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Abstract
We present a polynomial-space algorithm that computes the number of independent
sets of any input graph in time O(1.1389n) for graphs with maximum degree 3 and
in time O(1.2356n) for general graphs, where n is the number of vertices in the
input graph. Together with the inclusion-exclusion approach of Björklund, Husfeldt,
and Koivisto [SIAM J. Comput. 2009], this leads to a faster polynomial-space algo-
rithm for the graph coloring problem with running time O(2.2356n) as well as an
exponential-space O(1.2330n) time algorithm for counting independent sets. Our
main algorithm counts independent sets in graphs with maximum degree at most 3
and no vertex with three neighbors of degree 3. This polynomial-space algorithm is
designed and analyzed using the recently introduced Separate, Measure and Conquer
approach [Gaspers & Sorkin, ICALP 2015]. Using Wahlström’s compound measure
approach, this improvement in running time for small degree graphs is then boot-
strapped to larger degrees, giving the improvement for general graphs. Combining
both approaches leads to some inflexibility in choosing vertices to branch on for the
small-degree cases, which we counter by structural graph properties.
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1 Introduction

Graph coloring is a central problem in discrete mathematics and computer science.
In exponential time algorithmics [15], graph coloring is among the most well studied
problems, and it is an archetypical partitioning problem.Given a graphG and an integer
k, the problem is to determine whether the vertex set of G can be partitioned into k
independent sets. Already in 1976, Lawler [25] designed a dynamic programming
algorithm for graph coloring and upper bounded its running time by O(2.4423n),
where n is the number of vertices of the input graph. This was the best running time
for graph coloring for 25 years, when Eppstein [10] improved the running time to
O(2.4150n) by using better bounds on the number of small maximal independent sets
in a graph. Based on bounds on the number of maximal induced bipartite subgraphs
and refined bounds on the number of size-constrained maximal independent sets,
Byskov [7] improved the running time to O(2.4023n). An algorithm based on fast
matrix multiplication by Björklund and Husfeldt [3] improved the running time to
O(2.3236n). The current fastest algorithm for graph coloring, by Björklund et al. [2, 4]
and, [24], is based on the principle of inclusion–exclusion and Yates’ algorithm for the
fast zeta transform. This breakthrough algorithm solves graph coloring in O∗(2n) time,
where the O∗-notation is similar to the O-notation but ignores polynomial factors.

A significant drawback of the aforementioned algorithms is that they use exponen-
tial space. Often, the space bound is the same as the time bound, up to polynomial
factors. This exponential space bound is undesirable [30], certainly for modern com-
puting devices. Polynomial-space algorithms for graph coloring have been studied
extensively as well with successive running times O∗(n!) [8], O((k/e)n) (random-
ized) [11], O((2+ log k)n) [1], O(5.283n) [6], O(2.4423n) [3], and O(2.2461n) [4].
The latter algorithm is an inclusion–exclusion algorithm relying on a O(1.2461n) time
algorithm [16] for computing the number of independent sets in a graph as a subroutine.
Their method transforms any polynomial-space O(cn) time algorithm for counting
independent sets into a polynomial space O((1+ c)n) time algorithm for graph color-
ing. The running time bound for counting independent setswas subsequently improved
byFomin et al. [12] toO(1.2431n) andbyWahlström [29] toO(1.2377n).Wahlström’s
algorithm is the current fastest published algorithm for counting independent sets of a
graph, it uses polynomial space, and it works for the more general problem of comput-
ing the number of maximum-weight satisfying assignments of a 2-CNF formula. For
a reduction from counting independent sets to counting maximum-weight satisfying
assignments of a 2-CNF formula where the number of variables equals the number of
vertices, see [9].

We note that Junosza-Szaniawski and Tuczynski [23] present an algorithm for
counting independent sets with running time O(1.2369n) in a technical report that
also strives to disconnect low-degree graphs. For graphs with maximum degree 3 that
have no degree-3 vertex with all neighbors of degree 3, they present a new algorithm
with running time 2n3/5+o(n), where n3 is the number of degree-3 vertices, and the
overall running time improvement comes from plugging this result into Wahlström’s
[29] previously fastest algorithm for the problem. However, we note that the 2n3/5+o(n)

running time for counting independent sets can easily be obtained from previous
results. Namely, the problem of counting independent sets is a polynomial constraint
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satisfaction problem (PCSP) with domain size 2, as shown in [27]. The algorithm of
[20] for PCSPs preprocesses all degree-2 vertices, leaving a cubic graph on n3 vertices
that is solved in 2n/5+o(n) time. Improving on this bound is challenging, and degree-3
vertices with all neighbors of degree 2 need special attention since branching on them
affects the degree-3 vertices of the graph exactly the same way as for the much more
general PCSP problem, whereas for other degree-3 vertices one can take advantage of
the asymmetric nature of the typical independent set branching (i.e., we can delete the
neighbors when counting the independent sets containing the vertex we branch on).
Our Results.

We present a polynomial-space algorithm computing the number of independent
sets of any input graph G in time O(1.2356n), where n is the number of vertices of G.
Our algorithm is a branching algorithm that works initially similarly as Wahlström’s
algorithm, where we slightly improve the analysis using potentials (as, e.g., in [19, 22,
28]) to amortize some of the worst branching cases with better ones. This algorithm
uses a branching strategy that basically ensures that both the maximum degree and
the average degree of the graph do not increase. This makes it possible to divide
the analysis of the algorithm into sections depending on what local structures can still
occur in the graph, use a separatemeasure for the analysis of each section, and combine
these measures giving a compound (piecewise linear) measure for the analysis of the
overall algorithm.

We also specifically design a subroutine to handle instances where the maximum
degree is 3 and no vertex has three neighbors with degree 3, and is designed and
analyzed using the recently introduced Separate, Measure and Conquer technique
[20]. In this subroutine, the average degree of the graph is at most 8/3. It computes a
small balanced separator of the graph and prefers to branch on vertices in the separator,
adjusting the separator as needed by the analysis, and reaping a huge benefit when
the separator is exhausted and the resulting connected components can be handled
independently. The Separate, Measure and Conquer technique helps to amortize this
sudden gain with the analysis of the previous branchings, for an overall improvement
of the running time.

Since using a separator restricts our choice in the vertices to branch on, we use the
structure of the graph and its separation to upper bound the number of unfavorable
branching situations and adapt our measure accordingly. Namely, the algorithm avoids
branching on degree-3 vertices in the separator with all neighbors of degree 2 as long
as possible, often rearranging the separator to avoid this case. In our analysis we can
then upper bound the number of unfavorable branchings and give the central vertex
involved in such a branching a special weight and role in the analysis. We call these
vertices spider vertices. Our meticulous analysis of this subroutine upper bounds
its running time by O(1.0963n). For graphs with maximum degree at most 3, we
obtain a running time of O(1.1389n). This improvement for small degree graphs is
bootstrapped, using Wahlström’s compound measure analysis, to larger degrees, and
gives a running time improvement to O(1.2356n) for counting independent sets of
arbitrary graphs and to O(2.2356n) for graph coloring. Bootstrapping an exponential-
space pathwidth-based O(1.1225n) time algorithm [14] for cubic graphs instead, we
obtain an exponential-space algorithm for counting independent sets with running
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time O(1.2330n). A preliminary version of this paper appeared in the proceedings of
COCOON 2017 [18].

2 Methods

Measure and Conquer. The analysis of our algorithm is based on the Measure and
Conquer method [13]. A measure for a problem (or its instances) is a function from
the set of all instances of the problem to the set of non-negative reals.Modern branching
analyses often use a potential function as measure that gives a more fine-grained way
of tracking the progress of a branching algorithm than a measure that is merely the
number of vertices or edges of the graph. The following lemma is at the heart of our
analysis. It generalizes a similar lemma from [19] to the treatment of subroutines. The
proof of the lemma (see Lemma 2.6 in [17]) is a simple inductive argument. It uses
a measure μ to upper bound the number of leaves of any search tree of an algorithm
A, a measure η to upper bound the height of such a search tree, and a measure μB

that upper bounds the running time of an algorithm B that algorithm A may call as a
subroutine instead of branching.

Lemma 1 (Lemma 2.6 in [17]) Let A be an algorithm for a problem P. Let B be
an algorithm for a class C of instances of P, c ≥ 0 and r > 1 be constants. The
functions μ(·), μB(·), η(·) are measures for P such that for any input instance I from
C, μB(I ) ≤ μ(I ). If for any input instance I , A either solves P on I ∈ C by invoking
B with running time O(η(I )c+1rμB (I )), or reduces I to k instances I1, . . . , Ik , solves
these recursively, and combines their solutions to solve I , using time O(η(I )c) for the
reduction and combination steps (but not the recursive solves),

(∀i) η(Ii ) ≤ η(I ) − 1, and (1)
k∑

i=1

rμ(Ii ) ≤ rμ(I ) , (2)

then A solves any instance I in time O(η(I )c+1rμ(I )).

When Algorithm A does not invoke Algorithm B, we have the usual Measure and
Conquer analysis. Here, μ is used to upper bound the number of leaves of the search
tree and deserves the most attention, while η is usually a polynomial measure that
is used to upper bound the depth of the search tree. For handling subroutines, it is
crucial that the measure does not increase when Algorithm A hands over the instance
to Algorithm B and we constrain that μB(I ) ≤ μ(I ).

Compound analysis.We can view Wahlström’s compound analysis [29] as a repeated
application of Lemma 1. For example, there is one subroutine A3 for when the max-
imum degree of the graph is 3. The algorithm prefers then to branch on a degree-3
vertex with all neighbors of degree 3. After all such vertices have been exhausted,
the algorithm calls a new subroutine A8/3 that takes as input a graph with maximum
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degree 3 where no degree-3 vertex has only degree-3 neighbors. In this case the aver-
age degree of the graph is at most 8/3 - all neighbors of s in Γ (G) are a (2,2,2) vertex in
G - and the algorithm prefers to branch on vertices of degree 3 that have two neighbors
of degree 3, etc. The analysis constrains that the measure for the analysis of A8/3 is at
most the measure for A3 for the instance that is handed by A3 to A8/3. In an optimal
analysis, we expect the measure for such an instance to be equal in the analysis of A3
and A8/3, and Wahlström actually imposes equality at the pivot point 8/3.

Separate,Measure andConquer. In our case, the A8/3 algorithm is based on a technique
from [20] known as Separate, Measure and Conquer. For small-degree graphs, we can
compute small balanced separators in polynomial time. The algorithm then prefers to
branch on vertices in the separator. The Separate, Measure and Conquer technique
allows to distribute the large gain obtained by disconnecting the instance onto the
previous branching vectors. While, often, the measure is made up of weights that are
assigned to each vertex, this method assigns these weights only to the larger part of the
graph that is separated from the rest by the separator, and somewhat larger weights to
the vertices in the separator. See (3) on page 11 for the measure we use in the analysis.
Thus, after exhausting the separator, the measure accurately reflects the “amount of
work” left to do. We artificially increase the measure of very balanced instances by
small penalty weights – this is done so because branching on vertices can change the
measure of the parts that are separated by the separator and the branching strategy
might not always be able to make most of its progress on the large side. Since we may
exhaust the separators a logarithmic number of times, and computing a new separator
might introduce a penalty term each time, the measure also includes a logarithmic
term that counteracts these artificial increases in measure, and will in the end only
contribute a polynomial factor to the running time. For an in-depth treatment of the
method we refer to [20]. Since we use the Separate, Measure and Conquer method
when the average degree drops to at most 8/3, we slightly generalize the separation
computation from [20], where the bound on the separator size depended only on the
maximum degree. A separation (L, S, R) of a graph G is a partition of the vertex set
into (possibly empty) sets L , S, R such that every path from a vertex in L to a vertex
in R contains a vertex from S.

Lemma 2 Let B ∈ R. Letμ be ameasure for graph problems such that for every graph
G = (V , E), every R ⊆ V , and every v ∈ V , we have that |μ(R∪{v})−μ(R)| ≤ B.
Assume that μ(R) can be computed in polynomial time. If there is an algorithm
computing a path decomposition of width at most k of a graph G in polynomial time,
where G contains a path decomposition of width k, then there is a polynomial time
algorithmcomputinga separation (L, S, R)ofG with |S| ≤ k and |μ(L)−μ(R)| ≤ B.

Proof The proof is the same as for the separation computation from [20], but we
repeat it here for completeness. First, compute a path decomposition of width k in
polynomial time. We view a path decomposition as a sequence of bags (B1, . . . , Bb)

which are subsets of vertices such that for each edge of G, there is a bag containing
both endpoints, and for each vertex of G, the bags containing this vertex form a non-
empty consecutive subsequence. The width of a path decomposition is the maximum
bag size minus one.Wemay assume that B1 = Bb = ∅ and that every two consecutive
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bags Bi , Bi+1 differ by exactly one vertex, otherwise we insert between Bi and Bi+1 a
sequence of bags where the vertices from Bi \ Bi+1 are removed one by one followed
by a sequence of bags where the vertices of Bi+1 \ Bi are added one by one; this is
the standard way to transform a path decomposition into a nice path decomposition
of the same width where the number of bags is polynomial in the number of vertices
[5]. Note that each bag is a separator and a bag Bi defines the separation (Li , Bi , Ri )

with Li = (
⋃i−1

j=1 Bj )\ Bi and Ri = V \ (Li ∪ Bi ). Since the first of these separations
has L1 = ∅ and the last one has Rb = ∅, at least one of these separations has
|μr (Li ) − μr (Ri )| ≤ B. Finding such a bag can clearly be done in polynomial time.


�
We will use the lemma for graphs with maximum degree 3 and graphs with maxi-

mum degree 3 and average degree at most 8/3, for which path decompositions of width
at most n/6 + o(n) and n/9 + o(n) can be computed in polynomial time, respectively
[12, 14].

One disadvantage of using the Separate, Measure and Conquer method for A8/3
is that the algorithm needs to choose vertices for branching so that the size of the
separator decreases in each branch. However, Wahlström’s algorithm defers to branch
on degree-3 vertices with all neighbors of degree 2 until this is no longer possible,
since this case leads to the largest branching factor for degree 3. For our approach,
we instead rearrange the separator in some cases until we are only left with spider
vertices, a structure where our algorithm cannot avoid branching on a degree-3 vertex
with all neighbors of degree 2, we give a special weight to these spider vertices and
upper bound their number.

Potentials.Tooptimize the running time further,we also use potentials; see [19, 22, 28].
These are constant weights that are added to the measure if certain global properties
of the instance hold. For instance, we may use them to slightly increase the measure
when an unfavorable branching strategy needs to be used. The constraint (2) for this
unfavorable case then becomes less constraining, while all branchings that can lead to
this unfavorable case get tighter constraints. This allows then to amortize unfavorable
cases with favorable ones.

3 Algorithm

We first introduce notation necessary to present the algorithm. Let V (G) and E(G)

denote the vertex set and the edge set of the input graph G. For a vertex v ∈ V (G), its
neighborhood, NG(v), is the set of vertices adjacent to v. The closed neighborhood
of a vertex v is NG [v] = NG(v) ∪ {v}. If G is clear from context, we use N (v) and
N [v].

The degree of v is denoted d(v) = |NG(v)|. For two vertices u and v connected
by a path P ⊆ V (G), if P \ {u, v} consists only of degree-2 vertices then we call P a
2-path of u and v.

The maximum degree of G is denoted Δ(G) and d(G) = 2|E(G)|/|V (G)| is its
average degree. A cubic graph consists only of degree-3 vertices. A subcubic graph
has maximum degree at most 3. A (k1, k2, ..., kd) vertex is a degree-d vertex with
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neighbors of degree k1, k2, ..., kd . A separation (L, S, R) of G is a partition of its
vertex set into the three sets L, S, R such that no vertex in L is adjacent to any vertex
in R. The sets L, S, R are also known as the left set, separator, and right set. Using
a notion from [20], a separation (L, S, R) of G is balanced with respect to some
measure μ, and a branching constant B if |μ(R) − μ(L)| ≤ 2B and imbalanced if
|μ(R) − μ(L)| > 2B.

By convention, μ(R) ≥ μ(L) otherwise, we swap L and R. We will now describe
the algorithm #IS which takes as input a graph G, a separation (L, S, R), and a
cardinality function c : {0, 1}×V (G) → N, and computes the number of independent
sets of G weighted by the cardinality function c. For clarity, let cout (v) = c(0, v) and
cin(v) = c(1, v). More precisely, it computes

ind(G, c) =
∑

X⊆V (G)
X is an independent set in G

∏

v∈X
cin(v) ·

∏

v∈V \X
cout (v).

Note that for a cardinality function c initialized to c(0, v) = c(1, v) = 1 for every
vertex v ∈ V (G), we have that ind(G, c) is the number of independent sets of G.
Cardinality functions are dynamic and used for bookkeeping during the branching
process and have been used in this line of work before.

The separation (L, S, R) is initialized to (∅,∅, V (G)) and will only come into play
when G is subcubic and has no (3,3,3)-vertex. In this case, the algorithm calls a sub-
routine #3IS, which constitutes the main contribution of this paper. #3IS computes a
balanced separation of G, preferring to branch on vertices in the separator, readjusting
the separator as needed, and is analyzed using the Separate, Measure and Conquer
method.

Dragging refers to moving vertices or a set of vertices of G from one component
of (L, S, R) to another, creating a new separation (L ′, S′, R′).

Skeleton Graph. The skeleton graph Γ (G), or just Γ , of a subcubic graph G is a graph
where the degree-3 vertices of G are in bijection with the vertices in Γ . Two vertices
in Γ are adjacent if the corresponding vertices are adjacent in G, or there exists a
2-path between the corresponding vertices in G. If G has a separation (L, S, R) then
denote LΓ , SΓ , RΓ to be the vertices of L, S, R respectively in Γ , which have exactly
degree 3.

Spider Vertices.AsWahlström’s [29] analysis showed, an unfavorable branching case
occurs on (2, 2, 2) vertices. In this analysiswe identified further specificallywhat kinds
of (2, 2, 2) vertices were more undesirable, and attempted to amortize the weights of
these vertices. We call these vertices spider vertices. Here Γ refers to the skeleton
graph. A vertex s is a spider vertex if

– s ∈ S
– all neighbors of s are a (2,2,2) vertex and,
– either:

– |NΓ (s) ∩ L| = 2 and NΓ (s) ∩ R = {r} with r having neighbors of degree
(2,2,2); in this case we call s a left spider vertex
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Fig. 1 A left spider vertex s
rs

– |NΓ (s) ∩ R| = 2 and NΓ (s) ∩ L = {l} with l having neighbors of degree
(2,2,2); in this case we call s a right spider vertex

– |NΓ (s) ∩ L| = 1, |NΓ (s) ∩ R| = 1, NΓ (s) ∩ S = {s′} and s′ has neighbors of
degree (2,2,2); in this case we call both s and s′ a center spider vertex, which
occur in pairs.

A left spider vertex s ∈ S can be dragged to the left along with the 2-path from s
to r . If this occurs, then r becomes a right spider vertex, and vice versa (Fig. 1).

Multiplier Reduction.Weuse a reduction calledmultiplier reduction to simplify graphs
that have a cut vertex efficiently. Suppose G = (V , E) has a separation (V1, {x}, V2)
and G1 = G[V1 ∪ {x}] has measure at most a constant B. For any vertex set U ⊆ V
and a subgraph G ′ = (V ′, E ′) of G let G ′[U ] represent V ′ ∩ U , in other words, the
vertices of U which remain in the new subgraph G ′. The multiplier reduction can be
applied to compute #IS(G, (L, S, R), c) as follows.

1. Let:

– Gout = G1 \ {x}
– G in = G1 \ NG1 [x]
– cout =#IS(Gout,(Gout[L],Gout[S],Gout[R]), c)
– cin =#IS(G in,(G in[L],G in[S],G in[R]), c)

2. Modify c such that cin(x) = cin(x) · cin and cout(x) = cout(x) · cout
3. Return #IS(G[V2 ∪ {x}], (L \ V1, S \ V1, R \ V1), c)

Our measure will make sure that for any instance whose measure is upper bounded
by a constant steps 1 and 2 can be performed in polynomial time. Since the measure
of G1 is upper bounded by a constant, G1 is processed in polynomial time by the
multiplier reduction.

Lazy 2-separator. Suppose there is a vertex x initially chosen to branch on as well as
two vertices {y, z} ⊂ V (G) with d(y) ≥ 3 and d(z) ≥ 3 such that x belongs to an
induced subgraph of G of constant measure separated from the rest of the graph by
the separator {y, z}. We call this separator a lazy 2-separator, for a vertex x . Similar to
Wahlström’s elimination of separators of size 2 in [28], in line 15 of #IS (Algorithm
1) instead of branching on x , if there exists a lazy 2-separator {y, z} for x we branch
on y. A multiplier reduction will be performed on z in the recursive calls. Prioritizing
lazy 2-separators allows to exclude some unfavorable cases when branching on x .

Associated Average Degree. Similar to [29], we define the associated average degree
of a vertex x ∈ V (G) as α(x)/β(x), in G with average degree d(G) where

α(x) = d(x) + |{y ∈ N (x) : d(y) < d(G)}| , and

β(x) = 1 +
∑

y∈N (x), d(y)<d(G)

1/d(y) .
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By selecting vertices with high associated average degree, our algorithm prioritizes
branching on vertices with larger decreases in measure.

Branching. We now outline the branching routine used to recursively solve smaller
instances of the problem. Suppose we have a graph G, a separation (L, S, R), and a
cardinality function c. For a vertex x we denote the following steps as branching on
x .

1. Let:

– Gout = G \ {x}
– G in = G \ N [x]
– cout = #IS(Gout, (L[Gout], S[Gout], R[Gout]), c)
– cin = #IS(G in, (L[G in], S[G in], R[G in]), c)
– c′

out = cout(x)
– c′

in = cin(x) · ∏v∈N (x) cout(v)

2. Return c′
out · cout + c′

in · cin

BranchingVectors.Constraints, of the type referred to in (2), are presented as branching
vectors (δ1, δ2) which equates to the constraints 2−δ1 + 2−δ2 ≤ 1.

4 Running Time Analysis

This section describes the running time analysis for #IS and #3IS, conducted
via compound measures [29] using Lemma 1. Compound measures are piecewise
measures which apply a finer analysis to specific states during the execution of the
algorithm. In our case, the piecewise nature of compound measures allows different
analyses and running times to apply for different average degrees of the input graph.

4.1 Measures

Measure with no (3,3,3) vertex.When using the Separate, Measure and Conquer tech-
nique from [20] the measure of a cubic graph instance G with no (3,3,3) vertices
consists of additive components μs and μr , the measure of vertices in the separator,
and those in either L or R, respectively. Let S′ ⊆ S be the set of all spider vertices,
si and ri refer to the weight attributed to a separator vertex and a right vertex, in R or
L , respectively, of degree i . Left and right spider vertices have weight s′

3. In a center
spider vertex pair s and s′, one of them has weight s′

3 while the other takes on an
ordinary weight of s3. The weights s3 and s′

3 attributed to spider vertices allows for
amortization of the spider vertex cases against non-spider vertices. Define the measure
μ8/3 as

μ8/3 = μs(S) + μr (R) + μo(L, S, R), where

μs(S) = |S′| · s′
3 +

∑

v∈S\S′
sd(v),
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Algorithm: #IS(G, (L, S, R), c) - #Independent Set algorithm
Input : Graph G = (V , E), separation (L, S, R) of G, cardinality function c
Output : ind(G, c)

1 if V = ∅ then
2 return 1

3 if |V | = 1 then
4 return cin(x) + cout(x) where V = {x}
5 if Δ(G) ≤ 2 then
6 return a solution in polynomial time

7 else if G is not connected and has j connected components G1,G2, . . . ,G j then

8 return
∏ j

i=1 #IS(Gi , (∅, ∅, V (Gi )), c)

9 else if Δ(G) = 4, and all degree-4 vertices of G only have degree-2 neighbors, and there exists a
vertex x where d(x) = 4 and x has a 2-path to a degree-3 vertex then

10 Branch on x

11 else
12 Let vertex x ∈ V be a vertex of maximum degree, secondarily maximizing the associated

average degree α(x)/β(x)
if the multiplier reduction applies then

13 Apply the multiplier reduction

14 else if there exists a separator of size 2: {y, z}, with d(y) ≥ 3 and d(z) ≥ 3 whose removal
leaves G disconnected and either removes or leaves NG [x] in a component with constant
measure at most B then

15 Branch on y.

16 else
17 if Δ(G) = 3 and G has no (3,3,3) vertex then
18 return #3IS(G, (L, S, R), c)

19 else
20 Branch on x

Algorithm 1: Algorithm for counting independent sets of a graph G

μr (R) =
∑

v∈R

rd(v),

B = 6s3, and

μo(L, S, R) = max

{
0, B − μr (R) − μr (L)

2

}
+ (1 + B) · log1+ε(μr (R) + μs(S)).

(3)

We also require that si ≥ si−1 and ri ≥ ri−1 for i ∈ {1, 2, 3}. The constant B = 6s3
is larger than themaximum change in imbalance in each transformation in the analysis,
except the separation transformation.

The constant ε > 0 is required to satisfy

μr (R) + μr (S) ≥ (1 + ε)(μr (R
′) + μs(S

′))

which constrains that separating (∅, S, R) to (L ′, S′, R′) should reduceμr (R)+μs(S)

by a constant factor, namely 1 + ε.
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Algorithm: #3IS(G,(L, S, R), c) - #Independent Set algorithm for subcubic graphs with no
(3,3,3) vertex

Input : Graph G = (V , E), separation (L, S, R) of G, cardinality function c
Output : ind(G, c)

1 if S = ∅ then
2 Compute balanced separation (L, S, R) w.r.t. the measure μ using Lemma 2.

3 if μr (L) > μr (R) then
4 Swap L and R

5 (L, S, R) := simplify(G, (L, S, R))

6 if the multiplier reduction applies then
7 Apply the multiplier reduction.

8 Let s ∈ S be a maximum degree vertex with maximum associated average degree.
9 if there exists a separator of size 2: {y, z}, with d(y) ≥ 3 and d(z) ≥ 3 whose removal leaves G
disconnected and either removes or leaves NG [s] in a component with constant measure at most B
then

10 Branch on y.

11 else if μr (R) − μr (L) ≤ 2B and s has neighbors of degree (2,2,2) then
12 return spider(s,G, (L, S, R), c)

13 else if μr (R) − μr (L) > 2B and s has two neighbors in L and one neighbor r in R, let r ′ be the
first degree-3 vertex or vertex from S encountered when moving from s to the right along a 2-path P
in G then

14 return #IS(G, (L ∪ P ∪ {s}, (S \ {s}) ∪ {r ′}, R \ (P ∪ {r ′})), c)
15 else if μr (R) − μr (L) > 2B and there exists r ∈ NΓ (s) ∩ R with NΓ (r) ∩ R = ∅ then
16 Let {r , r ′} = NΓ (s) ∩ R with NΓ (r) ∩ R = ∅
17 Branch on r ′

18 else
19 Branch on s

Algorithm 2: Subroutine of #IS for counting independent sets in graphs of max-
imum degree 3 which have no (3,3,3) vertex.

We use the measure μr defined on page 11 to compute the separation in our algo-
rithm using Lemma 2.

Lemma 3 For a balanced separation (L, S, R) of a graph G, computed by Lemma 2,
with average degree d = d(G), maximum degree at most 3, and no (3,3,3) vertex, an
upper bound for the measure μ8/3 is:
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Algorithm: simplify(G, (L, S, R)) - Applies simplification rules.
Input : Graph G = (V , E), separation (L, S, R) of G
Output : (L, S, R)

1 if there exists a vertex s ∈ S with no neighbor in L then
2 return simplify(L, S \ {s}, R ∪ {s})
3 else if there exists a vertex s ∈ S with no neighbor in R then
4 return simplify(L ∪ {s}, S \ {s}, R)
5 else if there exists a vertex s ∈ S with d(s) = 2 then
6 if (L, S, R) is balanced then
7 Let l ∈ NΓ (s) ∩ (L ∪ S). Let P be the 2-path for s and l.
8 return simplify(G, (L \ (P ∪ {l}), (S \ {s}) ∪ {l}, R ∪ P ∪ {s}))
9 else

10 Let r ∈ (NΓ (s) ∩ R) ∪ S. Let P be the 2-path connecting s and r .
11 return simplify(G, (L ∪ P ∪ {s}, (S \ {s}) ∪ {r}, R \ (P ∪ {r})))
12 else if there exists a vertex s ∈ S such that for every vertex l ∈ NΓ (s) ∩ L we have that

NΓ (l) ∩ L = ∅ then
13 For l ∈ (NΓ (s) ∩ L), let Al = (NΓ (l) ∩ S), let P(s,l) be the 2-path from s to l, and for a ∈ Al let

P(l,a) ⊂ V (G) be the 2-path from l to a.
14 Let B = (NΓ (s) ∩ S) and for b ∈ B let Qb ⊂ V (G) be the 2-path from s to b.

15 Let C = (⋃
b∈B Qb

) ∪ (NΓ (s) ∩ L) ∪
(⋃

l∈NΓ (s)∩L Al ∪ P(s,l) ∪
(⋃

a∈Al
P(l,a)

))

16 return simplify(G, (L \ C, S \ ({s} ∪ C), R ∪ {s} ∪ C))

17 else if there exists a vertex s ∈ S such that for every vertex r ∈ NΓ (s) ∩ R we have that
NΓ (r) ∩ R = ∅ then

18 For r ∈ (NΓ (s) ∩ R), let Ar = (NΓ (r) ∩ S), let P(s,r) be the 2-path from s to r , and for a ∈ Ar
let P(r ,a) ⊂ V (G) be the 2-path from r to a.

19 Let B = (NΓ (s) ∩ S) and for b ∈ B let Qb ⊂ V (G) be the 2-path from s to b.

20 Let C = (⋃
b∈B Qb

) ∪ (NΓ (s) ∩ R) ∪
(⋃

r∈NΓ (s)∩R Ar ∪ P(s,l) ∪
(⋃

a∈Ar P(r ,a)

))

21 return simplify(G, (L ∪ {s} ∪ C, S \ ({s} ∪ C), R \ C))

22 else
23 return (L, S, R)

Algorithm 3: Subroutine for #3IS which applies simplification rules.

μ8/3(d) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n
6 (d − 2)s′

3 + 1
2

(
5n
6 (d − 2)r3 + n(3 − d)r2

)

+μo(L, S, R) + o(n) if 2 ≤ d ≤ 28
11

n
4 (8 − 3d)s′

3 + n
12 (11d − 28)s3

+ 1
2

(
5n
6 (d − 2)r3 + n(3 − d)r2

)
+ μo(L, S, R) + o(n) if 28

11 < d ≤ 8
3

which is maximised when d = 8
3 with the value

μ8/3 ≤ n

9
s3 + 1

2

(
5n

9
r3 + n

3
r2

)
+ μo(L, S, R) + o(n)

if constraints r2
2 ≤ s′3

11 + 5r3
22 + 5r2

22 ≤ s3
9 + 5r3

18 + r2
3 are satisfied.
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Algorithm: spider(s,G, (L, S, R), c) - handles the (2,2,2) vertex s
Input : A (2,2,2) vertex s, graph G = (V , E), separation (L, S, R) of G, cardinality function c
Output : ind(G, c)

1 if |NG (s) ∩ R| = 1 then
2 Let {r} = NΓ (s) ∩ R and let Pr be the 2-path from s to r .
3 if r is a (2,2,3) vertex or a (2,3,3) vertex then
4 return #3IS(G, (L ∪ Pr ∪ {s}, (S ∪ {r}) \ {s}, R \ (Pr ∪ {r})), c)
5 else if |NG (s) ∩ L| = 1 then
6 Let {l} = NΓ (s) ∩ L and let Pl be the 2-path from s to l.
7 if l is a (2,2,3) vertex or a (2,3,3) vertex then
8 return #3IS(G, (L \ (Pl ∪ {l}), (S ∪ {l}) \ {s}, R ∪ Pl ∪ {s}), c)
9 else if |NΓ (s) ∩ SΓ | = 1 then

10 Due to simplify call, let {s′} = NΓ (s) ∩ SΓ , {l} = NΓ (s) ∩ LΓ and {s, s1, s2} = NΓ (l).
11 for i ∈ {1, 2} do
12 if si ∈ S and |NG (si ) ∩ R| = 1 then
13 Let {ri } = NG (si ) ∩ R
14 (L, S, R) := (L ∪ {si }, (S ∪ {ri }) \ {si }, R \ {ri })
15 Branch on l.

16 else
17 Branch on s.

Algorithm 4: Subroutine of #3IS which handles spider vertices.

Proof Let d = d(G) be the average degree of G. For an appropriate upper bound of
μ8/3 we first consider the upper bound on the number of separator vertices,

#Spiders ≤ |S| ≤ n3
6

+ o(n3) = n(d − 2)

6
+ o(n) (4)

where n3 = n(d − 2) is the number of degree-3 vertices in G, since a subcubic graph
with n3 vertices of degree 3 has pathwidth at most n3

6 + o(n3) [12].
As we have no (3,3,3) vertex, every degree-3 vertex is incident to an edge incident

to a degree-2 vertex. However, each spider vertex has to have 4 more edges incident to
degree-2 vertices. As the number of edges incident to degree-2 vertices is 2n2 where
n2 = n(3 − d) is the number of degree-2 vertices in G, and there are at least n3 of
those edges taken up to be incident to a degree-3 vertex, an upper bound on the number
of spider vertices is:

#Spiders ≤ 2n2 − n3
4

= n

(
2 − 3

4
d

)
(5)

Since both upper bounds are valid for all 2 ≤ d ≤ 8/3, a more accurate upper
bound can be found by taking the minimum of Eqs. (4) and (5). This results in:

#Spiders ≤
{

n
6 (d − 2) + o(n) if 2 ≤ d ≤ 28

11

n
(
2 − 3

4d
)

if 28
11 < d ≤ 8

3
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As |S| ≤ n
6 (d − 2) + o(n) for all 2 ≤ d ≤ 8

3 , with the weight for spider vertices s3
being greater than regular non-spider degree-3 vertices in the separator, then an upper
bound forμ8/3 would have as many spider vertices in S as possible for a given average
degree d. For 2 ≤ d ≤ 28

11 it is possible to have all vertices in S be spider vertices, so
this gives the greatest value of μ8/3. However, from 28

11 < d ≤ 8
3 we use Eq. (4) to

upper bound |S|. We also place in S as many spider vertices with weight s′
3 as Eq. (5)

allows, with the rest of the vertices in S being of weight s3. Therefore,

μ8/3 ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n
6 (d − 2)s′

3 + 1
2

(
5n
6 (d − 2)r3 + n(3 − d)r2

)

+μo(L, S, R) + o(n) if 2 ≤ d ≤ 28
11

n
4 (8 − 3d)s′

3 + n
12 (11d − 28)s3+

1
2

(
5n
6 (d − 2)r3 + n(3 − d)r2

)
+ μo(L, S, R) + o(n) if 28

11 < d ≤ 8
3 .

Let f1(d) = n
6 (d−2)s′

3+ 1
2 (

5n
6 (d−2)r3+n(3−d)r2) and f2(d) = n

4 (8−3d)s′
3+

n
12 (11d − 28)s3 + 1

2 (
5n
6 (d − 2)r3 + n(3 − d)r2). We notice that f1 and f2 are both

linear functions in d and f1(
28
11 ) = f2(

28
11 ) meaning that the endpoints f1(2), f2

( 28
11

)
,

and f2
( 8
3

)
are the only points of interest. For the piecewise measure to be valid, and

not result in an increase of measure as d decreases, we consider the values of μ8/3 at
the endpoint values of 2, 28

11 , and
8
3 and require that f1(2) ≤ f2

( 28
11

) ≤ f2
( 8
3

)
which

results in the constraints

r2
2

≤ s′
3

11
+ 5r3

22
+ 5r2

22
≤ s3

9
+ 5r3

18
+ r2

3
.

Also the maximum value achieved by f2 when average degree d = 8
3 is:

μ8/3 ≤ f2

(
8

3

)
+ μo(L, S, R) + o(n)

= n

9
s3 + 1

2

(
5n

9
r3 + n

3
r2

)
+ μo(L, S, R) + o(n).


�

General Measure In order to analyze higher degree cases, we use a measure of the
form

μi (G) =
∑

v∈G
rd(v) + μo(L, S, R) where Δ(G) = i

for each part of the compoundmeasure, as defined by the parameter i , which represents
different branching cases. When branching, we always attempt to find the highest
degree vertex, with neighbors of highest degrees. Once this kind of vertex is exhausted,
we will never branch on this kind of vertex again, and transition to a different case
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and apply a different measure μi (G). These cases, described in Table 1, are defined
by their highest possible average degree.

The term μo(L, S, R) is the same sub-linear term from the Separate, Measure and
Conquer analysis in Eq. (3) which needs to be propagated into the higher degree
analyses.

4.2 Degree 3 Analysis

The problem of counting independent sets, #IS, can be solved in polynomial time
whenΔ(G) ≤ 2 [26]. However, stepping up to cubic graphs is a much harder problem.
Greenhill [21] proves that #3IS is actually a #P-hard problem.

Lemma 4 Algorithm #IS applied to a graph G withΔ(G) ≤ 3 and no (3, 3, 3) vertex
has running time O(1.0963n).

Proof Lemma 4 will be proved over the next few subsections. We will analyze the
running time with respect to the measure μ8/3 described in Eq. (3). Weights will
be attributed to vertices, depending on structural properties such as their degree, and
whether or not they are spider vertices. As suggested in [20]wewill provide constraints
that these vertex weights need to satisfy, and the provided values minimize an upper
bound of the measure of the form αn. Themeasureμ8/3 can be viewed in two regimes;
a balanced separation, where μr (R) − μr (L) ≤ 2B resulting in μ8/3 = μs(S) +
1
2 (μr (R) − μr (L)) + μo(L, S, R) and an imbalanced separation, where μr (R) −
μr (L) > 2B resulting in μ8/3 = μs(S) + μr (R) + μo(L, S, R). To characterize
decreases in vertex degrees, letΔsi = si −si−1 andΔri = ri −ri−1. Trivial constraints
are

r0 = r1 = 0 s0 = s1 = 0.

Our algorithm handles 2-paths as if they were single edges. This is due to the consider-
ation of the skeleton graph which is used when making decision on how to branching.
By using the skeleton graph in the algorithm, which imagines 2-paths as single edges,
we also constrain that r2 = 0. This means that degree 2 vertices do not impact themea-
sure since we won’t need to branch on these kinds of vertices and only ever simplify
them.

Constraints from #IS Simplification rules in lines 2 to 8 in #IS take polynomial
time. If we are given a graph G with Δ(G) ≤ 3 and no (3, 3, 3) vertex and the lazy
2-separator rule in line 15 did not apply, then we enter the subroutine #3IS.

Constraints from simplify The simplification rules in simplify either reduce
the separator size by removing a vertex or the rule drags degree-2 vertices in S away
making S consist only of degree-3 vertices. For vertex dragging to R in line 2 of
simplify, the most constraining instances are the balanced ones:

−sd + rd ≤ 0 where d ∈ {2, 3} and − s′
3 + r3 ≤ 0 .
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However, for vertex dragging to L in line 4, the imbalanced instances are most
constraining

−sd + 1/2 · rd ≤ 0 where d ∈ {2, 3} and − s′
3 + 1/2 · r3 ≤ 0

but this is no more constraining than the constraints generated from line 2 of
simplify.

Line 8 drags to R the degree-2 separator vertex s and a 2-path, ending in a vertex
l which is either in S or has degree 3, which itself is dragged into S. This most
constraining in the balanced case

−s2 + s′
3 + 1

2
· (r2 − r3) ≤ 0;

In line 11 the most constraining case is

−s2 + s′
3 − r3 ≤ 0 .

The operations in line 16 drag neighbors and associated 2-paths from L into R, also
removing s ∈ S. Since r2 = 0 we can simplify the most constraining case, which is
imbalanced, to:

−s3 + 2r3 ≤ 0.

Line 21 is most constraining in the balanced case, which induces the constraint

−s3 ≤ 0.

Claim After simplify has been applied to a graph G and its separation (L, S, R),
for each s ∈ S there exists r ∈ NΓ (s) ∩ R such that NΓ (r) ∩ R �= ∅, and also there
exists l ∈ NΓ (s) ∩ L such that NΓ (l) ∩ L �= ∅
Proof If there is a vertex s that does not satisfy the claim, then line 16 or 21 would
trigger and remove s from S. 
�

Constraints from spider The first two conditions of lines 3 and 7 in spider aim to
drag into the separator a (2,2,3) or (2,3,3) vertex in order to branch more efficiently on.
In the worst case there is no change in measure since s is replaced by r in the separator.
Since the separation (L, S, R) is balanced, due to the context in which spider is
called, moving Pr and r or Pl and l also does not change the measure as L and R
contribute equally to μ8/3.

In line 14, s is a center spider vertex with attributed weight s′
3. We branch on l ∈ L ,

which is a skeleton neighbor of s. The for loop drags vertices which are skeleton
neighbors of l with no change in measure so that when l is branched on, it obtains a
decrease in measure of at least 3

2r3 by its neighbors. However, we choose l to branch
on because on both subproblems, branching on l causes the removal of s from the
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s
l

S RL

(a) Balanced branching on l

s

S RL

(b)Balanced branching on s

Fig. 2 Worst case configurations for spider vertex branching in spider

separator as it no longer has neighbors in L . This results in the branching constraints,
described in Fig 2 (recall from Page 9):

(
s′
3 + 1

2
(r3 + 2Δr3), s

′
3 + 1

2
(r3 + 2Δr3)

)
.

Line 17 finds a valid left or right spider vertex and branches on it, resulting in the
constraints

(
s′
3 + 3

2
Δr3, s

′
3 + 3

2
Δr3

)
.

Constraints from #3IS - Computing Separator. Much like in [20], computing a new
separator in line 2 of #3IS imposes the constraint

s′
3/6 + 5/12 · r3 < r3, or s′

3 < 7/2 · r3.

In line 5 the algorithm simplifies the graph G and its separation (L, S, R) through
a call to simplify (Algorithm 3). This algorithm applies simplification rules which
also imposes new constraints to be satisfied for the analysis.

The constraints for the reduction rule in line 14 are the same as the constraints for
line 11 in simplify. We now deal with branching on lazy-2 separators and regular
branching, in both imbalanced and balanced cases, separately. As decreasing a degree-
3 vertex weight to a degree-2 vertex weight may result in the introduction of a spider
vertex with weight s′

3 instead of s3, let δ = s′
3 − s3 be the increase in measure from a

spider vertex creation. This increase in measure via δ is offset by either aΔs3 or 1
2Δr3

decrease in measure in the same constraint.

Constraints from #3IS - Balanced Lazy 2-Separator Branching Suppose the instance
is balanced and #3IS selects a vertex s ∈ S but s has a lazy 2-separator {y, z} which
line 10 of #3IS branches on instead of s. As the degree-3 vertices y, z and s are all
removed in the branches of this problem, as well as the fact that due to Claim 4.2 for
L and R there will be another degree-3 vertex that will be removed (see described in
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s

S RL

(a) Balanced branching

r

S RL S RL

(b) Imbalanced branching
on r

s

S RL

(c) Imbalanced branching
on s

Fig. 3 Worst case configurations for non-spider vertex branching in #3IS

Fig 3) we obtain the branching vector

(
s3 + 1

2
(2r3 + 2Δr3) − 2δ, s3 + 1

2
(2r3 + 2Δr3) − 2δ

)
.

The worst case contains measure increases of 2δ since the two decreases of 1
2Δr3

could create a spider vertex, and there are at least 2 of them. We could have more δ

decreases, but this only occurs when we have an additional 1
2Δr3 decrease, or Δs3

decrease in the worst case. But since δ ≤ Δs3 ≤ 1
2Δr3 the tightest constraint occurs

at the smallest possible number of δ changes.

Constraints from #3IS - Imbalanced Lazy 2-Separator Branching Once again, we
have a vertex s ∈ S and a lazy 2-separator {y, z}, but the instance is imbalanced. First
assume either 1 or more of {y, z} is in R. In this case, we disconnect s, either the y or
z vertex y, as well as some other vertex r ∈ R due to Claim 4.2. At worst this results
in the branching vector

(s3 + 2r3, s3 + 2r3).

In the case where {y, z} ⊆ L we also refer to Claim 1 which guarantees that there is
a skeleton neighbor r ∈ NΓ (s)∩R, which itself has a neighbor r ′ ∈ NΓ (r)∩R. These
two combined with s are removed in both branches, otherwise s cannot be removed
and {y, z} is not a lazy-2 separator. This also results in the branching vector

(s3 + 2r3, s3 + 2r3).

Constraints from #3IS - Balanced Branching: neighbor in separator Consider the
balanced branching case where we branch on s ∈ S and s has a neighbor s′ ∈ S. Let
u ∈ R and v ∈ L denote the two other neighbors. In the worst case, u and v are both
degree-2 vertices, meaning in both branches we only reduce a vertex of weight r3 to
r2, but never delete one. Since s′ reduces in degree in the first branch and is removed
in the second branch, then we get the following branching vector

(
s3 + Δs3 + 1

2
(2Δr3) − 3δ, 2s3 + 1

2
(2Δr3) − 2δ

)
.
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4.2.1 Constraints from #3IS - Balanced Branching: no Neighbor in Separator

Next consider the balanced branching case where the algorithm branches on a non-
spider vertex s ∈ S with no neighbors in the separator S. Let u, u′ ∈ R and v ∈ L
denote its neighbors. Since s is not a spider vertex, s is either a (2,2,3) or a (2,3,3)
vertex.

We first consider the case where s is a (2,2,3) vertex. In the worst case, the single
degree-3 neighbor of weight r32 would be in R or L . This leads to a decrease of Δr3

2 . Of
the two remaining neighbors, they are the start of a 2-path to another degree-3 vertex.
Now both of these cannot be in S so we will have another decrease of at least Δr3

2 ,
leaving a decrease of Δs3 for the last neighbor.

In the second case, we also get a decrease ofΔs3 + Δr3
2 from the degree-3 neighbor

of s. This is due to Claim 4.2 forcing at least 1 of the neighbors to be in R. This results
in a branching vector of

(
s3 + Δs3 + 1

2
(2Δr3) − 3δ, s3 + 2Δs3 + 1

2
(r3 + 2Δr3) − 4δ

)
.

Now if s is a (2,3,3) vertex, s has 2 degree 3. In the worst case, the degree 2 neighbor
of s is the start of a 2-path to another vertex in S.

(
s3 + Δs3 + 1

2
(2Δr3) − 3δ, s3 + 3Δs3 + 1

2
(2r3 + 2Δr3) − 5δ

)
.

Constraints from #3IS - Imbalanced Branching: neighbor in separator In the imbal-
anced instances of G the measure μ8/3 simplifies to μ8/3 = μs(S) + μr (R) +
μo(L, S, R). Suppose we choose s ∈ S to branch on and s has a neighbor s′ ∈ S.
By Claim 4.2, s has a skeleton neighbor r ∈ NΓ (s) ∩ R. Now in the worst case, r
is only a skeleton neighbor, and the actual neighbor r ′ ∈ NG(s) ∩ R is of degree 2.
By considering the removal, or reduction of degree, of s, s′ and r ′, then we get the
following worst case constraint

(s3 + Δs3 + r3 − 3δ, 2s3 + r3 + 5δ).

The first branch has a 3δ term since we get at most 1 decrease for each neighbor. The
5δ term comes from the fact that the left neighbor l ∈ NG(s) ∩ L does not contribute
any weight to μ8/3 meaning it could have degree 3. Now s′ is also of degree 3, so in
the second case where we remove s′ and l, these two could create 4 spider vertices.
The last possible increase comes from r being reduced to a degree-2 vertex.

Constraints from #3IS - Imbalanced Branching: no neighbors in separator There are
two branching rules to consider in this case. First branching occurs in line 17 where
instead of branching on s ∈ S we branch on one of its skeleton neighbors in R. The
other case occurs when we branch on s as normal in line 19.

In line 17, we are given the case where s has 1 skeleton neighbor in R. This means
that we do not get a beneficial branching by branching on s. However, in a similar
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method to line 15 of spider, ifwe branch on r ∈ NΓ (s)∩R such that NΓ (r)∩R �= ∅,
then in both branches, we are able to remove s entirely from the separator due to the
simplification rules in simplify. We get the following worst case constraint

(r3 + s3 + Δr3 + Δs3 − 3δ, r3 + s3 + Δr3 + Δs3 − 3δ).

Otherwise, we progress to line 19, which guarantees that we have 2 skeleton neigh-
bors of s in R. This results in the following constraint

(s3 + 2Δr3 − 3δ, s3 + 2Δr3 − 4δ).

Weights and Results. After compiling all necessary constraints induced by the steps
of the algorithms, we are able to attempt to set up a constraint optimization problem
in order to minimize the measure, with respect to these constraints. The combination
of all constraints obtained in this way, minimizing the measure results in the measure
of μ8/3 = 0.13262 · n, and that the running time is O(2μ8/3) ⊆ O(20.13262n) results
in an upper bound of O(1.0963n) for the running time. The specific weights after
minimization are summarized below.

r0 = 0 r1 = 0 r2 = 0 r3 = 0.2 + o(n)

s0 = 0 s1 = 0 s2 = 0.6352 s3 = 0.6784 s′
3 = 0.7


�
Lemma 5 Algorithm #IS applied to a graph G with d(G) ≤ 3 has running time
O(1.1389n) and uses polynomial space.

The algorithm #IS uses subroutine #3IS, which we analyze the measure and the
weights for.We equate the Separate,Measure andConquer weights withweights of the
measure μ3, based on the compound analysis from Wahlström [29]. As Wahlström’s
analysis only contains weights w′

3 and w′
2, for vertices of degree 3 and degree 2

respectively, the measure is

μ3(G) = (
(d − 2)w′

3 + (3 − d)w′
2

)
n + μo(L, S, R)

where d = d(G) is the average degree of the input graph, and μo(L, S, R) is the
sub-linear term left over from the average degree 8/3 analysis.

In the case of a graph G with no (3,3,3) vertex, in order for Lemma 1 to apply, the
values of w1 and w2 must satisfy inequalities

1

2
r2 ≤ w2,

s′
3

11
+ 5r3

22
+ 5r2

22
≤ 6w3

11
+ 5w2

11
,

s3
9

+ 5r3
18

+ r2
3

≤ 2w3

3
+ w2

3
,
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induced when d = 2, 28
11 , and

8
3 for μ8/3 respectively. This results in the weights

w3 = 0.1973 and w2 = 0.0033 when G has no (3,3,3) vertex.
We also let w′

3 ≥ 0 and w′
2 ≥ 0 be the weights associated with vertices of degree

3 and degree 2 respectively, for a subcubic graph G. Using the analysis by compound
measures with μ3(G) = ∑

i∈{2,3} w′
i · ni , the following constraint

μ8/3(G) ≤ μ3(G), when d(G) = 8/3

is required for a valid compound measure. This can be rewritten as

2w3 + w2 ≤ 2w′
3 + w′

2.

Branching on a (3,3,3) vertex, the only type of degree-3 vertex that we will be
branched on in #IS, gives a branching vector of

(4w′
3 − 3w′

2, 8w
′
3 − 4w′

2).

Setting the weights w′
3 = 0.1876 and w′

2 = 0.0228 satisfies the system of con-
straints described above and by using the measure μ3(G), results in a running time of
O∗(1.1389n).

4.3 Degree-4 Analysis

The notation 1(·) refers to an indicator function which returns 1 if its argument is
true and 0 otherwise. For a graph with maximum degree 4, the analysis is done with
a measure of

μ4 =
∑

i≤4

wi · ni + 1

⎛

⎝
G has only degree-4 and degree-2
vertices and no degree-4 vertex has
a degree-4 neighbor

⎞

⎠ ψ + μo(L, S, R)

where wi are weights attributed to vertices of degree i , ni are the number of vertices
with degree i and ψ is a potential.

We can ignore weights applied to degree 0 or degree 1 vertices since they are
removed by simplification rules, and effectively have a weight of 0.

Potentials in Degree-4 Analysis. For analyzing branching on vertices in the degree-4
case, potentials are used for branching on a degree-4 vertices who only have degree-2
neighbors. In case (a), for any vertex v we have that all 2-paths starting from v, have
endpoints of degree 4. Case (b) is where there exists one vertex u who has at least
one 2-path from u that ends up in a degree-3 vertex. We do not have the case where a
2-path from a degree-4 vertex ends up in a degree-1 vertex since we could have used
multiplier reduction to handle this case.

Lemma 6 For a graph G with maximum degree 4, #IS can be solved in time
O∗(1.2070n).
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Table 1 Possible cases when branching on a degree-4 vertex

Degrees of Neighbors Highest Average Degree Branching Vector

(2,2,2,2) (a) 3 (5w4 − 4w3 + 4w2 − ψ, 5w4 − 4w3 + 4w2 − ψ)

(2,2,2,2) (b) 3 (4w4 − 2w3 + 3w2 + ψ, 4w4 − 2w3 + 3w2 + ψ)

(2,2,2,3) 3 (4w4 − 2w3 + 2w1, 4w4 − 2w3 + 3w2)

(2,2,2,4) 3 (5w4 − 4w3 + 3w2, 6w4 − 4w3 + 3w2)

(2,2,3,3) 3 (3w4, 5w4 − 2w3 + 2w2)

(2,2,3,4) 3 (4w4 − 2w3 + w2, 5w4 − 2w3 + 2w2)

(2,2,4,4) 3 (5w4 − 4w3 + 2w2, 7w4 − 4w3 + 2w2)

(2,3,3,3) 16/5 = 3.2 (2w4 + 2w3 − 2w2, 4w4 + w2)

(2,3,3,4) 42/13 ≈ 3.23 (3w4 − w2, 6w4 − 2w3 + w2)

(2,3,4,4) 36/11 ≈ 3.27 (4w4 − 2w3, 6w4 − 2w3 + w2)

(2,4,4,4) 10/3 ≈ 3.33 (5w4 − 4w3 + w2, 8w4 − 4w3 + w2)

(3,3,3,3) 24/7 ≈ 3.43 (w4 + 4w3 − 4w2, 5w4)

(3,3,3,4) 7/2 = 3.5 (2w4 + 2w3 − 3w2, 5w4)

(3,3,4,4) 18/5 = 3.6 (3w4 − 2w2, 7w4 − 2w3)

(3,4,4,4) 15/4 = 3.75 (4w4 − 2w3 − w2, 7w4 − 2w3)

(4,4,4,4) 4 (5w4 − 4w3, 9w4 − 4w3)

Fig. 4 Component measures
∑

i wi · ni for maximum degree 4

Proof The degree-4 analysis uses pivot points 3, 3.2, 3.5, 3.75 and 4, shown as different
rows of Figure 4. These pivot points refer to the highest possible average degree in
those respective branching cases, which are defined by the highest possible degree of
neighbors.

Pivot points generatemultiple compoundmeasures withweights and constraints for
each. By including constraints generated from the table of branching factors in Figure
1, we gain satisfying weights for μ4, shown in Figure 4. This results in a running time
upper bound of O(2μ4n) ⊆ O(20.2713n) ⊆ O(1.2070n) in the worst case for degree-4
graphs. 
�

4.4 Degree-5+ Analysis

The following two theorems show for degree-5+ graphs the generalized procedure for
constructing branching vectors for v and all its possible combinations of degrees of
neighbors.
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Lemma 7 Suppose a graph G is 3-connected, with all simplification rules applied.
Let v ∈ V (G) be a vertex to be branched on in #IS with d(v) ∈ {5, 6}. Let out(v)

represent the number of edges xy from N (v) with x ∈ N (v) and y /∈ N [v]. Then

out(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 If d(v) = 5 and
∑

u∈N (v) d(u) = 0 mod 2 or

d(v) = 6 and
∑

u∈N (v) d(u) = 1 mod 2

4 If d(v) = 5 and
∑

u∈N (v) d(u) = 1 mod 2 or

d(v) = 6 and
∑

u∈N (v) d(u) = 0 mod 2

5 If neighbors of v have degree (2, 2, 2, 2, 2) or (2, 2, 2, 2, 2, 3)

6 If neighbors of v have degree (2, 2, 2, 2, 2, 2),

otherwise if out(v) leq2 the graph G is constant sized.

Proof Let out(v) represent the number of outgoing edges xy from N (v)with x ∈ N (v)

and y /∈ N [v]. Suppose we have a 3-connected graph with all simplification rules
applied. This means that the multiplier reduction does not apply, and there are no lazy
2-separators.

If out(v) = 0 then we have an instance of size d, which is 5 or 6, and the graph
is completely connected. This instance cannot occur, and even if it did, we would be
able to solve it in constant time. If out(v) = 1 we can apply the multiplier reduction,
which is a contradiction. Similarly, if out(v) = 2 we have a lazy 2-separator which is
also a contradiction. Hence out(v) ≥ 3.

Suppose d(v) = 5 and v has neighbors with degrees (2, 2, 2, 2, 2). Any edge
adjacent to two neighbors of v means G can be reduced by multiplier reduction by
branching on v, so out(v) = 5. Similarly, if d(v) = 6 and v has neighbors (2, 2, 2, 2,
2, 2), then out(v) = 6.

Supppose d(v) = 6 and v has neighbors (2, 2, 2, 2, 2, 3). There are 7 edges adjacent
to N (v) but not v. Suppose u ∈ N (v) and d(u) = 3. If out(v) < 5 then at least 3 of
these 7 edges must connect two vertices in N (v), but at most two of them are adjacent
to u. Thus there exists one edge {a, b} with d(a) = d(b) = 2. But this means the
multiplier reduction can be applied, hence out(v) = 5.

Suppose d(v) = 5 and
∑

u∈N (v) d(u) = 1 mod 2. We showed there are at least 3
outgoing edges from N (v). There are also 5 edges incident to N (v) and v which gives
a total of at least 8 edges that are incident to N (v). Since having adjacent neighbors
does not change the fact that

∑
u∈N (v) d(u) is odd, out(v) must be even.

If
∑

u∈N (v) d(u) is odd, then since any edge adjacent to two neighbors of v con-
tributes a value of 2 to the sum, then

∑
u∈N (v) d(u) = 1 mod 2 implies out(v) = 4. A

similar parity argument is used for d(v) = 6, except with the parity swapped. 
�
Lemma 8 Let deg2(v) denote the number of degree-2 vertices in N (v). Then v has a
branching vector of

⎛

⎝wd(v) +
∑

u∈N (v)

wd(u) + out(v) · Δwd(v), wd(v) +
∑

u∈N (v)

Δwd(u) + deg2(v) · Δwd(v)

⎞

⎠ .

(6)
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Fig. 5 Weights and running time for μ6(G)

Proof The left hand side of the branching factor considers removing a vertex v and its
neighbors. The right hand side considers removing just a vertex v. The reduction in
measure on the graphG follows from reduction rules, the measureμ = ∑

v∈F wd(v)+
μo(L, S, R) and the definition of out(v) and deg2(v). 
�
Theorem 1 #IS can be solved in time O∗(1.2356n) and polynomial space.

Proof If d(G) ≥ 7 we can perform a simple branching analysis in terms of n, con-
sidering if a selected vertex v is inside the independent set, or its neighbors are. In
this situation, the branching number is at worst (1, 8) < 1.2321. So we only need to
compute μ6(G) with compound measures using Eq. (6), with d(G) ≤ 6 in order to
find the worst case running time for #IS (Fig. 5).

If we plug in a simple pathwidth-based subroutine [14] for graphs of maximum
degree 3, we obtain the following exponential-space result.

Theorem 2 #IS can be solved in time O∗(1.2330n).
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