
Algorithmica (2023) 85:1586–1623
https://doi.org/10.1007/s00453-022-01007-w

Algorithms and Complexity on Indexing Founder Graphs

Massimo Equi1 · Tuukka Norri1 · Jarno Alanko1,2 · Bastien Cazaux3 ·
Alexandru I. Tomescu1 · Veli Mäkinen1

Received: 6 October 2021 / Accepted: 5 July 2022 / Published online: 28 July 2022
© The Author(s) 2022

Abstract
We study the problem of matching a string in a labeled graph. Previous research has
shown that unless theOrthogonal Vectors Hypothesis (OVH) is false, one cannot solve
this problem in strongly sub-quadratic time, nor index the graph in polynomial time to
answer queries efficiently (Equi et al. ICALP2019, SOFSEM2021). These conditional
lower-bounds cover even deterministic graphswith binary alphabet, but there naturally
exist also graph classes that are easy to index: For example, Wheeler graphs (Gagie
et al. Theor. Comp. Sci. 2017) cover graphs admitting a Burrows-Wheeler transform
-based indexing scheme. However, it is NP-complete to recognize if a graph is a
Wheeler graph (Gibney, Thankachan, ESA 2019).We propose an approach to alleviate
the construction bottleneck of Wheeler graphs. Rather than starting from an arbitrary
graph, we study graphs induced from multiple sequence alignments (MSAs). Elastic
degenerate strings (Bernadini et al. SPIRE 2017, ICALP 2019) can be seen as such
graphs, and we introduce here their generalization: elastic founder graphs. We first
prove that even such induced graphs are hard to index under OVH. Then we introduce
two subclasses, repeat-free and semi-repeat-free graphs, that are easy to index. We
give a linear time algorithm to construct a repeat-free (non-elastic) founder graph
from a gapless MSA, and (parameterized) near-linear time algorithms to construct a
semi-repeat-free (repeat-free, respectively) elastic founder graph from general MSA.
Finally, we show that repeat-free founder graphs admit a reduction to Wheeler graphs
in polynomial time.

Keywords Graph algorithms · Computational complexity · Compressed data
structures · String matching · Multiple sequence alignment · Segmentation
algorithms · Pangenomics

This is the extended full version of conference papers in WABI 2020 [1] and ISAAC 2021 [2]. An earlier
preprint has also been reviewed and presented at RECOMB-seq 2021 highlights track.

B Veli Mäkinen
veli.makinen@helsinki.fi

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01007-w&domain=pdf
http://orcid.org/0000-0003-4454-1493


Algorithmica (2023) 85:1586–1623 1587

1 Introduction

In string research, many different problems relate to the common question of how to
handle a collection of strings. When such a collection contains very similar strings, it
can be represented as some “high scoring” Multiple Sequence Alignment (MSA), i.e.,
as a matrixMSA[1..m, 1..n] whose m rows are the individual strings each of length n,
which may include special “gap” symbols such that the columns represent the aligned
positions. While it is NP-hard to find an optimal MSA even under the simplest score
of maximizing the number of identity columns (i.e., longest common subsequence
length) [3], the central role of MSA as a model of biological evolution has resulted
into numerous heuristics to solve this problem in practice [4]. In this paper, we assume
an MSA as an input.

A simpleway to define the problemoffinding amatch for a given string in theMSA is
to askwhether the stringmatches a substring of some row (ignoring gap symbols). This
leads to the widely studied problem of indexing repetitive text collections, see, e.g.,
references [5–11]. These approaches reducing an MSA to plain text reach algorithms
with linear time complexities. However, the performance of these algorithms rely on
the fact that a match is always found within an individual row of the MSA.

One feature worth considering is the possibility to allow a match to jump from
any row to any other row of the MSA between consecutive columns. This property is
usually referred to as recombination due to its connection to evolution. To solve this
version of the problem, different approaches have to be used, and a possible alternative
is a graph representation of theMSA. Figure 1a shows a simple solution, which consists
in turning distinct characters of each column into nodes, and then adding the edges
supported by row-wise connections. In this graph, a path whose concatenation of
node labels matches a given string represents a match in the original MSA (ignoring
gaps). Refinements of this approach are mostly used in bioinformatics [12], where
recombination is a desired feature, and it is realized by the fact that the resulting graph
encodes a super-set of the strings of the original MSA.

Aligning a sequence against a graph is not a trivial task. Only quadratic solutions are
known [13–15], and this was recently proved to be a conditional lower bound for the
problem [16]. Moreover, even attempting to index the graph to query the string faster
presents significant difficulties. On one hand, indexes constructed in polynomial time
still require quadratic-time queries in the worst case [17]. On the other hand, worst-
case linear-time queries are possible, but this has the potential to make the index grow
exponentially [18]. These might be the best results possible for general graphs and
DAGs without any specific structural property, as the need for exponential indexing
time to achieve sub-quadratic time queries constitutes another conditional lower bound
for the problem [19].

Thus, if wewant to achieve better performances,we have tomakemore assumptions
on the structure of the input, so that the problem might become tractable. Following
this line, a possible solution consists in identifying special classes of graphs that, while
still able to represent any MSA, have a more limited amount of recombination, thus
allowing for fast matching or fast indexing. This is the case for Elastic Degenerate
Strings (EDSs) [20–24], which can represent an MSA as a sequence of sets of strings,
in which a match can span consecutive sets, using any one string in each of these (see

123



1588 Algorithmica (2023) 85:1586–1623

Fig. 1b, graph in the center). The advantage of this structure is that it is possible to
perform expected-case subquadratic time queries [21]. However, EDSs are still hard
to index [25], and there is a lack of results on how to derive a “suitable” EDS from an
MSA.

In this context, we propose a generalization of an EDS to what we call an Elastic
Founder Graph (EFG). An EFG is a DAG that, as an EDS, represents an MSA as a
sequence of sets of strings; each set is called a block, and each string inside a block
is represented as a labeled node. The difference with EDSs is that the nodes of two
consecutive blocks are not forced to be fully connected . This means that, while in
an EDS a match can always pair any string of a set with any string of the next set, in
an EFG it might be the case that only some of these pairings are allowed. Figure 1b
illustrates these differences. Allowing for more selective connectivity between con-
secutive blocks also means that finding a match for a string in an EFG is harder than in
an EDS. This is because EDSs are a special case of EFGs, hence the hardness results for
the former carry to the latter. Specifically, a previous work [26] showed that, under the
Orthogonal Vectors Hypothesis (OVH), no index for EDSs constructed in polynomial
time can provide queries in time O(|Q|+|˜T |δ|Q|β), where |˜T | is the number of sets of
strings, |Q| is the length of the pattern and β < 1 or δ < 1. Nevertheless, in this work
we present an even tighter quadratic lower bound for EFGs, proving that, under OVH,
an index built in time O(|E |α) cannot provide queries in time O(|Q| + |E |δ|Q|β),
where |E | is the number of edges and β < 1 or δ < 1. Notice that |˜T | could even
be o(|E |) (e.g. an EFG of two fully connected blocks), hence our lower bound more
closely relates to the total size of an EFG. Additionally, the earlier lower bound [26]
naturally applies only to indexing EDSs, and is obtained by performingmany hypothet-
ical fast queries; ours is derived by first proving a quadratic OVH-based lower bound
for the online string matching problem in EFGs, and then using a general result [19]
to simply translate this into an indexing lower bound.

Then, in order to break through these lower bounds, we identify two natural classes
of EFGs, which respect what we call repeat-free and semi-repeat-free properties. The
repeat-free property (Fig. 1c) forces each string in each block to occur only once
in the entire graph, and the semi-repeat-free property (Fig. 1d) is a weaker form of
this requirement. Thanks to these properties, we can more easily locate substrings
of a query string in repeat-free EFGs and semi-repeat-free EFGs. In particular, (semi-
)repeat-free EFGs and EDSs can be indexed in polynomial time for linear time string
matching.

One might think that these time speedups come with a significant cost in terms of
flexibility. Instead, the special structure of these EFGs do not hinder their expressive
power. Indeed, we show that anMSA can be “optimally” segmented into blocks induc-
ing a repeat-free or semi-repeat-free EFG. Clearly, this depends on how one chooses to
define optimality. We consider three optimality notions: maximum number of blocks,
minimum maximum block height, and minimum maximum block length. In Fig. 1d,
the first score is 3, second is 3, and the third is 5. The two latter notions stem from
the earlier work on segmentations [27, 28], now combined with the (semi)-repeat-free
constraint. The first is the simplest optimality notion, now making sense combined
with the (semi)-repeat-free constraint.

123



Algorithmica (2023) 85:1586–1623 1589

(a)

(b)

(c)

(d)

Fig. 1 An MSA on the left, and various graph-based representations of it on the right. Notice that in all
graphs (except the EDS) edges are added only between nodes that are observed as consecutive in some row
of the MSA

For each of these optimality notions, we give a polynomial-time dynamic pro-
gramming algorithm that converts an MSA into an optimal (semi-)repeat-free EFG
if such exists. For the first and the third notion combined with the semi-repeat-free
constraint, we derive more involved solutions with almost optimal O(mn logm) and
O(mn logm + n log log n) running time, respectively. Furthermore, we give an (opti-
mal) O(mn) time solution for the special case of MSA without gap symbols. The
algorithm for the special case uses a monotonicity property not holding with gaps.
With generalMSAswe delve into the combinatorial properties of repetitive string col-
lections synchronized with gaps and show how to use string data structures in this
setting. The techniques can be easily adapted for other notions of optimality.

123



1590 Algorithmica (2023) 85:1586–1623

Another class of graphs that admits efficient indexing are Wheeler graphs [29],
which offer an alternative way to model an EFG and thus a MSA. However, it is NP-
complete to recognize if a given graph is a Wheeler graph [26], and thus, to use the
efficient algorithmic machinery around Wheeler graphs [30] one needs to limit the
focus on indexable graphs that admit efficient construction. Indeed, we show that
any EFG that respects the repeat-free property can be reduced to a Wheeler graph in
polynomial time. Interestingly, we were not able to modify this reduction to cover
the semi-repeat-free case, leaving it open if these two notions of graph indexability
have indeed different expressive power, and whether there are more graph classes with
distinctive properties in this context.

The paper is structured as follows. At the high level, we first focus on gaplessMSAs,
and then we extend the results to the general case. In more detail, Section 2 defines
the founder graph concepts and explores some basic techniques. Section 3 gives the
first indexing results using just classical data structures as a warm up. Section 4 covers
linear time constructionof repeat-free (non-elastic) founder graphs fromgaplessMSAs.
Section 5 improves over the basic indexing results using succinct data structures.
Section 6 gives the proof of conditional indexing hardness when moving from the
gapless case to the general case of EFGs. Indexing results are generalized to (semi-
)repeat-free EFGs in Sect. 7. Construction results are generalized to (semi-)repeat-free
EFGs in Sect. 8. Connection toWheeler graphs is considered in Sect. 9. Implementation
is discussed in Sect. 10. Finally, future directions are discussed in Sect. 11.

2 Definitions and Basic Tools

2.1 Strings

We denote integer intervals by [i .. j]. Let � = {1, . . . , σ } be an alphabet of size
|�| = σ . A string T [1..n] is a sequence of symbols from �, i.e. T ∈ �n , where �n

denotes the set of strings of length n under the alphabet �. A suffix of string T [1..n] is
T [i ..n] for 1 ≤ i ≤ n. A prefix of string T [1..n] is T [1..i] for 1 ≤ i ≤ n. A substring
of string T [1..n] is T [i .. j] for 1 ≤ i ≤ j ≤ n. The length of a string T is denoted |T |.
The empty string is the string of length 0. In particular, substring T [i .. j] where j < i
is the empty string. The lexicographic order of two strings A and B is naturally defined
by the order of the alphabet: A < B iff A[1..i] = B[1..i] and A[i + 1] < B[i + 1]
for some i ≥ 0. If i + 1 > min(|A|, |B|), then the shorter one is regarded as smaller.
However, we usually avoid this implicit comparison by adding end marker 0 to the
strings. Concatenation of strings A and B is denoted AB.

2.2 Elastic Founder Graphs

As mentioned in the introduction, our goal is to compactly represent anMSA using an
elastic founder graph. In this section we formalize these concepts.

A multiple sequence alignment MSA[1..m, 1..n] is a matrix with m strings drawn
from � ∪ {-}, each of length n, as its rows. Here - /∈ � is the gap symbol. For a

123



Algorithmica (2023) 85:1586–1623 1591

string X ∈ (� ∪ {-})∗, we denote spell(X) the string resulting from removing the gap
symbols from X .

Let P be a partitioning of [1..n], that is, a sequence of subintervals P = [x1..y1],
[x2..y2], . . . , [xb..yb], where x1 = 1, yb = n, and for all j > 2, x j = y j−1 + 1. A
segmentation S of MSA[1..m, 1..n] based on partitioning P is a sequence of b sets
Sk = {spell(MSA[i, xk ..yk]) | 1 ≤ i ≤ m} for 1 ≤ k ≤ b; in addition, we require
for a (proper) segmentation that spell(MSA[i, xk ..yk]) is not an empty string for any
i and k. We call set Sk a block, while MSA[1..m, xk ..yk] or just [xk ..yk] is called a
segment. The length of block Sk is L(Sk) = yk − xk + 1 and the height of block Sk

is H(Sk) = |Sk |. Segmentation naturally leads to the definition of a founder graph
through the block graph concept:

Definition 1 (Block Graph) A block graph is a graph G = (V , E, �) where � : V →
�+ is a function that assigns a string label to every node and for which the following
properties hold.

1. Set V can be partitioned into a sequence of b blocks V 1, V 2, . . . , V b, that is,
V = V 1 ∪ V 2 ∪ · · · ∪ V b and V i ∩ V j = ∅ for all i 
= j ;

2. If (v,w) ∈ E then v ∈ V i and w ∈ V i+1 for some 1 ≤ i ≤ b − 1; and
3. if v,w ∈ V i then |�(v)| = |�(w)| for each 1 ≤ i ≤ b and if v 
= w, �(v) 
= �(w).

With gaplessMSAs, block Sk equals segmentMSA[1..m, xk ..yk], and in that case the
founder graph is a block graph induced by segmentation S. The idea is to have a graph
in which the nodes represent the strings in S while the edges retain the information
of how such strings can be recombined to spell any sequence in the original MSA.
With general MSAs with gaps, we consider the following extension, with an analogy
to EDSs [21]:

Definition 2 (Elastic block and founder graphs) We call a block graph elastic if its
third condition is relaxed in the sense that each V i can contain non-empty variable-
length strings. An elastic founder graph (EFG) is an elastic block graph G(S) =
(V , E, �) induced by a segmentation S as follows: For each 1 ≤ k ≤ b we have
Sk = {spell(MSA[i, xk ..yk]) | 1 ≤ i ≤ m} = {�(v) : v ∈ V k}. It holds (v,w) ∈ E if
and only if there exists k ∈ [1..b− 1] and t ∈ [1..m] such that v ∈ V k , w ∈ V k+1 and
spell(MSA[t, xk ..yk+1]) = �(v)�(w).

By definition, (elastic) founder and block graphs are acyclic. For convention, we
interpret the direction of the edges as going from left to right. Consider a path P in
G(S) between any two nodes. The label �(P) of P is the concatenation of labels of
the nodes in the path. Let Q be a query string. We say that Q occurs in G(S) if Q is
a substring of �(P) for any path P of G(S). Figure 1 illustrates such a query.

As we later learn, some further properties on founder graphs are needed for sup-
porting fast queries:

Definition 3 EFG G(S) is repeat-free if each �(v) for v ∈ V occurs in G(S) only as
prefix of paths starting with v.

We also consider a variant that is relevant due to variable-length strings in the
blocks:

123



1592 Algorithmica (2023) 85:1586–1623

Definition 4 EFG G(S) is semi-repeat-free if each �(v) for v ∈ V occurs in G(S) only
as prefix of paths starting with w ∈ V , where w is from the same block as v.

These definitions also apply to general elastic block graphs and to elastic degenerate
strings as their special case.

We note that not all MSAs admit a segmentation leading to a (semi-)repeat-free
EFG, e.g. an alignment with rows -A and AA. However, our algorithms detect such
cases, thus one can build an EFG consisting of just one block with the rows of theMSA
(with gaps removed). Such EFGs can be indexed using standard string data structures
to support efficient queries.

2.3 Basic Tools

A trie [31] of a set of strings is a rooted directed tree with outgoing edges of each node
labeled by distinct characters such that there is a root to leaf path spelling each string in
the set; the shared part of the root to leaf paths to two different leaves spell the common
prefix of the corresponding strings. Such a trie can be computed in O(N log σ) time,
where N is the total length of the strings, and it supports string queries that require
O(q log σ) time, where q is the length of the queried string.

In a compact trie the maximal non-branching paths of a trie become edges labeled
with the concatenation of labels on the path. Suffix tree is the compact trie of all suffixes
of string T 0. In this case, the edge labels are substrings of T and can be represented
in constant space as an interval. Such tree takes linear space and can be constructed in
linear time [32] so that when reading the leaves from left to right, the suffixes are listed
in their lexicographic order. The leaves hence form the suffix array [33] of string T ,
which is an array SA[1..n + 1] such that SA[i] = j if T ′[ j ..n + 1] is the i-th smallest
suffix of string T ′ = T 0, where T ∈ {1, 2, . . . , σ }n . A generalized suffix tree or array
is one built on a set of strings. In this case, string T above is the concatenation of the
strings with symbol 0 between each.

Let Q[1..m] be a query string. If Q occurs in T , then the locus or implicit node
of Q in the suffix tree of T is (v, k) such that Q = XY , where X is the path spelled
from the root to the parent of v and Y is the prefix of length k of the edge from the
parent of v to v. The leaves of the subtree rooted at v are then all the suffixes sharing
the common prefix Q. Let the left- and right-most leaves in that subtree be the c-th
and d-th smallest suffixes of T 0. Then Q = T [i ..i + |Q| − 1] for i ∈ SA[c..d] and
does not occur elsewhere. We use heavily this connection of suffix tree node v and
suffix array interval SA[c..d]. Moreover, there are succinct data structures to do this
mapping in both directions in constant time [34].

Let aX and X be paths spelled from the root of a suffix tree to nodes v and w,
respectively. Then one can store a suffix link from v to w. Implicit suffix links for
implicit nodes are defined analogously, but they are not stored explicitly. In many
algorithms, one can simulate implicit suffix links through explicit suffix links, as the
work amortizes to a constant per step.

TheAho-Corasick automaton [35] is a trie of a set of stringswith additional pointers
(fail-links). While scanning a query string, these pointers (and some shortcut links on
them) allow to identify all the positions in the query at which a match for any of the

123



Algorithmica (2023) 85:1586–1623 1593

strings occurs. Construction of the automaton takes the same time as that of the trie.
Queries take O(q log σ + occ) time, where occ is the number of matches.

The Burrows-Wheeler transform BWT[1..n + 1] [36] of string T is such that
BWT[i] = T ′[SA[i] − 1], where T ′ = T 0 and T ′[−1] is regarded as T ′[n + 1] = 0.

A bidirectional BWT index [37, 38] is a succinct index structure based on some
auxiliary data structures on BWT. Given a string T ∈ �n , with σ ≤ n, such index
occupying O(n log σ) bits of space can be built in randomized O(n) time and it sup-
ports finding in O(q) time if a query string Q[1..q] appears as substring of T [38].
Moreover, the query returns an interval pair ([i .. j],[i ′.. j ′]) such that suffixes of T
starting at positions SA[i],SA[i +1], . . . ,SA[ j] share a common prefix matching the
query. Interval [i ′.. j ′] is the corresponding interval in the suffix array of the reverse
of T . Let ([i .. j],[i ′.. j ′]) be the interval pair corresponding to query substring Q[l..r ].
A bidirectional backward step updates the interval pair ([i .. j],[i ′.. j ′]) to the corre-
sponding interval pair when the query substring Q[l..r ] is extended to the left into
Q[l − 1..r ] (left extension) or to the right into Q[l..r + 1] (right extension). Such step
takes constant time [38].

A fully-functional bidirectional BWT index [39] expands the steps to allow contract-
ing symbols from the left or from the right. That is, substring Q[l..r ] can be modified
into Q[l + 1..r ] (left contraction) or to Q[l..r − 1] (right contraction) and the the
corresponding interval pair can be updated in constant time.

Among the auxiliary structures used in BWT-based indexes, we explicitly use the
rank and select structures: String B[1..n] from binary alphabet is called a bitvector.
Operation rank(B, i) returns the number of 1s in B[1..i]. Operation select(B, j)
returns the index i containing the j-th 1 in B. Both queries can be answered in constant
time using an index requiring o(n) bits in addition to the bitvector itself [40].

We summarize a result that we use later.

Lemma 1 ([39])Given a text T of length n froman alphabet {1, 2, . . . , σ }, it is possible
to construct in O(n) randomized time and O(n log σ) bits of space a bidirectional
BWT index that supports left extensions and right contractions in O(1) time.

2.3.1 Deterministic Index Construction for Integer Alphabets

Wenowdescribe how to replace the randomized linear time construction of the bidirec-
tionalBWT indexwith a deterministic one, so that left extensions and right contractions
are supported in O(log σ) time. We need only a single-directional subset of the index
of Belazzougui and Cunial [39], consisting of an index on the BWT, augmented with
balanced parentheses representations of the topologies of the suffix tree of T and of
the suffix link tree of the reverse of T , such that the nodes corresponding to maximal
repeats in both topologies are marked [39].

Belazzougui et al. showed how to construct the BWT of a string O(n) deterministic
time and O(n log σ) bits of space [38]. Their algorithm can be used to construct both
the BWT of T and the BWT of the reverse of T in O(n) time. We can build the
bidirectional BWT index [37, 41] by indexing both BWTs as wavelet trees [42]. The
bidirectional index can then be used to construct both of the required tree topologies
in O(n log σ) time using bidirectional extension operations and the counter-based

123



1594 Algorithmica (2023) 85:1586–1623

topology construction method of Belazzougui et al. [38]. See the supplement of a
paper on variable order Markov models by Cunial et al. [43] for more details on
the construction of the tree topologies. The topologies are then indexed for various
navigational operations required by the contraction operation described in [39].

This index enables left extensions in O(log σ) time using the BWT of T , and
right contractions in constant time using the succinct tree topologies as shown by
Belazzougui and Cunial [39]. We summarize the result in the lemma below.

Lemma 2 Given a text T of length n from an alphabet {1, 2, . . . , σ }, it is possible to
construct in O(n log σ) deterministic time and O(n log σ) bits of space a bidirectional
BWT index that supports left extensions in O(log σ) time and and right contractions
in O(1) time.

Wenote that itmay be possible to improve the time of left extensions toO(log log σ)

by replacing monotone minimum perfect hash functions by slower yet deterministic
linear time constructable data structures in all constructions leading to Theorem 6.7
of Belazzougui et al. [38].

3 Indexable Repeat-free Founder Graphs

We now consider non-elastic founder graphs induced from gapless MSAs, and later
turn back to the general case. We show that there exists a family of founder graphs that
admit a polynomial time constructable index structure supporting fast stringmatching.
First, a trivial observation: the input multiple alignment is a founder graph for the
segmentation consisting of only one segment. Such founder graph (set of sequences)
can be indexed in linear time to support linear time string matching [38]. Now, the
question is, are there other segmentations that allow the resulting founder graph to be
indexed in polynomial time? We show that this is the case.

Proposition 1 Repeat-free founder graphs can be indexed in polynomial time to sup-
port polynomial time string queries.

To prove the proposition, we construct such an index and show how queries can be
answered efficiently. Our first solution uses just classical data structures, and works as
a warm up: Later we improve this solution using succinct data structures, and while
doing so we exploit the connections to the derivations in this section.

Let P(v) be the set of all paths starting from node v and ending in a sink
node, where a sink is a node with no out-going edges. Let P(v, i) be the set of
suffix path labels {�(L)[i ..] | L ∈ P(v)} for 1 ≤ i ≤ |�(v)|. Consider sorting
P = ∪v∈V ,1≤i≤|�(v)|P(v, i) in lexicographic order. Then one can binary search any
query string Q in P to find out if it occurs in G(S) or not. The problem with this
approach is that P is of exponential size.

However, if we know thatG(S) is repeat-free, we know that the lexicographic order
of �(L)[i ..], L ∈ P(v) in P , is fully determined by the prefix �(v)[i ..|�(v)|]�(w) of
�(L)[i ..], where w is the node following v on the path L , except against other suffix
path labels starting with �(v)[i ..|�(v)|]�(w). Let P ′(v, i) denote the set of suffix path

123



Algorithmica (2023) 85:1586–1623 1595

labels cut in this manner. Now the corresponding set P ′ = ∪v∈V ,1≤i≤|�(v)|P ′(v, i) is
no longer of exponential size. Consider again binary searching a string Q in sortedP ′.
If Q occurs in P ′ then it occurs in G(S). If not, Q has to have some �(v) for v ∈ V
as its substring in order to occur in G(S).

To figure out if Q contains �(v) for some v ∈ V as its substring, we build an
Aho-Corasick automaton [35] for {�(v) | v ∈ V }. Scanning this automaton takes
O(|Q| log σ) time and returns such v ∈ V if it exists.

Toverify such a potentialmatch,weneed several tries [31]. For eachv ∈ V , we build
triesR(v) andF(v) on the sets {�(u)R | (u, v) ∈ E} and {�(w) | (v,w) ∈ E}, respec-
tively, where X R denotes the reverse x|X |x|X |−1 · · · x1 of string X = x1x2 · · · x|X |.

Assume now we have located (using the Aho-Corasick automaton) v ∈ V with
�(v) such that �(v) = Q[i .. j], where v is at the k-th block of G(S). We continue
searching Q[1..i − 1] from right to left in trieR(v). If we reach a leaf after scanning
Q[i ′..i − 1], we continue the search with Q[1..i ′ − 1] on trieR(v′), where v′ ∈ V is
the node at block k − 1 of G(S) corresponding to the leaf we reached in the trie. If the
search succeeds after reading Q[1] we have found a path in G(S) spelling Q[1.. j].
We repeat the analogous procedure with Q[ j ..m] starting from trie F(v). That is, we
can verify a candidate occurrence of Q in G(S) in O(|Q| log σ) time, as the search in
the tries takes O(log σ) time per step.

We are now ready to specify a theorem that reformulates Proposition 1 in detailed
form.

Theorem 1 LetG = (V , E)bea repeat-free founder graphwith blocks V 1, V 2, . . . , V b

such that V = V 1 ∪ V 2 ∪ · · · ∪ V b. We can preprocess an index structure for
G in O((N + L|E |) log σ) time, where {1, . . . , σ } is the alphabet for node labels,
L = maxv∈V |�(v)|, N = ∑

v∈V |�(v)|, and σ ≤ N. Given a query string
Q[1..q] ∈ {1, . . . , σ }q , we can use the index structure to find out if Q occurs in
G. This query takes O(|Q| log σ) time.

Proof To see that the approach stated above works correctly, we need to show that
it suffices to verify exactly one arbitrary candidate occurrence identified by the Aho-
Corasick automaton. Indeed, for contradiction, assume our verification fails in finding
Q starting from a candidate match Q[i .. j] = �(v), but there is another candidate
match Q[i ′.. j ′] = �(w), v 
= w, resulting in an occurrence of Q in G. First, we
can assume it holds that [i .. j] is not included in [i ′.. j ′] and [i ′.. j ′] is not included in
[i .. j], since such nested cases would contradict the repeat-free property of G. Now,
starting from the candidate match Q[i ′.. j ′], we will find an occurrence of Q[i .. j] in
G when extending to the left or to the right. This occurrence cannot be �(v), as we
assumed the verification starting from Q[i .. j] = �(v) fails. That is, we found another
occurrence of �(v) inG, which is a contradiction with the repeat-free property. Hence,
the verification starting from an arbitrary candidate match is sufficient.

With preprocessing time O(N log σ) we can build the Aho-Corasick automaton
[35]. The tries can be built in O(log σ)(

∑

v∈V (
∑

(u,v)∈E |�(u)|+∑

(v,w)∈E |�(w)|)) =
O(|E |L log σ) time. The search for a candidate match and the following verification
take O(|Q| log σ) time.

We are left with the case of short queries not spanning a complete node label. To
avoid the costly binary search in sorted P ′, we instead construct the unidirectional

123



1596 Algorithmica (2023) 85:1586–1623

BWT index [38] for the concatenation C = ∏

i∈{1,2,...,b}
∏

v∈V i ,(v,w)∈E �(v)�(w)0.
Concatenation C is thus a string of length O(|E |L) from alphabet {0, 1, 2, . . . , σ }.
The unidirectional BWT index for C can be constructed in O(|C |) time, so that in
O(|Q|) time, one can find out if Q occurs in C [38]. This query equals that of binary
search in P ′. �

The above result can also be applied to degenerate strings [44]. These are special
case of elastic degenerate strings with equal length strings inside each block, and can
thus be seen as fully connected block graphs.

Corollary 1 The results of Theorem 1 hold for a repeat-free degenerate string a.k.a. a
fully connected repeat-free founder graph.

Observe that N < |C | ≤ 2mn, where C is the concatenation in the proof above
(whose length was bounded by O(L|E |)), and m and n are the number of rows and
number of columns, respectively, in the multiple sequence alignment from where the
founder graph is induced. That is, the index construction algorithms of the above
theorems can be seen to be take time almost linear in the (original) input size, namely,
O(mn log σ) time. We study succinct variants of these indexes in Sect. 5, and also
improve the construction and query times to linear as side product.

4 Construction of Repeat-free Founder Graphs

Now that we know how to index repeat-free founder graphs, we turn our attention to
the construction of such graphs from a givenMSA. For this purpose, we will adapt the
dynamic programming segmentation algorithms for founders [27, 28].

The idea is as follows. Let S be a segmentation of MSA[1..m, 1..n]. We say S is
valid (or repeat-free) if it induces a repeat-free founder graph G(S) = (V , E). A
segment MSA[1..m, j ′.. j] is valid (or repeat-free) if for each 1 ≤ i ≤ m it holds
MSA[i, j ′.. j] 
= MSA[i ′, k′..k′ + ( j − j ′)] for all k′ 
= j and 1 ≤ i ′ ≤ m. As we
will see, a necessary and sufficient condition for a segmentation S to be valid is that it
contains only valid segments. We build such valid S considering valid segmentations
of prefixes of MSA from left to right, looking at shorter valid segmentations appended
with a valid new segment.

4.1 Characterization Lemma

Given a segmentation S and founder graph G(S) = (V , E) induced by S, we can
ensure that it is valid by checking if, for all v ∈ V , �(v) occurs in the rows of theMSA
only in the interval of the block V i , where V i is the block of V such that v ∈ V i .

Lemma 3 (Characterization) Let P = [x1..y1], [x2..y2], . . . , [xb..yb] be the parti-
tioning corresponding to a segmentation S inducing a block graph G = (V , E). The
segmentation S is valid if and only if, for all blocks V i ⊆ V , 1 ≤ t ≤ m and j 
= xi ,
if v ∈ V i then MSA[t, j .. j + |�(v)| − 1] 
= �(v).

123



Algorithmica (2023) 85:1586–1623 1597

Proof To see that this is a necessary condition for the validity of S, notice that each row
of the MSA can be read through G, so if �(v) occurs elsewhere than inside the block,
then these extra occurrences make S invalid. To see that this is a sufficient condition
for the validity of S, we observe the following:

a) For all (v,w) ∈ E , �(v)�(w) is a substring of some row of the input MSA.
b) Let (x, u), (u, y) ∈ E be two edges such thatU = �(x)�(u)�(y) is not a substring

of any row of input MSA. Then any substring of U either occurs in some row of
the input MSA or it includes �(u) as its substring.

c) Thus, any substring of a path in G either is a substring of some row of the input
MSA, or it includes �(u) of case b) as its substring.

d) Let α be a substring of a path of G that includes �(u) as its substring. If �(z) = α

for some z ∈ V , then �(u) appears at least twice in the MSA. Substring α makes
S invalid only if �(u) does.

�

4.2 From Characterization to a Segmentation

Among the valid segmentations, we wish to select an optimal segmentation under
some goodness criteria.

We consider three score functions for the valid segmentations, one maximizing the
number of blocks, oneminimizing themaximumheight of a block, and oneminimizing
the maximum length of a block. The latter two have been studied earlier without the
repeat-free constraint, and non-trivial linear time solutions have been found [27, 28],
while the first score function makes sense only with this new constraint.

Let s( j ′) be the score of an optimal scoring segmentation S1, S2, . . . , Sb of prefix
MSA[1..m, 1.. j ′] for a selected scoring scheme. Then

s( j) =
⊕

j ′ : 0 ≤ j ′ < j,
MSA[1..m, j ′ + 1.. j] is
repeat-free segment

w(s( j ′), j ′, j), (1)

gives the score of an optimal scoring repeat-free segmentation S1, S2, . . . , Sb, Sb+1

of MSA[1..m, 1.. j], where ⊕

is an operator depending on the scoring scheme and
w(x, j ′, j) is a function of the score x of the segmentation of S1, S2, . . . , Sb and
of the last block Sb+1 corresponding to MSA[1..m, j ′ + 1.. j]. To fix this recur-
rence so that s(n) equals the maximum number of blocks over valid segmentations
of MSA[1..m, 1..n], set ⊕ = max and w(x, j ′, j) = x + 1. For initialization,
set s(0) = 0. Moreover, when there is no valid segmentation for some j , set
s( j) = −∞. To fix this recurrence so that s(n) equals the minimum of maxi-
mum heights of blocks over valid segmentations of MSA[1..m, 1..n], set ⊕ = min
and w(x, j ′, j) = max(x, |{MSA[i, j ′ + 1.. j] | 1 ≤ i ≤ m}|). For initializa-
tion, set s(0) = 0. Moreover, when there is no valid segmentation for some j ,
s( j) = ∞. Finally, to fix this recurrence so that s(n) equals the minimum of maxi-

123



1598 Algorithmica (2023) 85:1586–1623

mum length of blocks over valid segmentations ofMSA[1..m, 1..n], set⊕ = min and
w(x, j ′, j) = max(x, j − j ′). For initialization, set s(0) = 0. Moreover, when there
is no valid segmentation for some j , set s( j) = ∞.

To derive efficient dynamic programming recurrences for these scoring functions,
we separate the computation into the preprocessing phase and into the main computa-
tion. In the preprocessing phase,we compute values v( j) and f ( j), 1 ≤ j ≤ n, defined
as follows. Value v( j) is the largest integer such that segmentMSA[1..m, v( j)+ 1.. j]
is valid. Value f ( j) is the smallest integer such that segmentMSA[1..m, j + 1.. f ( j)]
is valid. Note that v( j) may not be defined for small j and f ( j) may not be defined
for large j (short blocks may not be repeat-free).

Assuming values v( j) have been preprocessed, we can simplify recurrence (1) into

s( j) =
⊕

j ′:0≤ j ′≤v( j)

w(s( j ′), j ′, j), (2)

by observing that left-extensions of valid segments are also valid.We use this equation
later for deriving a linear time solution for minimizing the maximum length of a block
score.

With values f ( j)we can use an analogous observation that right-extensions of valid
segments are also valid. This observation directly yields forward-propagation dynamic
programming solutions formaximizing the number of blocks score and forminimizing
the maximum length of a block score. These are given in Algorithms 1 and 2.We leave
it for futurework to derive similar result forminimizing themaximumheight of a block
score.

Algorithm 1An O(n) time algorithm for finding an optimal repeat-free segmentation
maximizing the number of blocks.
Require: Right-extensions ( j, f ( j)) sorted from smallest to largest order by second component:

( j1, f ( j1)), ( j2, f ( j2)), . . . , ( jn−J , f ( jn−J )), where f ( j1) ≤ f ( j2) ≤ · · · ≤ f ( jn−J ) and J is
such that f ( jn−J+1), f ( jn−J+2), . . . , f ( jn) are not defined.

Ensure: Score of an optimal repeat-free segmentation maximizing the number of blocks.
1: x ← 1
2: maxblocks(0) ← 0
3: maxblocks( j) ← −∞ for all 0 < j ≤ n
4: maxscore ← −∞
5: for j ← 1 to n do
6: while j = f ( jx ) do
7: maxscore ← max(maxscore,maxblocks( jx ))
8: x ← x + 1
9: end while
10: maxblocks( j) ← maxscore + 1
11: end for
12: return maxblocks(n)

Theorem 2 After an O(mn) time preprocessing, Algorithms 1 and 2 compute the
scores maxblocks(n) = b and minmaxlength(n) = max

i :1≤i≤b
L(Si ) of opti-

mal repeat-free segmentations S1, S2, . . . , Sb of gapless MSA[1..m, 1..n] in O(n)

123



Algorithmica (2023) 85:1586–1623 1599

Algorithm 2 An O(n log log n) time algorithm for finding an optimal semi-repeat-
free segmentation minimizing the maximum segment length. Minimization over an
empty set is assumed to return ∞. Operation Upgrade(k, v) sets key k to value v

if the previous value is larger. Operation RangeMin(a, b) returns the smallest value
associated with keys in range [a..b]. Both operations can be supported in O(log n)

time with standard balanced search trees, but here the operations required are such
that O(log log n) time can be achieved with more advanced data structures.
Require: Right-extensions ( j, f ( j)) sorted from smallest to largest order by second component:

( j1, f ( j1)), ( j2, f ( j2)), . . . , ( jn−J , f ( jn−J )), where f ( j1) ≤ f ( j2) ≤ · · · ≤ f ( jn−J ) and J is
such that f ( jn−J+1), f ( jn−J+2), . . . , f ( jn) are not defined.

Ensure: Score of an optimal semi-repeat-free segmentation minimizing the maximum segment length.
1: Initialize data structures T and I with keys 0, 1, 2, . . . , 2n, with all keys associated with values ∞
2: x ← 1
3: minmaxlength(0) ← 0
4: for j ← 1 to n do
5: while j = f ( jx ) do
6: T .Upgrade( jx + minmaxlength( jx ),minmaxlength( jx ))
7: I.Upgrade( jx + minmaxlength( jx ), − jx )
8: x ← x + 1
9: end while
10: minmaxlength( j) ← min(T .RangeMin( j + 1, ∞),I.RangeMin(−∞, j) + j)
11: end for
12: return minmaxlength(n)

and O(n log log n) time, respectively. The produced segmentations induce repeat-free
founder graphs from a gapless MSA.

Proof The O(mn) preprocessing algorithm is provided in Theorem 3. Let us then
consider the running time of the main algorithms. In both algorithms, the sorted input
can be produced in O(n) time by counting sort from the output of the preprocessing
algorithm. The first algorithm takes clearly linear time. The second algorithm takes
clearly O(n log n) time when using standard balanced search trees, but this can be
improved: Since the queries are semi-open intervals with keys in range [1 . . . 2n], these
balanced search trees can be replaced by van Emde Boas trees to obtain O(n log log n)

time computation of all values [45].
Correctness of Algorithms 1 and 2 follow from the fact that when computing

the score at column j , all earlier segmentations that are safe to be extended with
a new segment ending at j are considered. We formalize this argument for Algo-
rithm 2, as the proof for the other is analogous and easier. Assume by induction that
minmaxlength( j ′) is the score max

i :1≤i≤b
L(Si ) of an optimal semi-repeat-free seg-

mentation S1, S2, . . . , Sb ofMSA[1..m, 1.. j ′], for j ′ < j . Each minmaxlength( j ′)
is added to the data structures when the corresponding segmentation can be consid-
ered to be appended with segment Sb+1 corresponding to MSA[1..m, j ′ + 1.. j], for
j ≥ f ( j ′), so that the result is a semi-repeat-free segmentation. The minimum values
from the data structures equal the definition of segmentation score max

i :1≤i≤b+1
L(Si ):

To see this, we have two cases to consider: a) for j ′ such that minmaxlength( j ′) >

j − j ′ the score of the segmentation ending at j ′ extended with [ j ′ + 1.. j] is

123



1600 Algorithmica (2023) 85:1586–1623

minmaxlength( j ′), and b) for j ′ such that minmaxlength( j ′) ≤ j − j ′ the
score of the segmentation ending at j ′ extended with [ j ′ + 1.. j] is j − j ′. The query
intervals guarantee that the minima is returned, with the latter adjusted by + j so that
it gives j− j ′ for minimum− j in tree tree I, corresponding to the cases a) and b). Ini-
tialization guarantees that score of the first segment is correctly computed. Traceback
from minmaxlength(n) gives an optimal semi-repeat-free segmentation. �

4.3 Preprocessing

We can do the preprocessing for values v( j) and f ( j) in O(mn) time. The idea is to
build a BWT index on the MSA rows, and then search all rows backward from right
to left in parallel (with everything reversed for the latter values). Once we reach a
column j ′ where all suffixes have altogether exactly m occurrences (their union of
BWT intervals is of size m), then MSA[1..m, j ′..n] is a valid segment for largest j ′
with this property. Then we can drop the last column (do right-contract on all rows)
and continue left-extensions until finding the largest j ′ such thatMSA[1..m, j ′..n−1]
is a valid segment. Continuing this way, we can find for each column j the value
v( j) = j ′ − 1. The bottleneck of the approach is the computation of the size of the
union of intervals, but we can avoid a trivial computation by exploiting the repeat-free
property and the order in which these intervals are computed.

Theorem 3 Givenamultiple sequencealignmentMSA[1..m, 1..n]with eachMSA[i, j]
∈ [1..σ ], values v( j) and f ( j) for each 1 ≤ j ≤ n can be computed in randomized
O(mn) time or deterministic O(mn log σ) time. Here value v( j) is the largest integer
such that segment MSA[1..m, v( j) + 1.. j] is valid, and value f ( j) is the smallest
integer such that segment MSA[1..m, j + 1.. f ( j)] is valid.

Proof We consider values v( j) as the other case is symmetric. Let us build the bidi-
rectional BWT index [38] of MSA rows concatenated into one long string with some
separator symbols added between rows.We will run several phases in synchronization
over this BWT index, but we explain them first as if they would be run independently.

Phase 0 searches in parallel all rows from right to left advancing each by one
position at a time. Let k be the number of parallel of steps done so far. We can
maintain a bitvector M that at the k-th step stores M[i] = 1 iff BWT [i] is the k-th
last symbol of some row.

Phase 1 uses the variable length sliding window approach of Belazzougui and
Cunial [39] to compute values v( j). Let the first row of MSA be T [1..n]. Search
T [1..n] backwards in the fully-functional bidirectional BWT index [39]. Stop the
search at T [ j ′ + 1..n] such that the corresponding BWT interval [i ′..i] contains only
suffixes originating from column j ′ +1 of theMSA, that is, spellingMSA[a, j ′ +1..n]
in the concatenation, for some rows a. Set vb(n) = j ′ for row b = 1. Contract T [n]
from the search string andmodify BWT interval accordingly [39]. Continue the search
(decreasing j ′ by one each step) to find T [ j ′ + 1..n − 1] s.t. again the corresponding
BWT interval [i ′..i] contains only suffixes originating from column j ′ + 1. Update
vb(n − 1) = j ′ for row b = 1. Continue like this throughout T . Repeat the process

123



Algorithmica (2023) 85:1586–1623 1601

for all remaining rows b ∈ [2..m], to compute v2( j), v3( j), . . . , vm( j) for all j . Set
v( j) = mini vi ( j) for all j .

Let us call the instances of Phase 1 run on the rest of the rows as Phases 2, 3, . . . ,m.
Let the current MSA interval in Phases 1 to m be [ j ′ + 1.. j]. The problematic

part is checking if the corresponding active BWT intervals [i ′a ..ia] for Phases a ∈
{1, 2, . . . ,m} contain only suffixes originating from column j ′ + 1. To solve this, we
run Phase 0 as well as Phases 1 to m in synchronization so that we are at the k-th
step in Phase 0 when we are processing interval [ j ′ + 1.. j] in the rest of the Phases,
for k = n − j ′. In addition, we maintain bitvectors B and E such that B[i ′a] = 1
and E[ia] = 1 for a ∈ {1, 2, . . . ,m}. For each M[i] that we set to 1 at step k with
B[i] = 0 and E[i] = 0, we check if M[i − 1] = 1 and M[i + 1] = 1. If and only if
this check fails on any i , there is a suffix starting outside column j ′ + 1. This follows
from the fact that each suffix starting at column j ′ + 1 must be contained in exactly
one of the distinct intervals of the set I = {[i ′a ..ia]}a∈{1,2...m}. This is because I cannot
contain nested interval pairs as all strings in segment [ j ′ + 1.. j] of the MSA are of
equal length, and thus their BWT intervals cannot overlap except if the intervals are
exactly the same.

Finally, the running time of the algorithm is O(mn) or O(mn log σ), usingLemma1
or Lemma 2, respectively, and using the fact that the bitvectors are manipulated locally
only on indexes that are maintained as variables during the execution. �

4.4 Faster Algorithm for Minimizing theMaximum Block Length

Recall Eq. (2). Let us consider the score w(x, j ′, j) = max(s( j ′), j − j ′) with
⊕ = min, that is, minimizing the maximum block length over valid segmenta-
tions. Algorithm 2 solved this problem in near-linear time, but now we improve
this to linear using values v( j) instead of f ( j). The basic observation is that
v(J ) ≤ v(J + 1) ≤ · · · ≤ v(n), for some J > 0, and hence the range where
the minimum is taken grows as j grows.

Cazaux et al. [28] considered a similar recurrence and gave a linear time solution
for it. In what follows we modify that technique to work with valid ranges.

For j between 1 and n, we define

x( j) = max argmin
j ′∈[1..v( j)]

max( j − j ′, s( j ′))

Lemma 4 For any j ∈ [1..n − 1], we have x( j) ≤ x( j + 1).

Proof By the definition of x(.), for any j ∈ [1..n], we have for j ′ ∈ [1..x( j) − 1],
max( j − j ′, s( j ′)) ≥ max( j − x( j), s(x( j))) and for j ′ ∈ [x( j)+1..v( j)], max( j −
j ′, s( j ′)) > max( j − x( j), s(x( j))).
We assume that there exists j ∈ [1..n− 1], such that x( j + 1) < x( j). In this case,

x( j + 1) ∈ [1..x( j) − 1] and we have

max( j − x( j + 1), s(x( j + 1))) ≥ max( j − x( j), s(x( j))).

123



1602 Algorithmica (2023) 85:1586–1623

As v( j + 1) ≥ v( j), x( j) ∈ [x( j + 1) + 1..v( j + 1)] and thus

max( j + 1 − x( j + 1), s(x( j + 1))) < max( j + 1 − x( j), s(x( j))).

As x( j + 1) < x( j), we have j − x( j + 1) > j − x( j). To simplify the proof, we
take A = j − x( j + 1), B = s(x( j + 1)), C = j − x( j) and D = s(x( j)). Hence,
we have max(A, B) ≥ max(C, D), max(A + 1, B) < max(C + 1, D) and A > C .
Now we are going to prove that this system admits no solution.

• Case where A = max(A, B) and C = max(C, D). As A > C , we have A + 1 >

C + 1 and thus max(A + 1, B) > max(C + 1, D) which is impossible because
max(A + 1, B) < max(C + 1, D).

• Case where B = max(A, B) and C = max(C, D). We can assume that B > A
(in the other case, we take A = max(A, B)) and as A > C , we have B >

C + 1 and thus max(A + 1, B) > max(C + 1, D) which is impossible because
max(A + 1, B) < max(C + 1, D).

• Case where A = max(A, B) and D = max(C, D). We have A > D and A > C ,
thus max(A + 1, B) > max(C + 1, D) which is impossible because max(A +
1, B) < max(C + 1, D).

• Case where B = max(A, B) and D = max(C, D). We have B ≥ D and A > C ,
thus max(A + 1, B) ≥ max(C + 1, D) which is impossible because max(A +
1, B) < max(C + 1, D). �

Lemma 5 Given j� ∈ [x( j − 1) + 1..v( j)], we can compute in constant time if

j� = max argmin
j ′∈[ j�..v( j)]

max( j − j ′, s( j ′)).

Proof We need just to compare k = max( j − j�, s( j�)) and s( j�) where j� is in
argmin j ′∈[ j�+1..v( j)] s( j ′). If k is smaller than s( j�), k is smaller than all the s( j ′)
with j ′ ∈ [ j� + 1..v( j)] and thus smaller than all max( j − j ′, s( j ′)). Hence we have
j� = max argmin j ′∈[ j�..v( j)] max( j − j ′, s( j ′)).
Otherwise, k ≥ s( j�) and as k ≥ j − j� > j − j�, k ≥ max( j − j�, s( j�)). In

this case j� 
= max argmin j ′∈[ j�..v( j)] max( j − j ′, s( j ′)). By using the constant time
semi-dynamic range maximum query by Cazaux et al. [28] on the array s(.), we can
obtain in constant time j� and thus check the equality in constant time. �
Theorem 4 The values s( j) of Eq. (2) with w((s( j ′), j ′, j) = max(s( j ′), j − j ′) and
⊕ = min for all j ∈ [1..n], can be computed in O(n) time after a randomized O(mn)

time or deterministic O(mn log σ) time preprocessing on a gapless multiple sequence
alignment. The optimal segmentation defined by Eq. (2) yields a repeat-free founder
graph.

Proof We begin by preprocessing all the values of v( j) in O(mn) randomized or
O(mn log σ) deterministic time (Theorem 3). The idea is to compute all the values
s( j) by increasing order of j and by using the values x( j). For each j ∈ [1..n], we
check all the j ′ from x( j − 1) to v( j) with the equality of Lemma 5 until one is true
and thus corresponds to x( j). Finally, we add s( j) = max( j − x( j), s(x( j))) to the
constant time semi-dynamic range maximum query and continue with j + 1. �

123



Algorithmica (2023) 85:1586–1623 1603

5 Compact Index for Repeat-free Founder Graphs

Recall the indexing solutions of Sect. 3 and the definitions from Sect. 2.
We now show that explicit tries and Aho-Corasick automaton can be replaced by

some auxiliary data structures associated with the Burrows-Wheeler transformation
of the concatenation C = ∏

i∈{1,2,...,b−1}
∏

v∈V i ,(v,w)∈E �(v)�(w)0.
Consider interval SA[i ..k] in the suffix array of C corresponding to suffixes having

�(v) as prefix for some v ∈ V . From the repeat-free property it follows that this interval
can be split into two sub-intervals, SA[i .. j] and SA[ j + 1..k], such that suffixes in
SA[i .. j] start with �(v)0 and each suffix in SA[ j + 1..k] start with some �(v)�(w) for
(v,w) ∈ E . Moreover, BWT[i .. j] equals multiset {�(u)[|�(u)| − 1] | (u, v) ∈ E}.
That is, BWT[i .. j] (interpreted as a set) represents the children of the root of the trie
R(v) considered in Sect. 3.

We are now ready to present the search algorithm that uses only the BWT of C and
some small auxiliary data structures. We associate two bitvectors B and E to the BWT
of C as follows. We set B[i] = 1 and E[k] = 1 iff SA[i ..k] is a maximal interval with
all suffixes starting with �(v) for some v ∈ V .

Consider the backward search with query Q[1..q]. Let SA[ j ′..k′] be the inter-
val after matching the shortest suffix Q[q ′..q] such that BWT[ j ′] = 0. Let i =
select(B,rank(B, j ′)) and k = select(E,rank(B, j ′)). If i ≤ j ′ and k′ ≤ k,
index j ′ lies inside an interval SA[i ..k] where all suffixes start with �(v) for some v.
We modify the range into SA[i ..k], and continue with the backward step on Q[q ′ −1].
We check the same condition in each step and expand the interval if the condition is
met. Let us call this procedure expanded backward search.

We can now strictly improve Theorem 1 and Corollary 1 as follows.

Theorem 5 Let G = (V , E) be a repeat-free founder graph (or a repeat-free degen-
erate string) with blocks V 1, V 2, . . . , V b such that V = V 1 ∪ V 2 ∪ · · · ∪ V b. We
can preprocess an index structure for G occupying O(L|E | log σ) bits in O(L|E |)
time, where {1, . . . , σ } is the alphabet for node labels and L = maxv∈V �(v). Given a
query string Q[1..q] ∈ {1, . . . , σ }q , we can use expanded backward search with the
index structure to find out if Q occurs in G. This query takes O(|Q|) time.
Proof Aswe expand the search interval in BWT, it is evident that we still find all occur-
rences for short patterns that span at most two nodes, like in the proof of Theorem 1.
We need to show that a) the expansions do not yield spurious occurrences for such
short patterns and b) the expansions yield exactly the occurrences for long patterns
that we earlier found with the Aho-Corasick and tries approach. In case b), notice
that after an expansion step we are indeed in an interval SA[i ..k] where all suffixes
match �(v) and thus corresponds to a node v ∈ V . The suffix of the query processed
before reaching interval SA[i ..k] must be at least of length |�(v)|. That is, to mimic
Aho-Corasick approach, we should continue with the trie R(v). This is identical to
taking a backward step from BWT[i ..k], and continuing therein to follow the rest of
this implicit trie.

To conclude case b), we still need to show that we reach all the same nodes as when
using Aho-Corasick, and that the search to other direction with L(v) can be avoided.
These follow from case a), as we see.

123



1604 Algorithmica (2023) 85:1586–1623

In case a), before doing the first expansion, the search is identical to the original
algorithm in the proof of Theorem 1. After the expansion, all matches to be found are
those of case b). That is, no spurious matches are reported. Finally, no search interval
can include two distinct node labels, so the search reaches the only relevant node
label, where the Aho-Corasick and trie search simulation takes place. We reach all
such nodes that can yield a full match for the query, as the proof of Theorem 1 shows
that it is sufficient to follow an arbitrary candidate match.

As we only need a standard backward step, we can use a unidirectional BWT index
constructable in deterministic O(L|E |) time supporting a backward step in constant
time [38]. �

6 Conditional Hardness of Indexing EFGs

We now turn our attention to general MSAs and elastic founder graphs induced from
their segmentation. With non-elastic founder graphs, we have seen that the repeat-free
property makes them indexable, but for now we have no proof that such property is
necessary. For elastic founder graphs, we are able to derive such a conditional lower
bound.

Namely, we show a reduction from Orthogonal Vectors (OV) to the problem of
matching a query string in an EFG, continuing the line of research conducted on many
related (degenerate) string problems [16, 25, 44, 46]. The OV problem is to find out if
there exist x ∈ X and y ∈ Y such that x · y = 0, given two set X and Y of n binary
vectors each. We construct string Q using X and graph G using Y . Then, we show
that Q has a match in G if and only if X and Y form a “yes”-instance of OV. We
condition our results on the following OV hypothesis, which is implied by the Strong
Exponential Time Hypothesis [47].

Definition 5 (Orthogonal Vectors Hypothesis (OVH) [48]) Let X ,Y be the two sets of
an OV instance, each containing n binary vectors of length d.1 For any constant ε > 0,
no algorithm can solve OV in time O(poly(d)n2−ε).

6.1 Query String

We build string Q by combining string gadgets Q1, . . . , Qn , one for each vector in X ,
plus some additional characters. To build string Qi , first we place four b characters,
then we scan vector xi ∈ X from left to right. For each entry of xi , we place sub-string
Qi,h consisting of four 0 characters if xi [h] = 0, or four 1 characters if xi [h] = 1.
Finally, we place four e characters to have Qi = b4 xi [1]4 xi [2]4 . . . xi [d]4 e4. For
example, vector xi = 101 results into string

Qi = bbbb Qi,1 Qi,2 Qi,3 eeee, where Qi,1 = 1111,

Qi,2 = 0000, Qi,3 = 1111.

1 In this section, keeping in line with the usual notation in the OV problem, we use n to denote the size of
X and Y , instead of the number of columns of the MSA.

123



Algorithmica (2023) 85:1586–1623 1605

Gbe

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

G0

1

0

11

00

111

000

111

000

11

00

1

0

G1

1

0

00

111

000

111

000

00

1

0

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

Fig. 2 Gadgets Gbe, G0 and G1. Each gadget is organized into three rows, each row encoding a different
partitioning of the strings bbbb, eeee, 0000, 1111. This ensures that, when combining these gadgets in
Fig. 3, edges can be controlled to go within the same row, or to the row below

Full string Q is then the concatenation Q = bbbbQ1Q2 . . . Qneeee. The reason
behind these specific quantities will be clear when discussing the structure of the
graph.

6.2 Elastic Founder Graph

We build graph G combining together three different sub-graphs: GL , GM , GR (for
left, middle and right). Our final goal is to build a graph structured in three logical
“rows”. We denote the three rows of GM as GM1, GM2, GM3, respectively. The first
and the third rows of G, along with subgraphs GL and GR (introduced to allow slack),
can match any vector. The second row matches only sub-patterns encoding vectors
that are orthogonal to the vectors of set Y . The key is to structure the graph such that
the pattern is forced to utilize the second row to obtain a full match. We present the
full structure of the graph in Fig. 3, which shows the graph built on top of vector set
{100, 011, 010}. In particular, GM consists of n gadgets G j

M , one for each vector
y j ∈ Y . The key elements of these sub-graphs are gadgets Gbe, G0 and G1 (see Fig.
2), which allow to stack together multiple instances of strings b4, e4, 14, 04. The
overall structure mimics the one in [16], except for the new idea from Fig. 2.

6.2.1 Detailed Structure of the Graph.

Sub-graph GL (Fig. 3a) consists of a starting segment with a single node labeled
b4, followed by n − 1 sub-graphs G1

L , . . . ,Gn−1
L , in this order. Each Gi

L has d + 2
segments, and is obtained as follows. First, we place a segment containing only one
node with label b4, then we place d other segments, each one containing two nodes
with labels 14 and 04. Finally, we place a segment containing two nodes with labels
b4 and e4.

The nodes in each segment are connected to all nodes in the next segment, with the
exception of the last segment of each Gi

L : in this case, the node with label 1
4 and the

123



1606 Algorithmica (2023) 85:1586–1623

bbbb bbbb

1111

0000

1111

0000

1111

0000

bbbb

eeee

bbbb

1111

0000

1111

0000

1111

0000

bbbb

eeee

b

e

bb

ee

bbb

eee

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

(a) Sub-graph GL. The last segment belongs to sub-graph GM and shows the
connection.

· · ·

· · ·

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

00

111

000

111

000

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

11

00

111

000

111

000

11

00

1

0

1

0

00

111

000

111

000

00

1

0

1

0

00

111

000

111

000

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

11

00

111

000

111

000

11

00

1

0

1

0

00

111

000

111

000

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

· · ·

· · ·

1 0 0 0 1 1 0 1 0

G1
M G2

M G3
M

(b) Sub-graph GM for vectors y1 = 100, y2 = 011 and y3 = 010. The dashed
rectangles highlight the single Gj

M gadgets.

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

bbb

eee

bb

ee

b

e

bbbb

eeee

1111

0000

1111

0000

1111

0000

eeee

bbbb

eeee

1111

0000

1111

0000

1111

0000

eeee eeee

(c) Sub-graph GR. The first segment belongs to sub-graph GM and shows the
connection.

Fig. 3 An example of graph G. To visualize the entire graph, watch the three sub-figures from top to
bottom and from left to right. We also show two example occurrences of a query string Q constructed
from x1 = 101, x2 = 110, x3 = 100 (left-most), and from x1 = 101, x2 = 100, x3 = 110 (right-most),
respectively.We highlight each Qi with a different color. Any such occurrencemust pass through themiddle
row of GM

one with label 04 are connected only to the e4-node of the next (and last) segment of
such Gi

L .
Sub-graph GR (Fig. 3c) is similar to sub-graph GL , and it consists in n − 1 parts

G1
R, . . . ,Gn−1

R , followed by a segment with a single node labeled e4. Part Gi
R has

d + 2 segments, and is constructed almost identically to Gi
L . The differences are that,

in the first segment of Gi
R , we place two nodes labeled b4 and e4, while in the last

segment we place only one node, which we label e4.
As inGL , the nodes in each segment are connected to all nodes in the next segment,

with the exception of the first segment of each Gi
R : in this case, the node labeled e4

has no outgoing edge.
Sub-graph GM (Fig. 3b) implements the main logic of the reduction, and it uses

three building blocks, Gbe, G0 and G1, which are organized in three rows, as shown
in Fig. 2.

123



Algorithmica (2023) 85:1586–1623 1607

Sub-graph GM has n parts, G1
M , . . . ,Gn

M , one for each of the vectors y1, . . . , yn
in set Y . Each G j

M is constructed, from left to right, as follows. First, we place a Gbe

gadget. Then,we scan vector y j from left to right and, for each position h ∈ {1, . . . , d},
we place a G0 gadget if the h-th entry is y j [h] = 0, or a G1 if y j [h] = 1. Finally, we
place another Gbe gadget.

For the edges, we first consider each gadget G j
M separately. Let Gh and Gh+1, be

the gadgets encoding y j [h] and y j [h+ 1], respectively. We fully connect the nodes of
Gh to the nodes of Gh+1 row by row, respecting the structure of the segments. Then
we connect, row by row, the b-nodes of the leftGbe to the leftmostGh , which encodes
y j [1], and the nodes of the rightmost Gh , which encodes y j [d], to the e-nodes of the
right Gbe, again row by row. We repeat the same placement of the edges for every
vector Gh , Gh+1, 1 ≤ h ≤ d − 1; this construction is shown in Fig. 3b.

To conclude the construction of GM , we need to connect all the G j
M gadgets

together. Consider the right Gbe of gadget G j
M , and the left Gbe of gadget G j+1

M .
The edges connecting these two gadgets are depicted in Fig. 3b, which shows that
following a path we can either remain in the same row or move to the row below, but
we cannot move to the row above. Moreover, sub-pattern b8 can be matched only in
the first and second row, while sub-pattern e8 only in the second and third rows.

In proving the correctness of the reduction, wewill useGM1,GM2 andGM3 to refer
to the sub-graphs of GM consisting of only the nodes and edges of the first, second
and third row, respectively. Formally, for t ∈ {1, 2, 3}, VMt ⊂ V VMt ⊂ V is the set
of nodes placed in the t-th row of each Gbe, G0 or G1 gadget belonging to sub-graph
GM , and EMt = {(v,w) ∈ E | v,w ∈ VMt }. Thus, GMt = (VMt , EMt ). We will use
the notation G j

M2 to refer to the nodes belonging to both G
j
M and GM2, excluding the

ones in GM1 and GM3, and the edges connecting them.
Final graph G is obtained by combining sub-graphs GL , GM and GR . To this end,

we connect the nodes in the last segment ofGL with the b-nodes in the first and second
row of the left Gbe gadget of G1

M . Finally, we connect the e-nodes in the second and
third row of the right Gbe gadget of Gn

M with both the b4-node and e4-node in the
first segment of GR . Figures 3a, 3b and 3c can be visualized together, in this order,
as one big picture of final graph G. In Figs. 3a and 3c we also included the adjacent
segment of GM to show the connection.

6.3 OVH Conditional Hardness

The proof of correctness is similar to the one in [16], but with adaptations to the
elastic founder graph. We prove three lemmas concerning GM2, which are key for the
correctness. The first lemma is a straightforward consequence of the structure of GM2
and the fact that it is directed.

Lemma 6 If string Qi has amatch inGM2, then the pathmatching Qi is fully contained
in G j

M2, for some 1 ≤ j ≤ n. Moreover, each Qi,h sub-string matches a path of two
nodes which belong to the G0 or G1 gadget encoding y j [h].

123



1608 Algorithmica (2023) 85:1586–1623

Proof The claim follows by construction, since Qi starts with b404 or b414 (which
are found only at the beginning of a G j

M2 gadget), and ends with 0
4e4 or 14e4 (which

are found only at the end of a G j
M2). �

Lemma 7 String Qi has a match in GM2 if and only if there exists y j ∈ Y such that
xi · y j = 0.

Proof Recall that, by construction, the h-th G∗, ∗ ∈ {0, 1} gadget in G j
M2 is a G0

gadget if and only if y j [h] = 0, while it is a G1 gadget if and only if y j [h] = 1. We
handle the two implications of the statement individually.

(⇒) By Lemma 6, we can focus on the d distinct and consecutive nodes of G j
M2

that match Qi . In particular we know that each sub-string Qi,h matches in the second
row of either the h-th gadget G0 or the h-th gadget G1. Consider vectors xi ∈ X and
y j ∈ Y . If Qi,h = 14 has a match in G j

M2 it means that its h-th gadget is a G0, and
hence y j [h] = 0, implying xi [h] · y j [h] = 0. If Qi,h = 0, by construction we know

that xi [h] = 0, and Qi,h can have a match in G j
M2 no matter whether the h-th gadget

is a G0 or a G1. Thus, it clearly holds that xi [h] · y j [h] = 0. At this point, we can
conclude that xi [h] · y j [h] = 0 for every 1 ≤ h ≤ d, thus xi · y j = 0.

(⇐) Consider vectors xi ∈ X and y j ∈ Y that are such that xi · y j = 0. For

h = 1, 2, . . . , d, if y j [h] = 0 then the h-th gadget of G j
M2 is a G0 gadget, and Qi,h

can surely match it. If y j [h] = 1 it must hold that xi [h] = 0, since xi · y j = 0. Thus

Qi,h = 04, and it can have a match in the h-th gadget of G j
M2, no matter if it is a G0 or

G1 gadget. Finally, sub-strings b4 and e4 can have a match in the Gbe gadgets at the
beginning and end of G j

M2, respectively. All characters of Qi have now a matching
node and the definition of the edges allows to visit all such nodes via a matching path
starting in the left Gbe gadget of G j

M2 and ending in the right Gbe gadget of G j
M2. �

Lemma 8 String Q has a match in G if and only if a sub-string Qi of Q has a match
in the underlying sub-graph GM2 of GM.

Proof For the (⇒) implication, because of the directed e4b4-edges, each distinct sub-
string Qi matches a path from a distinct portion of either GL , GM and GR . Moreover,
each occurrence of P must begin with b8 and end with e8. String b8 can be matched
only in GL , in GM1 or in GM2, hence the match must start here. On the other hand,
string e8 is found either in GM2, GM3 or in GR . Observe that, by construction, once a
match for pattern Q is started in GL , in GM1 or in GM2, the only way to successfully
conclude it is either by matching e8 within GM2, or by matching also a portion of
GM3 and/or GR and then e8. Because of the structure of the graph, in both cases a
sub-string Qi of Q must match one of the gadget G j

M2 that are present in GM2.

The (⇐) implication is trivial. In fact, if Qi has a match in one gadget G j
M2, then

by construction we can match b4Q1 . . . Qi−1 possibly in GL , then possibly in GM1.
We can then match Qi+1 . . . Qne4 possibly in GM3, then possibly in GR , and thus
have a full match for Q in G. �

Our first lower bound is on matching a query string in an EFG without indexing.

123



Algorithmica (2023) 85:1586–1623 1609

Theorem 6 For any constant ε > 0, it is not possible to find a match for a query string
Q into an EFG G = (V , E, �) in either O(|E |1−ε |Q|) or O(|E | |Q|1−ε) time, unless
OVH fails. This holds even if restricted to an alphabet of size 4.

Proof First, notice that the reduction that we presented for query string Q and EFG
G is correct. Indeed, Lemma 8 guarantees that Q has a match in G if and only if a
sub-string Qi has amatch inGM , and this holds, by Lemma 7, if and only if xi · y j = 0.
Thus, string Q has a match in G if and only if there exist vectors xi ∈ X and y j ∈ Y
which are orthogonal.

The reduction requires linear time and space in the size O(nd) of the OV problem,
and this is because of the construction of string Q and graph G. On one hand, when
we define string Q, we place a constant number of characters for each entry of each
vector, thus |Q| = O(nd). On the other hand, sub-graphs GL , GM1, GM2, GM3 and
GR all consist of O(n) structures, each one containing O(d) nodes, and a constant
number of edges for each node, for an overall size of O(nd).

Hence, given two sets of vectors X and Y , we can perform our reduction obtaining
string Q and EFG G = (V , E, �) in O(nd) time, while observing that |E | = O(nd)

and |Q| = O(nd). Ifwe canfindamatch forQ inG inO(|E |1−ε |Q|)orO(|E | |Q|1−ε)

time, then we can decide if there exists a pair of orthogonal vectors between X and Y
in O(nd · (nd)1−ε) = O(n2−εpoly(d)) time, which contradicts OVH. �

We obtain the indexing lower bound by proving that the above reduction is a linear
independent-components (lic) reduction, as defined by [19, Definition 3].

Theorem 7 For any α, β, δ > 0 such that β + δ < 2, there is no algorithm prepro-
cessing an EFG G = (V , E, �) in time O(|E |α) such that for any query string Q we
can find a match for Q in G in time O(|Q| + |E |δ|Q|β), unless OVH is false. This
holds even if restricted to an alphabet of size 4.

Proof It is enough to notice that the reduction from OV that we presented is a lic
reduction. Namely, (1) the reduction is correct and can be performed in linear time
and space O(nd) (recall the proof of Theorem 6), and (2) query string |Q| is defined
using only vector set X and it is independent from vector set Y , while elastic founder
graphG is built using only vector set Y and it is independent from vector set X . Hence,
Corollary 1 in [19] can be applied, proving our thesis. �

7 Indexing EFGs

Let us now consider how to extend the indexing results to the general case of MSAs
with gaps. The idea is that gaps are only used in the segmentation algorithm to define
the valid ranges, and that is the only place where special attention needs to be taken;
elsewhere, whenever a substring from MSA rows is read, gaps are treated as empty
strings. That is, A-GC-TA- becomes AGCTA.

As we later see, segmentation becomes more difficult with gaps, and we need to
consider a relaxed variant of repeat-free property for obtaining efficient algorithms.
Recall that in a semi-repeat-free EFG a node label can appear as a prefix of another
node label inside the same block.

123



1610 Algorithmica (2023) 85:1586–1623

7.1 Repeat-Free Case

As the reader can check, the indexing solutions in Sects. 3 and 5 work verbatim with
the repeat-free elastic founder graphs; the property of having strings of equal length
inside the blocks is not exploited in the algorithms.

7.2 Semi-repeat-free case

The case of semi-repeat-free elastic founder graphs is slightly more complex, and we
need to combine and extend the previous solutions. The following lemma is the key
property needed for the solution.

Lemma 9 Consider a semi-repeat free EFG G = (V , E). String �(v)�(w), where
(v, e) ∈ E, can only appear in G as a prefix of paths starting with v.

Proof Assume for contradiction that �(v)�(w) is a prefix of a path starting inside the
label of some v′ ∈ V , v′ 
= v. Then �(v) is a prefix of such path, and this is only
possible if v′ is in the same block as v and �(v) is a proper prefix of �(v′): otherwise
G would not be semi-repeat free. Then |�(v)| < |�(v′)| and �(w) has an occurrence
in a path starting inside the label �(v′). This is a contradiction on the fact that G is
semi-repeat free. �

Consider the suffix tree of the concatenation D = ∏

v,w,u:(v,w)∈E,(w,u)∈E (�(v)�(w)

�(u))−10. For suffixes of type α�(w)−1�(v)−10, where α is a (possibly empty) string,
we store node identifierv in the corresponding leaf of the tree.Clearly, queries spanning
less than three nodes can be located from this suffix tree. Consider a longer query
Q[1..q] whose suffix spans at least three nodes in the graph. We search it backwards
in the suffix tree until reaching a locus after which we cannot proceed with Q[i], but
could continue with 0. Then we know that Q[i + 1..q] matches a path starting with
�(v)�(w) in G. Due to Lemma 9, any leaf in the subtree rooted at the current locus
in the suffix tree (which is spelling Q[i + 1..q]−1) stores v. Since we cannot know in
advance if Q is a longer query, we have stored identifiers v only when this case applies.
Once we have identified v, we only need to check if we can read Q[1..i] following
a path to the left from v, which is exactly what we did in Sect. 3 using tries R(v)

storing {�(u)−1 | (u, v) ∈ E}: The semi-repeat-free property guarantees that no node
label can be a suffix of another node label (even inside the same block), and hence
the leaves of the tries R(v) correspond to exactly one row each. The left-extensions
are hence not branching, as the search always narrows down to one row (leaf), before
continuing on the next trie (see Sect. 3).

Theorem 8 A (semi-)repeat-free founder/block graph G = (V , E) or a (semi-)repeat-
free elastic degenerate string can be indexed in polynomial time into a data structure
occupying O(|D| log |D|) bits of space, where |D| = O(NH2), N is the total length
of the node labels, and H is the height of G. Later, one can find out in O(|Q|) time
if a given query string Q occurs in G. Here we assume that the alphabet of the node
labels and query string is [1..σ ], where σ ≤ N.

123



Algorithmica (2023) 85:1586–1623 1611

Proof Each node label �(v) is added to D at most 3H2 times, as H is an upper bound
for the number of edges from and to v. The length of D is then bounded by O(NH2).
Construction of suffix tree on D can be done in linear time [32]. In polynomial time, the
nodes of the suffix tree and the tries can be preprocessed with perfect hash functions,
such that following a downward path takes constant time per step. �

We note that the index can be modified to report only matches that are (gap-
oblivious) substrings of the MSA rows: Short patterns spanning only one edge are
already such. Longer patterns can have only one occurrence in G, and it suffices to
verify them with a regular string index on the MSA, capable for existence or counting
queries. Suchmodified schememakes the approach functionality equivalent with wide
range of indexes designed for repetitive collections [5–11] and shares the benefit of
alignment-based indexes of Na et al. [6–9] in reporting the aligned matches only once,
where e.g. r-index [11] needs to report all occurrences.

Using compressed suffix trees, different space-time tradeoffs can be achieved. In
Sect. 9, we develop an alternative compressed indexing scheme for the repeat-free
case using Wheeler graphs.

8 Construction of (semi-)repeat-free EFGs

Now that we have seen that (semi-)repeat-free EFGs are easy to index, it remains to
consider their construction. First, we observe that the algorithms in Sect. 4 do not work
verbatim: Theorem 4 is based on Eq. (2), but now this recurrence is no longer valid,
as left-extension of a valid segment may not be a valid segment. To see this, we need
to revisit the definition of a valid segment now that MSA can contain gaps. Here we
follow the notions developed by Rizzo and Mäkinen [49].

We say that segment [x ..y] of a general MSA[1..m, 1..n] is semi-repeat-free
if for any i, i ′ ∈ [1..m] string spell(MSA[i, x ..y]) occurs in gaps-removed row
spell(MSA[i ′, 1..n]) only at position g(i ′, x), where g(i ′, x) is equal to x subtracted
the number of gaps in MSA[i ′, 1..x]. Similarly, [x, y] is repeat-free if the eventual
occurrence of spell(MSA[i, 1..n]) at position g(i ′, x) in row i ′ also ends at position
g(i ′, y).

It is straightforward to adapt the the proof of Lemma 3 to yield the following
characterization:

Lemma 10 ([49]) Elastic founder graph G(S) is (semi-)repeat-free if and only if all
segments of S are (semi-)repeat-free.

A counterexample for the validity of left-extensions is shown in Table 1. On the
other hand, Algorithms 1 and 2 use the right-extension property of a valid segment,
and this holds even with general MSAs.

Observation 1 If segmentMSA[1..m, j +1.. f ( j)] is (semi-)repeat-free, then segment
MSA[1..m, j + 1.. j ′] is (semi-)repeat-free for all j ′ such that f ( j) < j ′ ≤ n.

However, these algorithms assume we have precomputed for each j the smallest
integer f ( j) such that MSA[1..m, j + 1.. f ( j)] is a (semi-)repeat-free segment. The

123



1612 Algorithmica (2023) 85:1586–1623

Table 1 Semi-repeat-free
segment and its extension (to the
left) into a non-valid segment

segment of MSA longer segment of MSA

X AX

X -X

Y AY

Z-|Y |−|Z | AZ-|Y |−|Z |

Here the distinct strings X , Y and Z do not appear elsewhere in MSA,
except Z is a prefix of Y .
Here |X | = |Y |. The longer segment is non-valid, because X is not a
prefix but a suffix of AX . Reversing the definition does not help, as the
same segment contains AZ as prefix of AY

earlier sliding windows preprocessing algorithm for values f ( j) inherently assumes
the values are monotonic (as is the case with gaplessMSAs), but this does not hold in
the general case: Consider again Table 1. Let j be the column just before the longer
segment of MSA. Then f ( j) > j + |X | + 1 and f ( j + 1) = j + 1 + |X |.

In order to be able to use Algorithms 1 and 2 , we derive a new preprocessing
algorithm for values f ( j) that does not assume monotonicity.

8.1 Preprocessing for the Non-Monotonic Case

As an internal part of the algorithm we need an efficient data structure to maintain
a dynamic set of non-overlapping intervals. Let I be a set of integer intervals, i.e.,
I = {[a1..b1], [a2..b2], . . . , [am ..bm]}, where ai , bi ∈ [1..n] for all i . We say I is
non-overlapping if for all pairs [ai ..bi ], [a j ..b j ] ∈ I holds [ai ..bi ] ∩ [a j ..b j ] = ∅.
Lemma 11 There is a data structure to maintain a non-overlapping set of intervals I
supporting insertions and deletions of intervals in O(log |I |) time. The data structure
also supports in O(log |I |) time a query span([a..b]) that returns | ∪ {[ai ..bi ] ∈ I |
a ≤ ai ≤ bi ≤ b}|.
Proof Consider a balanced binary search tree with leaves corresponding to intervals
of I , sorted by values ai for [ai ..bi ] ∈ I . Leaf i stores ai as key value and bi −ai +1 as
span value. Each internal node v stores the maximum key and sum of span values of
the leaves in its subtree. Assuming the data structure has been maintained with these
values, answering query span([a..b]) can be done as follows: Locate the O(log |I |)
internal nodes that form a non-overlapping cover on the keys in the range [a..b] (by
searching keys a and b and picking the subtrees bypassed and within the interval).
Return the sum of span values stored in those nodes.

It remains to consider how the values can be maintained during insertions and
deletions, and during the resulting rebalancing operations. On each such operation,
there are O(log |I |) internal nodes affected on the upward path from the the leaf to
the root. It is sufficient to consider one such affected node v assuming its left child �

and right child r have already been updated accordingly. We set key(v) = key(r)
and span(v) = span(�) + span(r). �

123



Algorithmica (2023) 85:1586–1623 1613

Fig. 4 Illustrating the O(m logm) time algorithm to compute value f ( j) for a given j . Node labels corre-
spond to the string spelled from the root to the node. We assume ACA, AGA, and GCA only appear in the
region of the MSA visualized, while GC and A appear also elsewhere

Lemma 12 Let f ( j) be the smallest integer such that MSA[1..m, j + 1.. f ( j)] is a
semi-repeat-free segment. We can compute all values f ( j) in O(mn logm) time.

Proof Figure 4 illustrates the algorithm to be described in the following. Consider the
generalized suffix tree of {spell(MSA[i, 1..n]) | 1 ≤ i ≤ m}. For each j , locate the
subset W of (implicit) suffix tree nodes corresponding to {spell(MSA[i, j + 1..n]) |
1 ≤ i ≤ m}; ; these are the colored nodes in Fig. 4. If the number of leaves covered
by the subtrees rooted at W is greater than m, f ( j) remains undefined.

Otherwise, we know that f ( j) ≤ n, and our aim is to decrease the right boundary,
starting with n, until we have reached column f ( j). We do this one row at a time,
recording values f i ( j) such that in the end f ( j) = maxi f i ( j). We initialize f i ( j) =
n for all i . Suffix tree nodes corresponding to rows whose values f i ( j) are final are
stored in set F , initially empty. Suffix tree nodes corresponding to rows whose values
f i ( j) are redundant (to be detailed later) are stored in set R, initially empty.
To start this process, a) pick an (implicit) suffix tree node v ∈ W corresponding

to spell(MSA[i, j + 1.. f i ( j)]) for some i . Let w be the parent of v. It corresponds
to string spell(MSA[i, j + 1.. j ′]) for some j ′. Then b) consider replacing v with
w in W . If the number of leaves covered by the subtrees rooted at W ∪ F ∪ R is
still m, then this replacement is safe, and we can set f i ( j) = j ′. Safe replacements
are shown as black nodes in Fig. 4, while the gray nodes are unsafe replacements.
We also move from W to R all w′ ∈ W that are located in the subtree rooted at
w (not including w), as these nodes are now redundant; we will consider later how
to compute their values f i ( j). Otherwise, instead of replacement, move v from W
to F , as we have found the minimum valid range with regards to row i : Consider
string spell(MSA[i, j + 1.. j ′ + k]), whereMSA[i, j ′ + k] is the first non-gap symbol
at row i after MSA[i, j ′]. This string is spelled by reading the path from the root to
w and then reading one symbol on the edge (w, v). This string is thus the shortest
string having the same occurrences as spell(MSA[i, j + 1.. f i ( j)]), and we can safely
assign as final value f i ( j) = j ′ + k. Repeat these steps a) and b) until W is empty.
At that point, decreasing of the right boundary is no longer possible on any row.

123



1614 Algorithmica (2023) 85:1586–1623

However, we only have computed f i ( j) for i such that there is v ∈ F corresponding
to spell(MSA[i, j + 1.. f i ( j)]). We also need to compute values f i

′
( j) for i ′ such

that there is v′ ∈ R corresponding to spell(MSA[i ′, j + 1.. f i
′
( j)]). Note that each

v′ ∈ R was made redundant by another node, which in turn, may have been made
redundant on its turn. We can store these relationships as a forest of trees. Root of
each tree corresponds to some v ∈ F and rest of the nodes are from R. Now, consider
a root v ∈ F of some of the trees corresponding to spell(MSA[i, j + 1.. f i ( j)]) and
a node v′ ∈ R of the same tree. We can assign f i

′
( j) = j ′ for smallest j ′ such that

|spell(MSA[i ′, j + 1.. j ′])| = |spell(MSA[i, j + 1.. f i ( j)])|. E.g. for row i = 2 in
Fig. 4, we have f 2( j) = j + 3, as |spell(AC − A)| = 3 = |ACA|. Then we can set set
f ( j) = maxi f i ( j).
To achieve the claimed running time, we use backward searching on the uni-

directional BWT index [38] on the concatenation of strings {spell(MSA[i, 1..n])
| 1 ≤ i ≤ m} (with special markers added between) to find all the suffix array
intervals corresponding to sets {spell(MSA[i, j + 1..n]) | 1 ≤ i ≤ m} for all j . This
takes O(mn) time. To find the largest j for which the union of suffix array intervals is
of size m, we can sort the intervals at each column and compute the size of the union
by a simple scanning. This takes O(mn logm) time overall.

Now we need to show that the process of reducing the right boundary for a fixed
column can be done in O(m logm) time. Mapping from a suffix array interval to the
(compressed) suffix tree node takes constant time [34]. Steps a) and b) are repeated
at most m times at any column j : Either some row i gets completed, or at least one
row becomes redundant. In both cases, size of W decreases at each step. The most
time consuming part in this process is to compute the number of leaves in the union of
subtrees.We can do this in O(m logm) time, bymapping the nodes back to suffix array
intervals, and then computing the size of the union of intervals as above. However, we
can only afford to do this at the first step of the process. For the rest of the steps we
use Lemma 11: To be able to use the lemma, we need to ensure only non-overlapping
intervals are stored in the data structure. Thus, at the first step we remove duplicates
and intervals that are nested in another one in O(m logm) time, and store the remaining
intervals to the structure of Lemma 11. While doing so, we move the suffix tree nodes
corresponding to these removed intervals to the set R of redundant nodes. This is safe,
as initially the union of the intervals is of sizem (no extra occurrences in the intervals),
and hence the steps a) and b) would anyway move the suffix tree nodes corresponding
to those intervals to R at some point. Consider now step a) with w being parent of
suffix tree node v. Let [a..b] be the suffix array interval corresponding to w. We can
query span([a..b]) from the data structure, and if the answer is m, we remove the
intervals in the query range, and insert [a..b] in their place.

It remains to consider how to find the first non-gap symbolMSA[i, j ′ + k] at row i
afterMSA[i, j ′], and how to find the smallest j ′ such that |spell(MSA[i ′, j+1.. j ′])| =
x given x . These can be done in constant time after O(mn) time preprocessing for
rank and select queries on bitvectors marking locations of the the gap symbols. �
Corollary 2 After an O(mn logm) time preprocessing, Algorithms 1 and 2 compute
the scores maxblocks(n) = b and minmaxlength(n) = max

i :1≤i≤b
L(Si ) of opti-

mal semi-repeat-free segmentations S1, S2, . . . , Sb of MSA[1..m, 1..n] in O(n) and

123



Algorithmica (2023) 85:1586–1623 1615

O(n log log n) time, respectively. The produced segmentations induce semi-repeat-free
EFGs from a general MSA.

8.2 Repeat-Free EFGs

While Algorithms 1 and 2 would work also for the repeat-free case, it appears difficult
to modify the preprocessing for the same.

Instead of separate preprocessing and dynamic programming to compute the score
of an optimal segmentation,we proceed directlywith themain recurrence.We consider
only minimizing the maximum block length score, as for this score we can derive a
non-trivial parameterized solution.

Let e( j ′)be the score of aminimumscoring repeat-free segmentation S1, S2, . . . , Sb

of prefix MSA[1..m, 1.. j ′], where the score is defined as max
i :1≤i≤b

L(Si ). Then

e( j) = min
j ′ : 0 ≤ j ′ < j,

MSA[1..m, j ′ + 1.. j]
is repeat-free segment,

e( j ′) < j ′ + 1

max( j − j ′, e( j ′)), (3)

with e(0) initialized to 0.When there is no valid segmentation for some j , e( j) = j+1.
To test for a valid range [ j ′ + 1.. j], we adjust the sliding window preprocessing

algorithm of Sect. 4.3 in order to integrate it with the computation of the recurrence
as follows:

1. A unidirectional BWT index [38] is built on the MSA rows concatenated into one
long string, after the gap characters are removed and some separator symbols added
between the rows.

2. The search on each row of MSA is initiated for each j , decreasing j ′ from j − 1
to 0. This means only left-extensions are required.

3. WhenMSA[i, j] is accessed to alter the BWT interval, the old interval is retained
if MSA[i, j] = -.

4. Modification 3) can cause intervals to become nested (exactly when substring
spell(MSA[i ′, j ′.. j]) becomes a prefix of spell(MSA[i, j ′.. j])), and this needs to
be checked for the proper detection of valid ranges.

Recall that at any step of the preprocessing algorithm of Sect. 4.3, we had a non-
nested set I = {[i ′a ..ia]}a∈{1,2...m} of intervals. We exploited the non-nestedness in
the use of a bitvectors M (marking suffixes of current column), B (BWT interval
beginning), and E (BWT interval ending) to detect if I contains only BWT intervals
of suffixes of the current column of the MSA. This gave us the linear time algorithm.
Now that the intervals can become nested, these bitvectors no longer work as intended.
Instead we resort to a generic method to check nestedness, and to compute the size of
the union of distinct intervals in I , when no nestedness is detected. If no nestedness
is detected, and the size of the union is m, we know that the range in consideration
is valid. This can be done in m logm time e.g. by sorting the interval endpoints and

123



1616 Algorithmica (2023) 85:1586–1623

simple scanning to maintain how many active intervals there are at the endpoints. If
there is more than one active interval at any point, the range is not valid. Otherwise
the range is valid, and the size of the union of intervals is just the sum of their lengths.
This nestedness check and the computation of the union of intervals is repeated at each
column.

Theorem 9 The values e( j) of Eq. (3), for all j ∈ [1..n], can be computed in
O(mnemax logm) time, where emax = max j e( j). The optimal segmentation defined
by Eq. (3) yields a repeat-free elastic founder graph.

Proof The unidirectional BWT index can be constructed in O(mn) time and each
left-extension takes constant time [38]. We can start comparing max( j − j ′, e( j ′))
from j ′ = j − 1 decreasing j ′ by one each step and maintaining e( j) as the minimum
value so far. Once value j − j ′ grows bigger than current e( j), we know that the value
of e( j) can no longer decrease. This means we can decrease j ′ exactly e( j) times. At
each decrease of j ′, we dom left-extensions (one for each row), and then check for the
validity by computing the union of search intervals in O(m logm) time. This gives the
claimed running time. Traceback from e(n) gives an optimal repeat-free segmentation.

�

9 Connection toWheeler Graphs

Wheeler graphs, also known as Wheeler automata, are a class of labeled graphs that
admit an efficient index for path queries [29]. We now give an alternative way to index
repeat-free elastic block graphs by transforming the graph into an equivalent Wheeler
automaton.

We view a block graph as a nondeterministic finite automaton (NFA) by adding a
new initial state and edges from the source node to the starts of the first block, and
expanding each string of each block to a path of states. To conform with automata
notions, we define that the label of an edge is the label of the destination node.

We denote the repeat-free NFA with F . First we determinize it with the standard
subset construction for the reachable subsets of states. The states of the DFA are
subsets of states of the NFA such that there is an edge from subset S1 to subset S2
with label c iff S2 is the set of states at the destinations of edges labeled with c from
S1. We only represent the subsets of states reachable from the subset containing only
the initial state. We call the deterministic graph G. See Figs. 5 and 6 for an example.

A DFA is indexable as aWheeler graph if there exists an order< on the nodes such
that if u < v, then every incoming path label to u is colexicographically smaller than
every incoming path label to v (recall that the colexicographic order of strings is the
lexicographic order of the reverses of the strings). The repeat-free property guarantees
that the nodes at the ends of the blocks can be ordered among themselves by picking
an arbitrary incoming path as the sorting key.

To make sure that the rest of the nodes are sortable, we modify the graph so that if
a node is not at the end of a block, we ensure that the incoming paths to the node do
not branch backward before the backward path reaches the end of a previous block.
This is done by turning each block into a set of disjoint trees, where the roots of the

123



Algorithmica (2023) 85:1586–1623 1617

Fig. 5 Repeat-free block NFA. The last columns of each block are highlighted

Fig. 6 The DFA resulting from the subset construction for the NFA in Fig. 5. The numbers above the nodes
specify the subset of NFA states corresponding to the DFA state

Fig. 7 The Wheeler DFA resulting from running our Wheeler expansion algorithm on the DFA in Fig. 6

trees are the ending nodes of the previous block, in a way that preserves the language
of the automaton. The roots may have multiple incoming edges from the leaves of the
previous tree. See Fig. 7 for an example. The formal definition of the transformation
and the proof of sortability are in Sect. 9.1. We denote the transformed graph with G ′
and obtain the following result:

Lemma 13 The number of nodes in G ′ is at most O(NH), where H is the maximum
number of strings in a block of F and N is the total number of nodes in F.

TheWheeler order< of the transformed graph can be found by running the XBWT
sorting algorithm on a spanning tree of the graph, as shown by Alanko et al. [30].
Finally, we can find the minimum equivalent Wheeler graph by running the general
Wheeler graph minimization algorithm of Alanko et al. [30].

123



1618 Algorithmica (2023) 85:1586–1623

With the input graph now converted into a Wheeler graph, one can deploy suc-
cinct data structures supporting fast pattern matching [29, Lemma 4], leading to the
following result:

Corollary 3 A repeat-free founder/block graph G or a repeat-free elastic degenerate
string can be indexed in O(NH) time into a Wheeler-graph-based data structure
occupying O(NH log |�|) bits of space, where N is the total number of characters
in the node labels of G, H is the height of G (maximum number of strings in a block
of G), and � is the alphabet. Later, using the data structure, one can find out in
O(|Q| log |�|) time if a given query string Q occurs in G.

9.1 Wheeler Graph Details and Proofs

Supposewe have theNFA F corresponding to a repeat-free EFG, and letG be the deter-
minization of F defined above. Denote with P(v) the set of path labels from the initial
state to v. Since the graph is a DFA, all sets P(v) are disjoint. Denote with Pmin(v)

and Pmax (v) the colexicographic minimum and maximum of P(v) respectively. We
denote the colexicographic order relation with ≺.

We say that a node v is atomic if for all path labels α in the graph, we have α ∈ P(v)

iff Pmin(v) � α � Pmax (v). A DFA is Wheeler if and only if all its nodes are atomic
[30]. In this case, the Wheeler order < of nodes is defined so that v < u if α ≺ β for
some strings α ∈ P(v) and β ∈ P(u) (this is well-defined when all nodes are atomic).

We will expand the graph so that all its nodes become atomic. To achieve this,
we process the nodes in a topological order. If the current node v is at the end of a
block, we do nothing. Otherwise, we apply the following transformation. Suppose the
in-neighbors of v are u1, . . . , uk and the out-neighbors of v arew1, . . . , wl . We delete
v, add k new nodes v1, . . . vk and add the sets of edges {(ui , vi ) | 1 ≤ i ≤ k} and
{(vi , w j ) | 1 ≤ i ≤ k and 1 ≤ j ≤ l}. In other words, we distribute the in-edges of v

and duplicate the out-edges. The automaton remains deterministic after this. Figure 7
shows an example of the expansion.

We denote the resulting graph after all transformations with G ′. First we note that
by construction, the language of G ′ is the same as the language of G: any path from
the initial state in G can be mapped to a corresponding path with the same label in G ′
and vice versa. Next, we show that the graph is Wheeler-sortable:

Lemma 14 Every node v in G ′ is atomic.

Proof If v is in the first blockG ′, then |P(v)| = 1, so v is trivially atomic. Suppose v is
not in the first block. Then all strings in P(v) are of the formαβγ , with |α| ≥ 0, |β| > 0
and |γ | ≥ 0, such thatβ occurs in theNFA F only once (repeat-free property) and γ is a
prefix of some string of a block. By the construction ofG ′, strings β and γ are the same
for all strings in P(v). Consider a string δ in G ′ such that Pmin(v) � δ � Pmax (v).
Then δ must be suffixed by βγ , so it follows that δ ∈ P(v), since (1) all occurrences of
β lead to the same node u at the end of the previous block in G ′ and (2) all paths from
u with the label γ must lead to v, or otherwise G ′ is not deterministic, a contradiction.

�

123



Algorithmica (2023) 85:1586–1623 1619

Next, we show that transformation from F to G ′ increases the number of nodes by at
most a polynomial amount.

Lemma 13 The number of nodes in G ′ is at most O(NH), where H is the maximum
number of strings in a block of F and N is the total number of nodes in F.

Proof Each non-source node v of G ′ can be associated to a pair (u, α), where u is the
node of G ′ reached by walking from v back to the end of the previous block, and α is
the label of the path from u to v. If v is at the first block, we set u to the added source
node. If v is at the end of a block, we set u = v and set α to be the empty string. These
pairs are all distinct because G ′ is deterministic.

We bound the number of nodes in G ′ by bounding the number of possible distinct
pairs (u, α). Each end-of-block node v of G ′ is paired only with prefixes of strings
from the next block. Let end(b) be the set of nodes of F that are at the end of block
b and let f (b) be the set of nodes at block b in F . Then the total number of possible
pairs with nonempty α is at most

∑B−1
b=0 |end(b)| · | f (b+ 1)|, where B is the number

of blocks, with block zero corresponding to the initial state. The number of pairs with
empty α is

∑B
b=0 |end(b)| ≤ N . Bounding end(b) ≤ H in the former sum, we have

a total of at most H
∑B−1

b=0 | f (b + 1)| + N = O(HN ) possible distinct pairs. �

10 Implementation

We implemented construction and indexing of (semi-)repeat-free (elastic) founder
graphs.The implementation is available at https://github.com/algbio/founderblockgraphs.
Some proof-of-concept experiments can be found in the conference version of the
paper [1].

11 Discussion

One characterization of our solution is that we compact those vertical repeats in MSA
that are not horizontal repeats. This can be seen as positional extension of variable order
de Bruijn graphs. Also, our solution is parameter-free unlike de Bruijn approaches that
always need some threshold k, even in the variable order case.

The founder graph concept could also be generalized so that it is not directly induced
from a segmentation. One could consider cyclic graphs having the same repeat-free
property. This could be an interesting direction in defining parameter-free de Bruijn
graphs.

This paper only scratches the surface of a new family of pangenome representations.
There are myriad of options how to optimize among the valid segmentations [27, 28].
We studied some of these here, but left open how to e.g. minimize the maximum
number of distinct strings in a segment (i.e. height of the graph) [27], or how to
control the over-expressiveness of the graph. A special case of the former has recently
been solved [50].

Other open problems include strengthening the conditional indexing lower bound
to cover non-elastic founder graphs and improving the running time for constructing

123

https://github.com/algbio/founderblockgraphs


1620 Algorithmica (2023) 85:1586–1623

(semi-)repeat-free elastic founder graphs. For the latter, a recent work improves the
construction time to linear [49]. In our preliminary version in ISAAC2021,we claimed
an indexing solution for the semi-repeat-free case with better space complexity than
what we report here in Section 7.2. The reason for this update is a flaw in the indexing
solution in ISAAC 2021 such that it can return false positives. In our subsequent
work (under preparation), we have found a way to verify such false positives without
changing the bounds claimed in ISAAC 2021.

We focused here on the theoretical aspects of indexable founder graphs. Our pre-
liminary experiments [1] show that the approach works well in practice on multiple
sequence alignments without gaps. In our future work, we will focus on making the
approach practical also in the general case.

Acknowledgements We wish to thank the anonymous reviewers of WABI 2020, RECOMB-seq 2021,
ISAAC 2021, and this journal version for helping us improve the readability. We also wish to thank Nicola
Prezza for spotting the flaw discussed above.
This work was partly funded by the Academy of Finland (Grants 309048, 322595 and 328877), Helsinki
Institute for Information Technology (HIIT), and by the European Research Council (ERC) under the Euro-
peanUnion’s Horizon 2020 research and innovation programme (Grant agreement No. 851093, SAFEBIO).

Funding Open Access funding provided by University of Helsinki including Helsinki University Central
Hospital.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Mäkinen, V., Cazaux, B., Equi, M., Norri, T., Tomescu, A.I.: Linear time construction of indexable
founder block graphs. In: Kingsford, C., Pisanti, N. (eds.) 20th International Workshop on Algorithms
in Bioinformatics, WABI 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference). LIPIcs, vol.
172. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/
10.4230/LIPIcs.WABI.2020.7. pp. 7:1–7:18

2. Equi, M., Norri, T., Alanko, J., Cazaux, B., Tomescu, A.I., Mäkinen, V.: Algorithms and complexity
on indexing elastic founder graphs. In: Ahn, H., Sadakane, K. (eds.) 32nd International Symposium
on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan. LIPIcs, vol.
212. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/
10.4230/LIPIcs.ISAAC.2021.20. pp. 20:1–20:18

3. Maier, D.: The complexity of some problems on subsequences and supersequences. J. ACM 25(2),
322–336 (1978). https://doi.org/10.1145/322063.322075

4. Chatzou, M., Magis, C., Chang, J.-M., Kemena, C., Bussotti, G., Erb, I., Notredame, C.: Multiple
sequence alignment modeling: methods and applications. Briefings in Bioinformatics 17(6), 1009–
1023 (2015)

5. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly repetitive sequence
collections. Journal of Computational Biology 17(3), 281–308 (2010)

6. Na, J.C., Park, H., Crochemore, M., Holub, J., Iliopoulos, C.S., Mouchard, L., Park, K.: Suffix tree
of alignment: An efficient index for similar data. In: Lecroq, T., Mouchard, L. (eds.) Combinatorial

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/LIPIcs.WABI.2020.7
https://doi.org/10.4230/LIPIcs.WABI.2020.7
https://doi.org/10.4230/LIPIcs.ISAAC.2021.20
https://doi.org/10.4230/LIPIcs.ISAAC.2021.20
https://doi.org/10.1145/322063.322075


Algorithmica (2023) 85:1586–1623 1621

Algorithms - 24th International Workshop, IWOCA 2013, Rouen, France, July 10-12, 2013, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 8288, pp. 337–348. Springer, Germany
(2013)

7. Na, J.C., Park, H., Lee, S., Hong, M., Lecroq, T., Mouchard, L., Park, K.: Suffix array of alignment: A
practical index for similar data. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) String Processing and
Information Retrieval - 20th International Symposium, SPIRE 2013, Jerusalem, Israel, October 7-9,
2013, Proceedings. Lecture Notes in Computer Science, vol. 8214, pp. 243–254. Springer, Germany
(2013)

8. Na, J.C., Kim, H., Park, H., Lecroq, T., Léonard, M., Mouchard, L., Park, K.: FM-index of alignment:
A compressed index for similar strings. Theoretical Computer Science 638, 159–170 (2016). https://
doi.org/10.1016/j.tcs.2015.08.008. (Pattern Matching, Text Data Structures and Compression)

9. Na, J., Kim, H., Min, S., Park, H., Lecroq, T., Leonard, M., Mouchard, L., Park, K.: FM-index of
alignment with gaps. Theoretical Computer Science 710, 148–157 (2016). https://doi.org/10.1016/j.
tcs.2017.02.020

10. Gagie, T., Navarro, G.: Compressed indexes for repetitive textual datasets. In: Sakr, S., Zomaya, A.Y.
(eds.) Encyclopedia of Big Data Technologies. Springer, Germany (2019)

11. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text searching in bwt-runs
bounded space. J. ACM 67(1), 2–1254 (2020)

12. Marschall, T., Marz, M., Abeel, T., Dijkstra, L., Dutilh, B.E., Ghaffaari, A., Kersey, P., Kloosterman,
W., Mäkinen, V., Novak, A., et al.: Computational pan-genomics: status, promises and challenges.
BioRxiv, 043430 (2016)

13. Amir, A., Lewenstein, M., Lewenstein, N.: Pattern matching in hypertext. J. Algorithms 35(1), 82–99
(2000)

14. Manber, U., Wu, S.: Approximate string matching with arbitrary costs for text and hypertext. In: IAPR
Workshop on Structural and Syntactic Pattern Recognition, Bern, Switzerland, pp. 22–33 (1992)

15. Rautiainen, M., Marschall, T.: Aligning sequences to general graphs in O(V + mE) time. bioRxiv,
216–127 (2017)

16. Equi, M., Grossi, R., Mäkinen, V., Tomescu, A.I.: On the complexity of string matching for graphs.
In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium on
Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece. LIPIcs, vol.
132. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2019). pp. 55:1–55:15

17. Thachuk, C.: Indexing hypertext. Journal of Discrete Algorithms 18, 113–122 (2013). Selected papers
from the 18th International Symposium on String Processing and Information Retrieval (SPIRE 2011)

18. Sirén, J., Välimäki, N., Mäkinen, V.: Indexing graphs for path queries with applications in genome
research. IEEE/ACM Transactions on Computational Biology and Bioinformatics 11(2), 375–388
(2014)

19. Equi, M., Mäkinen, V., Tomescu, A.I.: Graphs cannot be indexed in polynomial time for sub-quadratic
time string matching, unless SETH fails. In: Bures, T., Dondi, R., Gamper, J., Guerrini, G., Jurdzinski,
T., Pahl, C., Sikora, F., Wong, P.W.H. (eds.) SOFSEM 2021: Theory and Practice of Computer Science
- 47th International Conference on Current Trends in Theory and Practice of Computer Science,
SOFSEM 2021, Bolzano-Bozen, Italy, January 25-29, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12607, pp. 608–622. Springer, Germany (2021). https://doi.org/10.1007/978-3-030-
67731-2_44

20. Aoyama,K., Nakashima,Y., I, T., Inenaga, S., Bannai, H., Takeda,M.: FasterOnline ElasticDegenerate
String Matching. In: Navarro, G., Sankoff, D., Zhu, B. (eds.) Annual Symposium on Combinatorial
Pattern Matching (CPM 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 105.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://doi.org/10.
4230/LIPIcs.CPM.2018.9. pp. 9:1–9:10. https://drops.dagstuhl.de/opus/volltexte/2018/8701

21. Bernardini, G., Gawrychowski, P., Pisanti, N., Pissis, S.P., Rosone, G.: Even Faster Elastic-Degenerate
String Matching via Fast Matrix Multiplication. In: Baier, C., Chatzigiannakis, I., Flocchini, P.,
Leonardi, S. (eds.) 46th International Colloquium onAutomata, Languages, and Programming (ICALP
2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 132. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.21.
pp. 21:1–21:15. http://drops.dagstuhl.de/opus/volltexte/2019/10597

22. Bernardini,G., Pisanti,N., Pissis, S.P.,Rosone,G.:Approximate patternmatchingon elastic-degenerate
text. Theor. Comput. Sci. 812, 109–122 (2020). https://doi.org/10.1016/j.tcs.2019.08.012

123

https://doi.org/10.1016/j.tcs.2015.08.008
https://doi.org/10.1016/j.tcs.2015.08.008
https://doi.org/10.1016/j.tcs.2017.02.020
https://doi.org/10.1016/j.tcs.2017.02.020
https://doi.org/10.1007/978-3-030-67731-2_44
https://doi.org/10.1007/978-3-030-67731-2_44
https://doi.org/10.4230/LIPIcs.CPM.2018.9
https://doi.org/10.4230/LIPIcs.CPM.2018.9
https://drops.dagstuhl.de/opus/volltexte/2018/8701
https://doi.org/10.4230/LIPIcs.ICALP.2019.21
http://drops.dagstuhl.de/opus/volltexte/2019/10597
https://doi.org/10.1016/j.tcs.2019.08.012


1622 Algorithmica (2023) 85:1586–1623

23. Bernardini, G., Pisanti, N., Pissis, S.P., Rosone, G.: Pattern matching on elastic-degenerate text with
errors. In: Fici, G., Sciortino, M., Venturini, R. (eds.) String Processing and Information Retrieval
- 24th International Symposium, SPIRE 2017, Palermo, Italy, September 26-29, 2017, Proceedings.
Lecture Notes in Computer Science, vol. 10508, pp. 74–90. Springer, Germany (2017). https://doi.org/
10.1007/978-3-319-67428-5_7

24. Iliopoulos, C.S., Kundu, R., Pissis, S.P.: Efficient pattern matching in elastic-degenerate texts. In:
Drewes, F., Martín-Vide, C., Truthe, B. (eds.) Language and Automata Theory and Applications - 11th
International Conference, LATA 2017, Umeå, Sweden, March 6-9, 2017, Proceedings. Lecture Notes
in Computer Science, vol. 10168, pp. 131–142 (2017). https://doi.org/10.1007/978-3-319-53733-7_9

25. Gibney, D.: An efficient elastic-degenerate text index? not likely. In: International Symposium on
String Processing and Information Retrieval, pp. 76–88 (2020). Springer

26. Gibney, D., Thankachan, S.V.: On the hardness and inapproximability of recognizing wheeler graphs.
In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on Algorithms,
ESA 2019, September 9-11, 2019, Munich/Garching, Germany. LIPIcs, vol. 144. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Germany (2019). pp. 51:1–51:16

27. Norri, T., Cazaux, B., Kosolobov,D.,Mäkinen,V.: Linear timeminimumsegmentation enables scalable
founder reconstruction. Algorithms Mol. Biol. 14(1), 12:1-12:15 (2019)

28. Cazaux, B., Kosolobov, D., Mäkinen, V., Norri, T.: Linear time maximum segmentation problems
in column stream model. In: Brisaboa, N.R., Puglisi, S.J. (eds.) String Processing and Information
Retrieval - 26th International Symposium, SPIRE 2019, Segovia, Spain, October 7-9, 2019, Proceed-
ings. Lecture Notes in Computer Science, vol. 11811, pp. 322–336. Springer, Germany (2019)

29. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: A framework for bwt-based data structures. Theor.
Comput. Sci. 698, 67–78 (2017)

30. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Regular languagesmeet prefix sorting. In: Chawla,
S. (ed.) Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pp. 911–930. SIAM, USA (2020)

31. DeLaBriandais, R.: File searching using variable length keys. In: Papers Presented at the theMarch 3-5,
1959, Western Joint Computer Conference. IRE-AIEE-ACM ’59 (Western), pp. 295–298. Association
for Computing Machinery, New York, NY, USA (1959). https://doi.org/10.1145/1457838.1457895

32. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings 38th Annual Sym-
posium on Foundations of Computer Science, pp. 137–143 (1997). IEEE

33. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches. SIAM J. Comput.
22(5), 935–948 (1993). https://doi.org/10.1137/0222058

34. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput. Syst. 41(4), 589–607
(2007). https://doi.org/10.1007/s00224-006-1198-x

35. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search. Commun. ACM
18(6), 333–340 (1975)

36. Burrows,M.,Wheeler, D.: A block-sorting lossless data compression algorithm. Technical Report 124,
Digital Equipment Corporation (1994)

37. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with wavelet trees and bidi-
rectional matching statistics. Inf. Comput. 213, 13–22 (2012)

38. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Linear-time string indexing and analysis in
small space. ACM Trans. Algorithms 16(2), 1–54 (2020). https://doi.org/10.1145/3381417. (Article
17)

39. Belazzougui, D., Cunial, F.: Fully-functional bidirectional burrows-wheeler indexes and infinite-order
de bruijn graphs. In: Pisanti, N., Pissis, S.P. (eds.) 30th Annual Symposium on Combinatorial Pattern
Matching, CPM 2019, June 18-20, 2019, Pisa, Italy. LIPIcs, vol. 128. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Dagstuhl, Germany (2019). pp. 10:1–10:15

40. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. FOCS, pp. 549–554 (1989)
41. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct representations of the bidi-

rectional burrows-wheeler transform. In: European Symposium on Algorithms, pp. 133–144 (2013).
Springer

42. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore,
Maryland, USA, pp. 841–850. ACM/SIAM, USA (2003). http://dl.acm.org/citation.cfm?id=644108.
644250

123

https://doi.org/10.1007/978-3-319-67428-5_7
https://doi.org/10.1007/978-3-319-67428-5_7
https://doi.org/10.1007/978-3-319-53733-7_9
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1137/0222058
https://doi.org/10.1007/s00224-006-1198-x
https://doi.org/10.1145/3381417
http://dl.acm.org/citation.cfm?id=644108.644250
http://dl.acm.org/citation.cfm?id=644108.644250


Algorithmica (2023) 85:1586–1623 1623

43. Cunial, F., Alanko, J., Belazzougui, D.: A framework for space-efficient variable-ordermarkovmodels.
Bioinformatics 35(22), 4607–4616 (2019)

44. Alzamel,M.,Ayad, L.A.K., Bernardini, G., Grossi, R., Iliopoulos, C.S., Pisanti, N., Pissis, S.P., Rosone,
G.: Comparing degenerate strings. Fundam. Informaticae 175(1–4), 41–58 (2020)

45. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In:
DeMillo, R.A. (ed.) Proceedings of the 16th Annual ACM Symposium on Theory of Computing, April
30 - May 2, 1984, Washington, DC, USA, pp. 135–143. ACM, USA (1984). https://doi.org/10.1145/
800057.808675

46. Iliopoulos, C.S., Radoszewski, J.: Truly subquadratic-time extension queries and periodicity detection
in strings with uncertainties. In: Grossi, R., Lewenstein, M. (eds.) 27th Annual Symposium on Com-
binatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv, Israel. LIPIcs, vol. 54. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2016). pp. 8:1–8:12

47. Impagliazzo, R., Paturi, R.: On the Complexity of k-SAT. Journal of Computer and System Sciences
62(2), 367–375 (2001)

48. Williams,R.:Anewalgorithm for optimal 2-constraint satisfaction and its implications. Theor.Comput.
Sci. 348(2–3), 357–365 (2005)

49. Rizzo, N., Mäkinen, V.: Linear time construction of indexable elastic founder graphs. In: Proc. 33rd
International Workshop on Combinatorial Algorithms (IWOCA 2022), Springer, LNCS, vol. 13270
(2022). pp. 480–493

50. Rizzo, N., Mäkinen, V.: Indexable elastic founder graphs of minimum height. In: Proc. 33rd Annual
Symposium on Combinatorial Pattern Matching (CPM 2022), Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, LIPIcs, vol. 223 (2022). pp. 19:1–19:19

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Massimo Equi1 · Tuukka Norri1 · Jarno Alanko1,2 · Bastien Cazaux3 ·
Alexandru I. Tomescu1 · Veli Mäkinen1

Massimo Equi
massimo.equi@helsinki.fi

Tuukka Norri
tuukka.norri@helsinki.fi

Jarno Alanko
jarno.alanko@helsinki.fi

Bastien Cazaux
bastien.cazaux@lirmm.fr

Alexandru I. Tomescu
alexandru.tomescu@helsinki.fi

1 Department of Computer Science, University of Helsinki, P. O. Box 68, Pietari Kalmin katu 5,
Helsinki 00014, Finland

2 Faculty of Computer Science, Dalhousie University, P. O. Box 15000, 6050 University Avenue,
Halifax 6050, Nova Scotia, Canada

3 LIRMM, Univ. Montpellier, CNRS, LIRMM UMR 5506, CC477, 161 rue Ada, Montpellier
34095, Cedex 5, France

123

https://doi.org/10.1145/800057.808675
https://doi.org/10.1145/800057.808675
http://orcid.org/0000-0003-4454-1493

	Algorithms and Complexity on Indexing Founder Graphs
	Abstract
	1 Introduction
	2 Definitions and Basic Tools
	2.1 Strings
	2.2 Elastic Founder Graphs
	2.3 Basic Tools
	2.3.1 Deterministic Index Construction for Integer Alphabets


	3 Indexable Repeat-free Founder Graphs
	4 Construction of Repeat-free Founder Graphs
	4.1 Characterization Lemma
	4.2 From Characterization to a Segmentation
	4.3 Preprocessing
	4.4 Faster Algorithm for Minimizing the Maximum Block Length

	5 Compact Index for Repeat-free Founder Graphs
	6 Conditional Hardness of Indexing EFGs
	6.1 Query String
	6.2 Elastic Founder Graph
	6.2.1 Detailed Structure of the Graph.

	6.3 OVH Conditional Hardness

	7 Indexing EFGs
	7.1 Repeat-Free Case
	7.2 Semi-repeat-free case

	8 Construction of (semi-)repeat-free EFGs
	8.1 Preprocessing for the Non-Monotonic Case
	8.2 Repeat-Free EFGs

	9 Connection to Wheeler Graphs
	9.1 Wheeler Graph Details and Proofs

	10 Implementation
	11 Discussion
	Acknowledgements
	References




