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Abstract
An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of
a graph G at least (resp. exactly) once. This notion was first discussed by Leonhard
Euler while solving the famous Seven Bridges of Königsberg problem in 1736. But
what if Euler had to take a bus? In a temporal graph (G, λ), with λ : E(G) → 2[τ ], an
edge e ∈ E(G) is available only at the times specified by λ(e) ⊆ [τ ], in the same way
the connections of the public transportation network of a city or of sightseeing tours
are available only at scheduled times. In this paper, we deal with temporal walks,
local trails, and trails, respectively referring to edge traversal with no constraints,
constrained to not repeating the same edge in a single timestamp, and constrained
to never repeating the same edge throughout the entire traversal. We show that, if
the edges are always available, then deciding whether (G, λ) has a temporal walk or
trail is polynomial, while deciding whether it has a local trail is NP-complete even if
τ = 2. In contrast, in the general case, solving any of these problems is NP-complete,
even under very strict hypotheses. We finally give XP algorithms parametrized by τ

for walks, and by τ + tw(G) for trails and local trails, where tw(G) refers to the
treewidth of G.
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1 Introduction

An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of a
graphG at least once (resp. exactly once). The Eulerian trail notion was first discussed
by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in
1736, where one wanted to pass by all the bridges over the river Preger without going
twice over the same bridge. Imagine now a similar problem, where you have a set of
tourist sights linked by possible routes. If the routes themselves are also of interest,
a sightseeing tourism company might want to plan visits on different days that cover
all the routes. One could do that with no constraints at all (thus performing a walk),
or with the very strict constraint of never repeating a route (thus getting a trail), or
constraining oneself to at least not repeating the same route on the same day (thus
getting what we called a local trail). If we further assume that some routes might not
be always accessible, we then get distinct problems defined on temporal graphs.

In a temporal graph (G, λ) with lifetime τ , we have λ : E(G) → 2[τ ], and an
edge e ∈ E(G) is available only at the times specified by λ(e) ⊆ [τ ], in the same
way the connections of the public transportation network of a city or of sightseeing
tours are available only at scheduled times. In this scenario, paths and walks are
valid only if they traverse a sequence of adjacent edges e1, . . . , ek at non-decreasing
times t1 ≤ . . . ≤ tk , respectively, with ti ∈ λ(ei ) for every i ∈ [k] (similarly, one
can consider strictly increasing sequences, i.e. with t1 < . . . < tk). The research on
temporal graphs has attracted a lot of attention in the past decade (we refer the reader
to the surveys of [21, 24], and the seminal paper of [19]). They have appeared also
under different names, e.g. as time-varying graphs [6], as evolving networks [4]), and
as link streams [21].

Several translations of Eulerian trails and walks are possible in temporal terms,
depending on the constraints we consider. In particular, we study the following vari-
ations. Below, all the walks and trails are implicitly considered to be temporal, as
defined in the previous paragraph.

Problem Given a temporal graph (G, λ), we consider the following problems:

• Eulerian Walk: deciding whether (G, λ) has an Eulerian walk, i.e. a walk
traversing each edge of G at least once.

• Eulerian Local Trail: deciding whether (G, λ) has an Eulerian local trail, i.e.
a walk traversing each edge ofG at least once, and at most once in each timestamp.

• Eulerian Trail: decidingwhether (G, λ) has anEulerian trail, i.e. awalk travers-
ing each edge of G exactly once.

We also consider the related problems where the walks/trails are closed (first vertex
equal to the last one), respectively referring to them as Eulerian Closed Walk,
Eulerian Local Tour, andEulerian Tour. Finally, for all of the above problems,
we add the prefix Strict to refer to the variation in which walks must be strictly
increasing sequences of edges. Observe that, when τ = 1, then both Eulerian Trail
and Eulerian Local Trail degenerate into the original formulation of the Seven
Bridges of Königsberg problem. This is why we think they appear to be more natural
adaptations of the static version of the problem.
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One of the concepts closest to ours is the one defined by [26], where he gives a
polynomial-time algorithm to check the existence of an Eulerian closed walk (i.e. a
tour) in dynamic graphs. However, the dynamic graphmodel is quite different from the
temporal graph model used in this paper, as pointed out by [24]. Indeed, looking at the
corresponding time-expanded graph related to the one of [26], temporal edges can go
back in time and the graph is infinite. Nevertheless, the results presented there seemed
to point towards the polynomiality of the problems investigated here, as observed
by [24]: “the results proved for it [the dynamic graph model] are resounding and
possibly give some first indications of what to expect when adding to combinatorial
optimization problems a time dimension”. We found however that this is not the case,
as we will show that even Eulerian Walk turns out to be NP-complete on temporal
graphs. Taking inspiration by [26], we also define a dynamic-based temporal graph as
a temporal graph whose edges are always available, and we analyze the complexity
of the above problems on these particular instances.

In this paper we prove the following results. These are summarized in Table 1,
which also reports some recent results that will be discussed shortly.

Theorem 1 Given a temporal graph (G, λ) with lifetime τ ,

1. Eulerian Walk is NP-complete, even if either each snapshot of (G, λ) is a
forest with a constant number of edges, or each edge appears at most 3 times.
Also, it is polynomial-time solvable if (G, λ) is dynamic-based, and is in XP when
parameterized by τ .

2. Eulerian Local Trail is NP-complete for each τ ≥ 2, even if (G, λ) is
dynamic-based. It is in XP when parameterized by τ + tw(G).

3. Eulerian Trail is NP-complete for each τ ≥ 2. It is polynomial if (G, λ) is
dynamic-based. It is in XP when parameterized by τ + tw(G).

The same results hold for tours, i.e. for Eulerian Closed Walk,Eulerian Local
Tour, and Eulerian Tour.

Theorem 1 gives a complete taxonomy of our problems, also focusing on the pos-
sibility of getting polynomial-time algorithms when we have a small lifetime τ . In
particular, for Eulerian Trail and Eulerian Local Trail, since they become
polynomial when τ = 1, the bound for τ is optimal, giving us a complete dichotomy
with respect to the lifetime of (G, λ). In contrast, Eulerian Walk is easily solv-
able for every fixed τ , meaning that walks are easier than trails even on the temporal
context. We also show that Eulerian Trail and Eulerian Local Trail are solv-
able in XP time if parameterized by τ + tw(G). Our negative results for constant τ

combined with known negative results for constant tw(G) (see Table 1) exclude the
possibility of XP algorithms if parameterized just by τ or tw(G). An FPT algorithm
parameterized by τ + tw(G) could still exist.

It is important to remark that none of the variations we considered immediately
implies any of the others. We will show indeed that the property of being Eulerian for
the static base graph G is in general a necessary but not sufficient condition for the
existence of an Eulerian trail, becoming sufficient only if we restrict to dynamic-based
temporal graphs. In the case of Eulerian local trail, we will see that this property is
not even necessary. In addition, if only strictly increasing temporal walks/trails are

123



808 Algorithmica (2023) 85:805–830

Table 1 Our results concerning Problem 1

Walk Local Trail Trail

General NP-c ∀ fixed k ≥ 3, NP-c ∀ fixed τ ≥ 2 NP-c ∀ fixed τ ≥ 2,

XP by τ XP by τ + tw(G) XP by τ + tw(G)

FPT by k + imw(G, λ)

Dynamic- Based Poly† NP-c ∀ fixed τ ≥ 2 Poly�

Treewidth ≤ w NP-c ∀ fixed k ≥ 4, NP-c ∀ fixed k ≥ 4, Poly (trivial) when w = 1

even if w = 1 even if w = 1 NP-c ∀ fixed k ≥ 4,

even if w = 2

For general temporal graphs (first row), for dynamic-based temporal graphs (second row), for temporal
graphs whose base graph has bounded treewidth (last row). k refers to the maximum number of appear-
ances of an edge. † corresponds to deciding whether G is connected. Blue are direct applications or easy
implications of results by [5].
� Corresponds to deciding whether G has an Eulerian trail. All the results to Strict Eulerian Walk,
Strict Eulerian Local Trail, Strict Eulerian Trail, except that we τ = �(m) is necessary, with
m = |E(G)|, as when τ < m the answer is trivially NO

allowed, then our reductions for the first row of Table 1 can be easily modified, thus
giving NP-completeness results also in this case. Observe that in this case a necessary
condition for a positive answer is τ ≥ |E(G)|; this is why we do not have the same
bounds for τ as in Theorem 1.

Corollary 2 (i) Strict Eulerian Walk, (ii) Strict Eulerian Local Trail,
(iii) Strict Eulerian Trail are NP-complete in a general temporal graph (G, λ)

with lifetime τ = �(|E(G)|).

Also in the case of dynamic-based temporal graphs (second row of Table 1), the
polynomiality is preserved for strictly increasing Eulerian walks and Eulerian trails
and we leave open the question whether Strict Eulerian Local Trail is still
NP-complete on dynamic-based temporal graphs.

As a byproduct of our reductions we get the following result about static graphs,
which can be of independent interest.

Corollary 3 Given a graph G, deciding whether the edges of G can be covered with
two trails is NP-complete.

A preliminary version of this paper appeared in [23]. With respect to that version,
we now present complete proofs of Theorems 5 and 8, we add an XP algorithm
parameterized by treewidth and lifetime (Sect. 6), and we discuss the dynamic graph
result by [26] in Appendix A.
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Related work
Eulerian Walk is related to the TEXP problem investigated by [25], which

consists of, given a temporal graph (G, λ), finding a strictly increasing temporal walk
that visits all vertices in G (possibly, more than once) whose arrival time is minimum.
[25] prove that TEXP is NP-complete and even not approximable unless ¶ = NP.
This is in stark contrast with the static version of the problem, which can be trivially
solved in linear time. A lot of research has been devoted to temporal exploration, e.g.
bounding the arrival time of such walks in special instances [11, 13] and extending
previous results in the case of non-strictly increasing paths [12].Akrida et al. [1] proved
that TEXP is NP-complete even when restricted to temporal stars in which each edge
appears at most k times, for all fixed k ≥ 6. This result has been improved by [5] to
all fixed k ≥ 4. On the other hand, Akrida et al. [1] showed that if each edge appears
at most k = 3 times, then the problem is polynomial-time solvable on temporal stars.
Observe that, in a star, passing by all the leaves translates into passing by all the edges.
Therefore their result implies NP-completeness for Strict Eulerian Walkwith the
same constraints as before. Note that in contrast Eulerian Walk is trivial on stars
since one can always go back to the central vertex. Nevertheless, as will be discussed
in Sect. 6, Eulerian Walk is NP-complete on general trees by a modification of
the reduction presented by [5], as highlighted by Table 1. Notice also that, unlike
stars, our main theorem says that Eulerian Walk on general temporal graphs is
NP-complete when edges appear at most 3 times.

Now, note that Strict Eulerian Walk is equivalent to (Strict) Eulerian
Local Trail. Hence, still from the previous paragraph, we get that (Strict) Eule-
rian Local Trail is NP-complete on stars. In particular, we get that Eulerian
Local Trail is NP-complete when restricted to temporal graphs where each edge
appears at most k times, for all fixed k ≥ 4. We improve this bound for k = 2 even
when the temporal graph is dynamic based, and present an algorithm that runs in
XP time when parametrized by τ + tw(G).

Concerning Eulerian Trail, to the best of our knowledge, there is only one other
paper investigating this problem, that appeared in the same volume as the preliminary
versionof this paper and focuses on theEulerian Trailvariation, giving independent
and broadly different results [5]. In particular, other than proving the results on TEXP
mentioned above, they prove that Eulerian Trail is NP-complete even if each edge
appears at most k times, for every fixed k ≥ 3. Observe that our result improves that
to k = 2, since we prove it is NP-complete even if the lifetime is 2. Nevertheless,
even though their reduction produces a temporal graph with unbounded lifetime, it
also gives a base graph with very simple structure (a set of triangles intersecting in
a single vertex, which is a graph with treewidth 2). In addition, they also introduce a
parameter for temporal graphs, that they called interval-membership width (denoted
by imw(G, λ)), and provide an algorithm FPTwhen parametrized by k+ imw(G, λ),
as also reported in Table 1. As k+imw(G, λ) is not related to τ +tw(G), our algorithm
XP in τ + tw(G) is of independent interest.

When considering dynamic-based temporal graphs, as edges are assumed to be
always available during the lifetime τ , we could relate our problems to several other
problems on static graphs. A closely related one would be the Chinese Postman prob-
lem, where the edges of the graph have positive weights and one wants to find an
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Eulerian closed walk on G with minimum weight; in other words, one wants to add
copies of existing edges in order to obtain an Eulerian graph of minimum sum weight.
Even if we regard the Chinese Postman problem where the weights are all equal to 1,
this is very different from our approach since for us, repetition of a long common
trail in different snapshots does not make the solution worse, while it would when
considering the Chinese Postman problem. It is easy to see though that the solution
for the Chinese Postman problemwould give us an upper bound for the amount of time
spent on an Eulerian local tour of a dynamic-based graph, as we could start a new trail
on a new snapshot whenever an edge repetition was detected. The Chinese Postman
problem is largely known to be polynomial [18], and some variations that take time
into consideration have been investigated, mostly from the practical point of view (see
e.g. [7, 27, 28]), but none of which is equivalent to our problems. Among these, we
mention the so-called HCPP (Hierarchical Chinese Postman Problem), where the set
E of all the edges is partitioned into clusters, i.e. {E1, . . . , Eh} such that ∪h

i=1Ei = E
and for i 	= j Ei ∩ E j = ∅, and there is a partial order < between clusters. The HCPP
aims to find a path of minimum weight passing through all the edges and such that,
if an edge in E j is traversed, all the edges in Ei for every i < j must be previously
traversed. This has been shown to be NP-hard in general and polynomial if the order
is linear and other conditions are met [10]. As it can be seen, this problem is very
different from our problems for several reasons: a walk is free to traverse an edge E j

and then an edge in Ei with i < j , each edge belongs to just one time stamp, and each
walk must traverse all the edges in the previous timestamps.

The problem of trying to obtain an Eulerian subgraph (as opposed to a supergraph,
as was the case in the previous paragraph) has also been studied. [8] study a family of
problems where the goal is to make a static graph Eulerian by a minimum number of
deletions. They completely classify the parameterized complexity of various versions
of the problem: vertex or edge deletions, undirected or directed graphs, with or without
the requirement of connectivity. Also, [15] study the parameterized complexity of the
following Euler subgraph problems: (i) Largest Euler Subgraph - for a given graph G
and integer parameter k, does G contain an induced Eulerian subgraph with at least k
vertices?; and (ii) Longest Circuit - for a given graph G and integer parameter k, does
G contain an Eulerian subgraph with at least k edges?

Eulerian Local Trail on dynamic-based graphs is actuallymore closely related
to the problem of covering the edges of a graph with the minimum number of (not
necessarily disjoint) trails, whereas the aforementioned problems are more concerned
with either minimizing edge repetitions or maximizing the subgraph covered by a
single trail. Even if the trail cover problem can be so naturally defined and involve such
a basic structure as trail, up to our knowledge it has not been previously investigated
yet. Note that Eulerian Local Trail is slightly different from trail cover, since
we also require that together the trails form a walk. In any case, a small modification
of our proof of Theorem 1.1 implies that deciding whether the edges of a graph can
be covered with at most two trails is NP-complete (Corollary 3). We mention that
the vertex version of this problem, namely the path cover problem, has been largely
investigated (see e.g. [2, 17, 22]).
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2 Preliminaries

We use standard definitions and notation of graph theory; we refer the unfamiliar
reader to [29]. A graph G has an Eulerian tour (trail) if and only if G has at most one
non-trivial component and all the vertices have even degree (at most two vertices have
odd degree) (see [14]). A graph is called Eulerian if it has an Eulerian tour.

Concerning temporal graphs, we use and extend the notation in [24]. A temporal
graph is a graph together with a function on the edges saying when each edge is active;
more formally, a temporal graph is a pair (G, λ), where λ : E(G) → 2N−{0}. Here,
we consider only finite temporal graphs, i.e., graphs such that max

⋃
e∈E(G) λ(e) is

defined. This value is called the lifetime of (G, λ) and denoted by τ . Given i ∈ [τ ],
we define the snapshot Gi as being the subgraph of G containing exactly the edges
active in time i ; more formally, V (Gi ) = V (G) and E(Gi ) = {e ∈ E(G) | i ∈ λ(e)}.
An element (e, t) ∈ E(G)×[τ ] is called a temporal edge. In what follows, in order to
make the reading more fluid, we often talk about “occurrence of an edge”. When this
is done we are implicitly referring to the corresponding temporal edge; for instance,
by “edge e occurs in Gi” we mean that i ∈ λ(e) (and hence (e, i) is a temporal edge).

Given vertices v0, vk in a graph G, a v0, vk-walk in G is an alternating sequence
(v0, e1, v1, . . . , ek, vk) of vertices and edges such that ei goes from vi−1 to vi for
i ∈ {1, . . . , k}. We define a walk in a temporal graph similarly, except that a walk
cannot go back in time.More formally, given a temporal graph (G, λ), a sequenceW =
(v0, (e1, t1), v1, . . . , (ek, tk), vk) of vertices and temporal edges is called a temporal
v0, vk-walk if (v0, e1, v1, . . . , ek, vk) is a walk in G, ti ∈ λ(ei ) for every i ∈ [k], and
t1 ≤ . . . ≤ tk . It is closed if it starts and finishes on the same vertex of G, i.e., if
v0 = vk , and it is strict if t1 < . . . < tk .

We say that a temporal walkW is a trail if there are no two occurrences of the same
edge of G in W . We say that W is a local trail if there are no two occurrences of the
same edge of G in the same snapshot, i.e., ifW restricted to Gi is a trail in G for every
i ∈ [τ ]. A closed (local) trail is also called a (local) tour. Finally, a temporal walk W
is called Eulerian if at least one occurrence of each edge of G appears at least once
in W . Observe that, by definition, an Eulerian temporal trail visits every edge of G
exactly once. From now on, we omit the word “temporal” as all treated walks/trails
are temporal.

A dynamic-based graph is a temporal graph (G, λ) where the edges are always
available, i.e. λ(e) = [τ ] for each e ∈ E(G).1 We denote a dynamic-based graph
simply by (G, [τ ]) where τ is the lifetime of the temporal graph.

3 EulerianWalk

In this section we focus on Eulerian Walk, i.e. deciding if there is a temporal
walk passing by each edge at least once, proving the results in Item 1 in Theorem 1,

1 This is the reason why we use the term dynamic-based, as they are similar to the dynamic networks used
in [26] when studying Eulerian trails, except that edges cannot go back in time and the lifetime is finite.
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Fig. 1 First three snapshots of the construction. For simplicity, we represent only the non-trivial components
of each snapshot. In this example, we have c1 containing (x1 ∨ x2), c2 containing (x1 ∨ x2), c3 containing
(x1 ∨ x2), and c4 containing (x1 ∨ x2)

summarized in the first column of Table 1. We start by presenting a simple algorithm
that solves the problem in XP time when parameterized by the lifetime.

Lemma 4 Given a temporal graph (G, λ)with lifetime τ , solvingEulerian Walk on
(G, λ) can be done in time O(τ · (n+m) ·nτ−1), where n = |V (G)| and m = |E(G)|.

Proof LetG1, . . . ,Gτ be the snapshots ofG; note first that if E(Gi ) is empty, then this
snapshot can be suppressed. Our problem reduces to decidingwhether there is a choice
of connected components H1, . . . , Hτ ofG1, . . . ,Gτ , respectively, that together cover
all the edges of G and is such that Hi intersects Hi+1, for each i ∈ [τ − 1]. More
formally, H1, . . . , Hτ must be such that: Hi ⊆ V (Gi ) and G[Hi ] is connected, for
each i ∈ [τ ]; V (G[Hi ]) ∩ V (G[Hi+1]) 	= ∅, for each i ∈ [τ − 1]; and for each edge
e ∈ E(G), there is at least one j ∈ [τ ] such that e ∈ E(G[Hi ]). As for each i ∈ [τ ],
there are at most n nodes in the intersections, there are at most O(nτ−1) choices. For
each choice the test can be done in O(τ (n+m)), obtaining O(τ (n+m)nτ−1) running
time.

In the following, we show that when τ is unbounded, deciding whether (G, λ)

admits an Eulerian walk is NP-complete by reducing from 3-SAT. This is best possible
because of the above lemma.

Theorem 5 Given a temporal graph (G, λ), deciding whether (G, λ) admits an Eule-
rian walk is NP-complete, even if either each snapshot of (G, λ) is a forest with a
constant number of edges, or each edge appears in at most 3 snapshots.

Proof We make a reduction from 3-SAT. Let φ be a 3-CNF formula on variables
{x1, . . . , xn} and clauses {c1, . . . , cm}, and construct G as follows. For each clause ci ,
add vertices {ai , bi } toG and edge aibi . Now consider a variable xi , and let ci1 , . . . , ci p
be the clauses containing xi positively, and c j1 , . . . , c jq be the clauses containing xi
negatively. Add two new vertices xi , xi toG, and edges {xiaik | k ∈ [p]}∪{xia jk | k ∈
[q]}; denote the spanning subgraph of G formed by these edges by Hi , and let H ′

i be
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equal to Hi together with edges {aibi | i ∈ {i1, . . . , i p, j1, . . . , jq}}. We can suppose
that {i1, . . . , i p} ∩ { j1, . . . , jq} = ∅ as otherwise the clauses in the intersection would
always be trivially valid; thus we get that Hi , H ′

i are forests. Finally, add a new vertex
T and make it adjacent to every vertex in {xi , xi | i ∈ [n]}.

We now describe the snapshots of (G, λ). See Fig. 1 to follow the construction. We
first build 2 consecutive snapshots in (G, λ) related to xi , for each i ∈ [n]. The first one
is equal toH ′

i , and the secondone contains exactly the edges {T xi , T xi , T xi+1, T xi+1}
if i < n, and if i = n, then the second snapshot is equal to G − {a jb j | j ∈ [m]}; this
can be done because this subgraph is connected. Denote by S1i , S

2
i the first and second

snapshot of xi , for each i ∈ [n]. Put these snapshots consecutively in timestamps 1
through 2n, in the order of the indexing of the variables. For now, observe that only
the last snapshot might not be a forest; this will be fixed later. We now prove that φ is
a satisfiable formula if and only if (G, λ) admits an Eulerian walk.

Observe first that, since we are dealing with a walk, we are allowed to repeat edges
as many times as we want; hence, if we visit any vertex inside a component of a
snapshot, we can also visit the entire component. At the same time, it is not possible
to visit more than one component within a snapshot. In the following we show the
proof of equivalence.

First consider a satisfying assignment of φ. Now, construct an Eulerian walk as
follows. Start by visiting all the edges in the component of H ′

1 containing x1, if x1 is
true, or the one containing x1, otherwise. Then, in S21 , jump to x2 if x2 is true, or to
x2, otherwise. Repeat the process until reaching S1n , and at the last snapshot, visit all
the edges in G − {a jb j | j ∈ [m]}. Because each clause ci contains at least one true
variable, we know that edge aibi is visited.

Now, consider an Eulerian walk W of (G, λ), and denote by W j
i the walk W

restricted to S j
i , for each i ∈ [n] and j ∈ [2]. We set xi to true if W 1

i contains xi , and
to false otherwise.Now, consider a clause ci containing variables xk1 , xk2 , xk3 . Because
aibi appears only in snapshots S1k1 , S

1
k2

, S1k3 , and only in the component containing the
literal that appears in ci , we get that at least one of the three literals must be set to true.

Finally, we prove that the constraints can be assumed. First, we count the number of
appearances. Observe that each edge of type aibi appears in exactly three snapshots,
namely the snapshots related to the variables contained in ci . Also, for a given variable
xi , the edges inside S1i between xi , xi and vertices in {a j | j ∈ [m]} appear once in
that snapshot, and a second time in snapshot S2n . Finally, in a similar way the edges
between T and {xi , xi } appear once in snapshot S2i−1 if i > 1, once in snapshot S2i ,
and a third time in snapshot S2n . It follows that the problem is NP-complete even if
each edge appears at most 3 times. Now, we want to spread snapshot S2n in a way that
each snapshot becomes a forest with a constant number of edges. Observe that we
could repeat the same pattern as the one in the first 2n − 1 snapshots in order to visit
the remaining edges in G −{a jb j | j ∈ [m]}. As long as the edges in {aibi | i ∈ [m]}
appear only in the first 2n−1 snapshots, the same argument as before still applies, and
we get the further constraint that each snapshot is a forest. Additionally, they can also
be considered to have a constant number of edges since 3-SAT is NP-complete even
if each variable appears at most three times [9]. Note that requiring both constraints
to hold would increase the maximum number of appearances to 4.
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If instead we are considering strictly increasing walks, a small modification of our
construction will also imply NP-completeness, hence proving Corollary 2(i). Indeed,
it suffices to relate each variable xi to a window big enough to ensure we will be
able to visit all the edges of the considered component. Because each variable appears
at most three times, one can see that it is enough that the edges are available for
a period of 12 timestamps. So, our previous snapshot S1i remains available for 12
consecutive timestamps, after which we will make S2i available for 2 timestamps.
Because the spare time can never be used to go from the component containing xi to
the component containing xi , the same arguments used in Theorem 5 still hold.

Now, if we consider a dynamic-based graph (G, λ), since all the edges are active
throughout its lifetime, we clearly have that there exists an Eulerian walk if and only
if G is connected; this proves the following Lemma.

Lemma 6 Eulerian Walk is polynomial for dynamic-based temporal graphs.

By Lemma 4, Theorem 5, and Lemma 6, we obtain Item 1 of Theorem 1. Finally,
note that if one is interested in closed walks instead, not only our NP-completeness
reduction can be adapted in order to ensure that we can always go back to the initial
vertex, but also the complexity results still hold.

4 Eulerian Local Tours and Trails

In this section we focus on Item 1 of Theorem 1. In the whole section, we will focus
on dynamic-based temporal graphs as the hardness results for general temporal graphs
are implied by the ones we prove for this restricted class. After the preliminary result in
Lemma 7, we focus on proving the hardness result for the problem of deciding whether
(G, [2]) has an Eulerian local tour, explaining the construction behind our reduction
from NAE 3-SAT, whose correctness is proved in Theorem 8. We also argue that, if
G is a cubic graph, then being Hamiltonian is a necessary but not sufficient condition
for (G, [2]) to admit an Eulerian local tour, arguing the need of an ad hoc reduction
for our problem. As the reduction in Theorem 8 focuses on solving Eulerian Local
Tour for τ = 2, in Corollary 9 we extend this result to each fixed τ and to trails, thus
completing the proof of Item 1 of Theorem 1. The following lemma helps us in our
proof.

Lemma 7 Let G be a graph. If (G, [2]) has an Eulerian local tour T , then T restricted
to snapshot i must pass by all vertices of odd degree in G, for each i ∈ [2].
Proof For each i ∈ [2], denote by Ti the trail inG equal to T restricted to timestamp i ,
and suppose, by contradiction, that u ∈ V (G) is a vertexwith odd degree not contained
in T1. Because T is a temporal tour, observe that T1 is a trail in G starting at some
s and finishing at some t , and T2 is a trail in G starting at t and finishing at s, with
possibly s = t . This means that the subgraph of G formed by the edges of T2 is such
that every x ∈ V (G) \ {s, t} has even degree. This is a contradiction because, since
no edge incident to u is visited in T1, we get that all the edges incident to u must be
visited in T2, i.e., u would have odd degree in T2. The same argument holds in case u
is not in T2, and the lemma follows.
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Fig. 2 Example of outerplanar
graph G such that (G, [2]) does
not have an Eulerian local tour

Fig. 3 Edge gadget with clause
black boxes Ci1 Ci2 · · · Cip

Cj1 Cj2 · · · Cjq

Ii Oi

A simple consequence of the above lemma is that, as previously said, if G is cubic,
then G must be Hamiltonian in order for (G, [2]) to have an Eulerian local tour.
Since deciding whether a cubic graph is Hamiltonian is NP-complete [16], this hints
towards the NP-completeness of the problem. However, since the other way around
is not necessarily true (see e.g. the graph in Fig. 2), we need an explicit reduction.
Indeed, the construction in Fig. 2 shows us that we might need an arbitrarily large
lifetime in order to be able to visit all the edges of (G, [τ ]) even if G is a 2-connected
outerplanar subcubic graph (which is trivially Hamiltonian).2

In the following we explain the construction behind our reduction from NAE 3-
SAT. Let φ be a CNF formula on variables {x1, . . . , xn} and clauses {c1, . . . , cm}. We
start by presenting a meta-construction, in the sense that part of the constructed graph
will be presented for now as black boxes and the actual construction is done later, as
depicted in Fig. 3. The meta part concerns the clauses; so for now, denote by Ci the
black box related to clause ci . Without going into details, Ci will contain exactly one
entry vertex for each of its literals, with some additional vertices, that will be presented
later. So, given a literal � contained in ci , denote by Ii (�) the entry vertex for � in Ci .
For each clause ci with literals j, k, and �, the three vertices Ii ( j), Ii (k), and Ii (�) are
distinct.

Now, for each variable xi , let ci1 , . . . , ci p be the clauses containing xi positively
and c j1 , . . . , c jq containing xi negatively. Add two new vertices, Ii and Oi (these will
be the entry and exit vertices for the variable gadget), and add the following edges
(these compose the paths shown in Fig. 3):

Ei = {Ii Ii1(xi ), Ii I j1(xi ), Ii p (xi )Oi , I jq (xi )Oi }
∪{Iih (xi )Iih+1(xi ) | h ∈ [p − 1]}
∪{I jh (xi )I jh+1(xi ) | h ∈ [q − 1]}

2 In order to get a cubic graph, as it is not necessary for the graph to be simple, it is possible to add multiple
edges to the graph in Fig. 2 in order to make it cubic.
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(a) (b)

Fig. 4 Gadgets for the reduction in Theorem 8

The paths will function as a switch, telling us whether the variable is true
or false within the considered snapshot; we then denote by Pi the set of edges
in the path (Ii , Ii1(xi ), . . . , Ii p (xi ), Oi ), and by Pi the set of edges in the path
(Ii , I j1(xi ), . . . , I jq (xi ), Oi ). Now, to link the variable gadgets and to construct the
clause gadgets, we will need a gadget that will function as an edge that must appear
in the trail performed in G1 and the one performed in G2. For this, we use Lemma 7
applied to the gadget in Fig. 4a; when adding such a gadget between a pair u, v, we
simply say that we are adding the forced edge uv.

Now, to link the variable gadgets, we add three new vertices s1, s2, t and the fol-
lowing forced edges.

E ′ = {si t | i ∈ [2]} ∪ {t I1, Ont} ∪ {Oi Ii+1 | i ∈ [n]}.

The new vertices simply help us assume where the trail starts and finishes. Now,
let T be an Eulerian local tour of (G, [2]) and denote by Ti the trail in G defined by T
restricted to Gi , for i ∈ [2]. It is fairly easy to see (and we will prove it shortly) that if
we can ensure that T1 uses Pi if and only if T2 uses Pi , then we can prove equivalence
with NAE 3-SAT. In other words, the clause gadget must be so that, for every clause
c j containing xi (or equivalently xi ), we get that either both edges incident to I j (xi )
in Pi (or equivalently I j (xi ) in Pi ) are used, or none of them is used. Such a gadget
is presented in Fig. 4b, where the red edges are forced.

Theorem 8 Let G be a graph with degree at most 4. Then Eulerian Local Tour
is NP-complete on (G, [2]).
Proof Letφ andG be as previously constructed. First, consider a truthNAEassignment
f to φ. We construct T1, T2 ⊆ E(G) and prove that they form an Eulerian local tour
of (G, [2]). Start by putting Pi in T1 and Pi in T2 if xi is true, and the other way
around if xi is false. From now on, whenever we add a forced edge to T1 and T2, we
are actually adding the trails depicted in Fig. 5.

Now, add E ′ to both T1 and T2, and consider ci with literals �1, �2, �3. Suppose,
without loss of generality, that �1 is true and �2 is false. We then add to T1 the trail
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(a) (b)

Fig. 5 Trails related to forced edges

(a) (b)

Fig. 6 Trails in Ci related to a given NAE assignment

depicted in Fig. 6a, and to T2 the one depicted in Fig. 6b. Observe that all internal
edges ofCi are covered. Also note that the value of �3 is irrelevant (the choice remains
the same, let it be true or false). We know that the remaining edges are also covered by
T1∪T2 by construction. Finally, notice that both T1 and T2 touch all odd-degree vertices
in a way that every vertex (including the even-degree ones) has even degree in T1 and
in T2, except s1, s2 which have degree exactly 1. Also note that they form a connected
graph; indeed they are formed by the cycle passing through the variable gadgets and
t , together with some pending trails passing by the clause gadgets. Therefore, we can
find an s1, s2-trail passing by all edges of T1, and an s2, s1-trail passing by all edges
of T2, thus getting our Eulerian local tour.

For the reverse, let T be an Eulerian local tour of (G, [2]), and for each i ∈ [2],
denote by Ti the trail in G defined by T restricted to Gi . We need to prove that φ has
an NAE satisfying assignment, and for this it suffices to show that, for every variable
xi , either Pi or Pi is contained in Tk for each k ∈ [2]. First observe that Lemma 7
indeed ensures that T1 and T2 restricted to the gadget related to a forced edge uv must
be exactly as the trails depicted in Fig. 5; so in what follows we treat them exactly like
edges that must appear in T1 and T2. Since there are 2 vertices of degree 1, namely s1
and s2, by Lemma 7we can suppose that T1 starts in s1 and finishes in s2, while T2 starts
in s2 and finishes in s1. Therefore, each of T1 and T2 contains a tour in G − {s1, s2},
and hence:

(I) Every vertex u ∈ V (G) \ {s1, s2} has even degree in both T1 and T2.
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Now, we prove that for each xi , if T1 intersects Pi , then T1 does not intersect Pi ,
the same holding for T2. For this, consider ci with literals �1, �2, �3, and for each
j ∈ [3], denote by e1i (� j ), e2i (� j ) the edges incident to Ii (� j ) not contained in Ci . We
first prove that, for each j ∈ [3] and k ∈ [2]:
(II) Edge e1i (� j ) is used in Tk if and only if edge e2i (� j ) is used in Tk .

Without loss of generality, assume j = 1 and let k ∈ [2]; suppose by contradiction
that e1i (�1) is in Tk , while e2i (�1) is not in Tk . By (I) we get that either ai1 Ii (�1) or
ai2 Ii (�1) is in Tk , say a

i
1 Ii (�1). But then we get that a

i
1a

i
2 and a

i
2 Ii (�1) are not in Tk , as

otherwise either ai1 or Ii (�1)would have odd degree in Tk . This is a contradiction since
we then get ai2 with degree 1 in Tk . The same argument can be analogously applied
when ai2 Ii (�1) is in Tk or when j ∈ {2, 3}.

Consider now a variable xi , and let ci1 , . . . , ci p be the clauses containing xi pos-
itively and c j1 , . . . , c jq containing xi negatively. Because Ii has degree 3 in G and
E ′ \ {si t | i ∈ [2]} is contained in T1 ∩ T2, we get that exactly one edge between
I1 Ii1(xi ) and I1 I j1(xi ) is contained in T1. From (II), we then get that either Pi is
contained in T1 or Pi is contained in T1. Observe that this implies that Pi is contained
in Tk , while Pi is contained in T3−k , for some k ∈ [2]. We then set xi to be true if and
only if T1 contains Pi . Because the edges in Ei = {e1i (� j ), e2i (� j ) | j ∈ [3]} separate
Ci from the rest of the graph and by (I), we get that both T1 and T2 must intersect Ei .
Finally by (II) we get that this assignment is a NAE truth assignment for φ. ��

Observe that if we add two new vertices of degree one adjacent to the vertex t , then
we get a reduction to the problem of deciding whether the edges of G can be covered
by two trails, proving Corollary 3. The following corollary concludes the proof of
Item 1 in Theorem 1.

Corollary 9 Eulerian Local Tour and Eulerian Local Trail areNP-complete
on temporal graphs with lifetime τ for every fixed τ ≥ 2. This also holds on dynamic-
based graphs.

Proof We first make a reduction from Eulerian Local Tour on (G, [2]) to Eule-
rian Local Trail on (G ′, [τ ]). Given (G, [2]) constructed as in the proof of
Theorem 8, letG ′ be obtained fromG by adding a star on τ +2 vertices and identifying
one of its leaves with s1. We argue that (G, [2]) has an Eulerian local tour (starting and
finishing in s1) if and only if (G ′, [τ ]) has an Eulerian local trail. Denote the vertices
of the initial star by u, v1, . . . , vτ+1, where u is the central vertex, and v2 = s1 is the
vertex where G is pending. Let T be an Eulerian local tour of (G, [2]) starting and
finishing in s1, and T1, T2 be the trails in G defined by T . Build an Eulerian local trail
of (G ′, [τ ]) by visiting v1u, uv2 and T1 in G ′

1, then performing T2 and visiting v2u
and uv3 in G ′

2, and finish visiting the remaining edges of the star in the obvious way.
Now, let T be an Eulerian local trail of (G ′, [τ ]), and denote by Ti the trail in G ′

defined by T restricted to G ′
i , for each i ∈ [τ ]. Observe that because we have τ +1 cut

edges, we get that each Ti contains at most 2 of them, and in case it contains exactly 2,
say v1u, uv2, then Ti+1 either does not contain any cut edge, or must intersect Ti
in v1u, uv2. This means that the best we can do in order to finish by time τ is to
visit exactly two of them in the first snapshot, and exactly one more in each of the
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subsequent snapshots. We can therefore suppose, without loss of generality that Ti
contains vi u, vi+1u for each i ∈ [τ ]. Note that this implies that every edge of (G, [2])
must be visited in T1 and T2, with T1 starting in v2 and T2 finishing in v2, as we wanted
to prove.

Finally, note that (G ′, [τ ]) constructed above has an Eulerian local trail if and only
if (G ′, [τ + 1]) has an Eulerian local tour. This completes our proof. ��

Finally, in order to prove Corollary 2.(ii), which considers strictly increasing local
trails, we can make a modification similar to the one made for walks. Observe that
this transformation results in a non-dynamic-based temporal graph.

Proof of Corollary 2.(ii) As made for walks, we slice the lifetime of (G, λ) into win-
dows, each window allowing only for the edges of a given variable to appear. For this,
first observe that, for each clause c j , a pass inside of C j uses at most 20 edges inside
of C j (already considering that a pass through a forced edge consists of a path on 5
edges). This means that if we allow the edges of a variable xi appearing in c j to live
long enough, we will be able to visit C j in a strictly increasing way. For simplicity,
consider again that each variable appears at most 3 times in φ. We assign to each xi
two time windows, one for the first passing, one for the second, each of size 70. Thus,
variable x1 will takewindows {1, . . . , 70} and {70n+1, . . . , 70(n+1)}, with the edges
of P1 ∪ P1 ∪{O1 I2} being active in the following times: the first edge of P1 and of P1
are active in time 1 and 70n+1, the last edges of P1 and of P1 are active in time 65 and
70n+65, forced edge O1, I2 is active in times {66, . . . , 70, 70n+66, . . . , 70(n+1)},
and the remaining edges are active in the period {2, . . . , 64}∪{70n+2, . . . , 70n+64}.
Similarly thewindowof xi will be {70(i−1), . . . , 70i}∪{70(n+i−1), . . . , 70(n+i)}.
Note that we can link On to I1 trough a direct edge, making it active in time {70n};
this can be combined with the end of the first window of xn since in this window the
last edges of Pn and Pn are active in time 70n − 5. Finally, the edges inside a clause
c j will be active during the windows of the corresponding literals. One can verify that
the key Property (II) in the proof of Theorem 8 holds, and NP-completeness follows. ��

5 Eulerian Tours and Trails

Wefinally focus onEulerian Trail andEulerian Tour, proving that in the general
case they are both NP-complete, hence, proving Item 1 in Theorem 1. To this aim,
we make an adaptation of the construction in Theorem 8. Observe that here the base
graph needs to be Eulerian as otherwise the answer to Eulerian Trail is trivially
NO. This also implies that the problem restricted to dynamic-based graphs is trivial:
if the base graph is Eulerian, then the answer to Eulerian Tour is YES; otherwise,
then the answer is NO. The trick now is to take advantage of the function λ in order
to enforce the edges.

Theorem 10 Eulerian Tour and Eulerian Trail are NP-complete, even on tem-
poral graphs with fixed lifetime τ ≥ 2.

Proof We first prove the case τ = 2. For this, we simply replace the gadget to enforce
an edge uv in the construction of Sect. 4 by two paths of length 2, P1

uv and P2
uv ,
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where the edges in Pi
uv are active only in snapshot Gi , for each i ∈ [2]. Because the

arguments used in Sect. 4 depended only on the fact of uv indeed being an enforced
edge, we can apply the same arguments here. The only difference is that the trails
in G1 and G2 now cannot intersect, which indeed is the case since the intersection
between T1 and T2 in Sect. 4 is exactly the set of forced edges, and since here each
appearance of a forced edge uv is actually related either to P1

uv or to P2
uv .

Now, in order to prove the NP-completeness for higher values of τ , we add new
vertices v3, . . . , vτ and edges {s2v3}∪ {vivi+1 | i ∈ {3, . . . , τ −1}}, where λ(s2v3) =
{3} and λ(vivi+1) = {i + 1} for each i ∈ [τ − 1]. This gives us that Eulerian Trail
is NP-complete on (G, λ) with lifetime τ for every fixed τ ≥ 2. And if we want a
closed trail, it suffices to identify vτ with s2, if τ ≥ 4, and if τ = 3, we add a new
vertex v4 and edges v3v4, v4s2 active only in snapshot G3. This concludes our proof.

Again, in order to prove Corollary 2.(iii), a modification similar to the one made
for walks works. We give a more formal argument below.

Proof of Corollary 2.(iii) As previously said, we will slice the lifetime of (G, λ) into
windows, each window allowing only for the edges of a given variable to appear. For
this, first observe that, for each clause c j , a pass inside of C j uses at most 11 edges
(already considering that a forced edge is being replaced by two paths on 2 edges).
This means that if we allow the edges of a variable xi appearing in c j to live long
enough, we will be able to visitC j in a strictly increasing way. For simplicity, consider
again that each variable appears at most 3 times in φ. We assign to each xi two time
windows, one for the first passing, one for the second, each of size 40 (could be 39,
but we choose that for roundness). Thus, variable x1 will take windows {1, . . . , 40}
and {40n + 1, . . . , 40(n + 1)}, with the edges of P1 ∪ P1 ∪ {O1 I2} being active in the
following times: the first edge of P1 and of P1 are active in time 1 and 40n + 1, the
last edges of P1 and of P1 are active in time 38 and 40n + 38, forced edge O1, I2 is
active in times {39, 40, 40n + 39, 40(n + 1)}, and the remaining edges are active in
the period {2, . . . , 37} ∪ {40n + 2, . . . , 40n + 37}. Similarly the window of xi will
be {40(i − 1), . . . , 40i} ∪ {40(n + i − 1), . . . , 40(n + i)}. Note that we can link On

to I1 directly, making them active during {40n − 1, 40n} (this is the end of the first
window of xn). Finally, the edges inside a clause c j will be active during the windows
of the corresponding literals. One can verify that the key Property (II) in the proof of
Theorem 8 holds, and NP-completeness follows.

6 Underlying Graph with Bounded Treewidth

In this section we study our problems when applied to temporal graphs (G, λ), where
the graph G has bounded treewidth. In this case, first we show some negative results
which are consequences of the results by [1, 5], thus proving the negative blue results
in Table 1. We remark that these negative results, contrarily to the ones in the previous
sections, require the lifetime τ being unbounded. In the remainder of the section we
complete the picture giving new algorithms for Eulerian Trail, Eulerian Local
Trail and the corresponding tour problems that run in XP time when parameterized
by τ + tw(G). Observe that the reductions in previous sections, combined with the
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following ones, exclude the possibility of algorithms XP when parameterized only by
one of these two parameters.

Theorem 11 Given a temporal graph (G, λ) the following results hold.

1. Strict Eulerian Walk is NP-complete when G is a star [1, 5]. Eulerian
Walk is NP-complete when G is a tree.

2. Strict Eulerian Local Trail and Eulerian Local Trail are NP-complete
when G is a star [1, 5].

3. Strict Eulerian Trail and Eulerian Trail are trivially polynomial for trees.
And if tw(G) = 2, then Strict Eulerian Trail is NP-complete [5], as well as
Eulerian Trail.

In order to prove Theorem 11, some preliminary results on the so-called TEXP
problem introduced by [25] are needed. TEXP consists of, given a temporal graph
(G, λ), finding a temporal walk that visits all vertices in G (possibly, more than once)
whose arrival time is minimum. In the case in which just strictly increasing walks are
allowed, [1] proved that TEXP is NP-complete on temporal stars in which each edge
appears at most k times, for all fixed k ≥ 6, and this result has been then improved
by [5] for all fixed k ≥ 4. Since in a star, passing by all the leaves translates also
into passing by all the edges, their result implies already NP-completeness for Strict
Eulerian Walk for stars and hence for trees. However, in the case of Eulerian
Walk these reductions cannot be applied directly and somemodifications are needed,
as shown by the following lemma.

Lemma 12 When increasing walks (not necessarily strictly increasing) are allowed,
TEXP is NP-complete on trees even if each edge appears at most four times.

Proof We modify the reduction in [5, Theorem 1], noting that their reduction does
not work directly when not necessarily strictly increasing walks are allowed. Indeed,
when traversing an edge now we are allowed to go back on the same edge at the same
snapshot (possibly entering more edges than expected), while the reduction requires
that when traversing an edge we will go back to the center of the star in a subsequent
different time. We modify the reduction, adding new leaves to the star, which will be
available at suitable times in order to maintain the requirement. Doing this, our graph
is not a star anymore but it is still a tree.

We modify the reduction following its notation, where, for each edge e, τ(e) cor-
responds to our λ(e). We do the following changes:

• In the original reduction multiply all the times by 2, i.e. for each edge e each value
in τ(e) becomes the double.

• For any i , add the edges ui , each one adjacent only to the edge ei .
• For any ζ, j, k, add the edges uζ

jk , each one adjacent only to eζ
jk .

• For each ei , let τ(ei ) = {t i0, t i1, t i2, t i3} be the times in strictly increasing order as
specified by the original reduction. [5, Equation 2] and multiplied by 2. Then

τ(ui ) = { t i0+t i1
2 ,

t i1+t i2
2 ,

t i2+t i3
2 }.

• For each eζ
jk , let τ(eζ

jk) = {r1, r2, r3, r4} be the times in strictly increasing order
as specified by the original reduction [5, Equation 3] and multiplied by 2. Then
τ(uζ

jk) = { r1+r2
2 , r2+r3

2 , r3+r4
2 }.
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We have thus obtained a temporal graph whose underlying graph is formed by a
center with paths of length two (formed by edges ei and ui or by edges eζ

jk and uζ
jk)

departing from it, where each edge has still at most four temporal occurrences. Now,
if entering from the center in ei at time t ix with x ∈ {0, 1, 2}, it is not possible to go
back at time t ix because also ui must be visited and the first time in which it will be

available is
t ix+t ix+1

2 which is strictly greater than t ix .

Proof of Theorem 11 1. On stars Strict Eulerian Walk is equivalent to TEXP,
which has been proved to be NP-complete by [1, 5]. The NP-completeness for
Eulerian Walk in the case of trees follows from Lemma 12.

2. Since a strict walk is also a strict local trail and vice versa, by Item 1 we obtain
that Strict Eulerian Local Trail is also NP-complete when G is a star.
Additionally, observe that the argument also holds if we constrain to local trails
instead. Indeed every local trail is a strict walk, since it is not allowed for an edge
to be visited twice in the same snapshot, and every strict walk must be a local trail
similarly.

3. As for Strict Eulerian Trail and Eulerian Trail we cannot repeat edges of
G. In the case of trees, these problems are trivially polynomial-time solvable, as
it suffices to check whether the graph is connected and is a path. The fact that if
tw(G) = 2 then Strict Eulerian Trail is NP-complete has been proved by [5]
and by simply applying the idea of their reduction to the trees in Lemma 12 this
result extends to Eulerian Trail. Indeed, given a temporal graph (G, λ) where
G is a tree like the one in Lemma 12, i.e. a center c with s paths formed by edges
ei , ui (with i ∈ {1, . . . , s}), where λ(ei ) = {t1, t3, t5, t7} and λ(ui ) = {t2, t4, t6}
(with ti < t j if i < j), (G, λ) can be transformed into (G ′, λ′) such that there is
a (not necessarily strictly increasing) temporal exploration in (G, λ) iff there is a
(not necessarily strictly increasing) Eulerian trail in (G ′, λ′). G ′ is such that each
path ei , ui becomes a cycle formed by the edges ei , xi , ui , x ′

i , e
′
i (see the right

of Figure 2 by [5] and replace each edge incident to c by a path of two edges).
Then λ′ is as follows: λ′(ei ) = {2t1, 2t3, 2t5}, λ′(xi ) = {t1 + t2, t3 + t4, t5 + t6},
λ′(ui ) = {2t2, 2t4, 2t6}, λ′(x ′

i ) = {t2 + t3, t4 + t5, t6 + t7}, λ′(e′
i ) = {2t3, 2t5, 2t7}.

6.1 An XP Algorithm for Local Trails and Trails

In the following, we present an algorithm for Eulerian Local Trail and Eulerian
Trailwhich runs in XP time when parameterized by the treewidth and the lifetime. It
easily adapts to the tour versions of the problems, thus proving the following theorem.

Theorem 13 Let G = (G, λ) be a temporal graph with lifetime τ , and such that
tw(G) = k and |V (G)| = n. Then Eulerian Local Trail, Eulerian Local
Tour, Eulerian Trail and Eulerian Tour can be solved in G in time 2k

2·τ · nτ .

We start by solving the Eulerian Local Trail and later explain what needs to
be changed in order to solve Eulerian Trail. Before we start, we give the definitions
related to tree decomposition.
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Treewidth notions and notations
Given a graph G, a tree decomposition of G is a pair T = (T ,X ) where T is a tree,
and X assigns to each t ∈ V (T ) a subset of Xt ⊆ V (G) such that:

1.
⋃

t∈V (T ) Xt = V (G);
2. For every uv ∈ E(G), there exists t ∈ V (T ) such that {u, v} ⊆ Xt ; and
3. For every t, t ′ ∈ V (T ) and every t ′′ in the t, t ′-path in T , we have that Xt ∩ Xt ′ ⊆

Xt ′′ .

The treewidth of T is equal to maxt∈V (T )|Xt |− 1, while the treewidth of G is the
minimum treewith over all all tree decompositions of G; it is denoted by tw(G). To
avoid confusion, the vertices of T are referred to as nodes. Also, the subsets in X are
called bags. As usually done, wemake use of amorewell-behaved tree decomposition.
A nice tree decomposition is a tree decomposition (T ,X ) such that T is rooted in a
vertex r , and each t ∈ V (T ) is one of the following types of nodes:

• Leaf node: in this case, t is a leaf of T and Xt is empty;
• Forget node: t has exactly one child, t ′, and Xt = Xt ′ \ {v};
• Introduce node: t has exactly one child, t ′, and Xt = Xt ′ ∪ {v};
• Join node: t has exactly two children, t1, t2, and Xt = Xt1 = Xt2 .

It is known that a nice tree decomposition ofwidth atmost 5tw(G) can be computed
in time 2O(tw) [3, 20].

Given a nice tree decomposition (T ,X ), with T rooted in r , and a node t of T ,
we denote by Tt the subtree of T rooted in t , by Vt the set containing all the vertices
in a bag of Tt (i.e., Vt = {u ∈ V (G) | u ∈ Xt ′ for some t ′ ∈ V (Tt )}, by Gt the
subgraph G[Vt ], and by E(Xt ) the set of edges in Gt [Xt ]. To avoid confusion with
the snapshots, here we will be denoting the i-th snapshot by G[i].
An Auxiliary Problem: Partial Eulerian Local Trail

Now, given a temporal graph G = (G, λ) with lifetime τ , we work on a nice tree
decomposition (T ,X ) of G in a bottom-up way, i.e., we solve the problem first on the
leaves and move up to the root, assuming, when computing an entry of the table of a
node t , that the tables of its children are known.Wesolve the followingproblem instead,
which we call Partial Eulerian Local Trail: given u1, . . . , uτ+1 ⊆ V (G),
decide whether G has a temporal Eulerian local trail passing by (u1, . . . , uτ+1). In
other words, we decide whether there are subgraphs W1, . . . ,Wτ of G[1], . . . ,G[τ ],
respectively, such that

⋃T
i=1 E(Wi ) = E(G) and, for every i ∈ [τ ], we have thatWi is

connected, every u ∈ V (Wi ) \ {ui , ui+1} has even degree inWi , and either ui 	= ui+1
and they have odd degree inWi , or ui = ui+1 and it has even degree inWi . Clearly, if
this problem can be solved in time f (tw(G), τ )nO(1), then Eulerian Local Trail
can be solved in time f (tw(G), τ )nτ .

The Algorithm

To solve Partial Eulerian Local Trail, we keep partial solutions of Gt , for
each node t of a nice tree decomposition, which means that these partial solutions
might be disconnected as well as have more vertices with odd degree than allowed. In
what follows, we describe the information that will be kept in each node, supposing
that a partial solution W1, . . . ,Wτ for Gt is known:
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• Xi ⊆ Xt : this is the subset of Xt touched by Wi , i.e. Xi = V (Wi ) ∩ Xt ;
• A partition Ci of Xi : this keeps track of the subsets of vertices of Xi contained
in the same connected component of Wi . More formally, if C1, . . . ,Cq are all the
connected components of Wi , then Ci = {V (C j ) ∩ Xt | j ∈ [q]};

• A characteristic vector pi of length |Xt |: this keeps track of the parity of the
degree of each vertex in the partial solution. More formally, for each u ∈ Xt ,
pi (u) = dWi (u) mod 2; and finally

• A characteristic vector ei of length |E(Xt )|: this keeps track of which edges from
E(Xt ) appear in Wi . More formally, ei (uv) = 1 if and only if uv ∈ E(Wi ).

The above description is given so as the reader can follow the algorithm more
easily. However, we clearly cannot keep all the partial solutions as otherwise our
algorithm cannot work in the desired time. What is done instead is that we keep
only the parameters defined above and then apply dynamic programming in order to
compute the desired solution.

Given a node t ∈ V (T ), we define the table Et indexed by (Xi , Ci , pi , ei )i∈[τ ], and
we say that Et ((Xi , Ci , pi , ei )i∈[τ ]) = 1 if and only if there exist W1, . . . ,Wτ such
that Wi ⊆ Gt [i] for every i ∈ [τ ], and the following hold:

1.
⋃τ

i=1 E(Wi ) = E(Gt );
2. V (Wi ) ∩ Xt = Xi , for every i ∈ [τ ];
3. If C1, . . . ,Cq are the connected components of Wi , then Ci = {V (C j ) ∩ Xt | j ∈

[q]}, for every i ∈ [τ ]. Furthermore, either V (C j ) ∩ Xt 	= ∅ for every j ∈ [q], or
q = 1 and {ui , ui+1} ⊆ V (C1);

4. For every i ∈ [τ ], we have:

dWi (u) mod 2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pi (u), if u ∈ Xt

0, if u ∈ V (Gt ) − Xt − {ui , ui+1}
0, if u ∈ (V (Gt ) − Xt ) ∩ {ui , ui+1}

and ui = ui+1
1, if u ∈ (V (Gt ) − Xt ) ∩ {ui , ui+1}

and ui 	= ui+1

5. ei (uv) = 1 if and only if uv ∈ E(Wi ), for each i ∈ [τ ] and each uv ∈ E(Xt ).

First, we show that if the tables are known, then we can find the answer to Partial
Eulerian Local Trail inEr , where r is the root of the tree in the tree decomposition.

Lemma 14 There exists a temporal Eulerian local trail passing by (u1, . . . , uτ+1) if
and only if Er ((Xi , Ci , pi , ei )i∈[τ ]) = 1, for some tuple ((Xi , Ci , pi , ei )i∈[τ ]) such
that, for every i ∈ [τ ]: if Xi 	= ∅, then Ci = {Xi }; and pi (u) = 0, for every
u ∈ Xt \ {ui , ui+1}, pi (u) = 0 if u ∈ Xt ∩ {ui , ui+1} and ui = ui+1, and pi (u) = 1
if u ∈ Xt ∩ {ui , ui+1} and ui 	= ui+1.

Proof First, consider a temporal Eulerian local trail W = (W1, . . . ,Wτ ) where Wi

is a ui , ui+1-trail in G[i], for every i ∈ [τ ]. Then build the tuples (Xi , Ci , pi , ei )
accordingly, i.e., for each i ∈ [τ ], define:
• Xi = V (Wi ) ∩ Xr ;
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• Ci = {Xi }, if Xi 	= ∅. Otherwise, Ci = ∅;
• Define pi exactly as in the statement of the theorem; and finally
• For each uv ∈ E(Xr ), let ei (uv) = 1 if and only if uv ∈ E(Wi ).

We need to prove that Er ((Xi , Ci , pi , ei )i∈[τ ]) = 1, i.e., that Conditions 6.1–6.1
hold. First, recall that Gr = G; hence Condition 6.1 holds because W is Eulerian.
Conditions 6.1 and 6.1 hold by construction. Additionally, we know that since each
Wi is a ui , ui+1-trail inG, we get that dWi (u) is even for every u /∈ {ui , ui+1}, and that
dWi (ui ) and dWi (ui+1) are either both odd when ui 	= ui+1, or ui = ui+1 and dWi (ui )
is even. This and the construction of pi ensure Condition 6.1. Finally, because Wi is
connected, we know that eitherWi does not pass through Xr and hence Xi = Ci = ∅,
or Wi intersects Xr and Ci = {V (Wi ) ∩ Xr } = {Xi }. This ensures Condition 6.1.

Now, suppose that Er ((Xi , Ci , pi , ei )i∈[τ ]) = 1 for some entry satisfying the state-
ment, and let W1, . . . ,Wτ be subgraphs satisfying Conditions 6.1–6.1. If it holds that
each Wi is connected and such that every vertex has even degree, except ui and ui+1
when they are distinct vertices, then by Condition 6.1 and Euler’s characterization we
get that G has a temporal Eulerian local trail, as desired. Therefore, consider i ∈ [τ ].
If Xi 	= ∅, then by assumption we know that Ci = {Xi }, and by Condition 6.1 we get
thatWi contains exactly one component. And if Xi = ∅, then by Condition 6.1 we get
V (Wi ) ∩ Xr = ∅, which in turn implies that V (C) ∩ Xr = ∅ for every component C
of Wi , which again by Condition 6.1 implies that Wi is connected. Now, concerning
the parity of the degrees, by the lemma hypothesis concerning p and by Condition 6.1,
one can see that indeed the only vertices allowed to have odd degrees are ui and ui+1,
and only if they are distinct. ��

In what follows, we explain how to compute the entry of each type of node, given
that the tables of the children are known. We prove correctness for each of the oper-
ations of the nice tree decomposition through the following lemmas. We refrain from
formally proving correctness of the whole algorithm since these ideas follow standard
techniques.

Introduce Node

Consider an entry Et ((Xi , Ci , pi , ei )i∈[τ ]) that we want to compute, and first consider
t to be an introduce node with child t ′, where Xt = Xt ′ ∪{u}. We explain which entries
of Et ′ must be searched for the right answer. First, observe that if u /∈ Xi , then nothing
changes concerning Gt [i], i.e., there will be the desired ui , ui+1-trail in Gt [i] if and
only if such trail also exists in Gt ′ [i]. So suppose u ∈ Xi and let C ∈ Ci be such that
u ∈ C ; also denote Xi − u by Y i . Recall that Gt ′ = Gt − u and note that no changes
can be made to the edges of Wi − u; hence let e′

i denote the vector ei restricted to
E(Xt ′). Observe also that the parity of the degree of v ∈ Xt ′ in Wi restricted to Gt ′
might differ from its degree in Wi depending on whether v is adjacent to u in Wi or
not, which can be checked by looking at ei . Hence, we construct a new parity vector
p′:

p′
i (v) =

{
pi (v) , if v /∈ N (u) or ei (uv) = 0
(pi (v) + 1) mod 2 , if v ∈ N (u) and ei (uv) = 1
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Finally, note that u might be the vertex inWi ⊆ Gt connecting some of the vertices
of C . Therefore, we need to consider the partition C′

i obtained from Ci by removing
u from C , but also all the partitions obtained from C′

i by partitioning also C − u into
further subsets. Let χi denote the set of all such partitions. We then get that:

Lemma 15 Consider an introduce node t with child t ′, u ∈ V (G) be such that
Xt = Xt ′ ∪ {u}, and consider an entry (Xi , Ci , pi , ei )i∈[τ ] of Et . If u /∈ Xi ,
then Et ((Xi , Ci , pi , ei )i∈[τ ]) = 1 if and only if Et ′((Xi , Ci , pi , ei )i∈[τ ]) = 1.
Otherwise, let Y i , p′

i , e
′
i , χi be constructed as before, for each i ∈ [τ ]. Then,

Et ((Xi , Ci , pi , ei )i∈[τ ]) = 1 if and only if there exist D1, . . . ,Dτ such that Di ∈ χi

for every i ∈ [τ ], and Et ′((Y i ,Di , p′
i , e

′
i )i∈[τ ]) = 1.

Note that each χi has size at most one plus the total number of partitions ofC−u ⊆
Xt ′ , which is at most kk , where k = tw(G). Because we need to investigate all the
possible combinations of D1, . . . ,Dτ , we get that at most kk·τ entries of Et ′ must be
accessed.

Forget Node

Now, consider t to be a forget node with child t ′, where Xt = Xt ′ \ {u}. The vertices
of Xt ′ touched by Wi must be the same, except that perhaps u can be touched too.
And in fact, if u ∈ {ui , ui+1}, then u must appear in Wi . Therefore, define X i to
be equal to {Xi , Xi ∪ {u}} if u /∈ {ui , ui+1}; otherwise, let X i denote {Xi ∪ {u}}.
As for the partition of X ∈ X i to be considered, since Gt = Gt ′ , it cannot change
with respect to Ci unless u ∈ X , in which case there is a family of partitions that
must be considered. Define then the family of partitions χi containing each C′

i that
can be obtained from Ci by adding u to some part, including the possibility of u being
contained in a part by itself. Now consider e′

i ∈ {0, 1}|E(Xt ′ )|; we say that e′
i is an

extension of ei if e′
i (vw) = ei (vw) for every vw ∈ E(Xt ) (i.e., e′

i differs from ei
only on edges incident to u). Consider also Di ∈ χi . If {u} ∈ Di , then uv cannot
be in Wi for every uv ∈ E(Xt ). And if u ∈ C for some C ∈ Di , then uv can be
in Wi for some uv ∈ E(Xt ) only if v ∈ C . We then say that e′

i agrees with Di if
these conditions hold, i.e., if v ∈ C whenever e′

i (uv) = 1, where C ∈ Di is the part
containing u. Finally, because Gt = Gt ′ , the parities of the degrees do not change;
also, since u ∈ V (Gt − Xt ), we get that either u must have even degree in Wi , or
u ∈ {ui , ui+1} and ui 	= ui+1, in which case u must have odd degree in Wi . We then
define p′

i to be obtained from pi by setting p′
i (u) to 0 if u /∈ {ui , ui+1} or ui = ui+1,

or to 1 otherwise. These definitions lead us to the next lemma.

Lemma 16 Consider a forget node t with child t ′, u ∈ V (G) be such that Xt = Xt ′ \
{u}, and consider an entry (Xi , Ci , pi , ei )i∈[τ ] ofEt . Then,Et ((Xi , Ci , pi , ei )i∈[τ ]) = 1
if and only if either u /∈ {ui , ui+1} and Et ′((Xi , Ci , pi , ei )i∈[τ ]) = 1, or there exists
(Y i ,Di , p′

i , e
′
i )i∈[τ ] such that, for each i ∈ [τ ], we have that Y i ∈ X i , Di ∈ χi , e′

i is
an extension of ei that agrees with Di , and Et ′((Y i ,Di , p′

i , e
′
i )i∈[τ ]) = 1.

Again, let k = tw(G). Observe that |χi | ≤ |Ci | + 1 ≤ k + 1, and that there are at
most 2k possible extensions of ei . Because |X i | ≤ 2, and all combinations must be
investigated, we get a total of at most (2k+1(k + 1))τ entries that need to be checked.
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Join Node

Finally, consider a join node t with children t1, t2, and recall that Xt = Xt1 = Xt2 .
Given partitionsP1,P2 of a set X , we say that a partitionP of X is the union ofP1 and
P2 if it is equal to the equivalent classes of the transtive closure of {(u, v) ∈ X × X |
{u, v} ⊆ C , for some C ∈ P1 ∪ P2}. Given entries h1 = (Xi , C1i , p1i , ei )i∈[τ ] and
h2 = (Xi , C2i , p2i , ei )i∈[τ ] of Et1 , Et2 , respectively, we say that h1, h2 can be combined
into h = (Xi , Ci , pi , ei )i∈[τ ] if the following hold for every i ∈ [τ ] (below, we denote
by di (u) the value |{uv ∈ E(Xt ) | ei (uv) = 1}|):
• Ci is the union of C1i and C2i ; and
• pi can be obtained from p1i and p2i by analysing the degree di of the vertices in

Wi [Xt ]. More formally:

pi (u) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if either di (u) is odd and {p1i (u), p2i (u)} = {0, 1},
or di (u) is even and p1i (u) = p2i (u)

1, if either di (u) is odd and p1i (u) = p2i (u),

or di (u) is even and {p1i (u), p2i (u)} = {0, 1}.

Lemma 17 Consider a join node t with children t1, t2, and consider an entry h =
(Xi , Ci , pi , ei )i∈[τ ] of Et . Then, Et (h) = 1 if and only there exist entries h1, h2 of
Et1 , Et2 , respectively, such that h1, h2 can be combined into h.

Clearly, testing whether entries h1, h2 can be combined into h can be done in
polynomial time. Again let k = tw(G). Since there are at most |Xi ||Xi | = 2k·log k
partitions of Xi and at most 2k+1 vectors of size |Xt | for each i ∈ [τ ], and since
we need to combine every pair of such entries in order to test whether they can be
combined into h, we get a running time of (2O(τ ·k·log k))2 = 2O(τ ·k·log k) to compute
entry Et (h). One can see that this dominates the complexities for the other types of
nodes. Therefore, because each table has size (2k · 2k log k · 2k · 2k2)τ = 2O(k2·τ) and
the tree decomposition has size O(n), where n is equal to |V (G)|, our algorithm runs
in time 2O(k2·τ) · p(n), where p is a polynomial function.

As for Eulerian Trail and Eulerian Tour, it suffices to consider vectors ei that
do not allow for edge repetitions. Recall that our algorithm solves Partial Eulerian
Local Trail to see that the obtained running time is as stated by Theorem 13.

7 Conclusions

In this paper we have investigated translations of Eulerian walks and trails in temporal
terms. Eulerian walks traverse all the edges at least once, Eulerian trails traverse each
edge exactly once, and Eulerian local trails traverse each edge at least once but never
twice the same edge in the same snapshot. We have provided several NP-complete
results, showing that all the corresponding decision problems are NP-complete even
under very strict constraints. On the positive side, we have given an XP algorithm for
Eulerian Walkwhen parameterized by τ , as well as an XP algorithm for Eulerian
Trail and Eulerian Local Trail when parameterized by τ + tw(G). We ask
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whether these complexities can be improved, i.e., whether Eulerian Walk can
be solved in FPT time when parameterized by τ , and whether Eulerian Trail
and Eulerian Local Trail can be solved in FPT time when parameterized by
τ + tw(G). We recall that from our and previous results, the latter problems are
para-NP-complete when parameterized either by τ or by tw(G). Another possible
question, and a broader one, is whether there are other possible interpretations of what
an Eulerian temporal graph could be.

Additionally, as we have discussed previously, a natural generalization of the Eule-
rian trail problem on static graphs is the so called Chinese Postman problem. Since the
latter is more general, it directly follows from the results presented here that transla-
tions in the temporal sense analogous to the ones given here for the Chinese Postman
problem would already be NP-complete. However, it could be worth to investigate
whether our polynomial cases would continue to be polynomial.

Finally, wemention that, looking at Table 1, one can findmany open other problems
either explicitly (e.g., what is the complexity of all the investigated problems on graphs
with bounded treewidth when an edge is allowed to appear at most 3 times?), or related
to the results presented (e.g., what other parameters would be promising for obtaining
FPT algorithms?).

Acknowledgements A. Marino has been funded by MIUR under PRIN Project n. 20174LF3T8 AHeAD
(Efficient Algorithms for HArnessing Networked Data), and by the University of Florence under Project
GRANTED (GRaph Algorithms for Networked TEmporal Data). A. Silva has been funded by Grants
CNPq/Brazil Produtividade no. 303803/2020-7, CNPq Universal 437841/2018-9 and CNPq/FUNCAP
PRONEM no. PNE-0112-00061.01.00/16.

Funding Open access funding provided byUniversità degli Studi di Firenzewithin the CRUI-CAREAgree-
ment.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Quick Summary About Eulerian Tours in Dynamic Graphs

A dynamic graph is a pair (G, T ) where G is a finite digraph and T is a function
T : E(G) → Z, called transit time function. A dynamic graph can also be seen as a
special type of infinite digraph G, where V (G) = V (G) ×Z, and (u, i)(v, j) ∈ E(G)

if and only if uv ∈ E(G) and T (uv) = j − i . Observe that the transit time of an
arc can also be negative, and therefore there might exist arcs going from a vertex
(u, i) to a vertex (v, j) with j < i , which in the temporal graph context would be
considered as going back in time. An Eulerian trail in (G, T ) is a trail that passes
through all the edges of G. More formally, it is a function f : Z → V (G) × Z such
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that f (i) f (i + 1) ∈ E(G) for every i ∈ Z, and for every (u, i)(v, j) ∈ E(G), there
exists a unique � such that (u, i)(v, j) is equal to f (�) f (� + 1).

Recall that a digraph G is Eulerian if and only: (i) G has at most one non-trivial
component; and (ii) the indegree of u, denoted with d−(u), is equal to its outdegree,
denoted as d+(u), for every u ∈ V (G). Observe that these conditions are also trivially
necessary for the infinite case. Also, note that, given u ∈ V (G), each out-arc uv of
G leaving u gives rise to exactly one out-arc (u, i)(v, i + T (u, v)) leaving (u, i), for
every i ∈ Z. The same clearly holds for every in-arc. Therefore, one can see that G
satisfies (i) and (ii) if and only if G satisfies (i) and (ii). However, as proved in [26],
these are not the only necessary conditions. Nevertheless, a characterization is still
possible, with an additional, also easy to test, condition.

Theorem 18 ([26]) Let (G, T ) be a dynamic graph. Then (G, T ) has an Eulerian trail
if and only the following conditions hold:

1. d−(u) = d+(u) for every u ∈ V (G);
2. G is connected; and
3.

∑
e∈E(G) T (e) ∈ {−1, 1}

Even if the necessary part of the proof is more technical, the sufficiency part is quite
natural, because condition (3) tells us that, given anEulerian tour T = (v1, . . . , vm, v1)

of G and fixing a time i , we can use T to traverse all the edges incident to (v1, i) in a
way that we arrive in (v1, i + 1) (or (v1, i − 1) if the sum is −1) just in time to apply
the same process to (v1, i + 1). Because (v1, i) is chosen arbitrarily, we are ensured
to visit all edges of G.
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