
Algorithmica (2022) 84:2767–2784
https://doi.org/10.1007/s00453-022-01004-z

Component Order Connectivity in Directed Graphs

Jørgen Bang-Jensen1 · Eduard Eiben2 · Gregory Gutin2 ·
Magnus Wahlström2 · Anders Yeo1

Received: 18 December 2020 / Accepted: 29 June 2022 / Published online: 23 July 2022
© The Author(s) 2022

Abstract
A directed graph D is semicomplete if for every pair x, y of vertices of D, there
is at least one arc between x and y. Thus, a tournament is a semicomplete digraph.
In the Directed Component Order Connectivity (DCOC) problem, given a digraph
D = (V , A) and a pair of natural numbers k and �, we are to decide whether there
is a subset X of V of size k such that the largest strongly connected component in
D − X has at most � vertices. Note that DCOC reduces to the Directed Feedback
Vertex Set problem for � = 1. We study the parameterized complexity of DCOC for
general and semicomplete digraphs with the following parameters: k, �, � + k and
n− �. In particular, we prove that DCOC with parameter k on semicomplete digraphs
can be solved in time O∗(216k) but not in time O∗(2o(k)) unless the Exponential
Time Hypothesis (ETH) fails. The upper bound O∗(216k) implies the upper bound
O∗(216(n−�)) for the parameter n−�.We complement the latter by showing that there
is no algorithm of time complexity O∗(2o(n−�)) unless ETH fails. Finally, we improve
(in dependency on �) the upper bound of Göke, Marx and Mnich (2019) for the time
complexity of DCOCwith parameter �+k on general digraphs from O∗(2O(k� log(k�)))

Research of JBJ supported by the Independent Research Fund Denmark under grant number DFF
7014-00037B and research of GG supported by the Leverhulme Trust under grant number RPG-2018-161.

B Gregory Gutin
g.gutin@rhul.ac.uk

Jørgen Bang-Jensen
jbj@imada.sdu.dk

Eduard Eiben
eduard.eiben@rhul.ac.uk

Magnus Wahlström
Magnus.Wahlstrom@rhul.ac.uk

Anders Yeo
andersyeo@gmail.com

1 University of Southern Denmark, Odense, Denmark

2 Royal Holloway, University of London, Egham, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01004-z&domain=pdf
http://orcid.org/0000-0002-2377-0417

2768 Algorithmica (2022) 84:2767–2784

to O∗(2O(k log(k�))).Note that Drange, Dregi and van ’t Hof (2016) proved that even for
the undirected version of DCOC on split graphs there is no algorithm of running time
O∗(2o(k log �)) unless ETH fails and it is a long-standing problem to decide whether
Directed Feedback Vertex Set admits an algorithm of time complexity O∗(2o(k log k)).

Keywords Directed graph · Order connectivity · Strong connectivity · Parameterized
Complexity

1 Introduction

Motivated by various practical network applications,manydifferent vulnerabilitymea-
sures of undirected graphs have been introduced and studied in the literature. The two
most studied of suchmeasures are vertex and edge connectivity of an undirected graph.
However, these two measures often do not capture the more subtle vulnerability prop-
erties of networks that one might wish to consider, such as the number of vertices in
the largest remaining connected component.

While both undirected and directed graphs are of great interest in graph theory,
algorithms and applications, undirected graphs have been studied much more than
their directed counterparts arguably due to simpler structure of undirected graphs. In
this paper, we study a number of parameterizations of a problem of interest from both
theory and applications which was mainly studied for undirected graphs so far.

In many networks, the underlying graph is directed rather than undirected and the
aim of this paper is to study an extension to directed graphs of the �-component
order connectivity of an undirected graph G, which is the size of a minimum set
X ⊆ V (G) such that mco(G − X) ≤ �, where mco(G − X) is the number of vertices
in the largest connected component of G − X (mco stands for maximum component
order). ByComponent Order Connectivitywewill denote the following decision
problem:

component order connectivity
Input: A graph G = (V , E) and a pair �, k ∈ N of natural numbers
Question: Is there a subset X of V of size k such that mco(G − X) ≤ � ?

For a survey on Component Order Connectivity, see Gross et al. [14]; for
more recent research on the problem, see e.g. [11, 16, 17].

For a directed graph D, we define the �-component order connectivity as the size
of a minimum set X ⊆ V (D) such that mco(D − X) ≤ �, where mco(D − X) is the
number of vertices in the largest strongly connected component of D − X . Using this
definition of mco(D− X),we can state the following directed version ofComponent
Order Connectivity.

directed component order connectivity
Input: A digraph D = (V , A) and a pair �, k ∈ N of natural numbers
Question: Is there a subset X of V of size k such that mco(D − X) ≤ � ?

123

Algorithmica (2022) 84:2767–2784 2769

In what follows, we will assume without loss of generality that k + � < n = |V |
(or, k < n−�). Indeed, if k+� ≥ n then our instance is a YES-instance since deleting
any set X of k vertices implies mco(D − X) ≤ �.

Clearly, Directed Component Order Connectivity is a generalization of
Component Order Connectivity (each instance (G, �, k) ofComponent Order
Connectivity corresponds to an equivalent instance (D, �, k) ofDirected Compo-
nent Order Connectivity, where D is obtained from G by replacing every edge
of G by a directed 2-cycle). For � = 1, while Component Order Connectiv-
ity is equivalent to the Vertex Cover problem, Directed Component Order
Connectivity is equivalent to the Directed Feedback Vertex Set problem.
Unlike Vertex Cover whose fixed-parameter tractability is very easy to show, a
fact that was known very early on in parameterized algorithmics [9], fixed-parameter
tractability of Directed Feedback Vertex Set was a long-standing open prob-
lem until Chen et al. [7] in 2008 proved its fixed-parameter tractability by designing a
4kk!nO(1)-time algorithm. (We provide basics on parameterized algorithms and com-
plexity in the next section.)

Since Component Order Connectivity is NP-complete (it remains NP-
complete even for split, co-bipartite and chordal undirected graphs [11]), a number
of researchers studied Component Order Connectivity using the framework of
parameterized algorithmics, see e.g. [11, 16, 17]. Göke,Marx andMnich [13] were the
first to study the Directed Component Order Connectivity problem from the
viewpoint of parameterized algorithms and complexity. They obtained an algorithm
of running time 4k(k�+k+�)!nO(1),which is close to the complexity of the algorithm
of Chen et al. [7] when � = 1. Thus,Directed Component Order Connectivity
parameterized by k + � is fixed-parameter tractable (FPT).

We will continue the study of Directed Component Order Connectivity
using parameterized algorithms and complexity. In particular, as in papers [11, 16, 17]
which studied Component Order Connectivity, we study Directed Compo-
nent Order Connectivity parameterized by three parameters: �, k and � + k. We
will denote the corresponding parameterized problems by Directed Component
Order Connectivity[p], where p is the parameter.

Moreover, we introduce and study a new parameterization of Directed Compo-
nent Order Connectivity: parameter n − �, where n is the number of vertices in
D. One reason to introduce Directed Component Order Connectivity[n − �]
is that normally one requires the parameters to be relatively small compared to the
size of the problem under consideration. However, if k is small it is possible that for
every X ⊆ V (D) of size k, mco(D − X) is not much smaller than n − k. Then n − �

can be much smaller than �.

Since Component Order Connectivity is equivalent to the Vertex Cover
problem for � = 1, Component Order Connectivity[�] is para-NP-complete.
Drange et al. [11, Theorem 8] proved that Component Order Connectivity[k]
is W[1]-hard even on split graphs. In their construction, n − � = O(k2). Hence,
Component Order Connectivity[n − �] is also W[1]-hard. They also showed
that Component Order Connectivity[�+ k] is FPT by obtaining an algorithm of
running time 2O(k log �)n. The above mentioned results are written in the undirected
graphs row of Table 1.

123

2770 Algorithmica (2022) 84:2767–2784

Table 1 Parameterized Complexity of (Directed) Component Order Connectivity

class of graphs n − � k � � + k

Semicomplete digraphs FPT FPT para-NP-c. FPT

Undirected graphs W[1]-hard W[1]-hard para-NP-c. FPT

Directed graphs W[1]-hard W[1]-hard para-NP-c. FPT

A directed graph D is semicomplete if for every pair x, y of distinct vertices of D,
there is an arc between x and y. When we require that there is only one arc between x
and y then we obtain a definition of a tournament. Clearly, the hardness results for the
directed graphs row of Table 1 follow from the corresponding results in the undirected
graphs row for columns n − � and k. Directed Component Order Connecti-
vity[�] is para-NP-complete for semicomplete digraphs as Directed Component
Order Connectivity on semicomplete digraphs is NP-complete for � = 1. This
follows from the fact that Directed Feedback Vertex Set is NP-complete even
for tournaments, as proved by Bang-Jensen and Thomassen [3] and Speckenmeyer
[19].

The FPT result in the directed graphs row of Table 1 is first obtained by Göke
et al. [13] as discussed above. The running time of their algorithm is 4k(k� + k +
�)!nO(1) = 2O(k� log(k�))nO(1). By modifying their algorithm, we obtain an algorithm
of complexity 2O(k)�kk!nO(1) = 2O(k log(k�))nO(1), which decreases the asymptotic
dependence of the running time on �.1 Ourmodification consists of replacing a branch-
ing algorithm in [13]with a randomized algorithmwhich can be derandomizedwithout
increasing the complexity upper bound. Note that Drange et al. [11, Theorem 14]
proved that even for Component Order Connectivity on split graphs there is no
algorithm of running time O∗(2o(k log �)) (here we restrict ourselves to � = kO(1))
unless the Exponential Time Hypothesis (ETH) [15] fails and it is a long-standing
problem to decide whether Directed Feedback Vertex Set admits an algorithm
of time complexity O∗(2o(k log k)).

The most interesting entry in the semicomplete digraphs row is a non-trivial result
that Directed Component Order Connectivity[k] on semicomplete digraphs
is FPT. This FPT algorithm boils down to finding a shortest path in a suitably defined
auxiliary weighted acyclic digraph. The running time of the algorithm isO(216kkn2).
The other two FPT entries in this row follow from this result (for the parameter
n − � this is due to our assumption that k < n − �). We also prove the following
lower bounds: no algorithm for Directed Component Order Connectivity[k]
on semicomplete digraphs can have time complexity 2o(k)nO(1) unless ETH fails2 and
no such deterministic algorithm can run in time o(n2) for k = 0 (the last bound is it is
information theoretic, not depending on any computational complexity hypothesis).

1 The same result was also obtained in [18]. We obtained this result independently and our approach is
different from that in [18].
2 Similarly, no algorithm for Directed Component Order Connectivity[n − �] on semicomplete
digraphs can have running time 2o(n−�)nO(1), unless ETH fails.

123

Algorithmica (2022) 84:2767–2784 2771

Our paper is organised as follows. The next section is devoted to terminology and
notation on directed and undirected graphs, and basics on parameterized algorithms
and complexity. In Sect. 3, we describe our improvement on the algorithm of Göke et
al. [13]. In Sect. 4, we prove that Directed Component Order Connectivity[k]
on semicomplete digraphs admits an algorithm of running time O∗(216k) and show
the lower bounds on the running time with parameters k and n − �. We conclude the
paper in Sect. 5.

2 Preliminaries

2.1 Directed and Undirected Graph Terminology and Notation

In this paper, all directed and undirected graphs are finite, without loops or parallel
edges. As often the case in the directed graph theory, an edge of a digraph will be
called an arc and the vertex and arc sets of a digraph D will be denoted by V (D)

and A(D), respectively. The out-neighbourhood and in-neighbourhood of a vertex
x of a digraph D are denoted by N+

D (x) = {y ∈ V (D) : xy ∈ A(D)} and N−
D (x) =

{y ∈ V (D) : yx ∈ A(D)}, respectively, and the subscript D will be omitted if
D is clear from the context. The out-degree and in-degree of a vertex x of D is
d+
D(x) = |N+

D (x)| and d−
D(x) = |N−

D (x)|, respectively.
In this paper all paths and cycles in digraphs are directed, so we will omit the

adjective ‘directed’ when referring to paths and cycles in digraphs. If D = (V , A)

is a digraph and S ⊆ V , then we denote by D[S] the subdigraph induced by the
vertices in S. A digraph D is strongly connected (or, just strong) if there is a path
from x to y for every ordered pair x, y of distinct vertices. A strong component
of a digraph D is a maximal strong induced subgraph of D. Strong components of
D do not share vertices and can be ordered D1, D2, . . . , Dp such that there is no
arc in D from V (Dj) to V (Di) when j > i . Such an ordering is called an acyclic
ordering. Note that if D is a semicomplete digraph, then the strong components of
D have a unique acyclic ordering D1, D2, . . . , Dp and we have xy ∈ A(D) for every
x ∈ V (Di), y ∈ V (Dj), i < j .

Basic digraph terminology not introduced in this section can be found in [1, 2].

2.2 Parameterized Complexity

An instance of a parameterized problem � is a pair (I , k) where I is the main part
and k is the parameter; the latter is usually a non-negative integer. A parameterized
problem is fixed-parameter tractable (FPT) if there exists a computable function f
such that instances (I , k) can be solved in timeO(f (k)|I |c)where |I | denotes the size
of I and c is an absolute constant. The class of all fixed-parameter tractable decision
problems is called FPT and algorithms which run in the time specified above are called
FPT algorithms. As in other literature on FPT algorithms, we will sometimes omit the
polynomial factor in O(f (k)|I |c) and write O∗(f (k)) instead.

123

2772 Algorithmica (2022) 84:2767–2784

While FPT is a parameterized complexity analog ofP in classic complexity, there are
many hardness classes in parameterized complexity and they form a nested sequence
starting from W[1]. It is well known [8, Chapter 14] that if the Exponential Time
Hypothesis holds then FPT�=W[1]. Due to this and other complexity results, it is
widely believed that FPT�=W[1] and hence W[1] is viewed as a parameterized analog
of NP in classical complexity.

para-NP is the class of parameterized problems which can be solved by a nonde-
terministic algorithm in timeO(f (k)|I |c), where f is a computable function and c is
an absolute constant. It is well-known that if a problem�with parameter κ is NP-hard
when κ equals to some constant, then � is para-NP-hard [12, Corollary 2.16]. It is
also well known that FPT=para-NP if and only if P=NP [12, Corollary 2.13].

Formore informationonparameterized algorithms and complexity, see recent books
[8, 10, 12].

3 Directed Component Order Connectivity[� + k] on General
Digraphs

Göke,Marx andMnich [13] showed thatDirected Component Order Connecti-
vity[� + k] is FPT with a running time given by

4k(k� + k + �)!nO(1) = 2O(k� log(k�))nO(1).

The core of their algorithm is as follows. Begin with the iterative compression version
of the problem,where in addition to (D, �, k) the input also contains a solution X0 with
|X0| = k + 1, which can be used to guide the search for a smaller solution. This is a
standard ingredient in FPT algorithms; see, e.g., [8]. At the cost of a simple branching
step, we may also assume that we are looking for a solution X with X ∩ X0 = ∅.
Next, they observe that if we knew the strongly connected components of D− X that
the vertices of X0 are contained in, then the problem reduces to a previously studied,
simpler problem known as Skew Separator [7], which occurs in the design of the
FPT algorithm for Directed Feedback Vertex Set (DFVS) of Chen et al. [7].
Indeed, if the precise strong components containing the vertices of X0 are known,
then the problem can be solved in time O∗(4kk!) using a strategy much like that
for DFVS [7, 13]. Hence the bottleneck of the current best algorithm for Directed
Component Order Connectivity[�+k] is the guessing of the strong components
of X0 in D − X .

Göke et al. [13] solve this via a branching algorithm that they analyse as taking time
at most (k� + k + �)!. We show a simpler randomized method solving this problem
with an improved time bound of

2O(k)
(

�(k + 1) + k

k

)
≤ 2O(k)(e(� + 1 + �/k))k≤ 2O(k)(3e�)k = 2O(k) · �k . (1)

The method can be derandomized by standard methods.

123

Algorithmica (2022) 84:2767–2784 2773

Lemma 3.1 Let (D, �, k)bean instanceofDirected Component Order Connecti-
vity[�+k], and let X0 be a solution with |X0| = k+1. Let X be an unknown solution
with |X | ≤ k such that X∩X0 = ∅. There is a randomized procedure that with success
probability at least

(
2O(k)

(
�k + � + k

k

))−1

computes a set S ⊂ V (D) such that for every x ∈ X0, the strong components con-
taining x in D − X and in D[S] are identical.
Proof Initialize S = X0, then for every vertex v ∈ V (D) \ X0, place v in S indepen-
dently at random with probability p = 1− 1/(� + 1). We declare a guess a success if
the following conditions apply:

1. For every x ∈ X0 we have Vx ⊆ S, where Vx ⊆ V is the strong component of
D − X containing x

2. X ∩ S = ∅
Let Y = ⋃

x∈X0
Vx . Note that |Y | ≤ �(k + 1). Our guess is successful if and only

if v ∈ S for every v ∈ Y , and v /∈ S for every v ∈ X . Since these are independent
events, this clearly happens with probability

p|Y |−|X0|(1 − p)|X | ≥ p�(k+1)(1 − p)k

= (1/(1 + 1/�)�)k+1(1/(� + 1))k

≥ (1/e)k+1(1/(� + 1))k .

Abovewe used the bound 1+a ≤ ea (a ≥ 0), where we set a = 1/�. By the inequality
(1/e)k+1(1/(� + 1))k ≥ 1/(2O(k)

(
�k+�+k

k

)
), we conclude that the success probability

matches the bound in the lemma.
Now assume that the guess was successful for some set S and consider the strong

component of x in D[S] for some x ∈ X0. Let V ′
x be this strong component. Since

D[Vx] is strongly connected and Vx ⊆ S, we have Vx ⊆ V ′
x . On the other hand,

by assumption D[S] is an induced subgraph of D − X , and since Vx is a strongly
connected component in D − X we must have V ′

x ⊆ Vx . We conclude Vx = V ′
x for

each x ∈ X0, as required. �
For the derandomization, we employ a cover-free family construction of Bshouty

and Gabizon [4]. We get the following lemma.

Lemma 3.2 Let (D, �, k)bean instanceofDirected Component Order Connecti-
vity[�+k], and let X0 be a solution with |X0| = k+1. Let X be an unknown solution
with |X | ≤ k such that X ∩ X0 = ∅. There is a deterministic procedure that produces
a set F ⊆ 2V with

|F | =
(

�k + � + k

k

)1+o(1)

log |V |

123

2774 Algorithmica (2022) 84:2767–2784

in timeO(|F |n), such that there is a set S ∈ F such that for every x ∈ X0, the strong
components containing x in D − X and in D[S] are identical.
Proof Let r ≤ s < n be integers. Bshouty and Gabizon (in a slightly non-standard
definition) define an (n, (r , s))-cover free family as a set F ⊆ {0, 1}n such that for
every disjoint pair of sets A, B ⊆ [n] with |A| = r and |B| = s there is a set S ∈ F
such that A ⊆ S and B ∩ S = ∅. Bshouty and Gabizon [4] show how to compute an
(n, (r , s))-cover free family F of size

|F | =
(
r + s

r

)1+o(1)

log n

in time O(|F |n).
For x ∈ X0, let Vx ⊆ V be the strong component containing x in D − X , and let

Y = ⋃
x∈X0

Vx . As in Lemma 3.1, it suffices to guarantee that there is a set S ∈ F such
that Y ⊆ S and X ∩ S = ∅. This guarantee is achieved by constructing a cover-free
family with parameters n = |V (D)|, r = �(k + 1) and s = k. Here r > s, but we
can simply compute an (n, (s, r))-cover free family and take the complement of every
member. Hence we get a family of size

(
�k + � + k

k

)1+o(1)

log n

computed in output-linear time. �
The two lemmas of this section and (1) imply the following:

Theorem 3.1 There is a randomized FPT algorithm that solves Directed Compo-
nent Order Connectivity[�+ k] in time 2O(k)�kk!nO(1) with probability at least
�(1). The algorithm can be derandomized in the same time, up to a lower-order
overhead factor.

4 Directed Component Order Connectivity on Semicomplete
Digraphs

Let us first summarize the main ideas behind our FPT algorithm, before providing
more technical details. Let D = (V , A) be a semicomplete digraph, k, � ∈ N and let
X ⊆ V of size k such that mco(D− X) ≤ �. The vertices of D− X can be partitioned
into C1, . . . ,Cq such that each Ci is the vertex set of a strong component of D − X
and

1. for every i ∈ [q] we have |Ci | ≤ �, and
2. for every i, j ∈ [q] with i < j and every x ∈ Ci , y ∈ C j we have xy ∈ A and

yx /∈ A.

In our algorithm, we would like to discover the strong components one by one in
the ascending order from C1 to Cq . Now let X1, . . . , Xq be a partition of X into

123

Algorithmica (2022) 84:2767–2784 2775

X1

C1

X2

C2

Xi

Ci

Xi+1

Ci+1

Xq

CqYi Zi

Fig. 1 An example of a valid triple (Yi , Zi , Si). A semicomplete digraph D, the set X = ⋃
i∈[q] Xi is such

that mco(D − X) = 3 and C1, . . . ,Cq are strong components of D − X . Yi = C ′
1 ∪ C ′

2 ∪ · · · ∪ C ′
i and

Zi = C ′
i+1 ∪ C ′

i+2 ∪ · · · ∪ C ′
q , where C

′
i = Ci ∪ Xi , i ∈ [q]. The arcs uv, u ∈ C ′

i , v ∈ C ′
j for i < j are

omitted as well as the arcs within X between Xt and Ct , t ∈ [q]. The set Si is the set of the three square
vertices, one in each of Xi , Xi+1, and Xq . The set Si is a minimal vertex cover of the dashed arcs from Zi
to Yi . Note that the vertex in X1 is not in Si as the arc incident to it with the tail in Zi is already covered
by Si . Note also the hollow circle vertex in Xi , the only reason it is in X is to reduce the size of Ci and as
such it will not appear in any S j , j ∈ [q], in the set of q valid triples defining these components

q (possibly empty) parts and let, for each i ∈ [q], Yi = C ′
1 ∪ C ′

2 ∪ · · · ∪ C ′
i and

Zi = C ′
i+1∪C ′

i+2∪· · ·∪C ′
q , whereC

′
i = Ci ∪Xi , i ∈ [q]. Moreover, let Si be a subset

of X such that for each y ∈ Yi \ Si and z ∈ Zi \ Si we have yz ∈ A and zy /∈ A. See
also Fig. 1. Note that, given Si , it suffices to solve our problem in subgraphs D[Yi \ Si]
and D[Zi \ Si] separately. Moreover, the set (Yi+1 \ Yi) \ (Si+1 ∪ Si) is basically the
strong component Ci+1 up to few vertices in Xi+1 that are not incident to any arc with
tail in Zi+1 \ Si+1 or head in Yi \ Si . Such vertices can actually be replaced in X by any
vertex in Ci+1. It follows that if we are given (Y1, Z1, S1), . . . , (Yq , Zq , Sq), then we
can easily reconstruct a solution of size |X | as ⋃

i∈[q] Si plus some arbitrary vertices
of (Yi+1 \ Yi) \ (Si+1 ∪ Si) to have at most � vertices in each strong component of
D − X .

Therefore, our goal will be to search for triples (Yi , Zi , Si), i ∈ [q], where {Yi , Zi }
is a partition of V and Si is a minimal subset such that there is no arc zy in A with
z ∈ Zi \ Si and y ∈ Yi \ Si .

The first step of our proof is to show that there are at most 28k+2n triples we need
to consider (Lemma 4.4). We will call these important triples valid and we postpone
the precise definition for later. The main reason for the bound is that we only need to
consider triples (Yi , Zi , Si) for which |Si | ≤ k and that if we fix |Yi | (and hence also
|Zi |), then vertices with out-degree at least |Zi | + |Si | + 1 (resp. in-degree at least
|Yi | + |Si | + 1) have to be in Yi (resp. in Zi) or in Si and we can fix these vertices in
Yi (resp. in Zi). Once we bound the number of the triples we need to consider, we can
define compatible pairs of triples

(
(Y 1, Z1, S1), (Y 2, Z2, S2)

)
, for which Y 1 ⊂ Y 2

and these triples, loosely speaking can define a strong component of D − X with at
most � vertices as (Y 2 \ Y 1) \ (S1 ∪ S2) and the arcs from Z2 to Y1 are all hit by a
vertex in S1 ∩ S2. This allows us to create an auxiliary acyclic “state” digraph whose
vertices are valid triples and arcs are the compatible pairs of triples. The paths from
(∅, V ,∅) to (V ,∅,∅) in this graph then define a solution for (D, �, k). Note that our
algorithm can be equivalently seen as a dynamic programming which computes for
each valid triple (Y , Z , S) a minimum size set X such that mco(D[Y]− (X ∪ S)) ≤ �.

123

2776 Algorithmica (2022) 84:2767–2784

The following lemma allows us to show that if we fix |Y | in a triple (Y , Z , S), then
onlyO(k) vertices of D could potentially be in both Y and Z and all other vertices are
fixed. The lemma is an easy consequence of the fact that every semicomplete digraph
on at least 2p + 2, p ∈ N, vertices has a vertex of out-degree at least p + 1. We give
the proof here for the convenience of the reader.

Lemma 4.1 Let D = (V , A) be a semicomplete digraph and let Y , Z be a partition of
V such that for every y ∈ Y and every z ∈ Z , we have yz ∈ A. Then for every p ∈ N

(1) there are at most 2p + 1 vertices in Y with d+
D(y) ≤ |Z | + p and (2) there are at

most 2p + 1 vertices in Z with d−
D(z) ≤ |Y | + p.

Proof We will first prove Part (1). Let Y≤ be the set of vertices in Y with out-degree at
most |Z |+ p in D. Since for every y ∈ Y and every z ∈ Z ,we have yz ∈ A, it follows
that all vertices in Y≤ have out-degree at most p in D[Y≤]. Hence ∑

y∈Y≤ d+
D[Y≤](y),

i.e., the sum of out-degrees of vertices in Y≤ in D[Y≤], is at most p|Y≤|. Hence,
∑
y∈Y≤

d+
D[Y≤](y) = |A(D[Y≤])| ≤ p|Y≤|.

Since D is a semicomplete digraph,

|Y≤| · (|Y≤| − 1)

2
≤ |A(D[Y≤])| ≤ p|Y≤|.

It follows that |Y≤| ≤ 2p + 1.
Part (2) follows directly from Part (1) applied to a digraph D′ = (V , A′) obtained

from D by reversing all the arcs i.e. A′ = {yx | xy ∈ A}. �
Let D = (V , A) be a semicomplete digraph and t ∈ [n]. We will call a triple

(Y , Z , S) t-valid if

1. Y , Z is a partition of V (D) with |Y | = t ,
2. S ⊆ V (D) is a minimal (w.r.t. inclusion) set such that for all y ∈ Y and z ∈ Z , if

zy ∈ A(D), then |{y, z} ∩ S| ≥ 1,
3. |S| ≤ k,
4. for all x ∈ S, if d+

D(x) > n − t + k, then x ∈ Y ,
5. for all x ∈ S, if d+

D(x) ≤ n − t + k and d−
D (x) > t + k, then x ∈ Z .

We will say a triple (Y , Z , S) is valid, if it is t-valid for some t ∈ N. The following
simple observation will help us bound the number of partitions (Y , Z) that could lead
to a t-valid triple (Y , Z , S).

Lemma 4.2 For any t-valid triple (Y , Z , S), all vertices v with d+
D(v) > n − t + k

are in Y and all vertices v with d+
D(x) ≤ n − t + k and d−

D(v) > t + k are in Z.

Proof If v ∈ S, the lemma follows directly from the definition of a t-valid triple. If
v ∈ V (D) \ S and d+

D(v) > n − t + k, then v has an out-neighbour in Y \ S, because
|Z ∪ S| ≤ n − t + k, and v ∈ Y follows by property 2. Similarly, if v ∈ V (D) \ S and
d−
D(v) > t + k, then v has an in-neighbour in Z \ S and v ∈ Z by property 2. �

123

Algorithmica (2022) 84:2767–2784 2777

Lemma 4.3 Let D = (V , A) be a semicomplete digraph, n = |V |, and let t ∈ [n].
If there exists a t-valid triple, then there are at most 7k + 2 vertices v in V (D) with
d+
D(v) ≤ n − t + k and d−

D(v) ≤ t + k.

Proof Let us assume that there is at least one t-valid triple and let us denote it (Y , Z , S).
Note that for all y ∈ Y \ S and z ∈ Z \ S it holds that zy /∈ A(D). Since D is
a semicomplete digraph, it follows that yz ∈ A(D). Due to Lemma 4.1 applied to
D − S, there are at most 2(k + |Z ∩ S|) + 1 vertices in Y \ S with d+

D−S(y) ≤
|Z \ S| + k + |Z ∩ S| = n − t + k and there are at most 2(k + |Y ∩ S|) + 1 vertices in
Z \ S with d−

D−S(z) ≤ |Y \ S| + k + |Y ∩ S| = t + k. Let F = {v ∈ V (D) : d+
D(v) ≤

n − t + k and d−
D(v) ≤ t + k}. By the above,

|F \ S| ≤ 2(k + |Z ∩ S|) + 1 + 2(k + |Y ∩ S|) + 1

≤ 4k + 2 + 2|S| ≤ 6k + 2.

Thus, |F | ≤ 7k + 2. �
Lemma 4.4 Let D = (V , A) be a semicomplete digraph, n = |V |, and let t ∈ [n].
There are at most 28k+2 t-valid triples (Y , Z , S). Moreover, if we are given the in- and
out-degrees of all vertices in D on the input, then we can enumerate all such triples
in time O(28kkn).

Proof Let F = {v ∈ V (D) : d+
D(v) ≤ n− t + k and d−

D(v) ≤ t + k}. By Lemma 4.3,
|F | ≤ 7k + 2. If the out- and in-degrees of all vertices in D are given on the input, we
can construct the set F in time O(n).

By Lemma 4.2, there are at most 27k+2 possible partitions (Y ′, Z ′) that could lead
to a t-valid triple (Y ′, Z ′, S′) for some S′, each such partition is uniquely determined
by fixing Y ′ ∩ F .

For the rest of the proof, we assume that we computed the set F of vertices v in
V (D) with d+

D(v) ≤ n − t + k and d−
D(v) ≤ t + k, |F | ≤ 7k + 2. Let (Y ′, Z ′) be one

of 27k+2 partitions that could lead to a t-valid triple.
We show that we can enumerate all minimal sets S′, |S′| ≤ k, such that for all

y ∈ Y ′ and z ∈ Z ′, if zy ∈ A(D), then |{y, z} ∩ S′| ≥ 1. Let G be an undirected
bipartite graph such that V (G) = V (D), the partite sets of G are Y ′ and Z ′, and for
every y ∈ Y ′, z ∈ Z ′, it holds yz ∈ V (G) if and only if zy ∈ A(D). Then S′ is a
minimal vertex cover of size at most k in G. Moreover, every minimal vertex cover S′
in G leads to a t-valid triple (Y ′, Z ′, S′). It is well known and easy to show that we
can enumerate all minimal vertex covers of size at most k in G in timeO(2kk2 + kn).
This is done by including all vertices with degree at least k + 1 in every vertex cover
and removing every vertex they cover. If the resulting graph has more than k2 edges,
then there is no vertex cover of size at most k [5]. Then we can enumerate all vertex
covers of size at most k, by using a simple search-tree algorithm that picks an edge,
say uv, and recursively enumerates all vertex covers of size at most k − 1 that include
u or v, respectively. By the algorithm, it is also easy to see that there are at most 2k

distinct vertex covers of size at most k. For each of these vertex covers, we can easily
determine whether it is minimal inO(k2) time by going over all of the at most k2 edges

123

2778 Algorithmica (2022) 84:2767–2784

and if exactly one endpoint of the edge is in vertex cover, then we mark this vertex as
important. If all vertices at are marked important, then the vertex cover is minimal.
Otherwise, any vertex that is not marked important at the end, can be removed from
the vertex cover since all its neighbours are already in the vertex cover and the vertex
cover is not minimal.

It follows that there are at most 27k+2 · 2k = 28k+2 t-valid triples and we can
enumerate all of them in time O(n + 28kk2 + kn) = O(28kkn). �

We are now ready to present our algorithm.

Theorem 4.1 There is an FPT algorithm that solves Directed Component Order
Connectivity[k] on semicomplete digraphs in time O(216kkn2).

Proof Let D = (V , A) be a semicomplete digraph and let (D, �, k) be an instance of
Directed Component Order Connectivity[k].

Algorithm. Our algorithm boils down to finding a shortest path in an auxiliary
weighted acyclic digraph whose vertex set consists of all the valid triples. The main
idea is to find a sequence of valid triples (Y1, Z1, S1), . . . , (Yq , Zq , Sq) such that
S = ⋃

i∈[q] Si is a solution for (D, �, k) and the strongly connected components of
D − S are subsets of Ci = Yi+1 \ (Yi ∪ S), where |Ci | ≤ � and for all i < j , xi ∈ Ci ,
x j ∈ C j it holds that x j xi /∈ A.

We define the weighted directed acyclic state graph D = (V,A) as follows. The
set of vertices V is the set of all t-valid triples for all t ∈ {0, 1, . . . , n}. The set of arcs
A contains an arc from a t1-valid triple (Y1, Z1, S1) to a t2-valid triple (Y2, Z2, S2) if
and only if the following conditions holds:

• Y1 ⊂ Y2 (and Z2 ⊆ Z1),
• if x ∈ S1 ∩ Z1 and x ∈ Z2, then x ∈ S2,
• if x ∈ Y1 \ S1, then x ∈ Y2 \ S2, and
• |S1 \ S2| + max(0, |Z1 ∩ Y2 \ (S1 ∪ S2)| − �) ≤ k.

We let the weight of an arc from (Y1, Z1, S1) to (Y2, Z2, S2) be

|S1 \ S2| + max(0, |Z1 ∩ Y2 \ (S1 ∪ S2)| − �).

This finishes the description of the auxiliaryweighted acyclic digraph. In the remainder
of the proof we first show that (D, �, k) is a YES-instance if and only if the cost of
the shortest path inD from (∅, V (D),∅) to (V (D),∅,∅) is at most k. Afterwards, we
bound |V|+|A| byO(216kn2) and prove that we can construct the auxiliary digraph in
O(216kkn2) time. We can then find a shortest path from (∅, V (D),∅) to (V (D),∅,∅)

in linear time, that is, in timeO(216kn2) sinceD is acyclic (by dynamic programming
using an acyclic ordering of the vertices), which finishes the proof.

Correctness of the Algorithm. Suppose first that (D, �, k) is a YES-instance of
Directed Component Order Connectivity[k] such that D is a semicomplete
digraph. Let X be a minimum size solution for (D, �, k), that is, a minimum size set
such that mco(D−X) ≤ �. Since (D, �, k) is a YES-instance and |X | ≤ k, the vertices
of D − X can be partitioned in sets C1, . . . ,Cq such that

123

Algorithmica (2022) 84:2767–2784 2779

1. for every i ∈ [q] we have |Ci | ≤ �, and
2. for every i, j ∈ [q] with i < j and every x ∈ Ci , y ∈ C j we have xy ∈ A and

yx /∈ A.

Our goal is to define a sequence of valid triples (Yi , Zi , Si), i ∈ [q], such that the
arc ((Yi , Zi , Si), (Yi+1, Zi+1, Si+1)) is in A and the cost of the path in D defined by
this sequence is |X |. We will construct these triples from X andC1, . . . ,Cq with some
additional restrictions that make it easier to show that they indeed define a path in D
of cost at most |X |. Namely, we will define them such that for all i, j ∈ [q], i < j the
triples satisfy the following properties:

1. (Yi , Zi , Si) is ti -valid for some ti ∈ [n],
2. C1 ∪ · · · ∪ Ci ⊆ Yi ,
3. Ci+1 ∪ · · · ∪ Cq ⊆ Zi ,
4. Si ⊆ X ,
5. Yi ⊂ Y j and Z j ⊆ Zi ,
6. if x ∈ Si ∩ Zi and x ∈ Z j , then x ∈ S j ,
7. if x ∈ Yi \ Si , then x ∈ Y j \ S j .

We first show that a sequence with the above properties indeed exists and defer
the computation of the cost of the path defined by this sequence later. Note that given
above properties, the arc ((Yi , Zi , Si), (Yi+1, Zi+1, Si+1)) exists in D whenever the
weight of the arc is at most k. This follows from the argument that the cost of the path
defined by this sequence is at most k and is also deferred later.

To obtain this sequence, we need to discuss how to distribute the vertices of X in
the sets Yi and Zi and how to compute Si , S j (note that the partition of the vertices in
V \ X is fixed by properties 2 and 3).

We distribute the vertices of X between Yi and Zi as follows. We start with ti =
|C1 ∪ · · · ∪ Ci | and while there are more than ti − |C1 ∪ · · · ∪ Ci | vertices x ∈ X
with d+

D(x) > n − ti + k we increase ti by one. Since n − ti + k > n − (ti + 1) + k,
once d+

D(x) > n − ti + k holds for a vertex x ∈ X , it will be true for this vertex
even after increasing ti . Moreover, since |X | ≤ k, there is a value of ti between
|C1 ∪· · ·∪Ci | and |C1 ∪· · ·∪Ci |+ k such that there are precisely ti −|C1 ∪· · ·∪Ci |
vertices in X with d+

D(x) > n − ti + k. We put all of these vertices in Yi and the
remaining vertices of X in Zi . Note that for j ∈ N such that i < j , we will start with
t j = |C1 ∪ · · · ∪ C j | > |C1 ∪ · · · ∪ Ci | and observe that if we include x ∈ X in Yi ,
then we include it in Y j as well.

Now |X | ≤ k and for all y ∈ Yi \ X = C1 ∪ · · · ∪ Ci and all z ∈ Zi \ X =
Ci+1 ∪ · · · ∪Cq we have zy /∈ A(D). The set Si is defined to be those vertices x ∈ X
such that one of the following holds:

1. x ∈ Yi and there exists z ∈ Zi \ X such that zx ∈ A(D),
2. x ∈ Zi and there is an arc xy ∈ A(D), y ∈ Yi such that y /∈ Si .

Note that all arcs from Zi to Yi are covered by Si and for each x ∈ Si there is an
arc zy from Zi to Yi with {y, z} ∩ X = {x}. Note that if x ∈ Yi \ Si , then x ∈ Y j \ S j

for all j > i . On the other hand, if x ∈ Zi ∩ Si , then there is a vertex y ∈ Yi \ Si
such that xy ∈ A(D). Moreover, for all j > i , y ∈ Y j \ S j . Therefore, if x ∈ Z j ,
then x ∈ S j . From the above two properties it follows that if x ∈ Si \ S j , then

123

2780 Algorithmica (2022) 84:2767–2784

x /∈ S j+1 ∪ · · · ∪ Sq . This finishes the proof of the existence of a sequence of valid
triples (Y1, Z1, S1), . . . , (Yq , Zq , Sq) with properties 1-7.

We claim that the cost of the path following this sequence is at most k. First note
that if x ∈ Si \ Si+1, then x ∈ Yi+1 and for all j ≥ i + 1 it holds x /∈ S j , hence
every vertex in X is counted in at most one of the sets Si \ Si+1. Now the set Ci

is precisely (Zi−1 ∩ Yi) \ X . If x ∈ Zi−1 ∩ Yi ∩ X is in some set S j , then from
the properties 5, 6 and 7 of the sequence of triples it follows that x is in Si−1 ∪ Si .
Hence |(Zi−1 ∩ Yi) \ (Si−1 ∪ Si)| − |Ci | is precisely the number of vertices in X
that are in Zi−1 ∩ Yi and in none of the sets S j , j ∈ [q]. Note that for such vertex
x ∈ (Zi−1 ∩ Yi) \ ⋃

j∈[q] S j and a vertex y ∈ Y j \ S j , for some j ∈ [q] with
j < i , it holds xy /∈ A(D) (else by definition of a valid triple |{x, y} ∩ S j | ≥ 1).
Similarly for z ∈ Z j \ S j , j > i , zx /∈ A(D). Hence, if |Ci | < �, then X \ {x}
would be a smaller solution for the instance (D, �, k) and because of minimality of
X , (|Zi−1 ∩ Yi \ (Si−1 ∪ Si)| − �) is precisely the number of vertices in X that are in
Zi−1 ∩ Yi and in none of the sets S j . It follows that each vertex in X is counted on
precisely one arc on the path and the shortest path from (∅, V (D),∅) to (V (D),∅,∅)

in D = (V,A) has length precisely |X |.
For the other direction, let some shortest path in D from (∅, V (D),∅) to

(V (D),∅,∅) be defined by the sequence (Yi , Zi , Si), i ∈ {0, . . . , q}, and assume
that the cost of the path is at most k. For every i ∈ [q], let Ti be an arbitrary set con-
sisting of (|(Zi−1∩Yi)\(Si−1∪Si)|−�) vertices from (Zi−1∩Yi)\(Si−1∪Si) and let
X = ⋃

i∈[q](Ti ∪ Si). Because the pair ((Yi−1, Zi−1, Si−1), (Yi , Zi , Si)) is an arc in
D for every i ∈ [q], we have Yi−1 ⊆ Yi and Zi ⊆ Zi−1. Moreover, (Yi−1, Zi−1, Si−1)

and (Yi , Zi , Si)) are ti−1-valid and ti -valid triples, for some ti−1, ti ∈ [n], respectively.
Therefore, there is no arc from Z j \X to Yi \X for any i ≤ j ∈ [q]. It follows that each
strongly connected component of D−X is a subset of (Zi−1∩Yi)\X for some i ∈ [q].
In particular note that (Zi−1∩Yi)∩X = (Zi−1∩Yi)∩(Si−1∪Si∪Ti), (Si−1∪Si)∩Ti =
∅ and Ti ⊆ (Zi−1∩Yi). Hence the size of each strongly connected component is atmost
maxi∈[q] |(Zi−1 ∩ Yi) \ (Si−1 ∪ Si ∪ Ti)| = maxi∈[q] | ((Zi−1 ∩ Yi) \ (Si−1 ∪ Si)) \
Ti | = maxi∈[q](| ((Zi−1 ∩ Yi) \ (Si−1 ∪ Si)) | − |Ti |) ≤ �. Since S0 = Sq = ∅,
every vertex that appears in Si for some i ∈ [q] is counted in some |S j \ S j+1|,
where j ≥ i and every vertex that appears in Ti for some i ∈ [q] is counted in
max(0, |Zi ∩ Yi+1 \ (Si ∪ Si+1)| − �) and the final set X has at most k vertices.

Construction of the Auxiliary Weighted Digraph. Note that by Lemma 4.4, |V| ≤
28k+2n and, since we can compute the out- and in-degrees of all vertices in D in time
O(n2), we can enumerate all vertices in D in time O(28kkn2). It follows that |A| ≤
|V|2 ≤ 216k+4n2 and |V|+|A| = O(216kn2). It remains to show that for a pair of triples
(Y1, Z1, S1) and (Y2, Z2, S2), we can check whether ((Y1, Z1, S1), (Y2, Z2, S2)) is an
arc and compute its weight in O(k) amortized time. First note that if |Y1| ≥ |Y2|,
then the arc is not there. We will only check if ((Y1, Z1, S1), (Y2, Z2, S2)) is an arc if
|Y1| < |Y2|. This can be done without computing the sizes of Y1 and Y2, respectively,
if we enumerate the t-valid triples in D in levels in the order of increasing t (i.e., we
invoke Lemma 4.4 for t only after we added all t ′-valid triples, for all t ′ < t , to V) and
compute all in-neighbours of a vertexwhen it is added toV .Moreover, when adding the
triple (Y , Z , S) in V , we will in O(n) time compute maps α(Y ,Z ,S) : V (D) → {0, 1}

123

Algorithmica (2022) 84:2767–2784 2781

such that α(Y ,Z ,S)(x) = 0 if and only if x ∈ Y and β(Y ,Z ,S) : V (D) → {0, 1} such
that β(Y ,Z ,S)(x) = 0 if and only if x ∈ S. We also compute the set �Y ,Z = {x | x ∈
V (D), d+

D (x) ≤ |Z |+k, d−
D (x) ≤ |Y |+k}. By Lemma 4.3, |�Y ,Z | ≤ 7k+2. Nowwe

can describe the O(k) algorithm that determines whether ((Y1, Z1, S1), (Y2, Z2, S2))
is an arc.

First, for every x ∈ S1 we can in constant time check that x ∈ S1 ∩ Z1 (i.e.,
α(Y1,Z1,S1)(x) = 1 and β(Y1,Z1,S1)(x) = 0) and x ∈ Z2 (α(Y2,Z2,S2)(x) = 1) implies
x ∈ S2 (β(Y2,Z2,S2) = 0). Similarly we can check in constant time that if x ∈ Y1, then
x ∈ Y2 \ S2.

Second, by Lemma 4.2 and since |Y1| < |Y2| and |Z1| > |Z2|, we get that to check
that Y1 ⊂ Y2 and Z2 ⊆ Z1, we only need to check for every x ∈ �Y1,Z1 ∪ �Y2,Z2

that α(Y1,Z1,S1)(y) = 0 implies α(Y2,Z2,S2)(x) = 0. This check can be done in
O(|�Y1,Z1 ∪ �Y2,Z2 |) = O(k) time.

Finally, to compute the weight of the arc, we note that |Z1 ∩ Y2| is precisely
|Y2| − |Y1|, because Y1 ⊂ Y2 and Z1 = V (D) \ Y1, so we only need to check how
many of the vertices in S1 ∪ S2 are in Z1 ∩ Y2 and how many of the vertices in S1
are also in S2. Moreover, we only need to compute |(Z1 ∩ Y2) \ (S1 ∪ S2)| − � if
� < |Y2| − |Y1| ≤ � + 2k. Else either the weight of the arc is precisely |S1 \ S2|
or it would be more than k and hence it is not an arc. Hence, we end up spending
O(k + log n) time on the computation of the weight of each of at most O(216kkn)

many arcs (for which � < |Y2|− |Y1| ≤ �+2k) andO(k) on all of at mostO(216kn2)
remaining arcs. Since k ≤ n, we can construct D in O(216kkn2) time. �

In the rest of the section, we will show that the dependency on both k and n cannot
be significantly improved.More precisely, wewill show an unconditional lower-bound
of�(n2) even if k = 0, as we show that we need to read at least�(n2) arcs of the input
instance in the worst case to distinguish between k = 0 and k = 1. Furthermore, we
show that any 2o(k)nO(1) algorithmwould imply that the Exponential TimeHypothesis
fails.

Theorem 4.2 There is no deterministic sequential algorithm that outputs the correct
answer for every instance (D, �, 0) of Directed Component Order Connecti-
vity when D is a tournament in o(n2) time.

Proof For i ∈ N, let Hi be an arbitrary but fixed strongly connected tournament on i
vertices. Consider two cases.
Case 1: n

2 ≤ � < n. Let us consider the graph D obtained by taking the disjoint union
of H� n

2 � and H� n
2 � and orienting arcs between H� n

2 � and H� n
2 � from H� n

2 � to H� n
2 �.

Clearly, mco(D) = � n
2 � ≤ � and (D, �, 0) is a YES-instance of Directed Compo-

nent Order Connectivity. Note there are � n
2 � · � n

2 � = 	(n2) arcs between H� n
2 �

and H� n
2 �. Now let A be a deterministic sequential algorithm that solves Directed

Component Order Connectivity[k] in o(n2) time if k = 0. If we runA on D, then
there is an arc from H� n

2 � to H� n
2 � thatA did not read. Let this arc be xy and let Dxy be

the graph obtained from D by replacing the arc xy by the arc yx . It follows that Dxy is
strongly connected and hence (Dxy, �, 0) is a NO-instance ofDirected Component
Order Connectivity. However, because the algorithm A decided that (D, �, 0) is

123

2782 Algorithmica (2022) 84:2767–2784

a YES-instance without considering the orientation of the arc between x and y on
the instance (D, �, 0) and the only difference between (D, �, 0) and (Dxy, �, 0) is the
orientation of the arc between x and y, it follows that A outputs that (Dxy, �, 0) is
a YES-instance, which contradicts the assumption that A outputs the correct answer
for every instance (D, �, 0) of Directed Component Order Connectivity such
that D is a tournament.
Case 2: � < n

2 . The proof is very similar to Case 1; the only difference is the con-
struction of the digraph D. To construct D we first take the disjoint union of q = � n

�
�

copies of H�, denoted H1
� , . . . , Hq

� , and one copy of Hn−q�. We add the arc xy to D if

x ∈ Hi
� and y ∈ H j

� such that 1 ≤ i < j ≤ q or if x ∈ Hi
� , i ∈ [q], and y ∈ Hn−q�. It

follows that D is a tournament and mco(D) = �, that is (D, �, 0) is a YES-instance.
Now let Y = ⋃

i∈[� q
2 �] V (Hi

�) and Z = V (D) \ Y . It is easy to see that n
4 ≤ |Y | ≤ n

2

and there are 	(n2) arcs from Y to Z in D. Moreover if yz ∈ A(D) is an arc such
that y ∈ Y and z ∈ Z , then Dyz = (V (D), (A(D) \ {yz}) ∪ {zy}) contains a strongly
connected component of size at least �+1. The proof follows by analogous arguments
to the case n − � < �, as for any algorithm A that solves (D, �, k) in o(n2), there is
an arc yz such that A outputs incorrectly that (Dyz, �, k) is a YES-instance. �

Finally, we will present our O∗(2o(k)) lower bound result, based on the well-
established Exponential Time Hypothesis (ETH). Our result uses the fact that the
classical Vertex Cover problem cannot be solved in subexponential time under
ETH.

Theorem 4.3 (Cai and Juedes [6]) There is no 2o(k) ·|V (G)|O(1) algorithm for Vertex
Cover, unless ETH fails.

Given the above result by Cai and Juedes, the lower bound then directly follows
from the proof of NP-hardness of Directed Feedback Vertex Set by Specken-
meyer [19]. In fact, given a graph G, Speckenmeyer constructs in O(|V (G)|2) time
a tournament T with 3|V (G)| − 2 vertices such that for every k the graph G has a
vertex cover of size at most k if and only if T has a directed feedback vertex set of
size at most k (see Theorem 6 in [19]). Hence, we obtain the following:

Theorem 4.4 There is noalgorithmsolvingDirected Component Order Connecti-
vity[k] on tournaments in time 2o(k)nO(1), unless ETH fails.

In Theorem 4.1 we saw that there is an FPT algorithm for Directed Component
Order Connectivity[n− �] that runs inO∗(216(n−�)) time, as we may assume that
k ≤ n − �. By the construction explained before Theorem 4.4 we can replace k by
n − � in 2o(k) in Theorem 4.4 and thus obtain a matching lower bound for the upper
bound O∗(216(n−�)).

Theorem 4.5 There is no 2o(n−�)nO(1)-time algorithm for solving Directed Com-
ponent Order Connectivity[n− �] on semicomplete digraphs, unless ETH fails.

123

Algorithmica (2022) 84:2767–2784 2783

5 Conclusions

SinceDirected Component Order Connectivity generalizesDirected Feed-
back Vertex Set, it would likely be hard to improve our upper bound and obtain
a tight lower bound for the time complexity of Directed Component Order
Connectivity[� + k] on general digraphs. It seems easier to improve our upper and
lower bounds on the time complexity ofDirected Component Order Connecti-
vity[k] on semicomplete digraphs.

It would be interesting to consider the time complexity of the problem on well-
studied generalizations of semicomplete digraphs: (i) semicomplete multipartite
digraphs which are digraphs that can be obtained from complete multipartite graphs
by replacing every edge by an arc with the same end-vertices or a pair of opposite
arcs with the same end-vertices, (ii) quasi-transitive digraphs which are digraphs in
which if xy and yz are arcs such that x, y, z are distinct vertices then either xz or zx
or both are arcs, too (in particular, a transitive digraph is quasi-transitive), (iii) locally
semicomplete digraphs which are digraphs in which for every vertex x, both N+(x)
and N−(x) induce semicomplete digraphs (a directed cycle is an example of a locally
semicomplete digraph). Chapters 7,8, and 5, respectively, in the textbook on classes
of directed graphs [2], provide extensive surveys on these classes of digraphs.

Acknowledgements We are thankful to to the reviewers for providing a number of suggestions, which
improved the presentation.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer-Verlag,
London (2009)

2. Bang-Jensen, J., Gutin, G. (eds.) Classes of Directed Graphs. Springer Monographs in Mathematics.
Springer (2018)

3. Bang-Jensen, J., Thomassen, C.: A polynomial algorithm for the 2-path problem for semicomplete
digraphs. SIAM J. Discrete Math. 5(3), 366–376 (1992)

4. Bshouty, N., Gabizon, A.: Almost optimal cover-free families. In: Fotakis, D., Pagourtzis, A., Paschos,
V.T. (eds.) Algorithms and Complexity - 10th International Conference, CIAC 2017, Athens, Greece,
May 24-26, 2017, Proceedings, volume 10236 of Lecture Notes in Computer Science, pp. 140–151
(2017)

5. Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM J. Comput. 22(3), 560–572 (1993)
6. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. J. Comput. System

Sci. 67(4), 789–807 (2003)
7. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed

feedback vertex set problem. J. Assoc. Comput. Mach. 55(5), 21:1-21:19 (2008)

123

http://creativecommons.org/licenses/by/4.0/

2784 Algorithmica (2022) 84:2767–2784

8. Cygan, M., Fomin, F., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer, Cham (2015)

9. Downey, R., Fellows, M.: Parameterized Complexity. Monographs in Computer Science. Springer,
New York (1999)

10. Downey, R., Fellows, M.: Fundamentals of Parameterized Complexity. Springer, London (2013)
11. Drange, P., Dregi,M., van’tHof, P.: On the computational complexity of vertex integrity and component

order connectivity. Algorithmica 76(4), 1181–1202 (2016)
12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
13. Göke, A., Marx, D., Mnich, M.: Parameterized algorithms for generalizations of directed feedback

vertex set. In: Heggernes, P. (ed.) Algorithms and Complexity - 11th International Conference, CIAC
2019, Rome, Italy, May 27-29, 2019, Proceedings, volume 11485 of Lecture Notes in Computer
Science, pp. 249–261. Springer (2019)

14. Gross, D., Heinig,M., Iswara, L., Kazmierczak, L.W., Luttrell, K., Saccoman, J.T., Suffel, C.: A survey
of component order connectivity models of graph theoretic networks. WSEAS Trans. on Math. 12,
895–910 (2013)

15. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Com-
put. System Sci. 63(4), 512–530 (2001)

16. Kumar, M., Lokshtanov, D..: A 2lk kernel for l-component order connectivity. In: Guo, J., Hermelin,
D. (eds.) 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August
24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pp. 20:1–20:14. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2016)

17. Lee, E.: Partitioning a graph into small pieces with applications to path transversal. Math. Program.
177(1–2), 1–19 (2019)

18. Neogi, R., Ramanujan, M.S., Saurabh, S., Sharma, R.: On the parameterized complexity of deletion to
H-free strong components. In: Esparza, J., Král’, D. (eds.) 45th International Symposium on Mathe-
matical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic,
volume 170 of LIPIcs, pp. 75:1–75:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

19. Speckenmeyer, E.: On feedback problems in digraphs. In: Nagl, M. (ed.) Graph-Theoretic Concepts in
Computer Science, 15th International Workshop, WG ’89, 1989, Proceedings, volume 411 of Lecture
Notes in Computer Science, pp. 218–231. Springer (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Component Order Connectivity in Directed Graphs
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Directed and Undirected Graph Terminology and Notation
	2.2 Parameterized Complexity

	3 Directed Component Order Connectivity[ell+k] on General Digraphs
	4 Directed Component Order Connectivity on Semicomplete Digraphs
	5 Conclusions
	Acknowledgements
	References

