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Abstract
Diameter—the task of computing the length of a longest shortest path—is a funda-
mental graph problem. Assuming the Strong Exponential Time Hypothesis, there is
no O(n1.99)-time algorithm even in sparse graphs (Roditty L, Williams, VV in Fast
approximation algorithms for the diameter and radius of sparse graphs. In: Proceedings
of the 45th Symposium on Theory of Computing Conference (STOC ’13), pp 515–
524. ACM, 2013). To circumvent this lower bound, we investigate which parameters
allow for running times of the form f (k)(n +m) where k is the respective parameter
and f is a computable function. To this end, we systematically explore a hierarchy of
structural graph parameters.

Keywords FPT in P · Multivariate algorithmics · Strong exponential time
hypothesis · Finegrained reductions

1 Introduction

The diameter is arguably among the most fundamental graph parameters. Most known
algorithms for determining the diameter first compute the shortest path between each
pair of vertices (APSP: All- Pairs Shortest Paths) and then return the max-
imum [1]. The currently fastest algorithms for APSP in weighted graphs have a
running time of O(n3/2Ω(

√
log n)) in dense graphs [13] and O(nm+n2 log n) in sparse

graphs [30], respectively. In this work, we focus on the unweighted case. Formally,
we study the following problem:

An extended abstract appeared in the Proceedings of the 11th International Conference on Algorithms and
Complexity (CIAC ’19). This version contains additional detail and omitted proofs.

B Matthias Bentert
matthias.bentert@tu-berlin.de

André Nichterlein
andre.nichterlein@tu-berlin.de

1 Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01032-9&domain=pdf


326 Algorithmica (2023) 85:325–351

Diameter

Input: An undirected, connected, unweighted graph G = (V , E).
Task: Compute the length of a longest shortest path in G.

The (theoretically) fastest algorithm for Diameter runs in O(n2.373) time and is
based on fast matrix multiplication [40]. This upper bound can (presumably) not
be improved by much as Roditty and Williams [39] showed that solving Diameter

in O((n + m)2−ε) time for any ε > 0 breaks the SETH (Strong Exponential Time
Hypothesis [28, 29]). Seeking for ways to circumvent this lower bound, we follow the
line of “parameterization for polynomial-time solvable problems” [25] (also referred
to as “FPT in P”). This approach is recently actively studied and sparked a lot of
research [1, 4, 10, 16, 22, 23, 31, 32, 34]. Given some parameter k, we aim for
an algorithm with a running time of f (k)(n + m) that solves Diameter. Starting
FPT in P for Diameter, Abboud et al. [1] observed that, unless the SETH fails, the
function f has to be an exponential function if k is the treewidth of the graph. We
extend their research by systematically exploring the parameter space looking for
parameters where f can be a polynomial. If such running times contradict conditional
lower bounds, then we seek for matching upper bounds of the form f (k)(n + m)

or f (k)n2 where f is exponential.
In a second step, we combine parameters that are known to be small in many

real-world graphs.We concentrate on social networkswhich often have special charac-
teristics, including the “small-world” property and a power-lawdegree distribution [33,
35–38]. We therefore combine parameters related to the diameter with parameters
related to the h-index1; both parameters can be expected to be orders of magnitude
smaller than the number of vertices in large social networks.
Related Work. Due to its importance, Diameter is extensively studied. Algorithms
employed in practice have usually a worst-case running time of O(nm), but are much
faster in experiments. See e. g. Borassi et al. [6] for a recent example which also
yields good performance bounds using average-case analysis [7]. Concerning worst-
case analysis, the theoretically fastest algorithms are based on matrix multiplication
and run in O(n2.373) time [40] and any O((n + m)2−ε)-time algorithm refutes the
SETH [39].

The following results on approximating Diameter are known: It is easy to see
that a simple breadth-first search gives a linear-time 2-approximation. Aingworth et
al. [2] improved the approximation factor to 3/2 at the expense of the higher running
time of O(n2 log n+m

√
n log n). The lower bound of Roditty and Williams [39] also

implies that approximating Diameter within a factor of 3/2 − δ in O(n2−ε) time
refutes the SETH. Moreover, for any ε, δ > 0 a (3/2− δ)-approximation in O(m2−ε)

time or a (5/3 − δ)-approximation in O(m3/2−ε) time also refute the SETH [3, 11].
These lower bounds have been extended to cover more trade-offs between approxima-
tion factor and running time [17]. On planar graphs, there is an approximation scheme
with near linear running time [43]; the fastest exact algorithm for Diameter on planar
graphs runs in O(n1.667) time [24].

1 The h-index of a graph G is the largest number � such that G contains at least � vertices of degree at
least �.
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Concerning FPT in P, Diameter can be solved in 2O(k)n1+ε time for any ε > 0,
where k is the treewidth of the graph [10]. However, the reduction for the lower bound
of Roditty and Williams [39] implies that for any ε > 0 a 2o(k)n2−ε-time algorithm
refutes the SETH, where k is either the vertex cover number, the treewidth, or the
combined parameter h-index and domination number. Moreover, this reduction also
implies that the SETH is refuted by any f (k)(n+m)2−ε-time algorithm forDiameter
for any computable function f and ε > 0 when k is the (vertex deletion) distance
to chordal graphs. Evald and Dahlgaard [21] adapted the reduction by Roditty and
Williams and proved that any f (k)(n + m)2−ε-time algorithm for Diameter param-
eterized by themaximumdegree k for any computable function f refutes the SETH.
Coudert et al. [16] proposed algorithms running in O(kO(1) · n + m) time for the
parameters modular-width, split-width, neighborhood diversity, and P4-sparseness.
Moreover, they showed that any 2o(k)n2−ε-time algorithm where k is the clique-width
of the graph would refute the SETH. Recently, Ducoffe [19] gave an algorithm whose
running timematches this lower bound. Ducoffe et al. [20] analyzed the parameterized
complexity of Diameter with respect to parameters (distance) VC-dimension.
Our Contribution.Wemake progress towards systematically classifying the complex-
ity of Diameter parameterized by structural graph parameters. Figure 1 gives an
overview of previously known and new results and their implications. We define the
graph parameters for which we provide results in the sections where they are used; we
refer to Brandstädt et al. [8] for definitions of the remaining parameters in Fig. 1.

In Sect. 4, we follow the “distance from triviality parameterization” [27] aim-
ing to extend known tractability results for special graph classes to graphs with
small modulators. For example, Diameter is linear-time solvable on trees. We obtain
an O(k ·n)-time algorithm for the parameter feedback edge number k (edge deletion
number to trees). However, this is our only kO(1)(n + m)-time algorithm in this sec-
tion. For the remaining parameters, it is already known that such algorithms refute the
SETH. For the parameter distance k to cographswe therefore provide a 2O(k)(n+m)-
time algorithm. Finally, for the parameter odd cycle transversal k, we use the recently
introduced notion of General-Problem-hardness [4] to show that Diameter parame-
terized by k is “as hard” as the unparameterized Diameter problem. In Sect. 5, we
investigate parameter combinations. We prove that a kO(1)(n+m)2−ε-time algorithm
where k is the combined parameter diameter andmaximumdegreewould refute the
SETH. Complementing this lower bound, we provide an f (k)(n+m)-time algorithm
where k is the combined parameter diameter and h-index.

Many of our algorithmic results for Diameter transfer easily to the edge-weighted
case by simply exchanging bread-first searchwithDijkstra’s algorithmand thus getting
a logarithmic overhead in the running time. Whenever this is the case, we state the
result for the edge-weighted case which we callWeighted Diameter. The focus of
our work (and hence the overview in Fig. 1) is still on the unweighted case. Thus, we
provide hardness results only for the easier, unweighted variant Diameter.
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Fig. 1 Overview of the relation between the structural parameters and the respective results for Diameter.
An edge from a parameter α to a parameter β below of α means that β can be upper-bounded in a polynomial
(usually linear) function in α (see also [41]). The three small boxes below each parameter indicate whether
there exists (from left to right) an algorithm running in f (k)n2, f (k)(n log n + m), or kO(1)(n log n + m)

time, respectively. If a small box is green (and filled with a crosshatch pattern), then a corresponding
algorithm exists and the box to the left is also green. Similarly, a red box indicates that a corresponding
algorithm is a breakthrough. More precisely, if a middle box (right box) is red, then an algorithm running
in f (k) · (n +m)2−ε (or kO(1) · (n +m)2−ε) time refutes the SETH. If a left box is red, then an algorithm
with running time f (k)n2 implies an O(n2) time algorithm for Diameter in general. Hardness results
for a parameter α imply the same hardness results for the parameters below α. Similarly, algorithms for a
parameter β imply algorithms for the parameters above β. We remark that in the above hierarchy only the
algorithm behind the green box for the parameter distance to interval requires additional input related to
the parameter (here the modulator to an interval graph) (Color figure online)

2 Preliminaries

We set N:={0, 1, 2, . . . , } and N+:=N \ {0}. For � ∈ N+ we set [�]:={1, 2, . . . , �}.
We use mostly standard graph notation. For a graph G = (V , E) we set n:=|V |
and m:=|E |. All graphs in this work are undirected. The degree of a vertex v is the
number of edges that v is incident to. For a vertex subsetV ′ ⊆ V , we denotewithG[V ′]
the graph induced by V ′. We set G −V ′:=G[V \V ′]. A path P = v0 . . . va is a graph
with vertex set {v0, . . . , va} and edge set {{vi , vi+1} | 0 ≤ i < a}. For u, v ∈ V , we
denote with distG(u, v) the distance between u and v inG, that is, the number of edges
(the sum of edge weights in weighted graphs) in a shortest path between u and v. If G
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is clear from the context, then we omit the subscript. We denote by d(G) the diameter
of G, that is, the length of the longest shortest path in G. For Weighted Diameter

we consider edge weights to be positive integers:

Weighted Diameter

Input: A connected graph G = (V , E) and edge weights τ : E → N+.
Task: Compute d(G).

Parameterized Complexity andGP-hardness.A language L ⊆ Σ∗×N is a parameter-
ized problem over some finite alphabetΣ , where (x, k) ∈ Σ∗ ×N denotes an instance
of L and k is the parameter. The language L is called fixed-parameter tractable if there
is an algorithm that on input (x, k) decides whether (x, k) ∈ L in f (k) · |x |O(1) time,
where f is some computable function only depending on k and |x | denotes the size
of x . For a parameterized problem L , the language L̂ = {x ∈ Σ∗ | ∃k : (x, k) ∈ L}
is called the unparameterized problem associated to L . We use the notion of General-
Problem-hardness which formalizes the types of reduction that allow us to exclude
parameterized algorithms as they would lead to faster algorithms for the general,
unparameterized, problem.

Definition 1 [4, Definition 2] Let P ⊆ Σ∗ ×N be a parameterized problem, let P̂ ⊆
Σ∗ be the unparameterized decision problem associated to P , and let g : N → N be a
polynomial. We call P �-General-Problem-hard(g) (�-GP-hard(g)) if there exists an
algorithm A transforming any input instance I of P̂ into a new instance (I ′, k′) of P
such that

(G1) A runs in O(g(|I |)) time,
(G2) I ∈ P̂ ⇐⇒ (I ′, k′) ∈ P ,
(G3) k′ ≤ �, and
(G4) |I ′| ∈ O(|I |).
We call P General-Problem-hard(g) (GP-hard(g)) if there exists an integer � such
that P is �-GP-hard(g). We omit the running time and call P �-General-Problem-hard
(�-GP-hard) if g is a linear function.

Showing GP-hardness for some parameter k allows to lift algorithms for the param-
eterized problem to the unparameterized setting as stated next.

Lemma 1 [4, Lemma 3] Let g : N → N be a polynomial, let P ⊆ Σ∗ × N be a
parameterized problem that is GP-hard(g), and let P̂ ⊆ Σ∗ be the unparameterized
decision problem associated to P. If there is an algorithm solving each instance (I , k)
of P in O( f (k) · g(|I |)) time, then there is an algorithm solving each instance I ′ of P̂
in O(g(|I ′|)) time.

Applying Lemma 1 to Diameter yields the following. First, having an f (k)n2.3

time algorithm with respect to a parameter k for which Diameter is GP-hard would
yield a faster Diameter algorithm. Moreover, from the known SETH-based hardness
results [3, 11, 39], we get the following.

Observation 1 If the SETH is true and Diameter is GP-hard(n2−ε) with respect to
some parameter k for some ε > 0, then there is no f (k) · n2−ε′

time algorithm for
any ε′ > 0 and any function f .
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Graph Classes and Parameter Definitions. Finally, we give an overview over the
different graph classes and graph parameters used throughout the paper. To this end,
let G = (V , E) be a graph. A clique is a graph in which each pair of vertices is
connected by an edge. An independent set is an edgeless graph. A cograph is a graph
in which each component has diameter at most two. Equivalently, a cograph is a graph
without induced paths of length three. An interval graph is a graph where each vertex
can be represented by an interval of real numbers such that two vertices are adjacent
if and only if their respective intervals overlap. The vertex set of a bipartite graph can
be partitioned into two independent sets.

distance to Π minimum number of vertices needed to be removed from G such that it
becomes a graph in Π ;

vertex cover number distance to independent sets;
odd cycle transversal distance to bipartite graphs;
feedback edge number minimum number of edges needed to be removed from G

such that it becomes a forest;
bisection width minimum number of edges needed to be removed from G such

that it becomes a disconnected graph in which each connected component has
at most �n/2
 vertices;

maximum degree highest degree of any vertex;
average degree average over all vertex degrees;
minimum degree smallest degree of any vertex;
h-index maximum value h such that there are at least h vertices of degree at least h;
girth size of the smallest induced cycle;
dominationnumberminimum size of a setW of vertices such that each vertex in V \W

has at least one neighbor in W ;
acyclic chromatic number minimum number of colors needed to color each vertex

with one of the given colors such that each subgraph induced by all vertices of
one color is an independent set and each subgraph induced by all vertices of two
colors is acyclic.

3 Basic Observations

In this section, we present several simple observations that complete the overview in
Fig. 1. More precisely, we show algorithms with respect to the parameters distance c
to clique, distance i to interval graphs, average degree a, maximum degree Δ,
diameter d, and domination number γ (in the order they are listed).

Distance to clique. We start with the parameter distance c to clique and provide an
algorithm with running time O(c · (n + m)) time. Since distance to clique is the
vertex cover number in the complement graph, it can be 2-approximated in linear
time (without computing the complement graph).

Observation 2 Diameter parameterized by distance c to clique takes O(c · (n+m))

time.

123



Algorithmica (2023) 85:325–351 331

Proof Let G = (V , E) be the input graph and let c be its distance to clique. Let G ′ be
the respective induced clique graph. Compute in linear time the degree of each vertex
and the number n = |V | of vertices. Iteratively check for each vertex v whether its
degree is n− 1. If deg(v) = n− 1, then v can be deleted as it is in every largest clique
and thus decrease n by one and the degree of each other vertex by one. If not, then
we can find a vertex w which is not adjacent to v in O(deg(v)) time. Put v and w

in the solution set, delete both vertices and all incident edges and adjust the number
of vertices and their degree accordingly. Observe that v and w cannot be contained
in the same clique and therefore v ∈ K or w ∈ K . Putting both vertices in the
solution set results in a 2-approximation. This algorithm takes O(deg(v) + deg(w))

time per deleted pair v,w of vertices. Since
∑

v∈V deg(v) ∈ O(n+m) this procedure
takes O(n + m) time.

We use the algorithm described above to compute a set K such thatG ′ = G−K is a
clique and |K | ≤ 2k in linear time. Since G ′ is a clique, its diameter is one if there are
at least two vertices in the clique. We therefore assume that there is at least one vertex
in the deletion set K . Compute for each vertex v ∈ K a breadth-first search rooted in v

in linear time and return the largest distance found. The returned value is the diameter
of G as each longest induced path is either of length one or has at least one endpoint
in K . The procedure takes O(|K | · (n + m) + n + m) = O(c · (n + m)) time. ��

Note that forWeighted Diameter a result similar to Observation 2 would yield a
faster algorithm for Diameter: In a cliqueC with n vertices and edge weights either 1
or n, one can encode any connected unweighted graph G by giving edges in G weight
one in C and any non-edge in G a weight of n in C . It is easy to see that G has the
same diameter as C . Thus, an algorithm forWeighted Diameter with running time
O(c · (n+m))would imply an O(n2) algorithm for Diameter and, hence, drastically
improve on the state-of-the-art.

Distance to interval graphs. We next discuss the parameter distance to interval
graphs. We first provide a general observation stating that a size k deletion set to
some graph class can be used to design a O(k · n2)-time algorithm if All- Pairs

Shortest Paths can be solved in O(n2) time on graphs in the respective graph
class.

Proposition 1 Let Π be a graph class such that All- Pairs Shortest Paths can
be solved in O(n2) time on Π . If the (vertex) deletion set K to Π is given, then
All- Pairs Shortest Paths can be solved in O(|K | · n2) time.

Proof First, we compute G ′, that is, the graph without the deletion set K , and solve
All- Pairs Shortest Paths on it in O(n2) time. Next, we perform Dijkstra’s
algorithm in the input graph G from each vertex b ∈ K in overall O(k · (n log n+m))

time and store the distance between b and every other vertex a in a table. The last step
can be seen as running the classical Floyd-Warshall algorithm for each vertex in K :
compute for each pair a, c ∈ V \ K

distG(a, c):=min{distG ′(a, c),min
b∈K {distG(a, b) + distG(b, c)}},
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that is, the minimum distance of a path in the original graph. Observe that a shortest
path either travels through some vertex b ∈ K or not. The distance between a and c
in G is in the former case distG(a, b) + distG(b, c) and in the latter case distG ′(a, c).
The algorithm takes overall O(k · n2) time. ��

It is known that (unweighted) All- Pairs Shortest Paths can be solved
in O(n2) time on interval graphs [14, 42]. Thus we obtain the following.

Observation 3 Diameter parameterized by the distance i to interval graphs is solv-
able in O(i · n2) time provided that the deletion set is given.

Computing the deletion set takes O(6i · (n+m)) time [12] if it is not given. We are
not aware of a i O(1) · n2-time constant factor approximation algorithm to circumvent
the exponential factor in i . Finding (or excluding) such an approximation algorithm
remains a task for future work. As interval graphs contain cliques, it follows again
that generalizing Observation 3 to the weighted case would improve upon the state-
of-the-art algorithm for Weighted Diameter.

Average degree. We next consider the average degree a. Observe that 2m = n · a
and therefore the standard algorithm (run Dijkstra’s algorithm n times) takes O(n ·
(n log n + m)) = O(n2(log n + a)) time.

Observation 4 Weighted Diameter parameterized by averagedegree a is solvable
in O((a + log n) · n2) time.

Maximum degree and diameter.We look at two parameter combinations related to both
maximumdegree and diameter. Usually, this parameter is not interesting as the graph
size can be upper-bounded by this parameter and thus fixed-parameter tractability
with respect to this combined parameter is trivial. The input size is, however, only
exponentially bounded in the parameter, so it might be tempting to search for fully
polynomial algorithms. In Sect. 5.2 we exclude such a fully polynomial algorithm.
Thus, the subsequent algorithm is basically optimal.

Observation 5 Weighted Diameter parameterized by diameter d and maximum
degree Δ is solvable in O(Δ2d · (d logΔ + Δ)) time.

Proof Since we may assume that the input graph only consists of one connected
component, every vertex is found by any breadth-first search. Any breadth-first search
may only reach depth d, where d is the diameter of the input graph, and as each
vertex may only have Δ neighbors there are at most 1 + ∑d

i=1 Δ · (Δ − 1)i−1 ≤
1 + ∑d

i=1 Δi−1 · (Δ − 1) = Δd vertices (since in each “depth layer i” there are at
mostΔ ·(Δ−1)i−1 vertices). Sincem ≤ n ·Δ the O(n ·(n log n+m))-time algorithm
(n rounds of Dijkstra’s algorithm) runs in O(Δ2d · (d logΔ + Δ)) time. ��
Maximum degree and domination number. Observe that for any graph of n vertices,
domination number γ , and maximum degree Δ it holds that n ≤ γ · (Δ + 1) as each
vertex is in a dominating set or is a neighbor of at least one vertex in it. The next
observation follows from m ≤ n · Δ.
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Observation 6 Weighted Diameter parameterized by domination number γ and
maximum degree Δ is solvable in O(γ 2Δ2(Δ + log(γΔ))) time.

The reduction of Roditty andWilliams [39] can also be used to show that the SETH
is refuted by any f (γ )(n +m)2−ε-time algorithm for Diameter for any computable
function f even if a minimum dominating set is given. This lower bound result is in
stark contrast to a simple algorithm running in O(γ (n + m)) time that returns either
the diameter or the diameter minus one.

Observation 7 Given a dominating set of size γ for an unweighted graph, one can
approximate the diameter with an additive factor of one in O(γ (n + m)) time.

Proof The algorithm is as follows: Run a breadth-first search from each vertex in the
dominating set D and return the largest distance found. This can be done O(γ (n+m))

time. Clearly, the value � returned by the algorithm is at most the diameter d of the
input graph, that is, � ≤ d. It remains to show that d ≤ � + 1.

To this end, let u, v be the two furthest vertices, that is, dist(u, v) = d . Observe
that if either u or v is in the dominating set D, then the algorithm returned � = d.
Thus, consider the case that neither u nor v are in D. Since D is a dominating set,
there is a vertex w ∈ D that is a neighbor of u. Since w ∈ D, the returned value is at
least � ≥ dist(w, v). Hence, we have d = dist(u, v) ≤ dist(w, v) + 1 ≤ � + 1. ��

Note that, although computing a minimum dominating set is NP-hard, a simple
greedy algorithm computes a (1+ log n)-approximation. Thus, if the dominating set is
not given, the worst-case running time of the above plus-one-approximation changes
to O(γ (n + m) log n), which is still far better than the lower bound for exactly com-
puting the diameter.

4 Deletion Distance to Special Graph Classes

In this section, we investigate parameterizations that measure the distance to special
graph classes. The hope is that when Diameter can be solved efficiently in a special
graph class Π , then Diameter can be solved if the input graph is “almost” in Π .
We study the following parameters in this order: odd cycle transversal (which is the
same as distance to bipartite graphs), distance to cographs, and feedback edge
number. Note that the lower bound of Abboud et al. [1] for the parameter vertex
cover number (i. e. vertex deletion to edgeless graphs) already implies that there is
no 2o(k)(n + m)2−ε-time algorithm for k being one of the first two parameters in our
list unless the SETH breaks, since each of these parameters is smaller than the vertex
cover number (see Fig. 1).

OddCycleTransversal.Weshow thatDiameterparameterizedbyoddcycle transver-
sal and girth is 4-GP-hard. Consequently, solving Diameter in f (k) · n2.3 for any
computable function f implies an O(n2.3)-time algorithm for Diameter—which
would improve the currently best (unparameterized) algorithm. The girth of a graph
is the length of a shortest cycle in it.
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Fig. 2 Example for the construction in the proof of Theorem 1. The input graph given on the left side has
diameter two and the constructed graph on the right side has diameter three. In each graph one longest
shortest path is highlighted

Theorem 1 Diameter is 4-GP-hardwith respect to the combined parameter odd cycle
transversal and girth.

Proof Let G = (V , E) be an arbitrary undirected graph where V = {v1, v2, . . . , vn}.
We construct a new graph G ′ = (V ′, E ′) as follows: V ′ ..= {ui , wi | vi ∈ V }, and
E ′ ..= {{ui , w j }, {u j , wi } | {vi , v j } ∈ E} ∪ {{ui , wi } | vi ∈ V }.

An example of this construction can be seen in Fig. 2.
Wewill now prove that all properties of Definition 1 hold. It is easy to verify that the

reduction can be implemented in linear time and therefore the resulting instance is of
linear size as well. Observe that {ui | vi ∈ V } and {wi | vi ∈ V } are both independent
sets and therefore G ′ is bipartite. Notice further that for any edge {vi , v j } ∈ E there is
an induced cycle in G ′ containing the vertices {ui , wi , u j , w j }. Since G ′ is bipartite
there is no induced cycle of length three in G ′ and thus the girth of G ′ is four.

Lastly, we show that d(G ′) = d(G) + 1 by proving that if dist(vi , v j ) is odd,
then dist(ui , w j ) = dist(vi , v j ) and dist(ui , u j ) = dist(vi , v j )+1, and if dist(vi , v j )

is even, then dist(ui , u j ) = dist(vi , v j ) and dist(ui , w j ) = dist(vi , v j ) + 1. Since
dist(ui , wi ) = 1 and dist(ui , w j ) = dist(u j , wi ), this will conclude the proof.

Let P = va0va1 . . . vad be a shortest path from vi to v j where va0 = vi and vad = v j .
Let P ′ = ua0wa1ua2wa3 . . . be a path in G ′. Clearly, P ′ is also a shortest path as there
are no edges {ui , w j } ∈ E ′ where {vi , v j } /∈ E .

If d is odd, then ua0wa1 . . . wad is a path of length d from ui to w j and ua0wa1
. . . wad uad is a path of length d + 1 from ui to u j . If d is even, then ua0wa1 . . .

wad−1uad is a path of length d from ui to u j and ua0wa1 . . . wad−1uadwad is a path of
length d + 1 from ui to w j . Notice that G ′ is bipartite and thus dist(ui , u j ) must be
even and dist(ui , w j ) must be odd. ��
Distance to cographs. A graph is a cograph if and only if it does not contain a P4 as
an induced subgraph, where a P4 is a path on four vertices. Providing an algorithm
that matches the lower bound of Abboud et al. [1], we will show that Diameter
parameterized by distance k to cographs can be solved in O(k · (n + m) + 2O(k))

time. To this end, we will use the following lemma covering the algorithm in a more
general setting than we use.
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Lemma 2 Let G = (V , E) be an edge-weighted graph and let K ⊆ V a vertex subset
such that each connected component in G − K has diameter at most two. Then, the
diameter of G can be computed in O(k · (n log n + m + 24k)) time, where k ..= |K |.
Proof Our algorithm has three main steps:

1. Compute the distance from each vertex in K to each vertex in V .
2. Compute the largest distance between two vertices in G − K assuming no ver-

tex in K is in a shortest path, that is, compute the diameter of each connected
component in G − K .

3. Compute the largest distance between two vertices in G − K assuming at least
one vertex in K is in each shortest path.

The first two steps are rather easy: First, we perform in O(k · (n log n + m)) time
Dijkstra’s algorithm inG from each vertex v ∈ K and store the distance between v and
every other vertexw ∈ V in a table. Second,we compute all connected components and
their diameter inG ′:=G−K in linear time and store for each vertex the information in
which connected component it is. Note that we only need to check for each connected
component C , whether C induces a clique in G ′ and all edge-weights are one in C ;
otherwise C’s diameter is by assumption two.

For the third step, we need to introduce some notation Let K = {x1, x2, . . . , xk}.
The type of a vertex u ∈ V \ K is a vector of length k where the i th entry describes
the distance from u to xi with the addition that any value above three is set to 4. We
say a type is non-empty if there is at least one vertex with this type. We compute
for each vertex u ∈ V \ K its type. Additionally we store for each non-empty type
the connected component all its vertices are in or that there are at least two different
connected components containing a vertex of that type. This takes O(n · k) time and
there are at most 4k many different types.

For step 3, we iterate over all of the O(42k) pairs of types (including the pairs where
both types are the same) and compute the largest distance between vertices of these
types. We will first argue that any pair of vertices y and z in different connected com-
ponents are a vertex pair of the respective types that has largest distance. Afterwards,
we show how to compute their distance in O(k) time. If both types only appear in the
same connected component, then the distance between the two vertices of these types
is at most two. Hence, we can discard this case (one can check in linear time whether
the diameter of G is at least two). If two types appear in different connected compo-
nents, then a longest shortest path between vertices of the respective types contains at
least one vertex in K . Observe that since each connected component has diameter at
most two, at least each third vertex in any longest shortest path must be in K . Thus, a
shortest y-z-path contains at least one vertex xi ∈ K with dist(xi , y) < 3. By defini-
tion, each vertex with the same type as y has the same distance to xi and therefore the
same distance to z unless there is no shortest path from it to z that passes through xi ,
that is, it is in the same connected component as z. Thus, we can choose two arbitrary
vertices of the respective types in different connected components and compute their
distance. Note that checking whether there are two vertices of the two respective types
in different connected components can be done with a table lookup since we have
already precomputed whether each type appears in at least two connected components
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(and stored the unique connected component otherwise). Observe that the shortest path
from y to z contains xi and therefore dist(y, xi ) + dist(xi , z) = dist(y, z). Hence, if
there are two vertices in different connected components, then we can compute the
distance between y and z in O(k) time by computing minx∈K {dist(y, x)+dist(x, z)}.
(Note that the distances from x are precomputed.)

Overall, the algorithm takes O(k · (n log n + m + 24k)) time to compute the diam-
eter of G. ��

Note that the algorithm described in the above proof does not verify if K is indeed
a vertex set such that each connected component in G − K has diameter at most two.
Indeed, even in the unweighted case to distinguish diameter two and three in O(n2−ε),
ε > 0, time would refute the SETH [1]. Thus, the above algorithm cannot efficiently
verify if the input meets the stated conditions. Hence, when using Lemma 2, we need
a way to ensure this condition.

Recall that a cograph does not contain a P4 as an induced subgraph. Thus, any
unweighted cograph has diameter at most two (but not every diameter-two graph is a
cograph, consider e. g. a cycle on five vertices). Moreover, given a graph G one can
determine in linear time whether G is a cograph and can return an induced P4 if this
is not the case [9, 15]. This implies that in O(k · (n + m)) time one can compute a
set K ⊆ V with |K | ≤ 4k such that G − K is a cograph: Iteratively add all four
vertices of a returned P4 into the solution set and delete those vertices from G until
it is P4-free. Thus, we can compute a set K that satisfies the conditions of Lemma 2
and the following theorem is immediate.

Theorem 2 Diameter can be solved in O(k ·(n+m+216k)) time when parameterized
by distance k to cographs.

Proof Let G = (V , E) be the input graph with distance k to cograph. Let K be a set
of vertices such that G ′ = G − K is a cograph with |K | ≤ 4k. Recall that K can be
computed in O(k · (n + m)) time.

Thus, applying Lemma 2 yields a running time of O(k · (n + m + 216k)). Note
that since we are in the unweighted setting, we can replace Dijkstra’s algorithm in the
proof of Lemma 2 by a simple breadth-first search and thus get rid of the log-factor
in the running time. ��

Note that a clique is also a cograph. Thus, following the same argumentation given
after Observation 2, it follows that a generalization of Theorem 2 to the weighted case
would significantly improve the state-of-the-art algorithm for Diameter.

Feedback edge number. We will prove that Weighted Diameter parameterized by
feedback edge number k can be solved in O(k · n log n) time. One can compute a
minimum feedback edge set K (with |K | = k) in linear time by taking all edges not in
a spanning tree. Recently, this parameter was used to speed up algorithms computing
maximummatchings [31]. In the remainder of this sectionwewill prove the following.

Theorem 3 Weighted Diameter parameterized by feedback edge number k can be
solved in O(k · n log n) time.
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The algorithm behind the above theorem works roughly in two steps: In a first step,
we apply data reduction rules. On the one hand, these rules can shrink the graph
considerably. On the other hand, these rules also create a special structure: After
these rules are exhaustively applied, there are “few” vertices of degree at least three;
moreover, these high-degree vertices are connected via “few” paths. In the second
step, the algorithm uses this structure in a case distinction to compute the diameter
in O(k · n log n) time.

Note that the data reduction rules delete vertices from the graph. However, since at
the time of deletion, we do not know whether these vertices are contained in a shortest
path defining the diameter, we need to keep additional information. In particular, we
introduce a second weight function pen (for pending) and an integer s. Intuitively,
pen(v) stores the length of a longest shortest path P with one endpoint being v and
the other endpoint in P being already deleted by the data reduction rules. The role
of s is to store the length of a longest shortest path where both endpoints are already
deleted. This leads to the following formal problem definition:

Doubly Weighted Diameter

Input: An undirected, connected graph G = (V , E), weight func-
tions τ : E → N+ and pen : V → N, and s ∈ N.

Task: Compute max{dpen(G), s}, where

dpen(G):= max
v,w∈V {distpenG (v,w)}:= max

v,w∈V {pen(v) + distG(v,w) + pen(w)}.

Notice that if all pen-weights and s are set to 0, then the problem is the same
as Weighted Diameter. We therefore start with initializing all pen-weights and s
to 0 and applying our reduction rule that removes degree-one vertices from the graph.
The main idea of the reduction rule is simple: If a degree-one vertex u is removed,
then the value pen(v) (v is the unique neighbor of u) is adjusted and we store in an
additional variable s the length of a longest shortest path that cannot be recovered
from the reduced graph. This addresses the case that a longest shortest path has both
its endpoints in pending trees (trees removed by our reduction rule) that are connected
to the same vertex. Initially, s is set to zero. The first reduction rule is defined as follows
(see Fig. 3 for an example illustrating the subsequent two reduction rules).

Reduction Rule 1 Let u be a vertex of degree one and let v be its neighbor. Delete u and
the incident edge from G, set s = max{s, pen(u)+pen(v)+ τ({u, v})} and pen(v) =
max{pen(v), pen(u) + τ({u, v})}.

Before we analyze the running time and correctness, we first present a second
reduction rule that we apply after Reduction Rule 1 is not applicable anymore. Since
the resulting graph has no degree-one vertices we can partition the vertex set of the
remaining graph into vertices V=2 of degree exactly two and vertices V≥3 of degree
at least three. Using standard argumentation we can show that |V≥3| ∈ O(min{k, n})
and all vertices in V=2 are either in pending cycles or in maximal paths [5, Lemma
5]. A maximal path is an induced subgraph P = x0x1 . . . xa where {xi , xi+1} ∈ E for
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Fig. 3 Example for the application of Reduction Rules 1 and 2. On the left is the input graph, middle
left and middle right are the results of applying Reduction Rule 1. On the right is the result of applying
Reduction Rule 2 to the middle right graph. If no pen-value is displayed for a vertex v, then pen(v) = 0.
The diameter-defining path is highlighted in the two left graphs and stored in s in the two right graphs (when
the diameter-defining path is no longer contained in the remaining graph)

all 0 ≤ i < a, x0, xa ∈ V≥3, xi ∈ V=2 for all 0 < i < a, and x0 �= xa . A pending
cycle is basically the same except x0 = xa and deg(x0)may possibly be two. The set C
of all pending cycles and P of maximal paths can be computed in O(n +m) time [5,
Lemma 6]. The second reduction rule works similar to Reduction Rule 1, but instead
of deleting degree-one vertices, it removes pending cycles.

Reduction Rule 2 Let C = x0x1 . . . xa be a pending cycle. Let xk be the ver-
tex that maximizes pen(xk) + dist(x0, xk) in C . Delete all vertices in C except
for x0 (and all incident edges) from G, set s = max{s, dpen(C)} and pen(x0) =
max{pen(x0), pen(xk) + dist(x0, xk)}.

We now prove the correctness of these two data reduction rules. That is, given
an instance (G, τ, pen, s) of Doubly Weighted Diameter let (G ′, τ ′, pen′, s′) be
the instance created by applying a data reduction rule R once. Then, R is correct
if max{s, dpen(G)} = max{s′, dpen(G ′)}.

Lemma 3 Reduction Rules 1 and 2 are correct.

Proof Let (G = (V , E), τ, pen, s) be the input instance of Doubly Weighted

Diameter and (G ′ = (V ′, E ′), τ ′, pen′, s′) the instance resulting of an application of
Reduction Rule 1 to the degree-one vertex u with neighbor v or Reduction Rule 2 to
a pending cycle C = x0, x1, . . . , xa . We start with making some statements that are
true for both reduction rules.

We first show that dpen(G) ≥ dpen(G ′), that is, the (pen-adjusted) diameter in G is
at least as large as in G ′. To this end, let w,w′ ∈ V ′ such that dpen(G ′) = pen′(w) +
distG ′(w,w′) + pen′(w′). Observe that if w �= v and w′ �= v (for Reduction Rule 1)
or w �= x0 and , w′ �= x0 (for Reduction Rule 2), then

pen′(w) + distG ′(w,w′) + pen′(w′) ≤ pen(w) + distG(w,w′) + pen(w′) ≤ dpen(G).
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Thus, it remains to consider the case thatw′ = v for Reduction Rule 1 andw′ = x0 for
Reduction Rule 2 (the cases w = v respectively w = x0 are completely analogous).
In the case of Reduction Rule 1 we have

pen′(w) + distG ′(w,w′) + pen′(w′)
= pen(w) + distG(w, v) + max{pen(v), τ ({u, v}) + pen(u)} ≤ dpen(G).

In the case of Reduction Rule 2 we have for the “furthest” vertex xk from x0 in C that

pen′(w) + distG ′(w,w′) + pen′(w′)
= pen(w) + distG(w, x0) + max{pen(x0), dist({x0, xk}) + pen(xk)} ≤ dpen(G).

Thus, dpen(G) ≥ dpen(G ′).
Next, observe that s ≤ s′. Moreover, observe that if s ≥ dpen(G), then we

have max{s, dpen(G)} = s = s′ = max{s′, dpen(G ′)} since s′ ≥ s ≥ dpen(G) ≥
dpen(G ′). Thus, it remains to consider the case s < dpen(G) and, hence, to show
that dpen(G) = max{s′, dpen(G ′)}.

We split this last part of the proof into two parts, where we first consider Reduction
Rule 1 and then consider Reduction Rule 2 in the second part. For the first part,
let w,w′ ∈ V such that dpen(G) = pen(w) + distG(w,w′) + pen(w′). We make a
case distinction on the size of {w,w′} ∩ {u, v} (that is, whether w or w′ are equal to v

or u).
Case 1: |{w,w′} ∩ {u, v}| = 2. Since s < dpen(G), we have by definition of s′ that

dpen(G) = pen(u) + distG(u, v) + pen(v) = pen(u) + τ({u, v}) + pen(v) = s′.

Since dpen(G ′) ≤ dpen(G), it follows that max{s′, dpen(G ′)} = s′ = dpen(G).
In the following twocaseswe assume thatdpen(G) > pen(u)+distG(u, v)+pen(v);

otherwisewe are inCase 1.Hence, it follows that also s′ < dpen(G) since s < dpen(G).
Case 2: |{w,w′} ∩ {u, v}| = 1. Thus, we need to show dpen(G ′) ≥ dpen(G) (as

we already proved dpen(G ′) ≤ dpen(G) and assume s′ < dpen(G)). To this end,
let w′ ∈ {u, v} and w /∈ {u, v}. Hence, we have

dpen(G) = pen(w) + distG(w,w′) + pen(w′)
= pen(w) + distG(w, v) + max{pen(v), pen(u) + τ({u, v})}
= pen′(w) + distG ′(w, v) + pen′(v) ≤ dpen(G ′).

Thus, dpen(G ′) = dpen(G).
Case 3: |{w,w′} ∩ {u, v}| = 0. Again, we need to show dpen(G ′) ≥ dpen(G). To

this end, neither w nor w′ are changed by Reduction Rule 1. Thus,

pen(w) + distG(w,w′) + pen(w′) = pen′(w) + distG ′(w,w′) + pen′(w′) ≤ dpen(G ′).

This finishes the last case and concludes the proof for Reduction Rule 1.
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We continue with the proof for Reduction Rule 2. To this end we consider two
cases: Either s′ > dpen(G ′) or s′ ≤ dpen(G ′).

Case 1: s′ ≥ dpen(G ′). We show that s′ = dpen(G). Since s′ ≥ dpen(G ′), there is no
shortest path of length s′ +1 in G ′. Since G and G ′ only differ inC , it suffices to show
that there is a shortest path of length s′ in G and that there is no longer path that starts
in C . By construction, there is a pair of vertices xi , x j in C such that distpenG (xi , x j ) =
s′. Now assume that there is a shortest path of length at least s′ + 1 in G that starts
in C . By construction the path has to end outside of C as otherwise s′ would be larger.
Let v be the other endpoint of the path. Then, dpen(G ′) ≥ distpenG ′ (x0, v) > s′—a
contradiction.

Case 2: s′ < dpen(G ′). We will show that dpen(G) ≤ dpen(G ′). We first
define VC = {x0, x1, . . . , xa−1} to be the set of vertices in C . Again, let w,w′ ∈ V
such that dpen(G) = pen(w)+distG(w,w′)+pen(w′) and wemake a case distinction
on the size of {w,w′} ∩ VC .

Subcase 1: |{w,w′} ∩ VC | = 0. Since G and G ′ only differ in C , we have

dpen(G) = pen(w) + distG(w,w′) + pen(w′)
= pen′(w) + distG ′(w,w′) + pen′(w′) ≤ dpen(G ′).

Subcase 2: |{w,w′} ∩ VC | = 2. In this case by definition of s′, we have that s′ =
dpenG ≥ dpenG ′ —a contradiction.

Subcase 3: |{w,w′} ∩ VC | = 1. We assume without loss of generality that w /∈ VC
and w′ ∈ VC . Then we have

dpen(G) = pen(w) + distG(w,w′) + pen(w′)
≤ pen(w) + distG(w, x0) + max{pen(x0), pen(w′) + distG({x0, w′})}
= pen′(w) + distG ′(w, x0) + pen′(x0) ≤ dpen(G ′).

This finishes the last case and concludes the proof. ��

We now analyze the running time of Reduction Rules 1 and 2.

Lemma 4 Given a pending cycle C = x0x1 . . . xa, Reduction Rule 2 can be applied
in O(a) time.

Proof First, in O(a) time we compute k such that dist(xk, x0)+pen(xk) is maximized
and if k �= 0, then we set s = max{s, pen(x0)+dist(xk, x0)+pen(xk)}. (For k = 0 we
do not update s.) It remains to show how to compute dpen(C), the longest shortest path
that starts and ends in C . To this end, we first compute the sum W of all edge-weights
in C , that is, W = ∑a−1

i=0 τ({xi , xi+1}).
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Next we define two distance measures dcl, dc-c (for clockwise and counter-
clockwise) such that

dcl(xi , x j ) = τ({xi , xi+1 mod a})
+ τ({xi+1 mod a, xi+2 mod a}) + . . . + τ({x j−1 mod a, x j }) and

dc-c(xi , x j ) = τ({xi , xi−1 mod a})
+ τ({xi−1 mod a, xi−2 mod a}) + . . . + τ({x j+1 mod a, x j }).

Note that dcl(xi , x j ) + dc-c(xi , x j ) = W and dcl(xi , x j ) = dc-c(x j , xi ).
We provide a dynamic program that only considers “clockwise” shortest paths

between x� and x j , that is, paths of length pen(x�) + dcl(x�, x j ) + pen(x j ) that sat-
isfy dcl(x�, x j ) ≤ dc-c(x�, x j ) (otherwise it is not a shortest path). Observe that all
“counter-clockwise” paths will be considered in the iteration where the role of x j
and x� is swapped as dcc(x�, x j ) = dcl(x�, x j ).

The dynamic program uses a table T with a entries, where the �th entry corresponds
to x� and the value stored in the entry is the vertex x j furthest from x�, formally,

x j := argmax
x∈{xi | dcl(x�,xi ) ≤ dc-c(x�,xi )}

{dist(x, x�)}.

For initialization, we start with computing T [x0] by checking in O(a) time all vertices
in C . Besides the table T , the dynamic program has one more variable r storing the
length of a longest shortest path found so far. Initially, r = pen(x0) + dist(xk, x0) +
pen(xk).

Given x j = T [x�] for some vertex x� the dynamic program computes the furthest
vertex x j ′ from x�+1 and updates r if any longest shortest path from x�+1 is longer
than r . Note that the furthest vertex x j ′ from x�+1 is either the furthest vertex T [x�] =
x j from x� or some vertex x that is ignored by x�. The only possible vertices that
are ignored by x� but not by x�+1 are the vertices x with dcl(x�, x) > dc-c(x�, x)
and dcl(x�+1, x) ≤ dc-c(x�+1, x). Thus, we can compute the furthest vertex from x�+1
in constant amortized time as follows:Wecan compute the furthest vertex x j ′ from x�+1
by iterating over the vertices x j+1 mod a, x j+2 mod a, . . . and check whether

dc-c(x�+1, x j+1 mod a)

= dc-c(x�, x j ) − dist(x�, x�+1) + dist(x j mod a, x j+1 mod a) ≤ W/2.

If this first check is met, then we compute the “pen”-distance dc-c(x�+1, xk+1 mod a)+
pen(x�+1) + pen(xk+1 mod a). If this is larger than r , then we update r with this value
(a longer shortest path was found). We then continue with xk+2 mod a and so on until
the first check is not met anymore.

The whole pending cycle can be checked in O(a) time in this way and we can
set s = max{s, r}. ��

We now analyze the running time of both reduction rules.

Lemma 5 Reduction Rules 1 and 2 can be exhaustively applied in O(n + m) time.
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Proof Notice that we can sort all vertices by their degree in linear time using bucket
sort. Applying Reduction Rule 1 or Reduction Rule 2 takes constant time per deleted
vertex. After applying a reduction rule, we adjust the degree of the remaining vertex
(either the unique neighbor of a degree-one vertex or the high-degree vertex in a
pending cycle) in constant time by moving it to the appropriate bucket. Note that
applying Reduction Rule 2 can lead to a new vertex of degree one and an application
of Reduction Rule 1 can lead to twomaximal paths merging to either a longer maximal
path or a pending cycle. Since these cases can be detected in constant time and each
vertex is only removed once, the overall running time to apply Reduction Rules 1and 2
exhaustively is in O(n + m). ��

We now present the algorithm that computes the maximum distpen(u, v) over all
pairs of remaining vertices u, v after applying Reduction Rules 1 and 2 exhaustively.
This algorithm distinguishes between three different cases: The longest shortest path
has at least one endpoint in V≥3 (Case 1), its two endpoints are in the same maximal
path (Case 2), or its endpoints are in two different maximal paths (Case 3).

Proof (of Theorem 3) Let G = (V , E) be the input graph with feedback edge num-
ber k and let K be a feedback edge set with |K | = k. We first apply Reduction Rules 1
and 2 exhaustively in O(n + m) time. We next compute three different values: The
length of a longest shortest path with

– at least one endpoint in V≥3 (Case 1),
– both endpoints in the same maximal path (Case 2), or
– both endpoints in two different maximal paths (Case 3).

The diameter of G is then the maximum of s and the three values computed.
Case 1:We first perform Dijkstra’s algorithm from each vertex v ∈ V≥3 and store

for each vertex u ∈ V \ {v} the distance dist(v, u) and update s = max{s, pen(v) +
pen(u) + dist(v, u)}. This way we find all shortest paths that start or end in a vertex
in V≥3 (or a pending tree connected to such a vertex).

Case 2: This case is similar to the case of pending cycles (see Reduction Rule 2).
The only adjustment is the computation of the index that is considered by x�+1 but not
by x�. For a maximal path P = x0x1 . . . xa , we compute W = ∑a−1

i=0 dist(xi , xi+1)

and check whether the distance “within” a path between two vertices xi , x j (i < j) is
at most as large as dist(xi , x0) + dist(x0, xa) + dist(xa, x j ).

Case 3: We remark that this case can be solved in O(k · (m + n log3 n)) time
using range trees [18, Proposition 2]. In order to achieve a time of O(kn log n)),
we present a specialized algorithm (not using any black-box techniques). We
set VP :={x1, x2, . . . , xa−1} and V P :=V \ (VP ∪{x0, xa}) = {v1, v2, . . . , vn−a−1}. In
the last case we have that u is in a maximal path P = x0x1 . . . xa and v is outside P ,
that is, u ∈ VP and v ∈ V P . We present an algorithm that takes O(n log n) time for
each maximal path to compute the length of a longest shortest path of the specified
type. As there are O(k) such maximal paths [5, Lemma 5], the overall running time
is O(k · n log n).

The algorithm uses a length-|V P | array D where the i th entry is the distance
difference of vi ∈ V P to x0 and xa respectively, formally, D[i]:= distG(x0, vi ) −
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Fig. 4 Example demonstrating the monotonicities used in the proof of Theorem 3. All weights that are not
displayed are 1 and all pen weights are 0. Observe that only for i = 1 a shortest x1-vi -path goes over x4 (see
highlighted path on the left). The fact that a shortest x1-vi -path goes over x4 if and only if distP (x1, x4) −
distP (x1, x0) ≤ D[i] can also be seen in the example: D[2] < distP (x1, x4) − distP (x1, x0) = 3 − 1 ≤
D[1]. Exchanging x1 with x2 as starting point, results in more shortest x2-vi -paths going over x4 (see the
highlighted paths on the right with x2 as starting point)

distG(xa, vi ). Note that for some vertex x j in P , there is a shortest x j -vi -path leav-
ing P via xa if and only if distP (x j , xa) − distP (x j , x0) ≤ D[i]. Furthermore, D
can be computed in O(n) time from the distances computed in Case 1. The val-
ues distP (x j , xa) and distP (x j , x0) can also be computed easily in O(n) time.

We use D in the following way: The algorithm sorts D in O(n log n) time in non-
increasing order (for ease of notation, we still assume that the i th entry of D correspond
to vi ). As a result, we have that if a shortest x j -vi -path leaves P via xa , then so
does every shortest x j -vi ′ -path for every i ′ < i . Furthermore, since for any j ′ > j
we have distP (x j ′ , xa) − distP (x j ′ , x0) < distP (x j , xa) − distP (x j , x0) ≤ D[i], we
have that every shortest x j ′ -vi -path goes via xa . See Fig. 4 for an illustration of this
monotonicity which is exploited in our subsequent algorithm.

The algorithm handles two cases separately: One for computing the longest short-
est x j -vi -path, x j ∈ VP and vi ∈ V P , that contains x0 and one for computing longest
shortest x j -vi -path containing xa . As these two cases are completely symmetric, we
will discuss only the latter case. For brevity, let distmax(x j ) be the length of a longest
shortest path starting in x j , leaving P via xa , and ending in some v ∈ V P . Formally,
distmax(x j ) = max{distpen(x j , vi ) | vi ∈ V P ∧ distG(x j , vi ) = distP (x j , xa) +
distG(xa, vi )}. Thus, the task is to compute max j∈[a−1]{distmax(x j )}. To this end, the
algorithm computes distmax(x j ) for all j .

For the initialization, the algorithm computes the sorted array D. Moreover, it
computes the largest number i1 ∈ [n−a−1] such that distG(x1, vi1) = distP (x1, xa)+
distG(xa, vi1). If no such number exists, then set i1:=0. Furthermore, for each i ∈ [i1]
compute distpen(x1, vi ) = pen(vi )+distG(vi , xa)+distP (xa, x1)+pen(x1) and store
the maximum in a variable r (r will be returned at the end of the algorithm). Due to D
being sorted, this initialization phase can be done in O(i1) time. Moreover, due to D
being sorted, we have r = distmax(x1) as for all i ′ > i1 every shortest x1-vi ′ -path
leaves P via x0. This completes the initialization.

Next, the algorithm computes for each j ∈ {2, 3, . . . , a − 1} the value distmax(x j ).
Notice that distmax(x1) was computed in the initialization. For j > 1 the algorithm is
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as follows: Compute the largest number i j ∈ [n − a − 1] such that distG(x j , vi j ) =
distP (x j , xa)+distG(xa, vi j ). Note that due to the sorting of Dwe have that i j ≥ i j−1.
Hence, we find i j in O(i j − i j−1) time by simply start checking D at positions i j−1 +
1, i j−1 +2, . . . , i j , i j +1 (note that, by definition of i j , the last check at position i j +
1 fails). For each i ∈ {i j−1 + 1, i j−1 + 2, . . . , i j } we do the following: We first
compute distpen(x j , vi ) = pen(vi ) + distG(vi , xa) + distP (xa, x j ) + pen(x j ) and
store the maximum in a variable r ′. We then update r with max{r ′, r − pen(x j−1) +
pen(x j ) − τ({x j−1, x j })}. Observe that r = distmax(x j ) as for vi with i ∈ {i j−1 +
1, i j−1 + 2, . . . , i j } the algorithm computed distpen(x j , vi ). For all i ∈ [i j−1] we
know that all x j−1-vi -paths leave P via xa . Thus, we can simply update their length
by pen(x j ) − pen(x j−1) − τ({x j−1, x j }).

Altogether, the algorithm runs in O(k(n log n+∑a−1
i=1 (i j − i j−1))) = O(kn log n)

time. Combining this with Lemma 5 concludes the proof of Theorem 3. ��

5 Parameters for Social Networks

Here, we study parameters that we expect to be small in social networks. Recall that
social networks have the “small-world” property and a power-law degree distribu-
tion [33, 35–38]. The “small-world” property directly transfers to the diameter. We
capture the power-law degree distribution by the h-index as only few high-degree
vertices exist in the network. Thus, we investigate parameters related to the diameter
and to the h-index starting with degree-related parameters.

5.1 Degree Related Parameters

We next investigate the parameter minimum degree. Unsurprisingly, the minimum
degree is not helpful for parameterized algorithms. In fact, we show that Diameter
is 2-GP-hard with respect to the combined parameter bisection width andminimum
degree. The bisection width of a graph G is the minimum number of edges to delete
fromG in order to partitionG into two connected componentwhose number of vertices
differ by at most one.

Proposition 2 Diameter is 2-GP-hard with respect to bisection width andminimum
degree.

Proof Let G = (V , E) be an arbitrary input graph for Diameter where V =
{v1, v2, . . . vn} and let d be the diameter ofG.We construct a new graphG ′ = (V ′, E ′)
with diameter d + 4 as follows: Let V ′ = {si , ti , ui | i ∈ [n]} ∪ {wi | i ∈ [3n]} and
E ′ = T ∪W ∪E ′′, where T = {{si , ti }, {ti , ui } | i ∈ [n]},W = {u1, w1}∪{{w1, wi } |
i ∈ ([3n] \ {1})}, and E ′′ = {{ui , u j } | {vi , v j } ∈ E}.

An example of this construction can be seen in Fig. 5.
We will now prove that all properties of Definition 1 hold. It is easy to verify that

the reduction runs in linear time and that there are 6n vertices and 5n+m edges in G ′.
Notice that {si , ti , ui | i ∈ [n]} and {wi | i ∈ [3n]} are both of size 3n and that there
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Fig. 5 Example for the construction in the proof of Theorem 2. The input graph given on the left side has
diameter 2 and the constructed graph on the right side has diameter 2 + 4 = 6

is only one edge ({u1, w1}) between these two sets of vertices. The bisection width
of G ′ is therefore one and the minimum degree is also one as s1 is only adjacent to t1.

It remains to show that G ′ has diameter d + 4. First, notice that the subgraph
of G ′ induced by {ui | i ∈ [n]} is isomorphic to G. Note that dist(si , ui ) = 2 and
thus dist(si , s j ) = dist(ui , u j ) + 4 = dist(vi , v j ) + 4 and therefore the diameter
of G ′ is at least d + 4. Third, notice that for all vertices x ∈ V ′ \ {si } it holds
that dist(si , x) > dist(ti , x). Lastly, observe that for all i ∈ [3n] and all vertices x ∈ V ′
it holds that dist(wi , x) ≤ max{dist(s1, x), 4}. Thus the longest shortest path in G ′ is
between twovertices si , s j and is of distance dist(ui , u j )+4 = dist(vi , v j )+4 ≤ d+4.

��
We mention in passing that the constructed graph in the proof of Proposition 2

contains the original graph as an induced subgraph and if the original graph is bipartite,
then so is the constructed graph. Thus, first applying the construction in the proof of
Theorem 1 (see also Fig. 2) and then the construction in the proof of Proposition 2
proves that Diameter is GP-hard even parameterized by the sum of girth, bisection
width, minimum degree, and odd cycle transversal.

5.2 Parameters Related to Both Diameter and h-index

Here, we will study combinations of two parameters where the first one is related
to diameter and the second to h-index (see Fig. 1 for an overview of closely related
parameters).We start with the combinationmaximumdegree anddiameter. Interest-
ingly, although the parameter is quite large, the naive algorithm behind Observation 5
cannot be improved to a fully polynomial running time.

Theorem 4 There is no (d +Δ)O(1)(n+m)2−ε-time algorithm that solves Diameter
parameterized by maximum degree Δ and diameter d unless the SETH is false.
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Proof We prove a slightly stronger statement excluding 2o(
c√d+Δ) · (n + m)2−ε-time

algorithms for someconstant c.Assume towards a contradiction that for each constant r
there is a 2o(

r√d+Δ) · (n +m)2−ε-time algorithm that solves Diameter parameterized
by maximum degree Δ and diameter d. Evald and Dahlgaard [21] have shown a
reduction from CNF- SAT to Diameter where the resulting graph has maximum
degree three such that for any constant ε > 0 an O((n + m)2−ε)-time algorithm
(for Diameter) would refute the SETH. A closer look reveals that there is some
constant c such that the diameter d in their constructed graph is in O(logc(n + m)).
By assumption we can solve Diameter parameterized by maximum degree and
diameter in 2o(

c√d+Δ) · (n + m)2−ε time. Observe that

2o(
c√d+Δ) · (n + m)2−ε = 2o(

c
√

logc(n+m)) · (n + m)2−ε

= (n + m)o(1) · (n + m)2−ε ⊆ O((n + m)2−ε′
) for some ε′ > 0.

Since we constructed for some ε′ > 0 an O((n + m)2−ε′
)-time algorithm for

Diameter the SETH fails and thus we reached a contradiction. Finally, notice that
(d + Δ)O(1) ⊂ 2o(

c√d+Δ) for any constant c. ��
h-index and diameter.We next investigate the combined parameter h-index and diam-
eter. The reduction by Roditty and Williams [39] produces instances with constant
domination number and logarithmic vertex cover number (in the input size). Since
the diameter d is linearly upper-bounded by the domination number and the h-index
is linearly upper-bounded by the vertex cover number, any algorithm that solves
Diameter parameterized by the combined parameter (d + h) in 2o(d+h) · (n +m)2−ε

time disproves the SETH.Wewill nowpresent an algorithm forWeighted Diameter

parameterized by h-index and diameter that almost matches the lower bound.

Theorem 5 Diameter parameterized by diameter d and h-Index h is solvable in O(h ·
(n log n + m) + n · d · h · (dh + hd log h)) time.

Proof Let H = {x1, . . . , xh} be a set of vertices such that all vertices in V \ H have
degree at most h in G. Clearly, H can be computed in linear time. We will describe
a two-phase algorithm with the following basic idea: In the first phase it performs
Dijkstra’s algorithm from each vertex v ∈ H , stores the distance to each other vertex
and uses this to compute the “type” of each vertex, that is, a characterization by the
distance to each vertex in H . In the second phase it iteratively increases a value e and
verifies whether there is a vertex pair of distance at least e+1. If at any point no vertex
pair is found, then the diameter of G is e.

The first phase is straight forward: Execute Dijkstra’s algorithm from each vertex v

in H and store the distance from v to every other vertex w in a table. Then iterate
over each vertex w ∈ V \ H and compute a vector of length h where the i th entry
represents the distance from w to xi . Also store the number of vertices of each type
containing at least one vertex. Since the distance to any vertex is at most d, there are
at most dh different types. This first phase takes O(h · (m + n log n)) time.

For the second phase, we initialize e with the largest distance found so far, that is,
the maximum value stored in the table and compute G ′ = G − H . Iteratively check
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whether there is a pair of vertices in V \ H of distance at least e + 1 as follows. We
check for each vertex v ∈ V \ H whether there are types such that no vertex of one
of these types can be reached by a path of length at most e passing through a vertex
in H . This can be done by computing the sum of the two type-vectors in O(h) time
and comparing the minimum entry in this sum with e. If all entries are larger than e,
then no shortest path from v to some vertexw of the respective type of length at most e
can contain any vertex in H . Thus we compute Dijkstra’s algorithm from v in G ′ up
to depth e2 and count the number of vertices of the respective types we found. If these
numbers are equal to the total number of vertices of the respective types, then for all
vertices w of these type it holds that dist(v,w) ≤ e. If the respective numbers do
not match, then there is a vertex pair of distance at least e + 1, and we can therefore
increase e by one and start the process again.

There are at most d iterations in which e is increased and the check is done. In each
iteration, we have to compute the sum of type vectors for each vertex and perform
Dijkstra’s algorithm up to depth at most d inG ′. Recall that the maximum degree inG ′
is h and therefore computing Dijkstra’s algorithm up to depth d takes O(hd ·d · log h)

time. Since
∑d

e=1 h
e < hd+1 for h ≥ 2, the overall running time is in O(h · (n log n+

m) + n · d · h · (dh + hd log h)). ��
Acyclic chromatic number and domination number.Wenext analyze the parameterized
complexity of Diameter parameterized by acyclic chromatic number a and domina-
tion number d. The acyclic chromatic number upper-bounds the average degree, and
therefore the standard O(n · m)-time algorithm runs in O(n2 · a) time. We will show
that this is essentially the best one can hope for as we can exclude f (a, d)·(n+m)2−ε-
time algorithms assuming SETH. Our result is based on the reduction by Roditty and
Williams [39] and is modified such that the acyclic chromatic number and domina-
tion number are both four in the resulting graph.

Theorem 6 There is no f (a, d) · (n + m)2−ε-time algorithm for any computable
function f that solves Diameter parameterized by acyclic chromatic number a and
domination number d unless the SETH is false.

Proof We provide a reduction from CNF- SAT toDiameterwhere the input instance
has constant acyclic chromatic number and domination number and such that
an O((n + m)2−ε)-time algorithm refutes the SETH. Since the idea is the same as in
Roditty and Williams [39] we refer the reader to their work for more details. Let φ be
a CNF- SAT instance with variable set W and clause set C . Assume without loss of
generality that |W | is even. We construct an instance (G = (V , E), k) for Diameter
as follows:

Arbitrarily partition W into two set W1,W2 of equal size. Add three sets V1, V2
and B of vertices to G where each vertex in V1 (in V2) represents one of 2|W1| = 2|W2|
possible assignments of the variables in W1 (in W2) and each vertex in B represents
a clause in C . Clearly |V1| + |V2| = 2 · 2|W |/2 and |B| = |C |. For each vi ∈ V1 and

2 By “up to depth e” we mean that we run Dijkstra’s algorithm with the addition that whenever the distance
to a vertex is at least e, then we do not add it to the stack (or priority queue) and if the distance is larger
then e, then we do not update its distance to the source. Similar as in the proof of Observation 5, we can show
that the number of vertices and edges considered by the algorithm are at most he + 1 and he , respectively.
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Fig. 6 A schematic illustration of the construction in the proof of Theorem 6. Note that the resulting graph
has acyclic chromatic number five (V1∪V2, B, S1∪ S2∪{t1, t4}, {t2} and {t3}, also represented by colors)
and a dominating number four ({t1, t2, t3, t4}) (Color figure online)

each u j ∈ B we add a new vertex si j and the two edges {vi , si j } and {u j , si j } toG if the
respective variable assignment does not satisfy the respective clause.We call the set of
all these newly introduced vertices S1. Now repeat the process for all verticeswi ∈ V2
and all u j in B and call the newly introduced vertices qi j and the set S2. Finally we
add four new vertices t1, t2, t3, t4 and the following sets of edges to G: {{t1, v} | v ∈
V1}, {{t2, s} | s ∈ S1}, {{t3, q} | q ∈ S2}, {{t4, w} | w ∈ V2}, {{t2, b}, {t3, b} | b ∈ B},
and {{t1, t2}, {t2, t3}, {t3, t4}}. See Fig. 6 for a schematic illustration of the construction.

Wewill first show thatφ is satisfiable if andonly ifG has diameter five and then show
that the domination number and acyclic chromatic number of G are five and four,
respectively. First assume that φ is satisfiable. Then, there exists some assignment β

of the variables such that all clauses are satisfied, that is, the two assignments of β with
respect to the variables inW1 andW2 satisfy all clauses. Let v1 ∈ V1 and v2 ∈ V2 be the
vertices corresponding to β. Thus for each b ∈ B we have dist(v1, b) + dist(v2, b) ≥
5. Observe that all paths from a vertex in V1 to a vertex in V2 that do not pass a
vertex in B pass through t2 and t3. Since all of these paths are of length 5, it follows
that dist(v1, v2) = 5. Observe that the diameter of G is at most five since each vertex
is connected to some vertex in {t1, t2, t3, t4} and these four are of pairwise distance at
most three.

Assume next that the diameter of G is five. Clearly there is a shortest path
between a vertex vi ∈ V1 and v j ∈ V2 of length five. Thus there is no path of
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the form vi sihuhq jhw j for any uh ∈ B. This corresponds to the statement that the
variable assignment of vi and w j satisfy all clauses and therefore φ is satisfiable.

The domination number of G is four since {t1, t2, t3, t4} is a dominating set. The
acyclic chromatic number of G is at most five as V1 ∪ V2, B, S1 ∪ S2 ∪ {t1, t4}, {t2}
and {t3} each induce an independent set and each combination of them not includ-
ing S1 ∪ S2 ∪ {t1, t4} only induce independent sets or stars. Lastly, note that S1 ∪ S2 ∪
{t1, t4} and {t2} or {t3} only induces a star and an independent set, S1 ∪ S2 ∪ {t1, t4}
and V1 ∪ V2 induces two trees of depth 2 (where t1 and t4 are the roots and S1
and S2 are the leaves), and S1 ∪ S2 ∪ {t1, t4} and B induce a disjoint union of stars
and isolated vertices as each vertex in S1 ∪ S2 ∪ {t1, t4} has maximum degree one
in G[B ∪ S1 ∪ S2 ∪ {t1, t4}].

Now assume that we have an O( f (k) · (n +m)2−ε)-time algorithm for Diameter
parameterized by domination number and acyclic chromatic number. Since the
constructed graph has O(2|W |/2 ·|C |) vertices and edges, thiswould imply an algorithm
with running time

O( f (9) · (2|W |/2 · |C |)2−ε)

= O(2(|W |/2)(2−ε) · |C |(2−ε))

= O(2|W |(1−ε/2) · |C |(2−ε))

= 2|W |(1−ε′) · (|C | + |W |)O(1) for some ε′ > 0.

Hence, such an algorithm for Diameter would refute the SETH. ��

6 Conclusion

We have resolved the complexity status of Diameter for most of the parameters in
the complexity landscape shown in Fig. 1. However, several open questions remain.
For example, is there an f (k)n2-time algorithm with respect to the parameter diam-
eter? Moreover, our algorithms working with parameter combinations have mostly
impractical running times which, assuming SETH, cannot be improved by much. So
the question arises, whether there are parameters k1, . . . , k� that allow for practically
relevant running times like

∏�
i=1 ki · (n + m) or even (n + m) · ∑�

i=1 ki? The list of
parameters displayed in Fig. 1 is by no means exhaustive. Hence, the question arises
which other parameters are small in typical scenarios? For example, what is a good
parameter capturing the special community structures of social networks [26]?
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