 and y3 are not necessarily distinct, that is, the corresponding tripods
τ1, τ2 and τ3 are not necessarily pairwise different. However, since u1 ≺G u2 ≺G u3,
and since u1, u2 and u3 belong to the same layer in the BFS-layering L of G, we can
conclude that u1, u2 and u3 belong to p1, p2 and p3, respectively, where p1, p2 and
p3 are the first, second and third vertical paths of τ . From the fact that, for i = 1, 2, 3,
the edge (x, yi) belongs to H , we have that τ is a parent tripod of τi or vice versa.
Since x belongs to level L j of H ′ and vertices y1, y2 and y3 belong to level L j+1,
Lemma 4 implies that τ is a parent tripod of τ1, τ2 and τ3. By Lemma 3, there exist at
most two connected components c1s and c2s of H ′

j+1, such that the edges connecting

x to vertices of c1s and c2s have been assigned to Q2. Without loss of generality, by
Invariant (T.2) we assume that all vertices of c1s (if any) precede those of c

2
s (if any).

We first argue that not all vertices y1, y2 and y3 belong to only one of c1s or c2s ,
which further implies that both components c1s and c2s exist. Assume to the contrary
that y1, y2 and y3 belong to c1s ; a similar argument applies for c2s . By Property (P.6),
tripod-vertices of component c1s are not adjacent to the vertices of at least one vertical
path pi of τ in G, where 1 ≤ i ≤ 3. In this case, however, we obtain a contradiction
to the fact that vi , which is a tripod-vertex of c1s , is connect to ui that belongs to pi ,
i.e., edge (ui , vi) cannot exist in G.

Hence, not all vertices y1, y2 and y3 belong to only one of c1s or c
2
s , as we initially

claimed. In particular, since y3 �H y2 �H y1 and since all vertices of c1s precede
those of c2s , it follows that y3 belongs to c

1
s , while y1 belongs to c

2
s . On the other hand,

vertices u1, u2 and u3 belong to p1, p2 and p3, respectively, which implies that the
vertices of c1s and c2s are connected to all vertical paths of τ . Thus, Property (P.11)
applies, which states that the tripod-vertices of c2s (including v1) are not connected
to the first vertical path p1 of τ . However, this contradicts the fact that (u1, v1) is an
edge of G, with u1 ∈ p1. Hence, the edges of E2

3 cannot form a 3-rainbow. Using
Property (P.12) instead of Property (P.11), we can symmetrically prove that the edges
of E3

3 cannot form a 3-rainbow. This completes the proof of the lemma. ��
We are now ready to state the main theorem of this section by combining Lemmas 5
and 6.

Theorem 7 Every planar graph has queue number at most 42.

123

Algorithmica (2023) 85:544–562 561

6 Conclusions

In this work, we improved the upper bound on the queue number of planar graphs by
refining the three techniques involved in the original algorithm [5].We believe that our
approach has the potential to further reduce the upper bound by at least 3 more queues
(i.e., from 42 to 39). However, more elaborate arguments that exploit planarity in more
depth are required, and several details have to be worked out. Towards narrowing the
gap with the lower bound of 4, determining the exact queue number of planar 3-trees
becomes critical; an improvement of the current upper bound of 5 (to meet the lower
bound of 4) implies a direct improvement on the upper bound on the queue number
of general planar graphs. On the other hand, to obtain a better understanding of the
general problem, it is also reasonable to further examine subclasses of planar graphs,
such as bipartite planar graphs or planar graphswith bounded degree (e.g., cubic planar
graphs).

Funding Open access funding provided by HEAL-Link Greece. No funding was received for conducting
this study.

Declarations

Competing Interests The authors have no competing interests to declare that are relevant to the content of
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Díaz, J., Petit, J., Serna, M.J.: A survey of graph layout problems. ACMComput. Surv. 34(3), 313–356
(2002). https://doi.org/10.1145/568522.568523

2. Barth, D., Pellegrini, F., Raspaud, A., Roman, J.: On bandwidth, cutwidth, and quotient graphs. RAIRO
Theor. Inform. Appl. 29(6), 487–508 (1995). https://doi.org/10.1051/ita/1995290604871

3. Chinn, P.Z., Chvatalova, J., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem for graphs and
matrices - a survey. J. Graph Theory. 6(3), 223–254 (1982). https://doi.org/10.1002/jgt.3190060302

4. Horton, S.B., Parker, R.G., Borie, R.B.: Onminimum cuts and the linear arrangement problem. Discret.
Appl. Math. 103(1–3), 127–139 (2000). https://doi.org/10.1016/S0166-218X(00)00173-6

5. Dujmovic, V., Joret, G., Micek, P., Morin, P., Ueckerdt, T., Wood, D.R.: Planar Graphs Have Bounded
Queue-Number. J. ACM. 67(4):22:1–22:38 (2020)

6. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as mechanisms for laying
out graphs. SIAM J. Discrete Math. 5(3), 398–412 (1992). https://doi.org/10.1137/0405031

7. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958
(1992). https://doi.org/10.1137/0221055

8. Wiechert, V.: On the queue-number of graphs with bounded tree-width. Electr. J. Comb. 24(1), P1.65
(2017)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/568522.568523
https://doi.org/10.1051/ita/1995290604871
https://doi.org/10.1002/jgt.3190060302
https://doi.org/10.1016/S0166-218X(00)00173-6
https://doi.org/10.1137/0405031
https://doi.org/10.1137/0221055

562 Algorithmica (2023) 85:544–562

9. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser. B. 27(3), 320–331
(1979). https://doi.org/10.1016/0095-8956(79)90021-2

10. Alam, J.M., Bekos,M.A.,Gronemann,M.,Kaufmann,M., Pupyrev, S.: Queue layouts of planar 3-trees.
Algorithmica 82(9), 2564–2585 (2020). https://doi.org/10.1007/s00453-020-00697-4

11. Bannister, M.J., Devanny, W.E., Dujmovic, V., Eppstein, D., Wood, D.R.: Track layouts, layered
path decompositions, and leveled planarity. Algorithmica 81(4), 1561–1583 (2019). https://doi.org/
10.1007/s00453-018-0487-5

12. Bekos, M.A., Förster, H., Gronemann, M., Mchedlidze, T., Montecchiani, F., Raftopoulou, C.N., et al.:
Planar graphs of bounded degree have bounded queue number. SIAM J. Comput. 48(5), 1487–1502
(2019). https://doi.org/10.1137/19M125340X

13. Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width. SIAM J. Comput.
34(3), 553–579 (2005). https://doi.org/10.1137/S0097539702416141

14. Wood, D.R.: Queue layouts, tree-width, and three-dimensional graph drawing. In: Agrawal M, Seth
A, editors. FST TCS. vol. 2556 of LNCS. Springer pp. 348–359 (2002)

15. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor. Computer Sci. 6(2),
339–358 (2004)

16. Di Battista, G., Frati, F., Pach, J.: On the queue number of planar graphs. SIAM J. Comput. 42(6),
2243–2285 (2013). https://doi.org/10.1137/130908051

17. Dujmović, V., Frati, F.: Stack and queue layouts via layered separators. J. Graph Algorithms Appl.
22(1), 89–99 (2018). https://doi.org/10.7155/jgaa.00454

18. Dujmović, V., Joret, G., Micek, P., Morin, P., Ueckerdt, T., Wood, D.R.: Planar graphs have bounded
queue-number. In: Zuckerman, D. (ed.) FOCS, pp. 862–875. IEEE Computer Society (2019)

19. Bekos, M.A., Kaufmann, M., Klute, F., Pupyrev, S., Raftopoulou, C.N., Ueckerdt, T.: Four pages are
indeed necessary for planar graphs. J. Comput. Geom. 11(1), 332–353 (2020)

20. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36–67 (1989).
https://doi.org/10.1016/0022-0000(89)90032-9

21. Dujmović, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discrete Math. Theor. Computer Sci.
6(2), 497–522 (2004)

22. Heath, L.S.: Embedding planar graphs in seven pages. In: FOCS. IEEE Computer Society pp. 74–83
(1984)

23. Kratochvíl, J., Vaner, M.: A note on planar partial 3-trees (2012) CoRR arXiv:1210.8113

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1007/s00453-020-00697-4
https://doi.org/10.1007/s00453-018-0487-5
https://doi.org/10.1007/s00453-018-0487-5
https://doi.org/10.1137/19M125340X
https://doi.org/10.1137/S0097539702416141
https://doi.org/10.1137/130908051
https://doi.org/10.7155/jgaa.00454
https://doi.org/10.1016/0022-0000(89)90032-9
http://arxiv.org/abs/1210.8113

	An Improved Upper Bound on the Queue Number of Planar Graphs
	Abstract
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Outline of the Involved Techniques
	3.1 Outerplanar Graphs
	3.2 Planar 3-trees
	3.3 General Planar Graphs

	4 Refinements of the Involved Techniques
	4.1 Outerplanar Graphs
	4.2 Planar 3-trees
	4.3 General Planar Graphs

	5 Reducing the Bound
	6 Conclusions
	References

