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Abstract
Computing small kernels for the hitting set problem is a well-studied computational
problem where we are given a hypergraph with n vertices and m hyperedges, each of
size d for some small constant d, and a parameter k. The task is to compute a new
hypergraph, called a kernel, whose size is polynomial with respect to the parameter k
and which has a size-k hitting set if, and only if, the original hypergraph has one.
State-of-the-art algorithms compute kernels of size kd (which is a polynomial as d is a
constant), and they do so in timem · 2d poly(d) for a small polynomial poly(d) (which
is linear in the hypergraph size for d fixed). We generalize this task to the dynamic
setting where hyperedges may continuously be added or deleted and one constantly
has to keep track of a size-kd kernel. This paper presents a deterministic solution with
worst-case time 3d poly(d) for updating the kernel upon inserts and time 5d poly(d)

for updates upon deletions. These bounds nearly match the time 2d poly(d) needed by
the best static algorithm per hyperedge. Let us stress that for constant d our algorithm
maintains a hitting set kernel with constant, deterministic, worst-case update time that
is independent of n, m, and the parameter k. As a consequence, we also get a deter-
ministic dynamic algorithm for keeping track of size-k hitting sets in d-hypergraphs
with update times O(1) and query times O(ck) where c = d − 1 + O(1/d) equals
the best base known for the static setting.
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1 Introduction

The hitting set problem is a fundamental combinatorial problem that asks, given a
hypergraph, whether there is a small vertex subset that intersects (“hits”) each hyper-
edge. Many interesting problems reduce to it. A dominating set of a graph is just a
hitting set in the hypergraph that for every vertex v contains a hyperedge consisting
of the closed neighborhood of v. For any fixed graph H , the question of whether we
can delete k vertices from a graph G in order to make G an H -free graph can be
reduced to the hitting set problem for the hypergraph to which each occurrence of H
in G contributes one hyperedge – and this problem in turn generalizes problems such
as triangle-deletion and cluster-vertex-deletion [1]. The hitting set problem
also finds applications in the area of descriptive complexity, as a fragment of first-order
logic can be reduced to it [2].

The hitting set problem is NP-complete [3] and its parameterized version
pk-hitting-set is W[2]-complete [4]. However, if we restrict the size of hyperedges to
at most some constant d, the resulting problem pk-d-hitting-set lies in FPT [5] and
even has polynomial kernels. In particular, d = 2 is the vertex cover problem, which
is still NP-complete, but one of the best-investigated parameterized problems. Already
the jump from d = 2 to d = 3 turns out to be nontrivial in this setting. In detail, the
inputs for our algorithms are a hypergraph H = (V , E) and an upper bound k for the
size of a hitting set X wanted (a set for which e ∩ X �= ∅ holds for all e ∈ E). We
think of the numbers n = |V | and m = |E | as large numbers, of k as a (relatively
small) parameter, and of d = maxe∈E |e| as a small constant (already the cases d = 3
and d = 4 are of high interest).

Parameterized algorithms for the hitting set problem proceed in two steps: First,
the input (H , k) is kernelized, which means that we quickly compute a (small) new
hypergraph K such that H has a size-k hitting set iff K has one. Afterwards the
problem is solved on K using an expensive algorithm based on search trees or iterative
compression. The currently best algorithm for computing a kernel with respect to the
number of kernel edges is due to Fafianie andKratsch [6], see also [7, 8] for some recent
developments. The cited algorithm outputs a kernel of size kd (meaning that K has at
most kd hyperedges) in timem ·2d poly(d) (meaning that time 2d poly(d) is needed on
average per hyperedge of H ). The best algorithms for solving the hitting set problemon
the computed kernel K run in time O(ck), where the exact value of c = d−1+O(1/d)

is a subject of ongoing research [9, Section 6] and [10–14]. In summary, on input (H , k)
one can solve the hitting set problem in time O(2d poly(d) · m + ck).

Our objective in this paper is to transfer (only) the first part of solving the hit-
ting set problem (namely the computation of the kernel K ) into the dynamic setting.
Instead of a single hypergraph H being given at the beginning, there is a sequence
H0, H1, H2, H3, . . . of hypergraphs each of which differs from the previous one by
a single edge being either added or deleted. One continuously has to keep track of
hitting set kernels K0, K1, K2, K3, . . . for the current Hi (including moments when
Hi has no size-k hitting set). Our aim is to compute the updated kernel Ki+1 from Ki

in constant time based solely on the knowledge which edge was added to or deleted
from Hi in order to obtain Hi+1.
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Doing the necessary bookkeeping to dynamically manage a hitting set kernel is
not easy. As an example, consider two hypergraphs H and H̃ with disjoint vertex
sets, were H is a clear no-instance (like a matching of size k + 1) while H̃ is a hard,
borderline case that can only be reduced to a relatively large kernel K̃ . A dynamic
kernel algorithm that works on H ∪̇ H̃ must be able to cope with the situation that we
first add all the edges of H (at which point a natural kernel would be a trivial size-1
no-instance K ), followed by all the edges of H̃ (which even underlines the fakt that
the trivial no-instance K is a correct kernel for the ever-larger hypergraph), followed
by a deletion of the edges from H . At some point during these deletions, a dynamic
kernel algorithmmust switch from the constant-size K to the large kernel K̃ . Previous
work from the literature [15] shows that it is already tricky to achieve this switch
in time polynomial in the size of kernels K and K̃ . The challenge we address is to
do the updates in constant worst-case time, which forces our dynamic algorithm to
spread the necessary changes over time while neither resorting to amortization nor to
randomization.

Note that we only give a dynamic algorithm for keeping the kernel up-to-date with
constant update times – we make no claims concerning the time needed to actually
compute a hitting set for the current kernel Ki (and, thus, for the current Hi ). Phrased
in terms of dynamic complexity theory, there are two different problems for which we
present algorithms with differing update times (the time needed for updating internal
data structures) and query times (the time needed to construct an output upon request):
For the first problem of (just) computing hitting set kernels K for inputs H , we present
a dynamic algorithm with constant update time and zero query time (since the current
kernel Ki is explicitly stored in memory as an adjacency matrix at all times). For
the second problem of computing size-k hitting sets X for inputs H , our dynamic
algorithm also has constant update time (to keep track of kernels Ki ), but has a query
time of ck (to compute Xi from Ki , i. e., a hitting set for Hi ). Since in both cases our
update times are constant and since it is not hard to see that one cannot improve the
query times beyond the time needed by the fastest static algorithm, these bounds are
optimal.

Main Result: A Fully Dynamic Hitting Set Kernel In the fully dynamic case where
edges may be inserted and deleted over time, the hypergraph may repeatedly switch
between having and not having a size-k hitting set. This turns out to be a big obstacle for
updating a kernel in just a few steps.Dynamic kernels have already been constructed by
Alman,Mnich, andWilliams [15]. They present a pk-vertex-cover kernel with O(k)
worst-case update time and O(1) amortized update time. For the pk-d-hitting-set
they achieve a kernel of size (d − 1)!k(k + 1)d−1 with update time (d!)d · kO(d2).

In this paper, for each fixed number d we present a fully dynamic algorithm that
maintains a pk-d-hitting-set kernel of size O(kd) with constant updates.

Theorem 1 For every d ≥ 2 there is a deterministic, fully dynamic kernel algorithm for
the problem pk-d-hitting-set that maintains at most

∑d
i=0 k

i ≤ (k+1)d hyperedges
in the kernel, has worst-case insertion time 3d poly(d), and worst-case deletion time
5d poly(d). As d is a constant, the algorithm performs both insertions and deletions
in time that is constant and independent of the input and parameter k.
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Corollary 1 There is a fully dynamic algorithm for pk-d-hitting-setwith update time
O(1) and query time O(ck), where c = d − 1 + O(1/d).

In order to achieve update times independent of k, this paper makes three major
improvements on the general sunflower approach [1]. First, relevant objects are han-
dled hierarchically. This allows an inductive construction and an analysis that improves
the bounds on the kernel size as well as the update time. Second, we replace the notion
of strong edges (see [15]) by needed edges to be defined later. Whenever a flower
is formed, the replacement of its petals can be handled much more easily this way.
Finally, the use of b-flowers (see also [6]) instead of generalized sunflowers [15]
decreases the size of the kernel.

Our kernel is a full kernel [16]: It preserves all size-k solution. Therefore, we can use
the kernel for counting and enumeration problems; and we can use it as approximate
solution. The kernel size is optimal insofar as pk-d-hitting-set has no kernel of
size O(kd−ε) unless coNP ⊆ NP/poly [17]. Note that if we feed the hyperedges of a
static hypergraph to our algorithm one-at-a-time, we compute a static kernel in time
3d poly(d) ·m. Since the currently best algorithms [6, 7, 18] run in time 2d poly(d) ·m,
our algorithm is not far from the best static runtime: the difference just lies in the
constant factor 3d versus 2d .

Extension to SetPacking:Ourhitting set kernelization canbe adapted for pk -matching
and themore general pk -d-set-packing: The input (H , k) is as before, but the question
is whether there is a packing P ⊆ E with |P| ≥ k (that is, e ∩ f = ∅ for any two
different e, f ∈ P).

Theorem 2 For every d ≥ 2 there is a deterministic, fully dynamic kernel algorithm
for the problem pk-d-set-packing that maintains at most

∑d
i=0(d(k − 1))i ≤ ddkd

hyperedges in the kernel, has worst-case insertion time 3d poly(d), and worst-case
deletion time 5d poly(d).

Related Work A sequence of improved upper bounds on the kernel size for
pk-d-hitting-set is due to Flum and Grohe [5], van Bevern [18], and Fafianie and
Kratsch [6]. Damaschke studied full kernels for the problem, which are kernels that
contain all small solutions [16]. There are also optimized algorithms for specific val-
ues of d. For instance the algorithm by Buss and Goldsmith [19] for d = 2, or by
Niedermeier and Rossmanith [12] and Abu-Khzam [1] for d = 3.

Dynamic algorithms can be used in a variety of monitoring applications such as
maintaining a minimum spanning tree [20] or connected components [21]. There is
also a recent trend in studying dynamic approximation algorithms, for instance for
vertex-cover [22]. Algorithms that maintain a solution for a dynamically chang-
ing input can also be studied using descriptive complexity, as suggested by Patnaik
and Immerman [23]. A recent break-through result in this area is that reachability is
contained in DynFO [24].

Iwata and Oka [25] were the first to combine kernelization and dynamic algorithms
by studying a dynamic quadratic kernel for pk-vertex-cover. Their dynamic kernel
algorithm requires O(k2) update time and works in a promise model where at all
times it is guaranteed that there actually is a size-k vertex cover in the input graph.
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Alman, Mnich, and Williams extended this line of research by studying dynamic
parameterized algorithms for a broad range of problems [15]. Among others, they
provided a pk-vertex-cover kernel with O(k) worst-case update time and O(1)
amortized update time that works in the fully dynamic model. Their generalization
to a fully dynamic algorithm for pk-d-hitting-set with a slightly larger kernel size
and noninstant update time has already been mentioned above. Recent advances in
dynamic FPT-algorithms were achieved by a dynamic data structure that maintains an
optimum-height elimination forest for a graph of bounded treedepth [26].

Organization of This Paper: After a short introduction to dynamic algorithms, data
structures, and parameterized complexity in Sect. 2, we first illustrate the algorithm
for the special case of pk-vertex-cover in Sect. 3. Then, in Sect. 4, we generalize the
algorithm to pk-d-hitting-set. In Sect. 5 we argue that with slight modifications, the
same algorithm can be used to maintain a polynomial kernel for pk-d-set-packing.

2 A Framework for Parametrized Dynamic Algorithms

Our aim is to dynamically maintain kernels with minimal update time. To formalize
this, let us begin with the definition of kernels and then explain properties of dynamic
kernels. Since we are interested in constant update times, some remarks on standard
data structures will also be of interest.

Parameterized Hypergraph Problems and Kernels: A d-hypergraph is a pair H =
(V , E) consisting of a set V of vertices and a set E of hyperedges with e ⊆ V and
|e| ≤ d for all e ∈ E . Let n = |V | and m = |E |. The degree of v is degH (v) =∣
∣
{
e ∈ E | v ∈ e

}∣
∣. A uniform d-hypergraph has |e| = d for all e ∈ E , e. g., a

graph is a uniform 2-hypergraph. We use
(V
d

)
to denote the set { e ⊆ V | |e| =

d } of all size-d hyperedges and let
( V
≤d

) = { e ⊆ V | |e| ≤ d }. Parameterized
hypergraph problems are sets Q ⊆ �∗ ×N, where instances (H , k) ∈ �∗ ×N consist
of a hypergraph H and a parameter k. The pk-d-hitting-set and pk-d-set-packing
problems from the introduction are examples. Note that in both cases k is the parameter
while d is fixed; the special cases for d = 2 are exactly pk-vertex-cover and
pk-matching. A parameterized problem is in FPT if the question (H , k) ∈ Q can be
decided in time f (k) · (|V | + |E |)c for some computable function f and constant c.
It is known that Q ∈ FPT holds iff kernels can be computed for Q in polynomial
time [27]. Kernels of polynomial size are of special interest: For a polynomial σ ,
a σ -kernel for an instance (H , k) ∈ �∗ × N of a problem Q is another instance
(H ′, k′) ∈ �∗ × N with |H ′| ≤ σ(k), k′ ≤ σ(k), and (H , k) ∈ Q ⇔ (H ′, k′) ∈ Q.
Kernel algorithms normally ensure k′ ≤ k and we always have k′ = k. Polynomial
kernels for pk-d-hitting-set can be computed in polynomial time; our objective is to
maintain such kernels in a dynamic setting.

Dynamic Hypergraphs and Dynamic Kernels: One might consider several properties
of hypergraphs that change in a dynamic way. We consider as fixed and immutable
the bound d on the hyperedge sizes, the vertex set V , and also the parameter k. That
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means only the most specific one, the hyperedge set E , will change dynamically. We
assume that initially it is the empty set:

Definition 1 (DynamicHypergraphs) A dynamic hypergraph consists of a fixed vertex
set V = {v1, . . . , vn} and a sequence o1, o2, o3, . . . of update operations, where each
o j is either insert(e j ) or delete(e j ) for a hyperedge e j ⊆ V .

A dynamic hypergraph defines a sequence of hypergraphs H0, H1, . . . with
H0 = (V ,∅), Hj = (V , E(Hj−1) ∪ {e j }) for o j = insert(e j ), and finally with
Hj = (V , E(Hj−1) \ {e j }) for o j = delete(e j ). For convenience (and without loss
of generality) we assume only missing hyperedges are inserted and only existing ones
deleted. A dynamic hypergraph algorithm gets the update sequence of a dynamic
hypergraph as input and has to output a sequence of solutions, one for each Hi . Cru-
cially, the solution for Hi must be generated before the next operation oi+1 is read.
While after each update we could solve the problem from scratch for Hi , we may do
better by taking into account that the difference between Hi−1 and Hi is small. With
the help of an internal auxiliary data structure Ai that the algorithm updates alongside
the graphs, one might be able to solve the original problem faster after each update.
The problem we wish to solve dynamically is to compute for each Hi a kernel Ki (as
opposed to the problem of solving the parameterized problem Q itself).

Definition 2 (Dynamic Kernel Algorithm) Let Q be a parameterized problem and
σ : N → N be a bound. A dynamic kernel algorithmAlgo for Q with kernel size σ(k)
has three methods:

1. Algo.init(n, k) gets the size n of V and the parameter k as inputs, neither of which
will change during a run of the algorithm, and must initialize an auxiliary data
structure A0 and a kernel K0 for (H0, k) and Q and σ (observe that H0 = (V ,∅)

holds).
2. Algo.insert(e) gets a hyperedge e to be added to Hi−1 and must update Ai−1 and

Ki−1 to Ai and Ki with, again, Ki being a kernel for (Hi , k) and Q and σ .
3. Algo.delete(e) removes an edge instead of adding it.

One could also require that only the data structure Ai is updated in each step, while
a kernel Ki would only be needed to be computed upon a query request. This would
allow to differentiate between update times and query times for computing kernels.
By requiring that the kernel Ki is explicitly computed at each step alongside Ai ,
our definition implies a query time of zero for computing Ki . However, solving the
query (Hi , k) ∈? Q using Ki may take exponential time in k. Concerning the update
times, an efficient dynamic kernel algorithm should of course compute Ai and Ki

faster than a static kernelization that processes Hi completely. The best one could
hope for is constant time for the initialization and per update, even independent of the
parameter k – and this is exactly what we achieve in this paper.

Data Structures forDynamicAlgorithms:The Ai rely on data structures such as objects
and arrays. We additionally use a novel data structure called relevance list, which are
ordinary lists equipped with a relevance bound ρ ∈ N: the first ρ elements are said to
be relevant, while the others are irrelevant. This data structure supports insertion and
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deletion, querying the relevance status of an element, and querying the last relevant
element – each in O(1) time. For concrete implementations and an analysis, see the
appendix.

3 Dynamic Vertex Cover with Constant Update Time

In order to better explain the ideas behind our dynamic kernel algorithm, we first
tackle the case d = 2 in this section and show how we can maintain kernels of size
O(k2) for the vertex cover problem with update time O(1). The idea is based on a
well-known static kernel: Buss [19] noticed that in order to cover all edges of a graph
G = (V , E) with k vertices, we must pick any vertex with more than k neighbors (let
us call such vertices heavy). If there are more than k2 edges after all heavy vertices
have been picked and removed, no vertex cover of size k is possible, since each light
vertex can cover at most k edges (light vertices being all but the heavy ones).

To turn this idea into a dynamic kernel, let us first consider only insertions. Initially,
new edges can simply be added to the kernel; but at some point a vertex v “becomes
heavy.” In the static setting one would remove v from the graph and decrease the
parameter by 1. In the dynamic setting, however, removing v with its adjacent edges
would take time O(k) rather than O(1). Instead, we leave v in the graph, but do not
add further edges containing v to the kernel once v becomes heavy. We call the first
k+1 edges relevant for the vertex and the rest irrelevant. By putting the relevant edges
of a heavy vertex in the kernel, we ensure that this vertex still must be chosen for any
vertex cover. By leaving out the irrelevant edges, we ensure a kernel size of at most
O(k2). More precisely, if the kernel size now threatens to exceed k2 + k + 1, then
any additional edges will be irrelevant for the kernel since the already inserted edges
already form a proof that no size-k vertex cover exists.

Being relevant for a vertex is a “local” property: For an edge e = {u, v}, the vertex u
may consider e to be relevant, while v may consider it to be irrelevant. An edge only
“makes it to the kernel” when it is relevant for both endpoints – then it will be called
needed. It is not obvious that this is how the case of a “disagreement” should be
resolved and that this is the right notion of “needed edges” – but Lemma 3 shows that
it leads to a correct kernel.

A Dynamic Vertex Cover Kernel Algorithm: We turn the sketched ideas into a formal
algorithm in the sense of Definition 2. The initialization sets up the auxiliary data
structures for a hypergraph with n vertices and a parameter k: One relevance list Lv

with relevance bound k + 1 per vertex v (to keep track of the edges that are relevant
for v) and one relevance list L (to keep track of the edges that are relevant for the
kernel). The code violates the requirement that the initialization procedures should
run in constant time, but a trick [28] for ensuring this will be discussed in the general
hitting set case.

1 method DynKernelVC.init(n, k) // V = {v1, . . . , vn} holds by definition
2 for v ∈ V do
3 Lv ← new relevance list(k + 1) // Keep track of relevant edges for a vertex

4 L ← new relevance list(k2 + k + 1) // Keep track of edges for the kernel
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The insert operation adds an edge e to the relevance lists of both endpoints of e.
Furthermore, it also adds e to L if it is needed, which meant “relevant for both sides”.

5 method DynKernelVC.insert(e)
6 Lu .append(e); Lv.append(e)
7 check if needed(e)
8
9 function check if needed(e) // assume e = {u, v}

10 if Lu .is relevant(e) ∧ Lv.is relevant(e) then
11 L.append(e)

The delete operation for an edge e is more complex: When e = {u, v} is removed
from the lists Lu , Lv , and L , formerly irrelevant edges may suddenly become relevant
from the point of view of these three lists and, thus, possibly also needed. Fortunately,
we knowwhich edge e′ may suddenly have become relevant for a list: After the removal
of e, the edge e′ that is now the last relevant edge stored in the list is the (only) one
that may have become relevant – and relevance lists keep track of the last relevant
element.

12 method DynKernelVC.delete(e) // assume e = {u, v}
13 L.delete(e)
14 Lu .delete(e); Lv.delete(e)
15 check if needed(Lu .last relevant); check if needed(Lv.last relevant)

Correctness and Kernel Size: The relevant edges in L clearly have some properties
that we would expect of a kernel: First, there are at most k2 + k + 1 of them (for the
simple reason that L caps the number of relevant edges in line 4) – which is exactly
the size that a kernel should have. Second, it is also easy to see from the code of the
algorithm that all operations run in time O(1). Two lemmas make these observations
precise, where R(L) denotes the set of relevant edges in a list L and E(L) denotes
all edges in L; and where we say that a dynamic algorithm maintains an invariant if
that invariant holds for its auxiliary data structure right after the init method has been
called and after every call to insert and delete.

Lemma 1 DynKernelVC maintains the invariant |R(L)| ≤ k2 + k + 1.

Proof of Lemma 1 The relevance list L is setup in line 4 to have the claimed number
of relevant elements at most.

Lemma 2 DynKernelVC.insert and DynKernelVC.delete run in time O(1).

Proof of Lemma 2 The codes itself clearly only need timeO(1) and call only operations
on relevance lists, all of which run in constant time.

The crucial, much less obvious property of the algorithm is stated in the next
lemma, whose proof contains a non-trivial recursive analysis showing that irrelevant
edges must already be covered by relevant edges inserted earlier.

Lemma 3 DynKernelVC maintains the invariant that (V , R(L)) and the current
graph (V , E) have the same size-k vertex covers.
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Proof of Lemma 3 One direction is trivial since R(L) ⊆ E . For the other direction,
consider a size-k vertex cover X of R(L), that is, a set X with |X | = k and X ∩ e �= ∅
for all e ∈ R(L). We need to show that X ∩ e �= ∅ holds for all e ∈ E . We distinguish
three cases: e ∈ R(L), e ∈ E(L) − R(L), and e ∈ E − E(L).

Case 1: The edge is in L and is relevant. The first case is trivial: If e ∈ R(L), then
by assumption we have X ∩ e �= ∅ as claimed.

Case 2: The edge is in L, but is irrelevant. For the second case, we need an obser-
vation:

Claim 1 The degree of vertices in (V , R(L)) is at most k + 1.

Proof Consider any v ∈ V . All edges in R(L) that contain v must be relevant edges
with respect to Lv since the function check if needed only allows such edges to enter L .
However, the init method sets Lv to contain at most k + 1 relevant edges.
Using this observation, we see that the second case (e ∈ E(L)−R(L)) cannot happen:
L can only have an irrelevant edge if there are already k2+k+1 relevant edges in R(L).
However, by the claim, each of the k many x ∈ X covers at most k+1 edges in R(L),
implying that X covers at most k(k+1) = k2+k edges of R(L). In particular, contrary
to the assumption, one edge of R(L) is not covered by X .

Case 3: The edge is not even in L. For the third case, let e ∈ E − E(L), that is,
let e = {u, v} be an edge that “did not make it into the L list.” This can only happen
because it was irrelevant for Lu or Lv (or both).

Recall that when e is irrelevant for a list Lu , this means that u has more than k + 1
adjacent edges in E and, hence, u must be present in any vertex cover of G = (V , E).
If all the relevant edges of u are also present in R(L), then u has exactly k + 1
neighbors in the graph (V , R(L)) and, in particular, its vertex cover X must include u.
Unfortunately, it may happen that even though a vertex u has some irrelevant adjacent
edges in E , not all relevant edges of Lu make it into L: After all, the other endpoint v
of an edge e = {u, v} may also have irrelevant adjacent edges and e may happen to be
one of them. We can now try to apply the same argument to v; but may again find yet
another edge e′ and another vertex w that causes v to have a degree less than k + 1 in
R(L). Fortunately, it turns out that after a finite number of steps, we arrive at a vertex
that must be present in X . Furthermore, starting from this vertex, we can track back
to show that eventually we must have u ∈ X . The details are as follows.

Claim 2 There is an ordering u1, . . . , uq of the vertices of degree at least k + 1 in E
such that for each i ∈ {1, . . . , q} there are at least k + 1 − (i − 1) edges in R(L) of
the form {ui , v} with v /∈ {u1, . . . , ui−1}.
Proof In the current graph G, each edge e has a time te when it entered the graph and
these times define a total order on the edges in E . For each vertex v, let l(v) be the last
relevant edge of Lv , that is, the edge returned by Lv.last relevant. Order the vertices
of degree at least k + 1 in E according to the following rule: For i < j we must have
that tl(ui ) ≤ tl(u j ) (if two vertices ui and u j happen to have the same last relevant edge,
they can be ordered arbitrarily).

Consider any ui . Then all edges from ui to any vertex v /∈ {u1, . . . , ui−1} are
relevant for Lv since the last relevant edge of Lv is an edge that came later than the
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edge {ui , v} and, hence, {ui , v} is relevant for Lv . However, this means that the only
edges of R(Lui ) that do not get passed to L can be those of the form {ui , u j } for some
j ∈ {1, . . . , i − 1}. Clearly, since Lui has k + 1 relevant edges and only i − 1 do not
get passed, we get the claim.

We can use this claim to show {u1, . . . , uq} ⊆ X : We show by induction on i that
{u1, . . . , ui } ⊆ X holds. The case i = 0 is trivial. For the inductive step from i−1 to i ,
consider ui . By the claim, there are k + 1− (i − 1) edges in R(L) from ui to vertices
v /∈ {u1, . . . , ui−1}. Since by the induction hypothesis we have {u1, . . . , ui−1} ⊆ X , if
we do not have ui ∈ X , then the set X −{u1, . . . , ui−1} must contain enough vertices
to cover the (k + 1) − (i − 1) edges between ui and vertices not in {u1, . . . , ui−1}.
However, |X − {u1, . . . , ui−1}| ≤ k − (i − 1) and, thus, this is impossible.

This concludes the third case: If e ∈ E − E(L), then one or both elements of e
must be one of the ui – and we just saw that all of them are in X . Hence, X ∩ e �= ∅.

Put together, we get the following special case of Theorem 1:

Theorem 3 DynKernelVC is a dynamic kernel algorithm for pk-vertex-cover with
update time O(1) and kernel size k2 + k + 1.

Proof of Theorem 3 Lemmas 1, 2, and 3 together state that at all times during a run of
the algorithm DynKernelVC the graph (V , R(L)) has at most k2 + k + 1 edges and
has the same size-k vertex covers as the current graph. Thus, (V , R(L)) is almost a
kernel except that R(L) is actually a linked list of edges (with potentially large vertex
identifiers).

However, we can simultaneously keep track of an adjacency matrix of a graph K
with the vertex set VK = {1, . . . , 2(k2 + k + 1)} and with an edge set EK that is
always isomorphic to R(L), that is, EK ∼ R(L). In particular, K has a size-k hitting
set if, and only if, G has one.

The update times are constant. The time needed for DynKernelVC.init(n, k) can be
made constant with the already mentioned trick [28], see Lemma 16.

4 Dynamic Hitting Set Kernels

Thehitting set problem is a generalization of vertex-cover to hypergraphs.However,
allowing larger hyperedges introduces considerable complications into the algorithmic
machinery. Nevertheless, we still seek and prove an update time that is constant. More
precisely, it is independent of n = |V |, m = |E |, and the parameter k, while it does
depend on d (in fact even exponentially). Such an exponential dependency on d seems
unavoidable, since a direct consequence of our dynamic algorithm is a static algorithm
with running time 3d poly(d) · m, and the currently best static algorithm runs in time
2d poly(d) · m.

The first core idea of our algorithm concerns a replacement notion for the “heavy
vertices” from the previous section. Sunflowers [29] are usually a stand-in (see [5,
Section 9.1] and [8, 30]), but they are hard to find and especially hard to manage
dynamically. Instead, we use an idea first proposed by Fafianie and Kratsch [6], but
adapted to our dynamic setting: a generalizations of sunflowers, which we call b-
flowers for different parameters b ∈ N that will be easier to keep track of dynamically.
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a

bc

d e f g

Fig. 1 A hypergraph H = ({a, b, c, d, e, f , g}, E) in which each hyperedge e ∈ E is drawn as a line and
contains all vertices it “touches”. The three red edges form a 1-flower (a sunflower) with core {a, b}. The
hyperedges

{{a, c}, {a, d}, {a, g}, {a, b, e}} also form a 1-flower, now with with core {a}, but if we add the
hyperedges {a, b, f } and {a, c, d}, we no longer have a 1-flower – but still a 2-flower with core {a}. All
edges together form a 3-flower with core {a}

The second core idea is to recursively reduce each case d to the case d − 1: For a
fixed d > 2, we compute a set of hyperedges relevant for the kernel (the set R(L),
but now called R(Ld [∅]) in the more general case), but additionally we dynamically
keep track of an instance for pk-(d − 1)-hitting-set and merge the dynamic kernel
for this instance (which we get from the recursion) with the list of hyperedges relevant
for the kernel.

4.1 FromHigh-Degree Vertices in Graphs to Flowers in Hypergraphs

A sunflower in a d-hypergraph H = (V , E) is a collection of hyperedges S ⊆ E such
that there is a set c ⊆ V , called the core, with x ∩ y = c for all distinct pairs x, y ∈ S.
For example, the edges adjacent to a heavy vertex v form a (large) sunflower with
core {v}. In general, any size-k hitting set has to intersect with the core of a sunflower
if it has more than k edges – whichmeans that replacing large sunflowers by their cores
is a reduction rule for pk-d-hitting-set. This rule yields a kernel since the Sunflower
Lemma [29] states that every d-hypergraph with more than kd ·d! hyperedges contains
a sunflower of size k + 1.

Unfortunately, it is not easy to find sunflowers for larger d in the first place, let
alone to keep track of them in a dynamic setting with constant update times. Rather
than trying to find all sunflowers, we use a more general concept called b-flowers.
We remark that we introduce this notation here to illustrate the general idea of the
algorithm, but we will only need the definition later in Lemma 10 to prove the kernel
properties.

Definition 3 For a hypergraph H = (V , E) and b ∈ N, a b-flower with core c is a set
F ⊆ E such that c ⊆ e for all e ∈ F and deg(V ,F)(v) ≤ b for all v ∈ V − c.

Note that a 1-flower is exactly a sunflower and, thus, b-flowers are in fact a gener-
alization of sunflowers, see Fig. 1 for an example.

The following property of b-flowers is essential for our dynamic kernelization
strategy (it implies that we can replace large flowers by their cores):

Lemma 4 Let F be a b-flower with core c in H and X a size-k hitting set of H. If
|F | > b · k, then X ∩ c �= ∅ (“X must hit c”).
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Proof of Lemma 4 If we had X ∩ c = ∅, then each v ∈ X could hit at most b hyper-
edges in F since deg(V ,F)(v) ≤ b. Then F can contain at most b · |X | hyperedges,
contradicting |F | > b · k.

4.2 Dynamic Hitting Set Kernels: A Recursive Approach

As previously mentioned, the core idea behind our main algorithm is to recursively
reduce the case d to d − 1. To better explain this idea, we illustrate how the (already
covered) case d = 2 can be reduced to d = 1 and how this in turn can be reduced
to d = 0. Following this, we present the complete recursive algorithm, prove its
correctness, and analyze its runtime.

Recall that DynKernelVC adds up to k + 1 edges per vertex v into the kernel
R(L) to ensure that v “gets hit.” In the recursive hitting set scenario we ensure this
differently: When we notice that v is “forced” into all hitting sets, we add a new
hyperedge {v} to an internal 1-hypergraph used exclusively to keep track of the forced
vertices (clearly the only way to hit {v} is to include v in the hitting set).When, later on
after a deletion, we notice that a singleton hyperedge is no longer forced, we remove it
from the internal 1-hypergraph once more. Since we have to ensure that not too many
new hyperedges make it into the final kernel, we keep track of a dynamic kernel of
the internal 1-hypergraph (using a dynamic kernel algorithm for d = 1) and then join
this kernel with R(L).

Using a hypergraph to track the forced vertices allows us to change the relevance
bounds of the algorithm: For the lists Lv these were k + 1, but since we explicitly
“force” {v} into the solution by generating a new hyperedge, it is enough to set the
bound to k. Similarly, the bound for the original list L was set to k2 + k + 1 since
this constitutes a proof that no size-k vertex cover exists. In the new setting with the
relevance bound for Lv lowered to k, we can also lower the relevance bound for L to
k2: All vertices v ∈ V have a degree of at most k in R(L) and, thus, k vertices can
hit at most k2 hyperedges. If L contains more elements, we consider the (unhittable)
empty hyperedge as forced and add it to the 1-hypergraph.

In order to dynamically keep track of a kernel for the internal 1-hypergraph, we
proceed similarly: We simply put all its hyperedges (which have size 1 or 0) in a list
(called L1[∅] in the algorithm). If the number of hyperedges in this list exceeds k, we
immediately know that no hitting set of size k exists; and we “recursively remember
this” by inserting the empty set into yet another internal 0-hypergraph – this is the
recursive call to d = 0.

ManagingNeeded andForcedHyperedges: In the general setting (now for arbitrary d),
we need a uniform way to keep track of lists like the Lv and L for the many different
internal hypergraphs. We do this using arrays Li for i ∈ {0, . . . , d}with domains

( V
≤i

)
,

one for each i-hypergraph, where each Li [s] stores a relevance list. The list Li [s] has
relevance bound ki−|s| and we only stores edges e ∈ ( V

≤i

)
with e ⊇ s in it.

The idea behind this construction is as follows. For d = 2 the list L2[{v}] represents
the list Lv of DynKernelVC and L2[∅] represents the list L . The lists L2[{u, v}] are
new and will only store a single element and are only added to simplify the code:
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Fig. 2 The data stored in the lists L2, L1, and L0 for k = 3 and a dynamic 2-hypergraph with 16 (orange)
vertices created with 19 edge insertions (numbers indicate insertion times; there are no deletions in this
example). Normal edges are shown as straight lines, singleton edges {v} as circles around v, and the empty
set as an empty circle. In L2, the members of L2[∅] are drawn in black. They are all relevant for both
endpoints and thus needed in L2[∅]. The red edges are not relevant for one of the endpoints and thus neither
needed in nor added to L2[∅]. Among the black edges, only the first k2 = 9 are relevant, the rest (dotted) are
irrelevant. In L1, we store the “forced s” that L2 forces into L1 at the indicated timestamps: each time, it is
the first time an irrelevant edge e is inserted into L2[s]. After the first three s (two singletons at timestamps
6 and 10 and then the empty set at timestamp 13) got inserted into L1[∅], further edges are irrelevant and
trigger the insertion of the empty set into L0[∅]

When an edge e = {u, v} is inserted into the 2-hypergraph, we add it to L2[e], but
more importantly also to L2[{u}] and L2[{v}]. If it is relevant for both lists, we call it
needed and add it also to L2[∅]. If L2[s] contains an irrelevant edge, then s is forced,
and we insert it into L1[s]. For L1, the array that manages the internal 1-hypergraph,
we have similar rules for being needed and forced. An example of how this works is
shown in Fig. 2. The next two definitions generalize the idea of needed and forced
hyperedges to arbitrary d and lie at the heart of our algorithm. The earlier rules for
d = 2 are easily seen to be special cases:

Definition 4 (Needed Hyperedges and the Need Invariant) A hyperedge e is needed
in a list Li [s] with s � e if e ∈ R(Li [t]) holds for all t ⊆ e with s � t . A dynamic
algorithm maintains the Need Invariant if for all e ∈ ( V

≤d

)
, all s � e, and for all

i ∈ {0, . . . , d} the list Li [s] contains e iff e is needed in it.

Definition 5 (Forced Hyperedges and the Force Invariant) A set of vertices s is forced
by Li [s] into Li−1[s] or just forced by Li [s] if Li [s] has an irrelevant hyperedge.
A dynamic algorithm maintains the Force Invariant if for all i ∈ {1, . . . , d} and all
s ∈ ( V

<i

)
, the list Li−1[s] contains s iff s is forced by Li [s].

We will show in Lemmas 9 and 12 that the union K = ⋃d
i=0 R(Li [∅]) is the sought

kernel: Each R(Li [∅]) contains (only) those hyperedges e that have not already been
taken care of by having forced a subset s of e into the internal (i − 1)-hypergraph.

In the following, we develop code that ensures that the Need Invariant and the
Force Invariant hold at all times. We will show that this is the case both for an insert
operation and also for delete operations. Then we show that the invariants imply that
K = ⋃d

i=0 R(Li [∅]) is a kernel for the hitting set problem. Finally, we analyze the
runtimes.
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Initializiation The initialization creates the arrays Li and the relevance lists.

1 method DynKernelHS.init(n, k, d)

2 // Keep track of relevant edges per vertex (V = {v1, . . . , vn} holds by definition):
3 for i ∈ {0, . . . , d} do
4 Li ← new array

(( V
≤i

))
initialized with

5 (new relevance list(ki−|s|)) for s ∈ ( V
≤i

)

The construct new array(D) initialized with f (s) for s ∈ D allocates a new array
with domain D and then immediately set the value of each entry s ∈ D to f (s). (So, in
our case, each Li [s] will be a new, empty relevance list with relevance bound ki−|s|.)
The important point is that both allocation and pre-filling can be done in constant time
using the standard trick to work with uninitialized memory [28].

Independently of the time needed for the allocation, observe that the amount of
memorywe allocate is about O(nd ) –which is already toomuch in almost any practical
setting for d = 3, see [31, Chapter 5] for a discussion of experimental findings.
However, we will only use a very small fraction of the allocated memory: The only
lists Li [s] that are non-empty at any point during a run of the algorithms are those
where s ⊆ e ∈ E holds. This means that we actually only need space O(2d |E |) to
manage the non-empty lists if we use hash tables. Of course, this entails a typically
non-constant overhead per access for managing the hash tables, which is why our
analysis is only for the wasteful implementation above. For a clever way around this
problem in the static setting, see [8].

Lemma 5 The Need and Force Invariant hold after the init method has been called.

Proof of Lemma 5 All lists are empty after the initialization.

InsertionsWe view insertions as a special case of “forcing an edge,” namely as forcing
it into the lists of Ld . Adding an edge e to a list Li [e] can, of course, change the set
of relevant edges in Li [e], which means that e may also be needed in lists Li [s] for
s � e. It is the job of the method fix needs downward to add e to the necessary lists.

6 method DynKernelHS.insert(e)

7 call insert(e, d) // The hyperedges of H always get inserted into Ld

8
9

10 function insert(s, i)

11 if Li [s] does not already contain s then // Sanity check

12 Li [s].append(s) // s is always needed in Li [s]
13 call fix force(s, i)
14 call fix needs downward(s, s, i)
15
16 function fix needs downward(s, p, i)

17 // Ensure that the Need Invariant holds for s with respect to all Li [s′] with
18 // s′ ⊆ p, assuming that the Need Invariant holds for

19 // s with respect to all Li [s∗] with s∗ ⊇ p:

20 for s′ � p in decreasing order of size do // Add s to all Li [s′] where s is needed
21 if Li [s′] does not contain s then // Sanity check

22 if ∀v ∈ p − s′ : s ∈ R(Li [s′ ∪ {v}]) then // Is s needed for Li [s′]?
23 Li [s′].append(s) // is relevant for all its direct and hence all its supersets
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24 call fix force(s′, i)
25
26 function fix force(s, i)

27 if Li [s].has irrelevant elements then // Is s forced?
28 call insert(s, i − 1)

The method fix needs downward is more complex than necessary here, but we will
need the extra flexibility for the delete method later on: For two sets of vertices s and
p with s ⊇ p and a fixed number i , let us say that the Need Invariant holds for s above
p if for all s′ ⊇ p we have s ∈ E(Li [s′]) iff s is needed for Li [s′]. Let us say that the
Need Invariant holds for s below s′ if for all s′ ⊆ p we have s ∈ E(Li [s′]) iff s is
needed for Li [s′]. In the context of the insert operation, fix needs downward always
gets called with s = p, meaning that in the following lemma the premise (“the Need
Invariant holds for s above p”) is trivially true.

Lemma 6 Let s and p with s ⊇ p be sets of vertices and let i be fixed. Suppose the
Need Invariant holds for s above p. Then after the call fix needs downward(s, p, i)
the Need Invariant will also hold for s′ below p.

Table 1 Handling of an insertion for d = 3 and k = 2. The upper part shows for selected relevance lists a
snapshot of their relevant elements (left), their irrelevant elements (right), the list lengths, and the relevance
bounds. In lines Li [s] where the length exceeds the bound (in red), s is forced into Li−1[s]. The insertion
of e = {u, v, w} triggers: (i) e is added to the list L3[e]; (ii) since e is relevant in L3[e], it is added to the
lists for {u, v}, {u, w}, and {v, w} as well; (iii) e becomes needed in L3[{u}] and gets inserted; (iv) since
L3[{u}] was already at maximum capacity (k2 = 4), e becomes the first irrelevant element in this list; (v)
this forces {u} into L2[{u}]; (vi) there {u} is the first element and hence relevant and also needed in L2[∅],
where it gets inserted. Let R(Li [s]) be the set of non-relevant edges E(Li [s]) \ R(Li [s])
E(Li [s]) = R(Li [s]) ∪ R(Li [s]) size≤bound?

E(L3[{u, v, w}]) = ∅ ∪ ∅ 0 ≤ k0 = 1

E(L3[{u, v}]) = {{u, v, x}} ∪ ∅ 1 ≤ k1 = 2

E(L3[{v}]) = {{u, v, x}} ∪ ∅ 1 ≤ k2 = 4

E(L3[{u}]) = {{u, v, x}, {u}, {u, x, y}, {u, z}} ∪ ∅ 4 ≤ k2 = 4

E(L3[∅]) = {{u, v, x}, {u}, {u, x, y}, {u, z}} ∪ ∅ 4 ≤ k3 = 8

E(L2[{u}]) = ∅ ∪ ∅ 0 ≤ k1 = 2

E(L2[∅]) = ∅ ∪ ∅ 0 ≤ k2 = 4

Insertion of e = {u, v, w} now yields:

E(L3[{u, v, w}]) = {{u, v, w}} ∪ ∅ 1 ≤ k0 = 1

E(L3[{u, v}]) = {{u, v, x}{u, v, w}} ∪ ∅ 2 ≤ k1 = 2

E(L3[{v}]) = {{u, v, x}{u, v, w}} ∪ ∅ 2 ≤ k2 = 4

E(L3[{u}]) = {{u, v, x}, {u}, {u, x, y}, {u, z}} ∪ {{u, v, w}} 5 > k2 = 4

E(L3[∅]) = {{u, v, x}, {u}, {u, x, y}, {u, z}} ∪ ∅ 4 ≤ k3 = 8

E(L2[{u}]) = {{u}} ∪ ∅ 1 ≤ k1 = 2

E(L2[∅])= {{u}} ∪ ∅ 1 ≤ k2 = 4
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Proof of Lemma 6 We need to show that the code ensures for all s′ ⊆ p that if s
is needed in Li [s′], it gets inserted. It is the job of line 22 to test whether such an
insertion is necessary. The line tests whether ∀v ∈ p − s′ : s ∈ R(Li [s′ ∪ {v}]) holds.
By Definition 4 of needed hyperedges, what we are supposed to test is whether for
all t ⊆ s with s′

� t we have s ∈ R(Li [t]). Observe that the property of being
needed is “upward closed”: if s is needed in Li [p], it is also needed in all Li [s∗] with
p ⊆ s∗ ⊆ s. This implies that by processing the hyperedges s′ in descending order
of size (line 20), s will be needed for Li [s′] iff s is needed for all the hyperedges
t = s′ ∪ {v} that are one element larger than s. This is exactly what we test.

Lemma 7 The Need and Force Invariant are maintained by the insert method.

Proof of Lemma 7 For the Need Invariant, observe that whenever the fix force method
adds an edge s to Li [s] in line 12, it calls fix needs(s, s, i). By Lemma 6, this ensures
that s is inserted exactly into those Li [s′] for s′ ⊆ s where it is needed. For the Force
Invariant, observe that we only add elements to lists of Li , which means that they
can only become forced – they cannot lose this status through an addition of an edge.
However, after any insertion of s into any list of Li (in lines 12 and 23) we immediately
call fix forced, which inserts s into Li−1[s] if s is forced.
Deletions: The delete operation has to delete an edge e from all places where it might
have been inserted to, which is just from all lists Ld [s] for s ⊆ e. However, removing
e from such a list can have two side-effects: First, it can cause Ld [s] to lose its last
irrelevant element, changing the status of s from “forced” to “not forced” and we need
to “unforce” it (remove it from Ld−1[s]), which may recursively entail new deletions.
Furthermore, removing e from Ld [s] may make a previous irrelevant hyperedge (the
first irrelevant hyperedge of Ld [s]) relevant. Then one has to fix the needs for this
hyperedge oncemore, whichmay entail new inserts and forcings, but no new deletions
(see Table 2).

29 method DynKernelHS.delete(e)
30 call delete(e, d)

31
32
33 function delete(s, i)

34 if Li [s] contains s then // Sanity check
35 // Delete s and subsets of s if no longer forced
36 for s′ ⊆ s do
37 Li [s′].delete(s) // Delete e from all lists that could contain it

38 if not Li [s′].has irrelevant elements then // Has s′ lost its forced status?
39 call delete(s′, i − 1)
40
41 // Restore Need Invariant for hyperedges that have suddenly become relevant
42 for s′ ⊆ s do
43 f ← Li [s′].last relevant
44 call fix needs downward( f , s′, i) // the last relevant may have changed

Lemma 8 The Need and Force Invariant are maintained by the delete method.
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Table 2 For the situation illustrated in the upper part, we delete the edge e = {u, v, w}. This triggers: (i) e
gets deleted from all L3[s] with s ⊆ e; (ii) {u, v, z} becomes relevant for {u, v} in L3; (iii) since that was
the last irrelevant edge for the set {u, v}, the edge {u, v} gets deleted from the graph represented by L2;
(iv) {u, z} becomes relevant for {u} in L2; (v) as this was the last irrelevant edge, {u} gets deleted from L1;
(vi) {u, z} becomes relevant for {u} and needed for L2[∅]; (vii) {u, v, z} is now also needed in L3[{u}] and,
thus, in L3[∅] as well. Let R(Li [s]) be the set of non-relevant edges E(Li [s]) \ R(Li [s])
E(Li [s]) = R(Li [s]) ∪ R(Li [s]) size≤bound?

E(L3[{u, v}]) = {{u, v, y}, {u, v, w}} ∪ {{u, v, z}} 3 > k1 = 2

E(L3[{u, y}]) = {{u, y, v}, {u, y, z}} ∪ {{u, y, x}} 3 > k1 = 2

E(L3[{u, z}]) = {{u, z, v}, {u, z, r}} ∪ {{u, z, y}} 3 > k1 = 2

E(L3[{u}]) = {{u, y, v}, {u, v, w}, {u, z, r}} ∪ ∅ 3 ≤ k2 = 4

E(L3[∅]) = {{u, y, v}, {u, v, w}, {u, z, r}} ∪ ∅ 3 ≤ k3 = 8

E(L2[{u}]) = {{u, v}, {u, y}} ∪ {{u, z}} 3 > k1 = 2

E(L2[∅]) = {{u, v}, {u, y}} ∪ ∅ 2 ≤ k2 = 4

E(L1[{u}]) = {{u}} ∪ ∅ 1 ≤ k0 = 1

E(L1[∅]) = {{u}} ∪ ∅ 1 ≤ k1 = 2

Deletion of e = {u, v, w} now yields:

E(L3[{u, v}]) = {{u, v, y}, {u, v, z}} ∪ ∅ 2 ≤ k1 = 2

E(L3[{u, y}]) = {{u, y, v}, {u, y, z}} ∪ {{u, y, x}} 3 > k1 = 2

E(L3[{u, z}]) = {{u, z, v}, {u, z, r}} ∪ {{u, z, y}} 3 > k1 = 2

E(L3[{u}]) = {{u, y, v}, {u, z, r}, {u, v, z}} ∪ ∅ 3 ≤ k2 = 4

E(L3[∅]) = {{u, y, v}, {u, z, r}, {u, v, z}} ∪ ∅ 3 ≤ k3 = 8

E(L2[{u}]) = {{u, y}, {u, z}} ∪ ∅ 2 ≤ k1 = 2

E(L2[∅]) = {{u, y}, {u, z}} ∪ ∅ 2 ≤ k2 = 4

E(L1[{u}]) = ∅ ∪ ∅ 0 ≤ k0 = 1

E(L1[∅]) = ∅ ∪ ∅ 0 ≤ k1 = 2

Proof of Lemma 8 Proving the Need and Force Invariants for the delete operation is
trickier than for the insert operation since a delete can, internally, trigger insert oper-
ations – namely in line 44. For this reason, we prove by induction on i that the Need
and Force Invariants still hold for all elements in all L j [s′] for j ≤ i , s′ ⊆ s after a
call to delete(s, i). For i = 0 this is trivial since the only possible s is ∅ and the loop
only considers s′ = ∅, deletes it from L0[∅], and does nothing else.

For the inductive step, first consider the Need Invariant on s. The loop removes s
from Li [s] and also from all Li [s′] (the loop from line 36 executes a remove operation
for each s′ ⊆ s in the next line). This ensures the Need Invariant on s. Next, observe
that removing a hyperedge from a list Li [s′] can only reduce the number of irrelevant
hyperedge, meaning that s′ can only change its status from forced to unforced. If this
happens, as tested in line 38, we recursively remove s′ from Li−1[s′]. By the induction
hypothesis, this will maintain the Need and Force Invariants on all the L j for j < i .
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While we have now correctly accounted for the needed and the forced status of s
and its subsets s′ ⊆ s, the removal of an edge s from a list Li [s′] can have a second
side-effect, besides (possibly) unforcing s′: It can also make a previously irrelevant
hyperedge relevant. This happens when, firstly, s used to be a relevant hyperedge in
Li [s′] and, secondly, there was a (first) irrelevant hyperedge f in Li [s]. In this case,
the mechanics of relevance lists automatically change the relevance status of f from
irrelevant to relevant. Note that at most one edge is deleted from Li [s′] during a call
of delete(s, i), namely s, and hence at most one hyperedge f can become relevant
per list Li [s′]. Note that more than one hyperedge can be deleted from the same list
Li−1[s′] by recursive calls during a single call of delete(s, i) – but by the induction
hypothesis the Need and Force Invariants are maintained by the calls delete(s′, i − 1).

When a hyperedge f becomes relevant in a list Li [s′], this may change the need
status of f in sets s′′

� s: Previously,wehad f /∈ R(Li [s′]) and, hence, f /∈ R(Li [s′′])
for all s′′

� s′. Now, however, f might be needed in some of the lists Li [s′′] “further
down.” To address this, we call fix needs( f , s′, i) in line 44, which will ensure that the
Need Invariant of f is fixed below s′ (see Lemma 6) provided the Need Invariant did
hold for f above s′. However this was the case: the very fact that f ∈ E(Li [s′]) used
to hold shows that f was already relevant and present everywhere above s′ (otherwise,
f would not have made it into Li [s′]). Since we do not know whether f was needed
before, a sanity check is in order to prevent edges from being inserted multiple times.

Crucially, observe that both the Need Invariant and the Force Invariant now hold for
all hyperedges whose relevance status may have changed, namely s (as shown earlier)
and all f in line 43. No other hyperedges in Li change their relevance status (and for
L j with j < i the invariants hold by the inductive assumption).

Kernel: As stated earlier, the kernel maintained by DynKernelHS is the set K =⋃d
i=0 R(Li [∅]). (K is given only indirectly via d linked lists, but one can do the same

transformations as in the proof of Theorem 3 to obtain a compact matrix representa-
tion.)

Correctness:Wehave already established that the algorithmmaintains theNeed Invari-
ant and the Force Invariant. Our objective is now to show that DynKernelHS does
maintain a kernel at all times. We start with the size:

Lemma 9 DynKernelHS maintains the invariant |K | ≤ kd + kd−1 + · · · + k + 1.

Proof of Lemma 9 The init-method installs a relevance bound of ki for Li [∅] for all
i ∈ {0, . . . , d}.

Lemma 12 shows the crucial property that the current K has a hitting set of size k
iff the current hypergraph does. The proof hinges on the following two lemmas on
“flower properties”:

Lemma 10 DynKernelHSmaintains the invariant that for all i ∈ {0, . . . , d} and all
s ∈ ( V

≤i−1

)
, the set E(Li [s]) is a ki−|s|−1-flower with core s.

Proof of Lemma 10 First, for all e ∈ E(Li [s]) we have s ⊆ e since in all places in the
insert-method where we append an edge e to a list Li [s], we have s ⊆ e (in line 12
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we have e = s and in line 23 we have s � e by line 20). Second, consider a vertex
v ∈ V − s. We have to show that deg(V ,E(Li [s]))(v) ≤ ki−|s|−1 (recall Definition 3)
or, spelled out, that v lies in at most ki−|s|−1 hyperedges e ∈ E(Li [s]). By the Need
Invariant, all e ∈ E(Li [s]) are needed. In particular, for t = s ∪ {v} Definition 4 tells
us e ∈ R(Li [t]). Therefore, we have { e ∈ E(Li [s]) | v ∈ e } ⊆ R(Li [s ∪ {v}]) and
the latter set has a maximum size of ki−|s∪{v}| = ki−|s|−1 due to the relevance bound
installed in line 5.

Lemma 11 DynKernelHS maintains the invariant that for all X ∈ ( V
≤k

)
and for all

i ∈ {1, . . . , d} and all s ∈ ( V
≤i

)
, if s is forced into Li−1 and if X hits all elements of

E(Li [s]), then X hits s.

Proof of Lemma 11 By Definition 5, “being forced into Li−1” means that Li [s] has
an irrelevant edge. In particular, |E(Li [s])| > ki−|s|. By Lemma 10, E(Li [s]) is a
ki−|s|−1-flower with core s. By Lemma 4, since |E(Li [s])| > ki−|s| = k · ki−|s|−1,
we know that X hits s, as claimed.

Lemma 12 DynKernelHS maintains the invariant that H and K have the same
size-k hitting sets.

Proof of Lemma 12 For the first direction, let X be a size-k hitting set of H = (V , E).
For i = d, i = d − 1, …, i = 1, and i = 0 we show inductively that all lists Li [s]
for all s ∈ ( V

≤i

)
only contain hyperedges that are hit by X . For i = d the claim is

trivial since the lists Ld [s] contain only edges from E , all of which are hit by X by
assumption. Now assume that the claim holds for i and consider any s ∈ Li−1[s′] for
some s′ ∈ ( V

≤i−1

)
. By the Need Invariant, this can only happen if s ∈ Li−1[s] holds.

By the Force Invariant, this means that s is forced by Li [s]. By Lemma 11, this means
that X hits s. Since X hits all hyperedges in all lists, it also hits all hyperedges in the
kernel, which is just a union of such lists.

For the second direction, let X be a size-k hitting set of K . Let e ∈ ( V
≤d

)
be

an arbitrary hyperedge (not necessarily in E). We show by induction on i that if
e ∈ E(Li [e]), then e gets hit by X . This will show that X hits all of H : The insert-
method ensures that for all e ∈ E we have e ∈ E(Ld [e]) and, hence, they all get hit
by X .

The case i = 0 is trivial since we can only have e ∈ L0[e] for e = ∅ and L0[∅]
is part of the kernel K and all its elements get hit by assumption (actually, ∅ ∈ K
means that the assumption that X hits the kernel is never satisfied; the implication is
true anyway). Next, consider a larger i and a hyperedge e ∈ E(Li [e]).

First assume that e ∈ E(Li [s]) − R(Li [s]) holds for some s ⊆ e. Then s is forced
by Li [s] since it contains an irrelevant edge (e). By the Force Invariant, we know that
s ∈ Li−1[s] and, by the inductive assumption, that X hits s. Since s ⊆ e, X hits e as
claimed.

Second assume that e /∈ E(Li [s]) − R(Li [s]) holds for all s ⊆ e. Suppose there is
an s ⊆ ewith e /∈ E(Li [s]). Then there is also an s that is inclusion-maximal, meaning
that for all t ⊆ e with s � t we have e ∈ E(Li [t]) and hence also e ∈ R(Li [t]) since
e /∈ E(Li [t]) − R(Li [t]). However, by definition, this means that e is needed in Li [s]
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and, hence, e ∈ E(Li [s]) contrary to the assumption. In particular, we now know that
for s = ∅we have e ∈ E(Li [s]) and, thus, also e ∈ R(Li [s]) = R(Li [∅]) ⊆ K . Since
X hits all of K , it also hits e, as claimed.

Run-Time Analysis: It remains to bound the run-times of the insert and delete opera-
tions.

Lemma 13 DynKernelHS.insert(e) runs in time 3d poly(d).

Proof of Lemma 13 The callDynKernelHS.insert(e)will result in at least one call of
insert(s, i): The initial call is for s = e and i = d, but the method fix forcemay cause
further calls for different values. However, observe that all subsequently triggered
calls have the property s � e and i < d. Furthermore, observe that insert(s, i) returns
immediately if s has already been inserted.We will establish a time bound tinsert(|s|, i)
on the total time needed by a call of insert(s, i) and a time bound t∗insert(|s|, i) where
we do not count the time needed by the recursive calls (made to insert in line 28), that
is, for a “stripped” version of the method where no recursive calls are made. We can
later account for the missing calls by summing up over all calls that could possibly be
made (but we count each only once, as we just observed that subsequent calls for the
same parameters return immediately). In a similar fashion, let us try to establish time
bounds tfix(|s′|, i) and t∗fix(|s′|, i) on the time needed (including or excluding the time
needed by calls to insert) by a call to the method fix needs downward(s, s′, i) (note
that, indeed, these times are largely independent of s and its size – it is the size of s′
that matters).

The starred versions are easy to bound: We have t∗insert(|s|, i) = O(1) + t∗fix(|s|, i)
as we call fix needs downward for s′ = s. We have t∗fix(|s′|, i) = 2|s′| poly |s′| since the
run-time is clearly dominated by the loop in line 20, which iterates over all subsets s′′
of s′. For each of these 2|s′| many sets, we run a test in line 22 that needs time O(|s′|),
yielding a total run-time of t∗fix(|s′|, i) = O(|s′|2|s′|). For the unstarred version we get:

tinsert(|s|, i) = t∗insert(|s|, i) + ∑
s′�s, j∈{|s′|,...,i−1} t∗insert(|s′|, j)

= t∗insert(|s|, i) + ∑|s|−1
c=0

(|s|
c

)

︸︷︷︸
number of s′⊆s with |s′|=c

∑i−1
j=c t

∗
insert(c, j)

Pluggin in the bound 2c poly(c) for t∗insert(c, j), we get that everything following the
binomial can be bounded by (d − c)2c poly(c) = 2c poly′(c). This means that the
main sum we need to bound is

∑|s|−1
c=0

(|s|
c

)
2c ≤ ∑|s|

c=0

(|s|
c

)
2c. The latter is equal to

3|s|, which yields the claim.

Lemma 14 DynKernelHS.delete(e) runs in time 5d poly(d).

Proof of Lemma 14 Similarly to the analysis of the insert method, let tdelete(|s|, i)
denote the run-time needed by delete(s, i) and let t∗delete(|s|, i) the time to delete
excluding the time needed by the recursive calls made to delete(s′, i − 1) inside this
method. In other words, we do not count the (huge) time actually needed in line 39,
where a recursive call is made, and will once more later on account for this time by
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summing over all tdelete(|s|, i); but t∗delete(|s|, i) will include the run-time needed for
the second loop, starting at line 42, where we (possibly) fix the Need Invariant for
many f (this loop does not involve any recursive calls to the delete method). Note
that – as in the insertion case – if there are multiple calls of delete(s, i) for the same s
and i , we only need to count one of them since all subsequent ones return immediately
(and could be suppressed).

A call to delete(s, i) clearly spends atmost time 2|s| poly |s| in the first loop (starting
on line 36) if we ignore the recursive calls. For the second loop, we iterate over all
s′ ⊆ s and for each of them we call fix needs downwards( f , s′, i):

t∗delete(|s|, i) = 2|s| poly |s| + ∑
s′⊆s tfix(|s′|, i).

With the bound of 3|s′| poly |s′| established in the proof of Lemma 13 for tfix(|s′|, i), we
can focus on bounding

∑
s′⊆s 3

|s′| = ∑|s|
c=0

(|s|
c

)
3c and this is equal to 4|s|. Therefore,

we have t∗delete(|s|, i) = 4|s| poly |s|. We can now bound the total run-time of the delete
method by summing over all recursive calls:

tdelete(|s|, i) = t∗delete(|s|, i) + ∑
s′⊆s, j∈{|s′|,...,i−1} t∗delete(|s′|, j).

Plugging in 4|s′| poly |s′| for t∗delete(|s′|, j) we get that the crucial sum is

∑
s′⊆s 4

|s′| = ∑|s|
c=0

(|s|
c

)
4c = 5|s|,

yielding tdelete(|s|, i) = 5|s| poly |s| as claimed.

Proof of Theorem 1 The claim follows from Lemmas 9, 12, 13, and 14.

5 Dynamic Set Packing Kernels

Like the static kernel [1], the dynamic kernel algorithm we have developed in the
previous section also works, after a slight modification, for the set packing problem,
which is the “dual” of the hitting set problem: Instead of trying to “cover” all hyper-
edges using as few vertices as possible, we must now “pack” as many hyperedges
as possible. These superficially quite different problems allow similar kernelization
algorithms because correctness of the dynamic hitting set kernel algorithm hinges
on Lemma 4, which states that every size-k hitting set X must hit the core of any
b-flower F with |F | > b · k. It leads to the central idea behind the complex man-
agement of the lists Li [s]: The lists Li [s] were all b-flowers for different values of b
by construction and the moment one of them gets larger than b · k, we stop adding
hyperedges to its relevant part and instead “switch over to the core s” by adding s to
Li−1[s]. It turns out that a similar lemma also holds for set packings:

Lemma 15 Let F be a b-flower with core c in a d-hypergraph H = (V , E) and let
|F | > b · d · (k − 1). If E ∪ {c} has a packing of size k, so does E.
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Proof of Lemma 15 Let P be the size-k packing of E ∪ {c}. If c /∈ P , we are done,
so assume c ∈ P . For each p ∈ P − {c}, consider the hyperedges in e ∈ F with
p ∩ e �= ∅. Since p has at most d elements v and since each v lies in at most b
different hyperedges of the b-flower F , we conclude that p intersects with at most
d · b hyperedges in F . However, this means that the (k − 1) different p /∈ P − {c} can
intersect with at most (k−1) ·b ·d hyperedges in F . In particular, there is a hyperedge
f ∈ F with f ∩ p = ∅ for all p ∈ P − {c}. Since F ⊆ E , we get that P − {c} ∪ { f }
is a packing of E of size k.

Keeping this lemma in mind, suppose we modify the relevance bounds of the
lists Li [s] as follows: Instead of setting them to ki−|s|, we set them to (d(k − 1))i−|s|.
Then all lists are b-flowers for a value of b such that whenever more than b · d(k − 1)
hyperedges are in Li [s], the set s gets forced into Li−1[s]. Lemma 15 now essentially
tells us that instead of considering the flower E(Li [s]), it suffices to consider the
core s. Thus, simply by replacing line 5 inside the init method as follows, we get a
dynamic kernel algorithm for pk-d-set-packing:

5 (new relevance list
((
d(k − 1)

)i−|s|)
) for s ∈ ( V

≤i
)

6 // Modified relevance bounds

Proof of Theorem 2 We have to show that there is an algorithm DynKernelSP that
is a dynamic kernel algorithm for pk-d-set-packing with at most

∑d
i=0(d(k − 1))i

hyperedges in the kernel, insertion time 3d poly(d), and deletion time 5d poly(d). For
this, we mainly need to show that an analogue of Lemma 12 holds, which stated that
DynKernelHS maintains the invariant that H and K have the same size-k hitting
sets. We now have to show for H = (V , E):

Claim 3 DynKernelSP maintains the invariant that E has a size-k packing if, and
only if, K does.

Proof We start with an observation: For every hyperedge e ∈ E there is a subset s ⊆ e
with s ∈ K . To see this, for a given e consider the smallest i such that there is an s ⊆ e
with s ∈ E(Li [s′]) for some s′ ⊆ s (such an i , s, and s′ must exist, since at least for
s = s′ = e and i = d we have the property s ∈ E(Li [s′])). If we have s ∈ R(Li [∅]),
we have s ∈ K as claimed. Otherwise, there must be an inclusion-maximal t ⊆ s′
such that s ∈ E(Li [t])− R(Li [t]) (as we have s /∈ R(Li [∅]), but s ∈ E(Li [s′])). But,
then, t would be forced into Li−1[t] and hence t ∈ E(Li−1[t]) would hold, violating
the minimality of i .

We now prove the claim by proving two directions. The first direction is easy:
Consider a packing P of E . By the above observations, for every p ∈ P there is a set
sp ∈ K with sp ⊆ p. Then {sp | p ∈ P} is a packing of size k in K .

For the second direction, let P be a packing of K of size k. For some number
i ∈ {0, . . . , d} let Ai = ⋃

s∈( V
≤i)

E(Li [s]) be the set of all hyperedges “mentioned

in Li [s] for some s” and let Bi = ⋃d
j=i A j be the “hyperedges mentioned in some

Ld [s], Ld−1[s], …, Li [s] for some s.” Observe that K ⊆ B0 and that E = Ad = Bd

(since e ∈ Ld [e] holds for all e ∈ E and no edges e /∈ E make it into any Ld [s]).
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Since P is a packing of K ⊆ B0, we know that B0 has a size-k packing. We show by
induction on i that all Bi have a size-k packing and, hence, in particular Bd = E as
claimed.

For the inductive step, let Bi−1 have a size-k packing and let P be one of these with
the minimum number of elements that do not already lie in Bi (that is, which lie only
in Ai−1). If the number is zero, P is already a size-k packing of Bi ; so let p ∈ P − Bi .
By the force property, a hyperedge p can lie in Ai−1 only because it was forced, that
is, because Li [s] has an irrelevant hyperedge. This means that E(Li [s]) ⊆ Bi is a
(d(k − 1))i−|s|−1-flower (by Lemma 10 where we clearly just have to replace k by
d(k − 1)). Since |E(Li [s])| is larger than the relevance bound of (d(k − 1))i−|s|,
Lemma 15 tells us that there is a set f ∈ E(Li [s]) such that P − {p} ∪ { f } is also
a packing of Bi . Since f ∈ Bi , this violates the assumed minimality of P . Thus, P
must be a size-k packing of Bi .

Clearly, the analysis of the kernel size and of the runtimes is identical to the hitting
set case, yielding the claim.

6 Conclusion

We introduced a fully dynamic algorithm that maintains a pk-d-hitting-set kernel
of size

∑d
i=0 k

i ≤ (k + 1)d with update time 5d poly(d) – which is a constant,
deterministic, worst-case bound – and zero query time. Since pk-d-hitting-set has
no kernel of size O(kd−ε) unless coNP ⊆ NP/poly [17], and since the currently best
static algorithm requires time |E | · 2d poly(d) [18], this paper essentially settles the
dynamic complexity of computing hitting set kernels. While it seems possible that the
update time can be bounded even tighter with an amortized analysis, we remark that
this could, at best, yield an improvement from the already constant worst-case time
5d poly(d) to an amortized time of 2d poly(d).

Our algorithm has the useful property that any size-k hitting set of a kernel is a
size-k hitting set of the input graph. Therefore, we can also dynamically provide the
following “gap” approximationwith constant query time:Given a dynamic hypergraph
H and a number k, at any time the algorithm either correctly concludes that there is
no size-k hitting set, or provides a hitting set of size at most

∑d
i=0 k

i . With a query
time that is linear with respect to the kernel size, we can also greedily obtain a solution
of size dk, which gives a simple d-approximation. A “real” dynamic approximation
algorithm, however, should combine the concept of α-approximate pre-processing
algorithms [32, 33] with dynamic updates of the hypergraph. This seems manageable
if we allow only edge insertions, but a solution for the general case is not obvious to
us.
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Appendix A Appendix: Implementation Details of Data Structures

The dynamic kernel algorithms thatwe present in this paper internally employ different
standard dynamic data structures like linked lists or small arrays that allow update
operations in time O(1). In the following, for completeness, we sketch how these
basic data structures can be implemented so that all basic operations work in constant
time.

Objects: We will often store and treat mathematical entities like edges or sequences
as objects in the sense of object-oriented programming. As is customary, they are
just blocks of memory storing the object’s current attributes and the object can be
referenced with a pointer to the start of the memory block. For an object X we write
X .attribute for the current value of an attribute.

Arrays: By arrays we refer to the usual notion of arrays that store a value for each
index number from an immutable domain D = {1, . . . , r}. We write A[i] for the
value stored at position i ∈ D, write A[i] ← v to indicate that we store the value v

(typically an object or a number) at the i th position in A and we write A[i] = ⊥ to
indicate that nothing is stored at an address i . In order to allocate a new array, we
write A ← new array(D) initialized with f (s) for s ∈ D, whose semantics is the
following:

1 A ← allocate an uninitialized block of |D| units
2 for s ∈ D do
3 A[s] ← f (s)

Of course, implemented this way, while the allocation of an uninitialized memory
block in line 1 will take constant time on a normal operating system, filling the array
with initial values in the for-loop will take time O(|D|t f ), where t f is the time needed
to compute f . However, a trick [28] allows us to perform this initialization in constant
time:

Lemma 16 Let the time needed to allocate an uninitialized array of size |D| (so the
initial content can be random) be constant and let t f be the time needed to compute
the function f . Then A ← new array(D) initialized with f (s) for s ∈ D can be
implemented in such a way that it runs in time O(1) and such that it subsequently
takes extra time at most O(t f ) each time an element A[i] is accessed for the first time.

In particular, if t f is constant (as is the case in our paper,where this is the timeneeded
to initialize an empty relevance list), the creation of the array takes only constant time
and only a constant time overhead is incurred for later accesses.

Proof We only sketch the proof. The idea is from [28, Section III.8.1]: Alongside A,
in constant time we allocate two further uninitialized arrays B and C of the same size
|D| as A, which hold integer values (indices), and we setup a counter c:
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1 A ← allocate an uninitialized block of |D| units
2 B ← allocate an uninitialized block of |D| integer
3 C ← allocate an uninitialized block of |D| integer
4 c ← 0

The idea is that we use B, C and c to keep track of which elements of A have been
already accessed. When we notice later on that A[i] is accessed for the first time, we
set A[i] ← f (i) before proceeding.

We keep track ofwhich elements of A have been accessed (ever) using the following
invariant: The i th element of A will have been accessed if, and only if, C[B[i]] = i
and 1 ≤ B[i] ≤ c. Initially, the invariant is trivially fulfilled as c = 0 and no element
of A has been accessed.

Clearly,when A[i] is about to be accessed,we can easily checkwhether the invariant
holds for a given i in constant time. Now suppose we notice that A[i] is accessed for
the first time (as B[i] /∈ {1, . . . , c} or C[B[i]] �= i). In this case, we first increase c
by 1, so c ← c + 1, and then set B[i] ← c and set C[c] ← i . Note that this ensures
that the invariant is now satisfied for A[i] and, also, still satisfied for all other A[ j] for
j �= i .

For convenience, we also allow domains D that are not sets of numbers, but whose
elements can easily be mapped to numbers. For instance, we would also allow the
domain D = (V

2

)
of undirected edges since we can easily map D to

{
1, . . . ,

(n
2

)}
.

We can then write G[e] ← v to store a value v for an edge e = {u, v}. Clearly, for
hypergraphs this can be generalized to D = ( V

≤d

)
for fixed constants d since this D,

too, can easily be mapped to elements of
{
1, . . . ,

∑d
i=0

(n
i

)}
. By storing arrays as

tables of size O(|D|), reading from and writing to an array can be done in time O(1)
for any reasonable machine model. Unfortunately, this model of storing values is not
very memory-efficient when A[i] = ⊥ holds for most i and, therefore, it is better
to store A as a hash table. In practice, hash tables also allow us to read and write
in time O(1). For this paper, we just assume that in whatever way arrays are really
implemented, reading and writing from arrays can be done in time O(1).

Maps: Maps (also known as associative arrays) are similar to arrays, but may be
indexed by keys k, which can be arbitrary objects, and not just by numbers from a
small domain. We still write M[k] for the value v stored at the key k (and M[k] = ⊥
if nothing is stored) and write M[k] ← v to indicate that we store the value v for
the key k, possibly replacing any previous value stored for k. Implementing maps is
normally much trickier than implementing arrays, but we will only need and use maps
that store values for a constant number of keys. In this case, even if we implement
accesses using just a linear search in a normal array, all reading and writing can be
done in time O(1).

Lists: We will use the standard data structure of doubly-linked lists a lot, which we
will just refer to as lists. We consider lists L to be objects that store pointers to the
first and last cell of the list. Each cell stores pointers to the next and the previous cell
in the list plus a pointer to an object, called the payload of the cell. For a list L , we
write L.append(x) to indicate that a new cell c gets created with x as its payload and
then c is added to the list at the end (and the last and, possibly, first cells stored in L
are updated appropriately).
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Quite less standard, when creating a cell c for a list L , we also store the cell c in x :
We assume that x has an attribute lists that is a map and we execute x .lists[L] ← c. In
other words, inside x , we store a back-pointer to the cell c. This allows us to perform
the operation L.delete(x) without being given the cell c: We first lookup the cell c
that has x as its payload in the map x .lists and can then easily remove the cell from
the doubly-linked list in constant time. Storing back-pointers in objects allows us to
remove elements in time O(1) provided that (i) no element is added more than once
to a list (this will always be the case) and (ii) each element is added only to a constant
number of lists (this will also always be the case).

Relevance Lists: The next data structure is more specific to the needs of the present
paper: relevance lists. These are normal lists with a parameter ρ ∈ N in which the first
ρ elements are “more relevant” than later elements (with respect to the order of the
elements inside the list). Once a relevance list L for a bound ρ has been allocated by the
call new relevance list(ρ), we wish the following to hold for its elements: If there
are only ρ or less elements in L , all of them are relevant; but if there are more, all ele-
ments after the ρth element are irrelevant. The operations we wish to support (in time
O(1)) in addition to the normal list operations append and delete are L.is relevant(x),
which should return whether x is one of the first ρ elements in L , and L.last relevant,
which should return the last relevant element of the list, respectively. For convenience,
wewill also use L.first irrelevant, which is the successor of L.last relevant (and thus⊥
if there are no irrelevant elements), and L.has irrelevant elements, which just checks
whether L.last relevant has a successor.

Note that it is not immediately clear how the two additional operations of relevance
list can be implemented in time O(1): The relevance status of an element can change
when far-away elements get added or deleted. The following lemma shows how this
can be achieved:

Lemma 17 A relevance list can be implemented such that the two methods L.

is relevant(x) and L.last relevant run in time O(1).

Proof of Lemma 17 A relevance list object L stores the immutable bound ρ as an
attribute. It also stores the length of the list using an additional attribute (just increment
or decrement it as needed). To keep track of which elements x are relevant with respect
to L and which one is the last of them, we use two kinds of “trackers”: First, we store
one bit of information in each element x as follows. In x we have, in addition to themap
attribute lists mentioned earlier, another attribute relevances. It is also a map and we
set x .relevances[L] ← true for relevant x and set x .relevances[L] ← false otherwise.
Clearly, if we can keep these values up-to-date, we can implement L.is relevant(x)
simply as returning x .relevances[L]. Second, in L we store a pointer to the last relevant
element in an attribute last relevant. Once more, if we can keep this pointer up-to-date,
we can trivially access it in time O(1).

To keep the introduced trackers up to date, first consider the operation L.append(x):
Before we insert x , we check whether the length of L is at most ρ − 1. If so,
after x has been appended, it is flagged as relevant (x .relevances[L] ← true) and
L.last relevant ← x ; and otherwise it is flagged as irrelevant and L.last relevant
is not changed. Next, consider the operation L.delete(x). If x is not relevant
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(x .relevances[L] = false), we can simply delete it. However, if x is relevant, deleting
x will make the first irrelevant element (if it exists) relevant: before deleting x , if
L.last relevant has a successor s, we set L.last relevant ← s and s.relevances[L] ←
true. As a special case, if x happens to be the last relevant element and has no successor,
set L.last relevant to the predecessor of x .

Note that all operations needed to keep the trackers up-to-date can be implemented
to run in time O(1), yielding the claim.

Dense Adjacency Matrices: The final data structure that we introduce addresses a
specific subtlety of kernelizations: In our algorithms, we keep track of linked lists of
hyperedges e ∈ ( V

≤d

)
that, collectively, form a kernel. However, a kernel should be a

mathematical objectwhose encodingonly dependson theparameter k –while encoding
the lists takes something like O(kdd log n) bits sincewe need O(log n) bits to encode a
vertex number and the lists are “scattered around in memory.” Furthermore, the whole
idea behind kernelizations is, of course, that we wish to perform further computations
on the kernel once it has been determined. Thus, we should not insist on constant
update times in our algorithms while then allowing time O(kd) to transform lists into
something “usable” when we actually use the kernel to find a solution. Fortunately, it
turns out that we can keep track of a “real” kernel in the form of a dense adjacency
matrix with only constant extra time per update. For simplicity, we only describe the
case of graphs, the generalization to hypergraphs is straightforward.

For a set E of edges, let
⋃

E = {x | ∃e ∈ E : x ∈ e} denote the set of all vertices
mentioned in any edge of E . For two graphs G1 = (V1, E1) and G2 = (V2, E2) let
us write G1 ∼ G2 if G1 and G2 are isomorphic. For two edge sets E1 and E2, let us
write E1 ∼ E2 if (

⋃
E1, E1) ∼ (

⋃
E2, E2) (so vertices that are not involved in any

edges are ignored).
Our objective is the following: Suppose we already have a dynamic algorithm that

keeps track of a set F of edges for the vertex set V (in our dynamic vertex cover kernel
algorithm we have F = R(L); in the dynamic hitting set kernel algorithm we have
F = ⋃d

i=0 R(Li [∅])) and suppose that we have a bound ρ such that |F | ≤ ρ always
holds. In the following lemma we show that we can then dynamically manage the
adjacencymatrix of a graph K = (VK , EK )with thefixedvertex setVK = {1, . . . , 2ρ}
such that we always have EK ∼ F with only constant additional update times. (In the
statement of the lemma, by “gets a dynamically changing set as input” we mean that
whenever an edge e is added to F , the method insert(e) of the algorithm gets called,
and whenever e is removed from F , a call of delete(e) is triggered.)

Lemma 18 There is an algorithm DynamicDenseAdjacencyMatrix that takes as
input a dynamically changing edge set F over the vertex set V and a bound ρ with
|F | ≤ ρ, and keeps track of the adjacency matrix of K = (VK , EK ) with the fixed
vertex set VK = {1, . . . , 2ρ} such that we have EK ∼ F. The update times are O(1).

Proof of Lemma 18 The algorithm starts by setting up the following auxiliary data
structures:

1. An adjacency matrix of Boolean entries storing EK ⊆ (VK
2

)
, indicating which

edges are present in K ,
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2. amapping I that stores for each vertex of
⋃

F to which vertex in VK it corresponds
(and I (x) = ⊥ for x /∈ ⋃

F),
3. an array D that stores for each v ∈ VK the degree of v in K , and
4. a list Z of zero degree vertex intervals in K . Each element of the list is a pair (a, b)

of numbers from VK that stands for the interval [a, b]. The semantics is that the
union of the intervals should be exactly the set of vertices in VK that have degree
0 in K . Clearly, we can initialize the Z with the single interval [1, 2ρ] to ensure
that this holds at the beginning.

Translated to code, we get:

1 method DynamicDenseAdjacencyMatrix.init(F, ρ)

2 // Vk = {1, . . . , 2ρ} by definition
3 EK ← new array

((VK
2

))

4 I ← new array({1, . . . , n})
5 D ← new array(VK )

6 Z ← new List
7 Z .append([1, 2ρ])

Let us now see how these auxiliary data structures allow us to keep track of EK

such that EK ∼ F holds when edges enter or leave F . Suppose e = {u, v} is about
to enter F and this triggered a call of the following insert(e) method, which should
now update the matrix EK . First, we test whether u /∈ ⋃

F holds (by testing whether
I [u] = ⊥ holds). In this case, consider the first interval [a, b] in Z (such an interval
must exist since there will never be more than 2ρ vertices in

⋃
F by assumption and,

hence, there is always a vertex of degree 0 in K when a new vertex is about to enter⋃
F). If a = b, remove this interval from Z , otherwise replace it by [a+1, b].We think

of this as “allocating” a and will store in I that u gets mapped to a. Next, if v /∈ ⋃
F

holds, we allocate a vertex from VK for it. Then both u and v have corresponding
vertices in VK and we store an edge between them in EK and adjust the values in D
accordingly:

8 method DynamicDenseAdjacencyMatrix.insert(e) // assume e = {u, v} ∈ (V
2
)

9 allocate(u)

10 allocate(v)

11 if EK [I [u], I [v]] = false then
12 EK [I [u], I [v]] ← true
13 D[I [u]] ← D[I [u]] + 1
14 D[I [v]] ← D[I [v]] + 1
15
16 function allocate(u)

17 if I [u] = ⊥ then
18 [a, b] ← first element of L
19 I [u] ← a
20 if a = b then
21 remove first element of L
22 else
23 replace first element of L by [a + 1, b]

Observe that after the above steps and after e has been added to F , we have EK ∼ F
and all auxiliary data structures hold the proper values.

Now suppose e = {u, v} is about to be deleted from F . The code for this case is
simple:
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24 method DynamicDenseAdjacencyMatrix.delete(e)
25 EK [I [u], I [v]] ← false
26 D[I [u]] ← D[I [u]] − 1 // Adjust the degrees
27 D[I [v]] ← D[I [v]] − 1
28 if D[I [u]] = 0 then Z .append([I [u], I [u]]) // ‘‘Free’’ the vertex I [u]
29 if D[I [v]] = 0 then Z .append([I [v], I [v]]) // ‘‘Free’’ the vertex I [v]

Once more, EK ∼ F holds after the updates and all auxiliary data structures have
also been updated correctly.
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