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Abstract
In the F -Minor-Free Deletion problem one is given an undirected graph G, an
integer k, and the task is to determine whether there exists a vertex set S of size
at most k, so that G − S contains no graph from the finite family F as a minor. It
is known that whenever F contains at least one planar graph, then F -Minor-Free
Deletion admits a polynomial kernel, that is, there is a polynomial-time algorithm
that outputs an equivalent instance of size kO(1) [Fomin, Lokshtanov, Misra, Saurabh;
FOCS 2012]. However, this result relies on non-constructive arguments based on
well-quasi-ordering and does not provide a concrete bound on the kernel size. We
study the Outerplanar Deletion problem, in which we want to remove at most
k vertices from a graph to make it outerplanar. This is a special case of F -Minor-
Free Deletion for the family F = {K4,K2,3}. The class of outerplanar graphs is
arguably the simplest class of graphs forwhich no explicit kernelization size bounds are
known. By exploiting the combinatorial properties of outerplanar graphs we present
elementary reduction rules decreasing the size of a graph. This yields a constructive
kernelwithO(k4) vertices and edges.As a corollary,we derive that anyminor-minimal
obstruction to having an outerplanar deletion set of size k hasO(k4) vertices and edges.
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1 Introduction

1.1 Background andMotivation

Kernelization [1] is a subfield of parameterized complexity [2, 3] that investigates the
complexity of preprocessing NP-hard problems. A parameterized problem includes
in its input an integer k which we call the parameter. This parameter can be seen
as a measure of complexity of the problem input. A common choice is to treat the
size of the desired solution as the parameter. A kernelization is a polynomial-time
preprocessing algorithm that converts a problem instance with parameter k into an
equivalent parameterized instance of the same problem such that both the size and the
parameter value of the new instance are bounded by a function f of k. The function f
is called the size of the kernel. It is known that a decidable parameterized problem
has a kernel if and only if it is fixed-parameter tractable [2, Lemma 2.2]. A major
challenge is to determine which parameterized problems admit a kernel of polynomial
size.

One class of problems that received much attention [4–8] is F-MINOR-FREE
Deletion. For a fixed finite family of graphs F , the F-MINOR-FREE Deletion
problem asks, given a graph G and parameter k, whether a vertex set S ⊆ V (G) of
size k exists such that the graphG− S, obtained fromG by removing the vertices in S,
does not contain any graph F ∈ F as a minor. This class of problems includes a large
variety of well-studied problems such as Vertex Cover, Feedback Vertex Set,
and Planarization, which are obtained by taking F equal to (respectively) {K2},
{K3}, and {K5, K3,3}. All of the F-MINOR-FREE Deletion problems are fixed-
parameter tractable [9], but it is unknown whether they all admit a polynomial kernel
[5]. If each graph in F contains at least one edge, it follows from the general results
of Lewis and Yannakakis [10] that F-MINOR-FREE Deletion is NP-hard.

If F is restricted to only families containing a planar graph we speak of Planar-
F DELETION. Since the family of F-minor-free graphs has bounded treewidth if
and only if F includes a planar graph [11], this restriction ensures that removing a
solution to the problem yields a graph of constant treewidth. Hence any solution is
a treewidth-η modulator for some η ∈ N depending on F . For this more restricted
class Fomin et al. [5] have shown that polynomial kernels exist for each choice of F .
However, the running time of this kernelization algorithm is described by the authors
as “horrendous” and regarding the size the authors state the following in the arXiv
version of their work:

The size of the kernel, however, is not explicit. Several of the constants that go
into the proof of Lemma 29 depend on the size of the largest graph in certain
antichains in a well-quasi-order and thus we don’t know what the (constant)
exponent bounding the size of the kernel is. We leave it to future work to make
also the size of the kernel explicit.
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For some specific Planar-F DELETION problems kernels with explicit size are
known. Most famous are Vertex Cover and Feedback Vertex Set which admit
kernels with respectively a linear and quadratic number of vertices [12–14]. Addi-
tionally, if θc denotes the graph with two vertices and c ≥ 1 parallel edges, then
{θc}-MINOR-FREEDeletion admits a kernel withO(k2 log3/2 k) vertices and edges
[4, Theorem 1.2]; note that the cases c = 1 and c = 2 correspond to Vertex Cover
and Feedback Vertex Set. Another problem for which an explicit kernel size
bound is known is PATHWIDTH-ONE Deletion, where the goal is to obtain a graph
of pathwidth one, i.e., each connected component is a caterpillar. First a kernel of
quartic size was obtained [15] which was later improved to a quadratic kernel [16].
If we want to remove at most k vertices to obtain a graph of treedepth at most η, we
obtain the Treedepth-η Deletion problem. Since this property can be characterized
by forbidden minors and bounded treedepth implies bounded treewidth, this problem
is also a special case of Planar-F DELETION. Giannopoulou et al. [6] have shown
that for every η, there is a kernel with 2O(η2) ·k6 vertices for Treedepth-η Deletion.
They have also proven that in general there is no hope for a universal constant in the
kernel exponent and the degree of the polynomial which bounds the kernel size must
increase as a function of F unless NP ⊆ coNP/poly.

In this paper we investigate Outerplanar Deletion, which asks for a graph G
and parameter k whether a set S ⊆ V (G) of size k exists such thatG−S is outerplanar.
A graph is outerplanar if it admits a planar embedding for which all vertices lie on the
outer face, or equivalently, if it contains neither K4 nor K2,3 as a minor. Outerplanar
graphs form a rich superclass of forests and are frequently studied in graph theory
[17–21], graph drawing [22–24], and optimization [25–28].

Since outerplanarity can be characterized as being {K4, K2,3}-minor-free [17], the
problem belongs to the class of Planar-F DELETION problems. It is arguably the
easiest problem in the class for which no explicit polynomial kernel is known. This
makes Outerplanar Deletion a well-suited starting point to deepen our under-
standing of Planar-F DELETION problems in the search for explicit kernelization
bounds.

1.2 Results

Let opd(G) denote the minimum size of a vertex set S ⊆ V (G) such that G − S is
outerplanar. Our main result is the following theorem:

Theorem 1.1 The Outerplanar Deletion problem admits a polynomial-time ker-
nelization algorithm that, given an instance (G, k), outputs an equivalent instance
(G ′, k′), such that k′ ≤ k, graph G ′ is a minor of G, and G ′ has O(k4) vertices and
edges. Furthermore, if opd(G) ≤ k, then opd(G ′) = opd(G) − (k − k′).

The algorithm behind Theorem 1.1 is elementary, consisting of a subroutine to build
a decomposition of the input graph G using marking procedures in a tree decompo-
sition, together with a series of explicit reduction rules. In particular, we avoid the
use of protrusion replacement (summarized below). Concrete bounds on the hidden
constant in the O-notation follow from our arguments. The size bound depends on
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the approximation ratio of an approximation algorithm that bootstraps the decompo-
sition phase, for which the current state-of-the-art is 40. We will therefore present a
formula to obtain a concrete bound on the kernel size, rather than its value using the
current-best approximation (which would exceed 105).

Theorem 1.1 presents the first concrete upper bound on the degree of the polynomial
that bounds the size of kernels for Outerplanar Deletion. We hope that it will
pave the way towards obtaining explicit size bounds for all Planar-F DELETION
problems and give an impetus for research on the kernelization complexity of the
Planar Deletion problem,which is one of themajor open problems in kernelization
today [29, 4:28], [1, Appendix A].

Via known connections [5] between kernelizations that reduce to a minor of the
input graph and bounds on the sizes of obstruction sets, we obtain the following
corollary.

Corollary 1.2 If G is a graph such that opd(G) > k but each proper minor G ′ of G
satisfies opd(G ′) ≤ k, then G has O(k4) vertices and edges.

The existence of a polynomial bound with unknown degree follows from the work
of Fomin et al. [5]; Corollary 1.2 gives the first explicit size bounds and contributes to
a large body of research on minor-order obstructions (e.g. [30–36]).

1.3 Techniques

The known kernelization algorithms [4, 5] for Planar-F DELETION make use of
(near-)protrusions. A protrusion is a vertex set that induces a subgraph of constant
treewidth and boundary size. Protrusion replacement is a technique where sufficiently
large protrusions are replaced by smaller ones without changing the answer. Protru-
sion techniques were first used to obtain kernels for problems on planar and other
topologically-defined graph classes [37]. Later Fomin et al. [4] described how to use
protrusion techniques for problems on general graphs. They proved [4, Lemma 3.3]
that any graph G, which contains a modulator X to constant treewidth such that |X |
and the size of its neighborhood can be bounded by a polynomial in k, contains a pro-
trusion of size |V (G)|/kO(1) that can be found efficiently. For any fixed F containing
a planar graph, they present a method to obtain a small modulator to an F-minor-free
graph, which has constant treewidth. This leads to a polynomial kernel for Planar-
F DELETION on graphs with bounded degree since the size of the neighborhood
of the modulator can be bounded so protrusion replacement can be used to obtain a
polynomial kernel. Specifically for {θc}-MINOR-FREEDeletion they give reduction
rules to reduce the maximum degree in a general graph, which leads to a polynomial
kernel on general graphs.

The kernel for Planar-F DELETION given by Fomin et al. [5] does not rely
on bounding the size of the neighborhood of the modulator followed by protrusion
replacement. Instead they present the notion of a near-protrusion: a vertex set that
will become a protrusion after removing any size-k solution from the graph. With an
argument based on well-quasi-ordering they determine that if such near-protrusions
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are large enough one can, in polynomial time, reduce to a proper minor of the graph
without changing the answer.

In this paperwe present amethod forOuterplanar Deletion to decrease the size
of the neighborhood of a modulator to outerplanarity. This relies on a process that was
called “tidying the modulator” in earlier work [38] and also used in the kernelization
for Chordal Vertex Deletion [39]. The result is a larger modulator X ⊆ V (G)

but with the additional feature that it retains its modulator properties when omitting
any single vertex, that is, G − (X \ {x}) is outerplanar for each x ∈ X . We proceed
by decomposing the graph into near-protrusions, following along similar lines as
the decomposition by Fomin et al. [4] but exploiting the structure of outerplanar
graphs at several steps to obtain such a decomposition with respect to our larger tidied
modulator, without leading to worse bounds. With the additional properties of the
modulator X obtained from tidying we no longer need to rely on well-quasi-ordering,
but instead are able to reduce the size of the neighborhood of the modulator in two
steps. The first reduces the number of connected components of G − X which are
adjacent to any particular modulator vertex x ∈ X . In the case of {θc}-minor-free
graphs, if G − (X \ {x}) is {θc}-minor-free then bounding the number of components
of G − X adjacent to each x ∈ X this is sufficient to bound |NG(X)|, since any x ∈ X
has less than c neighbors in any component of G − (X \ {x}). One of the major
difficulties we facewhenworkingwith {K2,3}-minor-free graphs is that in such a graph
there can be arbitrarily many edges between a vertex x and a connected component
of G − (X \ {x}). Therefore we present an additional reduction rule that reduces, in a
second step, the number of edges between a vertex and a connected component. After
these two steps we obtain a bound on the size of the neighborhood of the modulator.
At this point, standard protrusion replacement could be applied to prove the existence
of a kernel for Outerplanar Deletion with O(k4) vertices. In order to give an
explicit kernelization algorithm we present a number of additional reduction rules to
avoid the generic protrusion replacement technique. This eventually leads to a kernel
with at most c ·k4 vertices and edges for Outerplanar Deletion. It is conceptually
simple (yet tedious) to extract the explicit value of c from the algorithm description.

1.4 Organization

In the next section we give basic definitions and notation we use throughout the rest
of the paper, together with structural observations for outerplanar graphs. Section
3 describes how we obtain small modulators to outerplanarity with progressively
stronger properties, and finally we obtain a modulator of size O(k4) such that each
remaining component has only 4 neighbors in the modulator, effectively forming a
decomposition into protrusions. The second stage of the kernelization reduces the
size of the connected components outside the modulator. These reduction rules are
described in Sect. 4. In Sect. 5 we finally tie everything together to obtain a kernel
with O(k4) vertices and edges.
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2 Preliminaries

2.1 Approximation and kernelization

Let A be a minimization problem and let OPT(I ) denote the minimum cost of a
solution to an instance I . For a constant α > 1, an α-approximation algorithm for A
is an algorithm that, given an instance I , outputs a solution of cost at most α ·OPT(I ).

A parameterized problem is a decision problem in which every input has an asso-
ciated positive integer that captures its complexity in some well-defined way. For a
parameterized problem A ⊆ �∗ × N and a function f : N → N, a kernelization for
A of size f is an algorithm that, on input (x, k) ∈ �∗ × N, takes time polynomial
in |x | + k and outputs (x ′, k′) ∈ �∗ × N such that the following holds:

1. (x, k) ∈ A if and only if (x ′, k′) ∈ A, and
2. both |x ′| and k′ are bounded by f (k).

2.2 Graph theory

The set {1, . . . , p} is denoted by [p]. We consider simple undirected graphs without
self-loops. A graph G has vertex set V (G) and edge set E(G). We use shorthand
n = |V (G)| and m = |E(G)|. For (not necessarily disjoint) A, B ⊆ V (G), we define
EG(A, B) = {uv | u ∈ A, v ∈ B, uv ∈ E(G)}. The open neighborhood of v ∈ V (G)

is NG(v) := {u | uv ∈ E(G)}, where we omit the subscript G if it is clear from
context. For a vertex set S ⊆ V (G) the open neighborhood of S, denoted NG(S), is
defined as

⋃
v∈S NG(v)\ S. The closed neighborhood of a single vertex v is NG [v] :=

NG(v) ∪ {v}, and the closed neighborhood of a vertex set S is NG[S] := NG(S) ∪ S.
The boundary of a vertex set S ⊆ V (G) is the set ∂G(S) = NG(V (G) \ S). For
A ⊆ V (G), the graph induced by A is denoted by G[A] and we say that the vertex set
A is connected if the graph G[A] is connected. We use notation G〈A〉 = G[NG[A]].
For readability, in expressions taking a vertex set as argument, wemay give a subgraph
instead, e.g., if H a subgraph of G then NG(H) = NG(V (H)), G〈H〉 = G〈V (H)〉,
and ∂G(H) = ∂G(V (H)). We use shorthand G − A for the graph G[V (G) \ A]. For
v ∈ V (G), we write G − v instead of G − {v}. For A ⊆ E(G) we denote by G \ A
the graph with vertex set V (G) and edge set E(G) \ A. For e ∈ E(G) we write G \ e
instead of G \ {e}. If e = uv, then V (e) = {u, v}.

A tree is a connected graph that is acyclic. A forest is a disjoint union of trees. In
tree T with root r , we say that t ∈ V (T ) is an ancestor of t ′ ∈ V (T ) (equivalently
t ′ is a descendant of t) if t lies on the (unique) path from r to t ′. For two disjoint
sets X ,Y ⊆ V (G), we say that S ⊆ V (G) \ (X ∪ Y ) is an (X ,Y )-separator if the
graph G − S does not contain any path from any u ∈ X to any v ∈ Y . By Menger’s
theorem, if x, y ∈ V (G) are non-adjacent in G then the size of a minimum (x, y)-
separator is equal to the maximum number of internally vertex-disjoint paths from x
to y. A vertex v ∈ V (G) is an articulation point in a connected graph G if G − v

is not connected. A connected graph is called biconnected if it has no articulation
points. A biconnected component in G is an inclusion-wise maximal subgraph which
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is biconnected. A graph G is 2-connected if it is biconnected and has at least three
vertices. In a 2-connected graph, for every pair of vertices u, v ∈ V (G) there exists a
cycle going through both u and v. The structure of the biconnected components and
articulation points in a connected graph G is captured by a tree called the block-cut
tree. It has a vertex for each biconnected component and for each articulation point in
G. A biconnected component B and an articulation point v are connected by an edge
if v ∈ V (B).

A vertex set A ⊆ V (G) is an independent set in G if EG(A, A) = ∅. A graph G
is bipartite if there is a partition of V (G) into two independent sets A, B. We write
shortlyG = (A∪ B, E) to express thatG is a bipartite graph with edge set E = E(G)

for which A and B form a partition of the vertices into two independent sets.

Definition 2.1 For a vertex set X ⊆ V (G) the component graph C(G, X) is a bipartite
graph (X∪Y , E),whereY is the set of connected components ofG−X , and (v,C) ∈ E
if there is at least one edge between v ∈ X and the component C ∈ Y .

For an integer q, the graph Kq is the complete graph on q vertices. For integers p, q,
the graph Kp,q is the bipartite graph (A∪B, E), where |A| = p, |B| = q, and uv ∈ E
whenever u ∈ A, v ∈ B.

2.3 Minors

A contraction of uv ∈ E(G) introduces a new vertex adjacent to all of NG({u, v}),
after which u and v are deleted. For A ⊆ V (G) such that G[A] is connected, we say
we contract A if we simultaneously contract all edges in G[A] and introduce a single
new vertex. We say that H is a minor of G, if we can turn G into H by a (possibly
empty) series of edge contractions, edge deletions, and vertex deletions. If this series
is non-empty, then H is called a proper minor ofG. We can represent the result of such
a process with a mapping φ : V (H) → 2V (G), such that subgraphs (G[φ(h)])h∈V (H)

are connected and vertex-disjoint, with an edge of G between a vertex in φ(u) and a
vertex in φ(v) for all uv ∈ E(H). The sets φ(h) are called branch sets and the family
(φ(h))h∈V (H) is called a minor-model of H in G.

2.4 Planar and outerplanar graphs

A plane embedding of graphG is given by a mapping from V (G) toR
2 and a mapping

that associates with each edge uv ∈ E(G) a simple curve on the plane connecting
the images of u and v, such that the curves given by two distinct edges can intersect
only at the image of a vertex that is a common endpoint of both edges. A face in a
plane embedding of a graph G is a subset of the plane enclosed by images of some
subset of the edges. We say that a vertex v lies on a face f if the image of v belongs
to the closure of f . In every plane embedding there is exactly one face of infinite
area, referred to as the outer face. Let F denote the set of faces in a plane embedding
of G. Then Euler’s formula states that |V (G)| − |E(G)| + |F | = 2. Given a plane
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embedding of G we define the dual graph Ĝ with V (Ĝ) = F and edges given by pairs
of distinct faces that are incident on an image of a common edge from E(G). A weak
dual graph is obtained from the dual graph by removing the vertex created in place of
the outer face.

A graph is called planar if it admits a plane embedding. By Wagner’s theorem, a
graph G is planar if and only if G contains neither K5 nor K3,3 as a minor. A graph
is called outerplanar if it admits a plane embedding with all vertices lying on the
outer face. A graph G is outerplanar if and only if G contains neither K4 nor K2,3
as a minor [17]. If a graph G is planar (resp. outerplanar) and H is a minor of G,
then H is also planar (resp. outerplanar). The weak dual of an embedded biconnected
outerplanar graph G is either an empty graph, if G is a single edge or vertex, or a tree
otherwise [20]. A graphG is planar (resp. outerplanar) if and only if every biconnected
component in G induces a planar (resp. outerplanar) graph.

Observation 2.2 Let v ∈ V (G). The graph G is outerplanar if and only if for each
connected component C of G − v the graph G〈C〉 is outerplanar.

For a graphG we call S ⊆ V (G) an outerplanar deletion set ifG−S is outerplanar.
The outerplanar deletion number of G, denoted opd(G), is the size of a smallest
outerplanar deletion set in G.

2.5 Structural properties of outerplanar graphs

We present a number of structural observations of outerplanar graphs which will be
useful in our later argumentation. The first is a characterization of outerplanar graphs
similar to Observation 2.2. Rather than looking at the components of a graph with
one vertex removed, it considers the components of a graph with both endpoints of
an edge removed. This allows us for example to easily argue about outerplanarity of
graphs obtained from “gluing” two outerplanar graphs on two adjacent vertices. Recall
that G〈C〉 = G[NG [V (C)]].
Lemma 2.3 Let G be a graph and e ∈ E(G). Then G is outerplanar if and only if
both of the following conditions hold:

1. for each connected component C of G−V (e) the graph G〈C〉 is outerplanar, and
2. the graph G \ e does not have three induced internally vertex-disjoint paths con-

necting the endpoints of e.

Proof (⇒) Suppose G is outerplanar. Then every subgraph of G is outerplanar, show-
ing the first condition holds. If G \ e has three induced internally vertex-disjoint paths
connecting the endpoints of e = xy, then each path has at least one interior vertex
which shows that G has a K2,3-minor, contradicting outerplanarity of G.

(⇐) Suppose the two conditions hold, and suppose for a contradiction that G is
not outerplanar. Then G contains K4 or K2,3 as a minor. We consider the two cases
separately.
G has a K2,3-minor. Suppose thatG contains K2,3 as aminor. It is easy to see that there
exist two vertices u, v ∈ V (G) and three disjoint connected vertex sets A1, A2, A3
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such that Ai contains a vertex of both NG(u) and NG(v) for all i ∈ [3]. Let Gi be the
graph obtained from G[{u, v} ∪ Ai ] by removing the edge uv, if it exists. There exists
an (u, v)-path inGi , so by taking a shortest path there exists an induced (u, v)-path Pi
in Gi . Since the edge uv does not belong to Gi , path Pi has at least one interior vertex.
The three (u, v)-paths P1, P2, P3 in G obtained in this way are internally vertex-
disjoint, have at least one interior vertex, and are induced after removing the edge uv

if it exists. We use this to derive a contradiction.
If the edge uv exists and is equal to e, then the existence of P1, P2, P3 shows that

the second condition is violated and leads to a contradiction. So in the remainder,
we may assume that e �= uv. Hence at least one vertex of {u, v} lies in a connected
component C of G − V (e). Assume without loss of generality that u /∈ V (e) and u
lies in V (C). We show that v ∈ V (G〈C〉) in this case. Suppose that v does not belong
to G〈C〉. Then in particular v /∈ V (e) and the vertices V (e) separate u from v; but
since P1, P2, P3 are three internally vertex-disjoint paths, vertices u and v cannot be
separated by the set V (e) of two vertices. It follows that u, v ∈ V (G〈C〉).

We claim that each path Pi is a subgraph of G〈C〉. To see this, note that the path
starts and ends in G〈C〉. The two vertices V (e) are the only vertices of G〈C〉 which
have neighbors in G outside G〈C〉. So a path starting and ending in G〈C〉 has to
leave G〈C〉 at one vertex of V (e) and enter G〈C〉 at the other; but then e is a chord
of this path other than uv. Since the paths Pi do not have such chords, it follows that
each path Pi is a subgraph of G〈C〉.

By the above, the graphG〈C〉 contains three internally vertex-disjoint paths P1, P2,
P3 with at least one interior vertex each. But then G〈C〉 contains K2,3 as a minor and
is not outerplanar; a contradiction to the first condition.
G has a K4-minor. In the remainder, wemay assume thatG contains K4 as a minor but
does not contain K2,3 as a minor, as otherwise the previous case applies. Observe that
this means that G contains K4 as a subgraph: any subdivision of K4 leads to a K2,3
minor.

So let H be a K4 subgraph in G. Observe that there cannot be two connected
components of G − V (e) that both contain a vertex of H : any two vertices of the
clique H are connected by an edge, which merges the connected components. So
there is one connected component C of G − V (e) that contains all vertices of V (H) \
V (e). But then H is a subgraph of G〈C〉, proving that G〈C〉 is not outerplanar and
contradicting the first condition. ��

In order to more easily apply Lemma 2.3, we show that no two induced paths as
referred to in Lemma 2.3(2) can lie in the same connected component C as referred
to in Lemma 2.3(1).

Lemma 2.4 Suppose G is outerplanar with an edge uv ∈ E(G). If P1, P2 are inter-
nally vertex-disjoint (u, v)-paths in G \ uv, then the interiors of P1 and P2 lie in
different connected components of G − {u, v}.
Proof Suppose for contradiction that the interiors of P1 and P2 are in the same con-
nected component ofG−{u, v}, and let P be a path from V (P1) to V (P2) inG−{u, v}.
Let G ′ be the graph obtained from G by contracting the interiors of P1 and P2 into
a single vertex p1 and p2 respectively and contracting P to realize the edge p1 p2.
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Clearly G ′ is a minor of G so then G ′ doesn’t contain a K4-minor. Observe however
that {u, v, p1, p2} induce a K4 subgraph in G ′. Contradiction. ��

We now give a condition under which an edge can be added to an outerplanar
graph without violating outerplanarity. Intuitively, this corresponds to adding an edge
between two vertices that lie on the same interior face.

Lemma 2.5 Suppose G is outerplanar and vertices x, y lie on an induced cycle D
with xy /∈ E(G). Then adding the edge xy to G preserves outerplanarity.

Proof Let D1, D2 be the two parts of the cycle D − {x, y}. We claim that D1 and D2
belong to different connected components of G − {x, y}. Suppose not, and let P be a
path from V (D1) to V (D2) in G − {x, y} that intersects V (D1) and V (D2) in exactly
one vertex v1 and v2, respectively. The path P has at least one interior vertex since the
cycle D is induced. But then P together with the two induced (v1, v2)-paths along D
give a K2,3-minor; a contradiction to the assumption that G is outerplanar.

Hence D1 and D2 belong to different connected components of G − {x, y}. Let G ′
be the graph obtained fromG by adding the edge xy. We show that for each connected
componentC ofG ′−{x, y} the graphG ′〈C〉 is a minor ofG and therefore outerplanar.
This follows from the fact that, by the argument above,C contains at most one segment
of the cycle D and therefore we can contract the remaining segment to realize the
edge xy.

Using the above, we prove thatG ′ is outerplanar by applying Lemma 2.3 to edge xy.
The preceding argument shows that the first condition is satisfied. To see that the second
condition is satisfied as well, note that G is outerplanar and therefore G ′ \ xy = G
does not contain three internally vertex-disjoint paths connecting the endpoints of e.

��

Finally,we observe that if an outerplanar graphG has a cycleC , then any component
of G − V (C) is adjacent to at most two vertices of the cycle (else there would be a
K4 minor), and these must be consecutive on the cycle (else there would be a K2,3
minor).

Lemma 2.6 If C is a cycle in an outerplanar graph G, then each connected component
of G − V (C) has at most two neighbors in C, and they must be consecutive along the
cycle.

Proof Suppose for a contradiction that some component D of G − V (C) has two
neighbors x, y which are not consecutive alongC . Then the cycle provides two vertex-
disjoint (x, y)-paths with at least one interior vertex each, and component D provides
a third (x, y)-path with an interior vertex. This yields a K2,3-minor where {x} and {y}
are the branch sets of the degree-3 vertices, contradicting outerplanarity.

Now suppose that some component D of G − V (C) has three or more neighbors
on C . Let P1, P2, P3 be three vertex-disjoint paths that cover the entire cycle C such
that each path contains a neighbor of D and observe that V (P1), V (P2), V (P3), V (D)

form the branch sets of a K4-minor in G, contradicting outerplanarity. ��
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2.6 Treewidth and the LCA closure

A tree decomposition of graph G is a pair (T , χ) where T is a rooted tree,
and χ : V (T ) → 2V (G), such that:

1. For each v ∈ V (G) the nodes {t | v ∈ χ(t)} form a non-empty connected subtree
of T .

2. For each edge uv ∈ E(G) there is a node t ∈ V (T ) with {u, v} ⊆ χ(t).

The width of a tree decomposition is defined as maxt∈V (T ) |χ(t)|−1. The treewidth of
a graph G is the minimum width of a tree decomposition of G. If w is a constant, then
there is a linear-time algorithm that given a graphG either outputs a tree decomposition
of width at most w or correctly concludes that treewidth of G is larger than w [40]. If
a graph is outerplanar, then its treewidth is at most 2 [41, Lemma 78]. Since n-vertex
graphs of treewidth w can have at most w · n edges [41, Lemma 91] we obtain the
following.

Observation 2.7 If G is an outerplanar graph, then |E(G)| ≤ 2 · |V (G)|.
Let T be a rooted tree and S ⊆ V (T ) be a set of vertices in T . We define the least

common ancestor of (not necessarily distinct) u and v, denoted as LCA(u, v), to be the
deepest node x which is an ancestor of both u and v. The LCA closure of S is the set

LCA(S) = {LCA(u, v) : u, v ∈ S}.

Lemma 2.8 [1, Lemma 9.26, 9.27, 9.28] Let T be a rooted tree, S ⊆ V (T ), and
M = LCA(S). All of the following hold.

1. Each connected component C of T − M satisfies |NT (C)| ≤ 2.
2. |M | ≤ 2 · |S| − 1.
3. LCA(M) = M.

Lemma 2.9 If (T , χ) is a tree decomposition of width at most c of a graph G,
and B ⊆ V (T ) is a set of nodes of T closed under taking lowest common ances-
tors (i.e., LCA(B) = B), then for M = ⋃

t∈B χ(t) and any connected component C
of G − M we have |NG(C) ∩ M | ≤ 2c.

Proof Let TC denote the subgraph of T induced by the nodes whose bag contains a
vertex of C . Since C is a connected component of G − M , we have V (TC ) ∩ B =
∅ and TC is a connected tree rather than a forest. Hence there exists a tree T ′ in
the forest T − B such that TC is a subtree of T ′. Since B is closed under taking
lowest common ancestors, it follows from Lemma 2.8 that for Z := NT (V (T ′)) we
have |Z | ≤ 2. For each z ∈ Z , let f (z) denote the first node outside V (TC ) on the
unique shortest path in T from V (TC ) to z. Note that we may have z = f (z). Let g(z)
denote the unique neighbor in T of node f (z) among V (TC ). Observe that both f (z)
and g(z) lie on each path in T connecting a node of TC to z.

By definition of TC we have that each bag of TC intersects V (C) while χ( f (z))
does not. Hence χ( f (z)) �= χ(g(z)). As each bag has size at most c + 1, it follows
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that |χ( f (z))∩χ(g(z))| ≤ c for each z ∈ Z . To prove the desired claim that |NG(C)∩
M | ≤ 2c, it therefore suffices to argue that NG(C)∩M ⊆ ⋃

z∈Z (χ( f (z))∩χ(g(z))).
Consider a vertex v ∈ NG(C) ∩ M . We argue that v ∈ χ( f (z)) ∩ χ(g(z)) for

some z ∈ Z , as follows. Since v ∈ M , there exists a node b∗ ∈ B such that v ∈ χ(b∗).
Since v ∈ NG(C) there exists u ∈ V (C) such that {u, v} ∈ E(G). Hence there is a
bag in the tree decomposition containing both u and v, and as vertices of V (C) only
occur in bags of the subtree TC , we find that v occurs in at least one bag of TC . Since
the occurrences of v form a connected subtree of T , and v appears in at least one bag
of TC and at least one bag of B, while the only neighbors in B of the supertree T ′ of TC
are the nodes in Z , it follows that v occurs in at least one bag χ(z) for some z ∈ Z .
But since all paths from TC to z pass through f (z) and g(z) as observed above, this
implies z ∈ χ( f (z)) ∩ χ(g(z)); this concludes the proof. ��

3 Splitting the Graph into Pieces

In this section we show how to reduce any input of Outerplanar Deletion to
an equivalent instance which admits a decomposition into a modulator of bounded
size along with a bounded number of outerplanar components containing at most four
neighbors of the modulator.

3.1 The AugmentedModulator

The starting point for both our kernelization algorithm and the one from Fomin et al.
[5] is to employ a constant-factor approximation algorithm. We however begin with
a different approximation algorithm, which has two advantages. First, the algorithm
is constructive: it relies only on separating properties of bounded-treewidth graphs
and rounding a fractional solution from a linear programming relaxation. Second, the
approximation factor can be pinned down to a concrete value.

Theorem 3.1 [42] There is a polynomial-time deterministic 40-approximation algo-
rithm for Outerplanar Deletion.

Proof The article [42] only states that the approximation factor is constant. However,
it also provides a recipe to retrieve its value. From [42, Theorem 1.1] we get that
the approximation factor for Outerplanar Deletion is 2 · α(3), for a function
α satisfying the following: the problem k-Subset Vertex Separator admits a
polynomial-time (α(k),O(1))-bicriteria approximation algorithm.Without going into
details, one can check that such an algorithm has been given by Lee [43]: by examining
the proof of Lemma 2 therein for ε = 1

4 we see that one can construct a polynomial-
time (8 · H2k, 2)-bicriteria approximation algorithm, where Hk is the k-th harmonic
number. We check that 2 · 8 · H6 < 40. Both algorithms in question are deterministic.

��
In our setting, for a given graph G and integer k, we want to determine whether G

admits an outerplanar deletion set of size at most k. Thanks to the theorem above, we
can assume that we are given an outerplanar deletion set X (also called a modulator
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to outerplanarity) of size at most 40 · k. As a next step, we would like to augment this
set to satisfy a stronger property. This step is inspired by the technique of tidying the
modulator from van Bevern, Moser, and Niedermeier [38]. For each vertex v ∈ X we
would like to be able to “put it back” into G − X while maintaining outerplanarity.
In order to do so, we look for a set of vertices from V (G) \ X that needs to be
removed if v is put back. Since G − X is outerplanar and hence has treewidth at most
two, we can construct such a set of moderate size by a greedy approach. We scan
a tree decomposition in a bottom-up manner and look for maximal subgraphs that
are outerplanar when considered together with v. When such a subgraph cannot be
further extended we mark one bag of a decomposition, which gives 3 vertices to be
removed. We show that this idea leads to a 3-approximation algorithm. While this
approach based on covering/packing duality is well-known, we present the proof for
completeness.

Lemma 3.2 There is a polynomial-time algorithm that, given a graph G, an integer
k, and a vertex v such that G − v is outerplanar, either finds an outerplanar deletion
set S ⊆ V (G) \ {v} in G of size of most 3k or correctly concludes that there is no
outerplanar deletion set S ⊆ V (G) \ {v} in G of size of most k.

Proof Since G − v is outerplanar, its treewidth is at most two. A tree decomposition
(T , χ) of G − v of this width can be computed in linear time [40].

Consider a process in which we scan the tree decomposition in a bottom-up manner
andmark some nodes of T . In the i-th stepwewillmark a node ti ∈ V (T ) andmaintain
a family Y1, . . . ,Yi of disjoint subsets of V (G)\{v}, so that for each j ∈ [i] the graph
G[Yi ∪{v}] is not outerplanar. We begin with no marked vertices and an empty family
of vertex sets. Let U (t) be the set of vertices appearing in a bag in the subtree of T
rooted at t ∈ V (T ). In the i-th step we choose a lowest node ti ∈ V (T ) (breaking ties
arbitrarily), so thatU (ti )∪{v} \⋃i−1

j=1 Y j induces a non-outerplanar subgraph of G. If

there is no such node,we terminate the process.Otherwisewe setYi = U (ti )\⋃i−1
j=1 Y j

and continue the process.
By the definition, the sets Y1, . . . ,Yi are disjoint and each of them, when consid-

ered together with v, induces a subgraph which is not outerplanar. Suppose that the
procedure has executed for at least k + 1 steps. Then for any set S ⊆ V (G) \ {v} of
size of most k, there is some i ∈ [k + 1] such that Yi ∩ S = ∅. Since G[Yi ∪ {v}] is
not outerplanar, we can conclude that S is not an outerplanar deletion set. Hence we
can conclude that no set as desired exists and terminate.

Suppose now that the procedure has terminated at the k′-th step, where k′ ≤ k.
Since ti is chosen as a lowest node among those satisfying the given condition, we get
that U (ti ) ∪ {v} \ (χ(ti ) ∪ ⋃i−1

j=1 Y j ) induces an outerplanar subgraph of G. Observe

that S = ⋃k′
j=1 χ(t j ) separates Yi from Y j in G − v for each pair 1 ≤ i < j ≤ k′,

because in particular χ(ti ) ⊆ S. Let Y0 = V (G) \ ⋃k′
j=1 Y j . Then also G[Y0 ∪ {v}]

is outerplanar and S separates Y0 from any Yi in G − v. We apply Observation 2.2
to G − S with articulation point v and check that any connected component C of
G − S − v is contained in some set Yi , so G〈C〉 is outerplanar, and thus G − S is
outerplanar. The size of each bag in (T , χ) is at most 3, hence |S| ≤ 3k′ ≤ 3k. The
claim follows. ��
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Observe that if it is impossible to remove k vertices avoiding v from G − (X \ {v})
to make it outerplanar, then any outerplanar deletion set in G of size at most k must
contain v. In this situation it suffices to solve the problem on G − v. Otherwise, we
identify a set R(v) of at most 3k vertices whose removal allows v to be put back in
G − X without spoiling outerplanarity. After inserting R(v) into the set X , we could
put v back “for free”. Let us formalize this idea of augmenting the modulator.

Definition 3.3 A (k, c)-augmented modulator in graph G is a pair of disjoint sets
X0, X1 ⊆ V (G) such that:

1. G − X0 is outerplanar,
2. for each v ∈ X0, there is a set R(v) ⊆ X1, such that |R(v)| ≤ 3k and G − ((X0 \

{v}) ∪ R(v)) is outerplanar, and
3. |X0| ≤ c · k, X1 = ⋃

v∈X0
R(v), which implies |X1| ≤ 3c · k2.

We classify the pairs of vertices within X0 ∪ X1. A pair (u, v) : u, v ∈ X0 ∪ X1 is of
type:

A: if u, v ∈ X0 or (u ∈ X0, v ∈ R(u)) or (v ∈ X0, u ∈ R(v)),
B: if (u, v) is not of type A and {u, v} ∩ X0 �= ∅,
C: if u, v ∈ X1.

We note that the number of type-A pairs is at most c(3+ c) · k2, the number of type-B
pairs is at most 3c2 · k3, and the number of type-C pairs is at most 9c2 · k4.

The downside of the augmented modulator is that its size can be as large asO(k2).
However, in return we obtain an even stronger property than previously sketched. For
most of the pairs of vertices u, v from the augmented modulator (X0, X1), putting
them back into G − (X0 ∪ X1) at the same time still does not break outerplanarity.
This property will come in useful for bounding the size of the kernel.

Observation 3.4 Let (X0, X1) be a (k, c)-augmented modulator in a graph G. Then
for each v ∈ X0 ∪ X1, the graph G − (X0 ∪ X1 \ {v}) is outerplanar. Furthermore, if
u, v ∈ X0∪X1 and the pair (u, v) is of typeBorC, then the graphG−(X0∪X1\{u, v})
is outerplanar.

Let us summarize what we can compute so far. We say that instances (G, k) and
(G ′, k′) are equivalent if opd(G) ≤ k ⇔ opd(G ′) ≤ k′.

Lemma 3.5 There is a polynomial-time algorithm that, given an instance (G, k), either
correctly concludes that opd(G) > k or outputs an equivalent instance (G ′, k′), where
k′ ≤ k and G ′ is a subgraph of G, along with a (k′, 40)-augmented modulator in G ′.
If opd(G) ≤ k then it holds that opd(G ′) = opd(G)− (k − k′). Moreover, if for every
vertex v ∈ V (G) there is an outerplanar deletion set S ⊆ V (G) \ {v} in G of size at
most k, then k′ = k.

Proof We run the 40-approximation algorithm from Theorem 3.1 to obtain an outer-
planar deletion set X0. If |X0| > 40 · k, we conclude that opd(G) > k. Otherwise, we
iterate over v ∈ X0 and execute the subroutine from Lemma 3.2 with respect to the
graph Gv = G − (X0 \ {v}). If for any vertex v we have concluded that Gv does not
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Fig. 1 Illustration of Reduction
Rule 1. For each pair
u, v ∈ X = X0 ∪ X1 we choose
up to k + 3 components of
G − X with edges to both u and
v and mark the corresponding
edges in the component graph
C(G, X). If a pair (v,C) is not
marked in the end, all the edges
between v and C are removed

X

u

v

k + 3O(k2)

admit any outerplanar deletion set S ⊆ V (Gv) \ {v} of size at most k, then the same
holds for G. This implies that any outerplanar deletion set in G of size at most k (if
there is any) must include the vertex v and the instance (G − v, k − 1) is equivalent
to (G, k). Furthermore, in this case opd(G ′) = opd(G) − 1 as long as opd(G) ≤ k.
We can thus remove the vertex v from G, decrease the value of parameter k by 1,
and start the process from scratch. If during this process we reach an instance (G ′, 0),
then (G, k) is satisfiable if and only if G ′ is outerplanar. Observe that if for every
vertex v ∈ V (G) there is an outerplanar deletion set S ⊆ V (G) \ {v} in G of size at
most k, then this holds also for the graph Gv and thus we will not apply the reduction
rule decreasing the value of k.

Suppose now that for each v ∈ X0 we have obtained a set Sv ⊆ V (Gv)\ {v} of size
at most 3k such that G − ((X0 \ {v}) ∪ Sv) is outerplanar. Then setting R(v) = Sv

and X1 = ⋃
v∈X0

R(v) satisfies the requirements of Definition 3.3. ��
The reduction step above is the only one in our algorithm that may decrease the

value of k.Moreover, no further reductionwill modify the outerplanar deletion number
as long as opd(G) ≤ k. This observation will come in useful for bounding the size of
minimal minor obstructions to having an outerplanar deletion set of size k.

As the next step, we would like to bound the number of connected components
in G − (X0 ∪ X1) and the number of connections between the components and the
modulator vertices.We show that if vertices u, v ∈ X0∪X1 are adjacent to sufficiently
many components, then at least one of u, v must be removed in any solution of size at
most k. Together with the “putting back” property of the augmented modulator, this
allows us to forget some of the edges without modifying the space of solutions of size
at most k. We formalize this idea with the following marking scheme, an illustration
of which can be found in Fig. 1.

Reduction Rule 1 Let G be a graph, k ∈ N, and (X0, X1) be a (k, c)-augmented
modulator in G. Consider the component graph C(G, X0 ∪ X1). For each pair u, v ∈
X0 ∪ X1 choose up to k + 3 components Ci with edges to both u and v, and mark
the edges (u,Ci ), (v,Ci ) in C(G, X0 ∪ X1). If an edge (v,C) is unmarked in the end,
remove all the edges between v and C in G. If some component C of G − (X0 ∪ X1)

or a vertex v ∈ X0 ∪ X1 becomes isolated, remove it from G.

Lemma 3.6 (Safeness) Let G be a graph, k ∈ N, and (X0, X1) be a (k, c)-augmented
modulator in G. Let G ′ be obtained from G by applying Reduction Rule 1 with respect
to (X0, X1, k). If opd(G) > k then opd(G ′) > k and if opd(G) ≤ k then opd(G ′) =
opd(G).
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Proof It suffices to show that any solution in G ′ of size at most k is also valid in G.
Removing an outerplanar connected component is always safe so it suffices to argue
for the correctness of the edge removal rule. Consider a single step of the reduction
in a graph G, in which we have removed the edges between vertex v ∈ (X0 ∪ X1)

and a connected component C of G − (X0 ∪ X1). Let G ′ be the graph after this
modification and S be an outerplanar deletion set of size at most k in G ′. If v ∈ S,
then G ′ − S = G − S so let us assume that v /∈ S.

Suppose there is another u ∈ X0 ∪ X1 with an edge to C in G. Since the pair (v,C)

was not marked, there are k + 3 components Ci , different from C , of G − (X0 ∪ X1)

with edges to both u and v. These pairs were marked, so they cannot be removed in
any previous reduction step. By a counting argument, at least 3 of these components
have empty intersections with S. If u /∈ S, then these components together with {u, v}
form a minor model of K2,3 in G ′ − S, which is not possible. Therefore, u ∈ S.

It follows that v is the only neighbor of C in G − S. By Observation 3.4 we can
“put back” v into G − (X0 ∪ X1) without spoiling the outerplanarity and so the graph
(G − S)〈C〉 being the subgraph of G[C ∪ {v}] is outerplanar. The graph G − S − C
is a subgraph of G ′ − S, so it is also outerplanar. The intersection of their vertex sets
is exactly {v} so from Observation 2.2 we obtain that G − S is outerplanar. ��

Now we show that after application of Reduction Rule 1 the component graph
C(G, X0 ∪ X1) cannot be too large. This will come in useful for proving further upper
bounds. We could trivially bound the number of its edges by |X0 ∪ X1|2 · (k + 3) =
O(k5) but, thanks to the properties of the augmented modulator, we can be more
economical. First, we need a simple observation about bipartite outerplanar graphs.

Proposition 3.7 Consider an outerplanar bipartite graph (X ∪Y , E) such that all the
vertices in Y have degree at least two. Then |Y | ≤ 4 · |X | and |E | ≤ 10 · |X |.
Proof Remove part of the edges so that each vertex in Y has degree exactly two. Now
contract each vertex from Y to one of its neighbors. The constructed graph is a minor
of (X ∪ Y , E) with a vertex set X , so it is outerplanar and the number of edges is
at most 2 · |X | by Observation 2.7. Each edge could have been obtained by at most
2 different contractions, as otherwise (X ∪ Y , E) would contain K2,3 as a minor.
Therefore |Y | ≤ 4 · |X |. Again by Observation 2.7, the number of edges in (X ∪Y , E)

is at most 2 · (|X | + |Y |) ≤ 10 · |X |. ��
Recall the types of pairs from Definition 3.3 and their properties from Observation

3.4. We know that the number of type-A pairs is at most c(3+ c) · k2 and the number
of type-B pairs is at most 3c2 · k3. Moreover, pairs of type B can be inserted back into
G − (X0 ∪ X1) without affecting its outerplanarity.

Lemma 3.8 After the application of Rule 1 with respect to a (k, c)-augmented mod-
ulator (X0, X1), the number of vertices and edges in C(G, X0 ∪ X1) is at most
f1(c) · (k + 3)3, where f1(c) = 14c2 + 60c.

Proof For pairs of type A we have marked at most (k+3) ·c(3+c) ·k2 edges. If (u, v)

is of type B, then by Observation 3.4 the graph G − (X0 ∪ X1 \ {u, v}) is outerplanar
and there can be at most 2 components adjacent to both u, v as otherwise we would
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obtain a K2,3-minor. Hence, for pairs of type B we have marked at most 2 · 3c2 · k3
edges.

Next, we argue that the total number of edges marked due to pairs of type C is
30c · k2. Let EC ⊆ E(C(G, X0 ∪ X1)) denote the set of these edges. Let YC ⊆
V (C(G, X0 ∪ X1)) be the set of these connected components of G− (X0 ∪ X1) which
are incident on at least one edge from EC in C(G, X0 ∪ X1). By the definition of
the marking scheme, if C ∈ YC then C is in fact incident on at least 2 edges from
EC , and their other endpoints belong to X1. Consider the subgraph (X1 ∪ YC , EC ) of
C(G, X0 ∪ X1). It is a minor of G − X0, therefore it is outerplanar. By Proposition
3.7, we get that |EC | ≤ 10 · |X1| = 10 · 3c · k2.

We can thus estimate the number of edges in C(G, X0 ∪ X1) by (7c2 + 3c) · (k +
3)3 + 30c · k2 ≤ (7c2 + 30c) · (k + 3)2. Finally, since C(G, X0 ∪ X1) contains no
isolated vertices, the number of vertices is at most twice the number of edges. ��

3.2 The Outerplanar Decomposition

We proceed by enriching the augmented modulator further. We would like to provide
additional properties at the expense of growing the modulator size to O(k3). For two
vertices u, v in an augmented modulator (X0, X1) ideally we would like to ensure that
no two components of G − (X0 ∪ X1 ∪ Z) are adjacent to both u and v, where Z is
some vertex set of size O(k3). This is not always possible, but we will guarantee that
in such a case any outerplanar deletion set of size at most k must contain either u or v.

Definition 3.9 Let Y ⊆ V (G) be a vertex subset in a graph G. We say that u, v ∈ Y
are Y -separated if no connected component of G − Y is adjacent to both u and v.

In Lemma 3.11 we are going to show that when G is outerplanar and X ⊆ V (G),
then there always exists a small set Y ⊆ V (G) so that every pair from X is (X ∪ Y )-
separated. Towards that goal, we need the following proposition.

Proposition 3.10 Let X ⊆ V (G) be an independent set in an outerplanar graph G.
Then there exists v ∈ X and S ⊆ V (G) \ X of size at most four, so that S is a
(v, X \ v)-separator in G.

Proof Consider a tree decomposition (T , χ) ofG of width two where T is rooted at an
arbitrary node r . For a vertex v ∈ V (G) let tv ∈ V (T ) be the node which is closest to
the root r , among those whose bag contain v. Consider v ∈ X for which tv is furthest
from the root (if there are many, pick any of them) and let Bv := χ(tv). By standard
properties of tree decompositions, any path from v to X \ v either goes through Bv \ v

or ends at Bv \ v.
If (Bv \ v) ∩ X = ∅, set S = Bv \ v. If Bv \ v = {u1, u2}, where u1 ∈ X , u2 /∈ X ,

consider a minimal (v, u1)-separator S′ and set S = S′ ∪ {u2}. There cannot be three
vertex-disjoint paths connecting v, u1 as vu1 /∈ E(G) and this would give a minor
model of K2,3 in G. Therefore by Menger’s theorem we have |S′| ≤ 2 and |S| ≤ 3.
Finally, suppose (Bv \ v) ⊆ X . In this case, let S be a minimal (v, Bv \ v)-separator.
If there were five vertex-disjoint paths connecting v and Bv \v then in particular there
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would be three vertex-disjoint paths connecting v and some u ∈ Bv \ v, which would
again give a minor model of K2,3 in G. Therefore |S| ≤ 4.

Suppose there is a path in G \ S connecting v with some x ∈ X \ v. It contains a
subpath connecting v with some u ∈ Bv \ v. If u /∈ X , then u ∈ S, so suppose that
u ∈ X . But S contains a (v, u)-separator, so such path cannot exist in G − S. ��
Lemma 3.11 There is a polynomial-time algorithm that, given a vertex set X ⊆ V (G)

in an outerplanar graph G, finds a vertex set Y ⊆ V (G) \ X of size at most 4 · |X |, so
that every pair u, v ∈ X with u �= v is (X ∪ Y )-separated.

Proof We can assume that X is an independent set in G because removing edges
between vertices in X does not affect the neighborhood of a connected component
in G − (X ∪Y ). Initialize Y = ∅. By Proposition 3.10 we can find a vertex v ∈ X that
can be separated from X \ v by at most 4 vertices. Add these vertices to Y and repeat
this operation recursively on X \ v. ��

Given an augmented modulator (X0, X1), we would like to find a set Z of moderate
size so that for each pair (u, v) from X0∪X1 either u, v are (X0∪X1∪Z)-separated or
there exist k + 4 internally vertex-disjoint paths, with non-empty interior, connecting
u and v inG. If the latter case occurs, then any outerplanar deletion set of size bounded
by k, can intersect at most k of these paths’ interiors. Therefore, this solution must
remove either u or v in order to get rid of all K2,3-minors.We remark that this property
already holds if we request k + 3 disjoint (u, v)-paths, but in this stronger form it also
holds for a graph obtained from G by an edge removal. This fact will be crucial for
the safeness proof for Reduction Rule 3.

In order to find the set Z , we could consider all pairs (u, v) from X0 ∪ X1 and, if
there exists an (u, v)-separator of size at most k + 3, add it to Z . This however would
make Z as large as O(k5). We can make this process more economical by analyzing
what happens for different types of pairs from Definition 3.3. Recall that the number
of type-A pairs is at most c(3 + c) · k2 and the number of type-B pairs is at most
3c2 · k3.
Lemma 3.12 There is a polynomial-time algorithm that, given an instance (G, k)with
(k, c)-augmented modulator (X0, X1), returns a set Z ⊆ V (G) \ (X0 ∪ X1) of size at
most f2(c) ·(k+3)3, where f2(c) = 4c2+15c, such that for each pair u, v ∈ X0∪X1
of distinct vertices one of the following holds:

1. vertices u, v are (X0 ∪ X1 ∪ Z)-separated, or
2. there are k+4 internally vertex-disjoint paths, with non-empty interior, connecting

u and v in G.

Proof Initialize Z0 = ∅. Consider all the pairs (u, v) from the augmentedmodulator. If
(u, v) is of type A or B, compute a minimum (u, v)-separator Su,v with u, v /∈ Su,v in
G−(X0∪X1 \{u, v})\uv, that is, we remove the edge uv if it exists. If |Su,v| ≤ k+3,
add Su,v to Z0. Recall from Observation 3.4 that if (u, v) is of type B, then the graph
G − (X0 ∪ X1 \ {u, v}) is outerplanar, so |Su,v| ≤ 2, as otherwise we could construct
a K2,3 minor. For pairs of type A we add at most (k + 3) · c(3 + c) · k2 elements,
and for pairs of type B at most 2 · 3c2 · k3 elements. If the pair (u, v) does not satisfy
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condition (2), then the set Z0 contains a set Su,v which forms a (u, v)-separator in
G− (X0 ∪ X1 \ {u, v})\uv. Therefore u, v belong to different connected components
of G − (X0 ∪ X1 ∪ Z0 \ {u, v}) \ uv and so they are (X0 ∪ X1 ∪ Z0)-separated.

To cover pairs of type C , consider the outerplanar graph G − X0. By Lemma 3.11
we can find a vertex set Z1 ⊆ V (G) \ (X0 ∪ X1) of size 4 · |X1| ≤ 12c · k2 so that all
pairs u, v ∈ X1 are (X1 ∪ Z)-separated in G − X0. We return the set Z0 ∪ Z1, which
has no more than (k+3) · c(3+ c) · k2 +2 ·3c2 · k3 +12c · k2 ≤ (4c2 +15c) · (k+3)3

elements. ��
We would like to simplify the interface between a connected component C of

G − (X0 ∪ X1 ∪ Z) and the rest of the graph. Since G − X0 is outerplanar it has
treewidth at most two, which implies there is a tree decomposition in which each pair
of distinct bags intersects in at most 2 vertices. When constructing a separator Z ′ ⊇ Z
via the LCA closure, the neighborhood of each connected component C of G − Z ′
within the set Z ′ is contained in at most two bags of the decomposition. This allows
us to guarantee that |NG(C) ∩ Z ′| ≤ 4.

Lemma 3.13 There is a polynomial-time algorithm that, given an outerplanar graph
G and Z ⊆ V (G), returns a set Z ′ ⊇ Z of size at most 6 · |Z | such that each connected
component of G − Z ′ has at most four neighbors in Z ′.

Proof Consider a tree decomposition (T , χ) of width two of the graph G, rooted at a
node r ∈ V (T ). It can be found in linear time [40]. For a vertex v let tv be the node
which is closest to the root among those whose bags contain v. Consider the set of
nodes TZ = {tv | v ∈ Z}. Let T ′

Z = LCA(TZ ) be the LCA closure of TZ . Finally, let Z ′
be union of all bags in T ′

Z . We have |T ′
Z | ≤ 2 · |TZ | and |Z ′| ≤ 6 · |Z |. By Lemma 2.9

we obtain that each connected component of G − Z ′ has at most four neighbors. ��
In order to keep the kernel size in check,we need to analyze the number of connected

components of G − (X0 ∪ X1 ∪ Z). We have managed to bound the size of Z by
O(k3) and, in Lemma 3.8, we have also bounded by O(k3) the number of edges in
the component graph C(G, X0 ∪ X1). These two properties suffice to also bound the
number of connected components ofG−(X0∪X1∪Z) that have at least two neighbors
in X0 ∪ X1 ∪ Z . It will be easier to deal with the remaining ones later.

Lemma 3.14 Let (X0, X1) be a (k, c)-augmented modulator in G, so that the com-
ponent graph C(G, X0 ∪ X1) has at most s vertices and s edges, and let Z ⊆
V (G)\(X0∪X1). Then there are at most 3·s+4·|Z | components of G−(X0∪X1∪Z)

that have two or more neighbors in X0 ∪ X1 ∪ Z.

Proof Let X = X0 ∪ X1. We analyze the number of connected components of G −
(X ∪ Z) by splitting them into three categories.

1. Components with at least two neighbors in Z . Consider a subgraph (Z ∪ Y , E) of
C(G, X ∪ Z) given by restricting the vertex-side to Z and the component-side to
those components Y that have at least two neighbors in Z . This graph is a minor
of G − X , so it is outerplanar. By Proposition 3.7, we get |Y | ≤ 4 · |Z |.
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2. Components with exactly one neighbor in Z and at least one in X . We call such
a component a dangling component. For a connected component H of G − X ,
consider the collection of dangling components (Ci )



i=1 within H . Since each

dangling component has exactly one neighbor in H , removing it does not affect
connectivity of H . Therefore the graph H ′ = H − ⋃


i=1 Ci is connected. Note
that H ′ cannot be empty since it must contain at least one vertex in Z . For each
vertex x ∈ X , there are at most two dangling components in H which are adjacent
to x : if therewere threeC1,C2,C3, theywould formaminormodel of K2,3 together
with x and V (H ′). By Observation 3.4 this would contradict outerplanarity ofG−
(X ∪ {x}).
Hence the number of dangling components within H is at most twice as large as
|NG(H)∩ X |, which is the degree of H in C(G, X). The total number of dangling
components is thus at most 2 times the sum of degrees of the component-nodes in
C(G, X), which equals the number of edges in C(G, X). We obtain a bound 2s on
the total number of dangling components.

3. Components without any neighbors in Z . These are also components of G − X ,
so there are at most s of them. ��
The previous lemma gives us a bound on the number of components outside the

modulator with at least two neighbors. To bound the total number of components
outside themodulator,we employ the following reduction rule to remove the remaining
components with at most one neighbor.

Reduction Rule 2 If for some C ⊆ V (G) the graph G〈C〉 is outerplanar and it holds
that |NG(C)| ≤ 1, then remove the vertex set C .

Safeness of this rule follows from Observation 2.2, which implies opd(G − C) =
opd(G).

With these properties at hand, we are able to construct the desired extension of
the augmented modulator. The decomposition below is inspired by the notion of a
near-protrusion [5], combined with the idea of the augmented modulator, and with an
O(k3) bound on the number of leftover connected components.

Definition 3.15 For k, c, d ∈ N a (k, c, d)-outerplanar decomposition of a graph G is
a triple (X0, X1, Z) of disjoint vertex sets in G, such that:

1. (X0, X1) is a (k, c)-augmented modulator for (G, k),
2. for each pair u, v ∈ X0 ∪ X1 of distinct vertices one of the following holds:

(a) vertices u, v are (X0 ∪ X1 ∪ Z)-separated, or
(b) there are k+4 internally vertex-disjoint (u, v)-paths inG, eachwith non-empty

interior.

3. for each connected componentC ofG−(X0∪X1∪Z) it holds that |NG(C)∩Z | ≤
4,

4. |Z | ≤ d · (k + 3)3 and there are at most d · (k + 3)3 connected components in
G − (X0 ∪ X1 ∪ Z).
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Lemma 3.16 There is a constant c, a function f3 : N → N, and a polynomial-time
algorithm that, given an instance (G, k), either returns an equivalent instance (G ′, k′),
where k′ ≤ k and G ′ is subgraph of G, along with a (k′, c, f3(c))-outerplanar decom-
position of G ′, or concludes that opd(G) > k. If opd(G) ≤ k then it holds that
opd(G ′) = opd(G)−(k−k′). Furthermore, c = 40 and f3(c) = 3 · f1(c)+24 · f2(c)
(see Lemmas 3.8 and 3.12).

Proof Begin with Lemma 3.5 to either conclude opd(G) > k or find an equivalent
instance (G ′′, k′), where k′ ≤ k and G ′′ is a subgraph of G, along with an (k′, c)-
augmented modulator. Next, apply Reduction Rule 1 to obtain an equivalent instance
(G ′, k′) that satisfies the conditions in the statement, along with an (k′, c)-augmented
modulator (X0, X1), so that the number of vertices and edges in C(G, X0 ∪ X1) is at
most f1(c) · (k′ + 3)3 (see Lemma 3.8). This reduction rule may remove edges and
vertices from the graph, so G ′ is a subgraph of G.

We find a set Z0 of size at most f2(c) · (k′ + 3)3 satisfying the Condition 2 with
Lemma 3.12. Next, apply Lemma 3.13 to graph G− (X0 ∪ X1) and set Z0 to compute
Z ⊇ Z0, |Z | ≤ 6 · f2(c) · (k′ + 3)3, which satisfies the Condition 3. Observe that
Condition 2 is preserved for any superset of Z0, and hence for Z .

Now identify all connected components of G − (X0 ∪ X1 ∪ Z) with only one
neighbor and apply Reduction Rule 2 to remove them. Note that this removed only
vertices disjoint from X0, X1, and Z , so Conditions 1, 2(a), and 3 remain satisfied.
Since such a connected component only has one neighbor in X0 ∪ X1, the number
of (u, v)-paths in G cannot have been decreased for any distinct u, v ∈ X0 ∪ X1,
hence Condition 2(a) also remains satisfied. We complete the proof by showing that
now Condition 4 holds.

First note that |Z | ≤ 6 · f2(c) · (k′ + 3)3 ≤ f3(c) · (k′ + 3)3. It remains to show
that the number of components in G − (X0 ∪ X1 ∪ Z) is at most f3(c) · (k′ + 3)3.
Any such connected component has at least two neighbors since otherwise we would
have applied Reduction Rule 2 to remove it. Any other connected component has at
least two neighbors in X0 ∪ X1 ∪ Z , so by Lemma 3.14 there are at most 3 · s + 4 · |Z |
of these components, where s denotes the number of edges in C(G, X0 ∪ X1) which
is upper bounded by f1(c) · (k′ + 3)3 (see Lemma 3.8). Hence in total there are at
most 3 · f1(c) · (k′ + 3)3 + 4 · 6 · f2(c) · (k′ + 3)3 = f3(c) · (k′ + 3)3 components. ��

As the last property of the (k, c, d)-outerplanar decomposition, we formulate the
bound on the total number of connections between X0 ∪ X1 ∪ Z and the leftover
components, which will lead to the total kernel size O(k4).

Lemma 3.17 Let (X0, X1, Z) be a (k, c, d)-outerplanar decomposition of a graph G.
Then the number of edges in the component graph C(G, X0 ∪ X1 ∪ Z) is at most
f4(c, d) · (k + 3)4, where f4(c, d) = cd + 6c + 4d.

Proof By Definition 3.15(4) there are at most d · (k + 3)3 components of G − (X0 ∪
X1∪ Z) and each can have at most |X0| ≤ c ·k neighbors from X0. It remains to bound
the total number of edges from X1 ∪ Z . The graph given by restricting the vertex-side
of C(G, X0 ∪ X1 ∪ Z) to X1 ∪ Z is a minor of G − X0, hence it is outerplanar and,
by Observation 2.7, the number of edges is at most twice the number of vertices, that
is, 2 · (|X1 ∪ Z | + d · (k + 3)3) ≤ 6c · k2 + 4d · (k + 3)3. ��
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3.3 Reducing the Size of the Neighborhood

Given a (k, c, d)-outerplanar decomposition (X0, X1, Z), wewill nowpresent the final
reduction rule to reduce the size of the neighborhood NG(X0∪X1) toO(k4).As the size
of Z is already bounded byO(k3) we focus on reducing the size of NG(X0 ∪ X1) \ Z .
We have already shown the number of edges in the component graphC(G, X0∪X1∪Z)

is bounded by O(k4), so it suffices to reduce the number of edges between a single
modulator vertex x ∈ X0 ∪ X1 and a connected component C of G − (X0 ∪ X1 ∪ Z)

to a constant. For this, we first show in the following lemma where the neighbors of x
occur in C .

Lemma 3.18 Suppose G is outerplanar, x ∈ V (G), and G − x is connected. Then the
vertices from NG(x) lie on an induced path P in G− x such that for each biconnected
component B of G − x and each pair of distinct vertices u, v ∈ V (P) ∩ V (B) we
have that uv ∈ E(G − x). We can find such a path in polynomial time.

Proof If |NG(x)| = 1 this is trivially true, so we assume |NG(x)| ≥ 2 in the remainder
of the proof.

Consider a tree T obtained from a spanning tree of G − x by iteratively removing
leaves that are not in NG(x). We show T is a path. If T contains a vertex y of degree at
least 3 then T − y contains three components containing a neighbor of x and, since T is
connected, neighbors of y. This forms a K2,3-minor in G contradicting outerplanarity
of G. Hence T is a path, and by construction both its leaves are a neighbor of x . We
now describe how to obtain the desired induced path P from T . If T is not an induced
path in G, there are two nonconsecutive vertices u, v in T with uv ∈ E(G). If there
is no vertex w ∈ NG(x) between u and v on T , then the path T ′ obtained from T by
replacing the subpath between u and v with the edge uv is a shorter path containing
all of NG(x). Exhaustively repeat this shortcutting step and call the resulting path P .
Since this procedure does not affect the first and last vertices we know the first and
last vertex of P are both neighbors of x . All operations to obtain P can be performed
in polynomial time.

If the path P obtained after shortcutting is not an induced path in G, there are two
nonconsecutive vertices u, v in P with uv ∈ E(G). By construction of P we know
that there is a vertex w ∈ NG(x) between u and v on P . Now G contains a K4-
minor since {x, u, v, w} are pairwise connected by internally vertex-disjoint paths,
contradicting outerplanarity of G. So P is an induced path.

Let B be an arbitrary biconnected component of G − x and let u, v ∈ B ∩ P
be distinct. If uv is a bridge in G − x , it is trivial to see that uv ∈ E(G − x), so
we can assume that B contains at least 3 vertices (so B is 2-connected). We first
consider the case where u is the first vertex along P that is contained in B and v

is the last. Since the first and the last vertex of P are neighbor to x , (u, x, v) forms
a (u, v)-path in G. Since u, v ∈ B and B is 2-connected, there is a cycle within B
containing u and v. This gives us two internally vertex-disjoint paths from u to v

within B. If uv /∈ E(G − x), these paths have non-empty interiors. Together with
the path (u, x, v), this leads to a K2,3-minor in G and contradicting its outerplanarity.
Hence, we can assume that uv ∈ E(G − x).
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If u and v are not the first and last vertices along P contained in B, then there are
two vertices u′ and v′ that are. Then u′v′ is an edge in G − x and because P is an
induced path, u′ and v′ have to be consecutive in P , contradicting existence of such a
pair (u, v). ��

We now investigate what happens when a modulator vertex x ∈ X0∪ X1 is the only
vertex in X0 ∪ X1 that is adjacent to a connected component C of G − (X0 ∪ X1 ∪ Z).
If x has sufficientlymany edges to a part ofC that is not adjacent to Z , then one of these
edges can be removed without affecting the outerplanar deletion number opd(G). We
will also exploit this property for a reduction rule later in this paper when we reduce
the number of edges within a connected component of G − (X0 ∪ X1 ∪ Z).

Lemma 3.19 Suppose we are given a graph G, a vertex x ∈ V (G), and five ver-
tices v1, . . . , v5 ∈ NG(x) that lie, in order of increasing index, on an induced
path P in G − x from v1 to v5, such that NG(x) ∩ V (P) = {v1, . . . , v5}. Let C
be the component of G − {v1, v5, x} containing P − {v1, v5}. If G〈C〉 is outerplanar,
then opd(G) = opd(G \ xv3).

Proof Clearly for any S ⊆ V (G) if G − S is outerplanar, then G \ xv3 − S is also
outerplanar, hence opd(G) ≥ opd(G \ xv3). To show opd(G) ≤ opd(G \ xv3),
suppose G \ xv3 − S is outerplanar for some arbitrary S ⊆ V (G). If x ∈ S or v3 ∈ S
then clearlyG−S is outerplanar, so suppose x, v3 /∈ S. We showG−S′ is outerplanar
for some S′ ⊆ V (G) with |S′| ≤ |S|. Consider the following cases:

1. If |S ∩ V (P)| = 0 then G \ xv3 − S contains an induced cycle formed by x
together with the subpath of P from v2 to v4. This cycle includes x and v3, so by
Lemma 2.5 the graph G \ xv3 − S remains outerplanar after adding the edge xv3,
hence G − S is outerplanar.

2. If |S ∩ V (P)| ≥ 2 then let S′ := {v1, v5} ∪ (S \ V (C)). Since |S′| ≤ |S|, showing
thatG−S′ is outerplanar proves the claim. LetC := G−V (C) and note thatC−S′
is outerplanar since it is a subgraph of G \ xv3 − S. Also note that G[V (C) ∪ {x}]
is outerplanar since it is a subgraph of G[V (C) ∪ {v1, v5, x}] = G〈C〉. Since for
any connected component H of G − S′ − x the graph (G − S′)〈H〉 is a subgraph
of C − S′ or G[V (C) ∪ {x}] we have that (G − S′)〈H〉 is outerplanar. Then by
Observation 2.2 the graph G − S′ is outerplanar.

3. If |S ∩ V (P)| = 1 then let u ∈ S ∩ V (P) and assume without loss of generality
that u lies on the subpath of P from v3 to v5, so the subpath of P from v1 to v3
does not contain vertices of S (recall that v3 /∈ S). Let S′ := {v5}∪ (S \V (C)) and
note that |S′| ≤ |S|. We shall show that G − S′ is outerplanar. Since x, v1 /∈ S,
we have that also x, v1 /∈ S′, so xv1 ∈ E(G − S′). In order to apply Lemma 2.3
to G − S′ and xv1 we have to show that

• for each connected component C ′ of G − S′ − {v1, x} the graph (G − S′)〈C ′〉
is outerplanar, and

• there are at most two induced internally vertex-disjoint (v1, x)-paths in (G −
S′) \ v1x .

Because v5 ∈ S′ we have G − S′ − {v1, x} = G − {v1, v5, x} − S′ and since C is
a connected component of G −{v1, v5, x} we have that all connected components
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of G − S′ − {v1, x} are either a connected component of C − S′ = C or of G −
S′ − {v1, x} − V (C). It is given that C is connected and G[V (C) ∪ {v1, v5, x}] is
outerplanar so thenG[V (C)∪{v1, x}] = (G−S′)〈C〉 is also outerplanar.Anyother
connected component C ′ is a connected component of G − S′ − {v1, x} − V (C),
so we have that (G − S′)〈C ′〉 is a subgraph of G − S′ − V (C). This is in turn, a
subgraph of G \ xv3 − S which is outerplanar. Hence (G − S′)〈C ′〉 is outerplanar.
It remains to show that there are at most two induced internally vertex-disjoint
(v1, x)-paths in (G − S′) \ v1x . Suppose for contradiction that (G − S′) \ v1x
contains three induced internally vertex-disjoint (v1, x)-paths. As shown before,C
is a connected component of G − S′ − {v1, x} adjacent to v1 and x , so there exists
an induced (v1, x)-path P1 in G − S′ \ v1x whose internal vertices all lie in C .
SinceG〈C〉 is outerplanar andC is connected, by Lemma 2.4 the graphG〈C〉 does
not contain two internally vertex-disjoint (v1, x)-paths with nonempty interiors.
Hence there are two induced internally vertex-disjoint (v1, x)-paths P2, P3 in (G−
S′ \ v1x) − V (C). Observe that P2 and P3 are then disjoint from S \ S′ ⊆ V (C)

and do not contain xv3. It follows that P1, P2 and P3 are three induced internally
vertex-disjoint (v1, x)-paths in G \ xv3 − S, contradicting its outerplanarity by
Lemma 2.3.We conclude also the second condition of Lemma 2.3 holds forG−S′
and the edge v1x , hence G − S′ is outerplanar. ��
We now use the properties of the (k, c, d)-outerplanar decomposition to show that

any solution of size at most k contains all but possibly one vertex from (X0 ∪ X1) ∩
NG(C), where C is a connected component from G− (X0 ∪ X1 ∪ Z). We use this fact
together with the result from Lemma 3.19 to identify an irrelevant edge, which leads
to the following reduction rule:

Reduction Rule 3 Given a (k, c, d)-outerplanar decomposition (X0, X1, Z) of a
graphG, a vertex x ∈ X0∪X1, andfiveverticesv1, . . . , v5 ∈ NG(x)\(X0∪X1) that lie,
in order of increasing index, on an induced path P inG−(X0∪X1) from v1 to v5, such
that NG(x)∩V (P) = {v1, . . . , v5}. LetC be the component ofG−(X0∪X1)−{v1, v5}
containing P − {v1, v5}. If V (C) ∩ Z = ∅ remove the edge xv3.

Lemma 3.20 (Safeness) Suppose that Reduction Rule 3 removes the edge e = xv3
from a graph G. If opd(G) > k then opd(G \ e) > k and if opd(G) ≤ k then
opd(G \ e) = opd(G).

Proof Clearly opd(G \ e) ≤ opd(G) so it suffices to show that opd(G \ e) ≤ k
implies opd(G \ e) = opd(G). Suppose G \ e− S is outerplanar for some S ⊆ V (G)

of size at most k; we prove opd(G) ≤ |S|.
If S contains x or v3 then the claim is trivial. Otherwise let X := X0∪X1 and XS :=

X ∩ S and note that x /∈ XS . Since C is a connected component of G − X − {v1, v5}
we have that NG(C) ⊆ X ∪ {v1, v5}. We first show that NG(C) ⊆ XS ∪ {v1, v5, x}.
Suppose for contradiction that some u ∈ NG(C) is not contained in XS ∪ {v1, v5, x},
so that u ∈ X \(S∪{v}). Since x and u are both neighbor toC , which is connected and
does not contain vertices from X or Z , we have that x and u are not (X ∪ Z)-separated.
It follows from Definition 3.15(2) that there are k + 4 internally vertex-disjoint paths,
with non-empty interior, connecting x and u in G. At most one of these paths contains
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≤ 20
X

O(k2)

Z

O(k3)O(k3)

Fig. 2 An illustration of Lemma 3.21. Given a (k, c, d)-outerplanar decomposition (X0, X1, Z) of a
graph G, a vertex x ∈ X = X0 ∪ X1 and a component C of G − (X0 ∪ X1 ∪ Z), we are guaranteed
that |N (C) ∩ Z | ≤ 4 and we can apply Reduction Rule 3 until |N (x) ∩ V (C)| ≤ 20. The expressions at
the bottom bound the size of X , the number of components of G − (X ∪ Z), and size of Z

the edge e, so in G \e there are at least k+3 internally vertex-disjoint paths, with non-
empty interior, connecting x and u. Since x, u /∈ S, and |S| ≤ k we have that G \e− S
has at least 3 internally vertex-disjoint paths, with non-empty interior, connecting x
and v. This contradicts outerplanarity of G \ e− S. Hence NG(C) ⊆ XS ∪{v1, v5, x}.

Consider the graph G ′ := G − XS . To prove that opd(G) ≤ |S|, it suffices to
prove opd(G ′) ≤ |S| − |XS|. Observe that x ∈ V (G ′) and v1, . . . , v5 ∈ NG ′(x)
lie in order of increasing index on the induced path P in G ′ − x from v1 to v5, such
that NG ′(x)∩P = {v1, . . . , v5}. LetC ′ be the connected component ofG ′−{v1, v5, x}
containing P − {v1, v5}. In order to apply Lemma 3.19 we show that G ′[V (C ′) ∪
{v1, v5, x}] is outerplanar.

Since C is connected and NG(C) ⊆ XS ∪{v1, v5, x} we have that C is a connected
component of G − (XS ∪ {v1, v5, x}) = G ′ − {v1, v5, x}. As C ′ is also a connected
component ofG ′−{v1, v5, x} and bothC andC ′ contain P−{v1, v5} they are the same
connected component. It follows thatG[V (C ′)∪{v1, v5, x}] = G[V (C)∪{v1, v5, x}],
which is outerplanar by Definition 3.3 since it only intersects with X0 ∪ X1 on the
single vertex x .

This shows Lemma 3.19 can be applied toG ′ with vertex x and the path P . Since S\
XS forms a size-(|S| − |XS|) outerplanar deletion set for G ′ \ e, it follows there is a
size-(|S| − |XS|) outerplanar deletion set S′ for G ′. Then S′ ∪ XS forms a size-|S|
outerplanar deletion set for G. ��

We now show how this reduction rule can be applied to reduce the number of edges
between a vertex x ∈ X0 ∪ X1 and a connected component in G − (X0 ∪ X1 ∪ Z) to
a constant. This leads to an O(k4) bound on the size of NG(X0 ∪ X1); see Fig. 2.

Lemma 3.21 There is a polynomial-time algorithm that, given a (k, c, d)-outerplanar
decomposition (X0, X1, Z) of a graph G, a vertex x ∈ X0 ∪ X1 and a component C
of G−(X0∪X1∪Z), applies ReductionRule3or concludes that |NG(x)∩V (C)| ≤ 20.

Proof We first describe the algorithm and then proceed to prove its correctness.
Algorithm If x /∈ NG(C) then conclude |N (x)∩V (C)| ≤ 20. Otherwise let C+ :=

G[V (C) ∪ (NG(C) ∩ Z) ∪ {x}]. Apply Lemma 3.18 to find an induced path P in C+
containing all of NC+(x) (we will showC+ is outerplanar). Let the vertices NC+(x) =
{v1, . . . , v
} be indexed by the order in which they occur on P . For all 1 ≤ i ≤ 
 − 4
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let Pi be the subpath of P from vi to vi+4 and let Ci denote the connected component
of C+ − {vi , vi+4, x} containing Pi − {vi , vi+4}. If for some 1 ≤ i ≤ 
 − 4 we
have V (Ci ) ∩ Z = ∅ then apply Reduction Rule 3 with x and Pi to remove the
edge xvi+2. Otherwise conclude |N (x) ∩ V (C)| ≤ 20.

All operations can be performed in polynomial time.
CorrectnessWe first show Lemma 3.18 is applicable. ClearlyC+ −x = G[V (C)∪

(NG(C) ∩ Z)] is connected since C is connected, so it remains to show that C+ is
outerplanar. This follows from the fact thatC+ is a subgraph ofG−((X0∪ X1)\{x}),
which is outerplanar by Observation 3.4. For the remainder of the proof we first
establish a number of properties of the graphs defined in the algorithm.

Claim 3.22 Any connected component of C+−(V (P)∪{x}) has at most two neighbors
in V (P) and they must be consecutive along P.

Proof Consider the cycle in C+ formed by the vertices V (P) ∪ {x} (recall the first
and last vertices of P are neighbor to x). Since C+ is outerplanar the claim follows
directly from Lemma 2.6. ��
Observation 3.23 For any 1 ≤ i ≤ 
−4, since Ci is a connected component of C+ −
{vi , vi+4, x} we have that any connected component of Ci −V (P) is also a connected
component of C+ − {vi , vi+4, x} − V (P) = C+ − (V (P) ∪ {x}).
Claim 3.24 For all 1 ≤ i ≤ 
 − 4 we have V (Ci ) ∩ V (P) = V (Pi − {vi , vi+4}).
Proof Let u, v ∈ V (P) ∩Ci be distinct vertices. Since Ci is connected, there exists a
path in Ci connecting u and v. Let P ′ be a shortest (u, v)-path in Ci . If P ′ contains
a vertex not in P then this is a vertex in a connected component D in Ci − V (P).
By Observation 3.23 and Claim 3.22 we have that D has at most two neighbors in P
and they are consecutive along P . Since the path P ′ must enter and leave D, the
path visits both these neighbors, however since these neighbors are adjacent we can
obtain a shorter (u, v)-path by skipping vertices in D. This contradicts that P ′ is a
shortest (u, v)-path. It follows that the shortest path in Ci between any two vertices
from P is a subpath of P . Since Ci does not contain vi and vi+4 by definition, we
have V (Ci ) ∩ V (P) = V (Pi − {vi , vi+4}).
Claim 3.25 For all 1 ≤ i ≤ 
 − 4, if V (Ci ) ∩ Z = ∅ then NG(Ci ) ⊆ X0 ∪ X1 ∪
{vi , vi+4}.
Proof Suppose for some 1 ≤ i ≤ 
 − 4 that V (Ci ) ∩ Z = ∅ and let v ∈ NG(Ci ).
We show v ∈ X0 ∪ X1 ∪ {vi , vi+4}. If v ∈ V (C+) then since Ci is a connected
component of C+ − {vi , vi+4, x} we have v ∈ {vi , vi+4, x} ⊆ X0 ∪ X1 ∪ {vi , vi+4},
so suppose v /∈ V (C+) ⊇ V (C). Since v ∈ NG(Ci ) there exists a vertex u ∈
NG(v) ∩ V (Ci ) and note that u /∈ Z because NG(Ci ) ∩ Z = ∅. Since u ∈ V (Ci ) ⊆
V (C+ − {vi , vi+4, x}) ⊆ V (C) ∪ (NG(C) ∩ Z) and u /∈ Z we have u ∈ V (C).
Because u and v are neighbors we have v ∈ NG(C) so v ∈ X0 ∪ X1 ∪ Z since C is a
connected component ofG−(X0∪X1∪Z). Clearly if v ∈ X0∪X1 the claim holds, so
suppose v ∈ Z . However since v ∈ NG(C) and v ∈ Z we have v ∈ NG(C) ∩ Z so by
definition of C+ we have v ∈ V (C+), a contradiction since we assumed v /∈ V (C+).
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Suppose that for some 1 ≤ i ≤ 
 − 4 we have V (Ci ) ∩ Z = ∅. In order to show
that Reduction Rule 3 applies to x and Pi , first note that (X0, X1, Z) is a (k, c, d)-
outerplanar decomposition of G and x ∈ X0 ∪ X1. The vertices vi , . . . , vi+4 lie
on Pi , an induced path in G − (X0 ∪ X1) from vi to vi+4 such that N (x) ∩ V (Pi ) =
{vi , . . . , vi+4}. We show that Ci is the connected component of G − (X0 ∪ X1) −
{vi , vi+4} containing Pi − {vi , vi+4}.

Note that Ci does not contain any vertices from X0 ∪ X1 ∪ {vi , vi+4} so Ci is a
(connected) subgraph ofG−(X0∪X1)−{vi , vi+4}. ByClaim 3.25we have NG(Ci ) ⊆
X0∪X1∪{v1, vi+4}. We can conclude thatCi is a connected component ofG−(X0∪
X1) − {vi , vi+4}, and by definition it contains Pi − {vi , vi+4}.

Finally, observe that G[V (Ci ) ∪ {vi , vi+4, x}] is outerplanar as it is a subgraph
of C+. So since V (Ci ) ∩ Z = ∅ we have that Reduction Rule 3 applies.

Now suppose that the algorithm was unable to apply Reduction Rule 3, i.e., for
all 1 ≤ i ≤ 
 − 4 we have V (Ci ) ∩ Z �= ∅. We show |N (x) ∩ V (C)| ≤ 20.
Suppose for contradiction that |N (x) ∩ V (C)| > 20. Then NC+(x) > 20, so the
path P contains more than 20 neighbors of x , i.e., 
 > 20 so C1,C5,C9,C13,C17 are
defined. Since V (Ci ) ∩ Z �= ∅ for all 1 ≤ i ≤ 
 − 4 we know C1,C5,C9,C13,C17
all contain a vertex from Z . We show C1,C5,C9,C13,C17 are disjoint.

If C1,C5,C9,C13,C17 are not disjoint, then there exist integers i, j ∈ {1, 5, 9, 13,
17} and a vertex v such that i < j and v ∈ V (Ci ) ∩ V (C j ). Using Claim 3.24
we find that V (P) ∩ V (Ci ) ∩ V (C j ) ⊆ (V (Ci ) ∩ V (P)) ∩ (V (C j ) ∩ V (P)) =
V (Pi −{vi , vi+4})∩V (Pj −{v j , v j+4}) = ∅, so v /∈ V (P). Then v is a vertex in some
connected component D of Ci −V (P) and a connected component D′ of C j −V (P).
By Observation 3.23, both D and D′ are connected components of C+ − (V (P) ∪
{x}), and since both contain v, they are the same connected component. Since Ci is
connected, D must contain a neighbor u1 ∈ V (Ci ) ∩ V (P) = V (Pi − {vi , vi+4}).
Similarly D′ = Dmust contain a neighbor u2 ∈ V (C j )∩V (P) = V (Pj−{v j , v j+4}).
Since these two sets are disjoint we have u1 �= u2. By Claim 3.22 these neighbors
must be the only neighbors of D and they must be consecutive along P . However
the vertex vi+4 lies on P between u1 and u2 since i + 4 ≤ j so u1 and u2 are not
consecutive along P . By contradiction, C1,C5,C9,C13,C17 are disjoint.

Since C1,C5,C9,C13,C17 are disjoint subgraphs of C+ and each subgraph con-
tains a vertex from Z , we have that |Z ∩ V (C+)| ≥ 5. By definition of C+ we
know V (C+) = V (C)∪{x}∪ (N (C)∩ Z). Recall that |N (C)∩ Z | ≤ 4 by Definition
3.15(3), so then (V (C) ∪ {x}) ∩ Z �= ∅. This is a contradiction since x ∈ X0 ∪ X1
and C is a connected component of G − (X0 ∪ X1 ∪ Z), hence |N (x) ∩ V (C)| ≤ 20.

��
We are going to apply Lemma 3.21 to a computed outerplanar decomposition in

order to reduce the total neighborhood size of X0 ∪ X1. This allows us to construct
a final modulator L of size O(k4) with a structure referred to in previous works as a
protrusion decomposition. We can now proceed to proving a lemma that encapsulates
application of Reduction Rule 3.

Lemma 3.26 There exists a function f5 : N
2 → N and a polynomial-time algorithm

that, given a (k, c, d)-outerplanar decomposition (X0, X1, Z) of a graph G, either
applies Reduction Rule 2 or Reduction Rule 3, or outputs a set L ⊆ V (G) such that
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1. |L| ≤ f5(c, d) · (k + 3)4,
2. |EG(L, L)| ≤ f5(c, d) · (k + 3)4,
3. there are at most f5(c, d) · (k + 3)4 connected components in G − L, and
4. for each connected component C of G − L the graph G〈C〉 is outerplanar and

|NG(C)| ≤ 4.

Furthermore, f5(c, d) = 24 · (20 · f4(c, d) + d + c + c2) (see Lemma 3.17).

Proof We first describe the algorithm and then proceed to prove its correctness.
Algorithm For all x ∈ X0 ∪ X1 and connected components C in G − (X0 ∪ X1 ∪

Z) we run the algorithm from Lemma 3.21 to apply Reduction Rule 3 or conclude
that |NG(x)∩V (C)| ≤ 20. If Reduction Rule 3 could not be applied to any x andC , we
take X = X0∪X1 and applyLemma3.13 on the graphG−X with vertex set Z∪NG(X)

to obtain a set Z ′ ⊆ V (G) \ X . We set L = X ∪ Z ′. If some component C of G − L
has at most one neighbor, we apply Reduction Rule 2 to remove C . Otherwise we
return L .

Correctness It can easily be seen that Lemma 3.21 applies on all x ∈ X0 ∪ X1
and connected components C in G − (X0 ∪ X1 ∪ Z). If by calling Lemma 3.21 we
have applied Reduction Rule 3 we can terminate the algorithm. Otherwise it holds
that |NG(x) ∩ V (C)| ≤ 20 for each x ∈ X0 ∪ X1 and each connected component C
ofG−(X0∪X1∪Z). Let us examine Z ′ and L given by the execution of the algorithm.

Clearly G − X is outerplanar as it is a subgraph of G − X0, which justifies that the
algorithm correctly applies Lemma 3.13. To show Condition 1 and 2, we first prove a
bound on |EG(X , V (G) \ (X ∪ Z)|.

Consider the component graph H = C(G, X ∪ Z). For any x ∈ X and connected
component C of G − (X ∪ Z) if H does not contain an edge between x and the
vertex representing C , then |NG(x) ∩ V (C)| = 0. If H contains an edge between x
and the vertex representing C , then our earlier bound applies: |NG(x) ∩ V (C)| ≤
20. By Lemma 3.17 we have that H contains at most f4(c, d) · (k + 3)4 edges, so
|EG(X , V (G) \ (X ∪ Z))| ≤ 20 · f4(c, d) · (k + 3)4 and |NG(X) \ Z | ≤ 20 · f4(c, d) ·
(k + 3)4.

By Lemma 3.13 we have |Z ′| ≤ 6 · |Z ∪ NG(X)| and by Definition 3.15(4) we
have |Z | ≤ d · (k + 3)3. To show Condition 1 we check that

|Z ′| ≤ 6 · (20 · f4(c, d) + d)) · (k + 3)4, and

|L| = |Z ′| + |X | ≤ 6 · (20 · f4(c, d) + d + c)) · (k + 3)4.

Let us now bound the number of edges in EG(L, L). We group these edges into
four categories: (a) edges within X0, (b) edges between X0 and X1 ∪ Z , (c) edges
between X0 and L \ (X ∪ Z), and (d) edges within L \ X0. The number of edges
in (a) is clearly at most |X0|2 = c2 · k2. Similarly, in case (b) we obtain the bound
|X0| · |X1 ∪ Z | = ck · (3c · k2 + d · (k + 3)3) ≤ (3c2 + d) · (k + 3)4. To handle case
(c), observe that EG(X0, L \ (X ∪ Z)) ⊆ EG(X , V (G) \ (X ∪ Z)) and the size of
this set has already been bounded by 20 · f4(c, d) · (k + 3)4. Finally, the subgraph of
G induced by L \ X0 is outerplanar and by Observation 2.7 we bound the number of
edges in case (d) by 2 · |L| ≤ 2 · 6 · (20 · f4(c, d)+ d + c)) · (k + 3)4. By collecting all
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summands we obtain that |EG(L, L)| ≤ 13 · (20 · f4(c, d) + d + c + c2)) · (k + 3)4

and prove Condition 2.
To showCondition4note that Z∪NG(X) ⊆ Z ′ byLemma3.13 and so Z∪NG [X ] ⊆

L . Consider a connected component C of G − L . Since C does not contain neighbors
of X we have NG [C] ∩ X = ∅. So then G〈C〉 is a subgraph of G − X , hence it
is outerplanar. Furthermore, by Lemma 3.13 we know that |NG−X (C)| ≤ 4 and so
|NG(C)| ≤ 4.

If |NG(C)| ≤ 1 for some connected component C of G − L , we have applied
Reduction Rule 2 and terminated the algorithm. If the algorithm is unable to apply
this reduction rule, we know that all components of G − L have at least two neigh-
bors, which must belong to L \ X . The vertices representing these components in
the component graph C(G − X , L) all have degree at least 2. Note also that this
graph is bipartite (by definition) and outerplanar since it is a minor of G − X , which
is outerplanar. It follows from Proposition 3.7 that G − L has at most 4 · |L| ≤
4 · 6 · (20 · f4(c, d) + d + c)) · (k + 3)4 components. This shows that Condition 3
holds. ��

4 Compressing the Outerplanar Subgraphs

4.1 Reducing the Number of Biconnected Components

Once we arrive at the decomposition from Lemma 3.26, it remains to compress out-
erplanar subgraphs with a small boundary. First, we present a reduction to bound the
number of biconnected components in such a subgraph. It will also come in useful
later, for reducing the maximum size of a face in a biconnected outerplanar graph with
a small boundary. Intuitively, this reduction checks whether an outerplanar subgraph
with exactly two non-adjacent neighbors can supply one or two vertex-disjoint paths
to the rest of the graph and replaces this subgraph with a minimal gadget with the
same property, see also Fig. 3.

Reduction Rule 4 Consider a graph G and vertex set C ⊆ V (G) such that NG(C) =
{x, y}, xy /∈ E(G), G[C] is connected, and G〈C〉 is outerplanar. Let P =
(u1, u2, . . . , um), u1 = x , um = y be any shortest path connecting x and y in G〈C〉
and D1, D2, . . . , D
 be the connected components of G〈C〉 − V (P). We consider 3
cases:

1. if there is a component Di , for which NG(Di ) includes two non-consecutive ele-
ments of P , replace C with two vertices c1, c2, each adjacent to both x and y,

2. if there are two distinct components Di , Dj , for which |NG(Di ) ∩ NG(Dj )| ≥ 2,
replace C with two vertices c1, c2, each adjacent to both x and y,

3. otherwise replace C with one vertex c1 adjacent to both x and y.

Lemma 4.1 Let x, y ∈ V (G) and C ⊆ V (G) be such that Reduction Rule 4 applies
and let G ′ be the graph obtained after application of the rule. Then G ′ is a minor of
G.
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outerplanarouterplanar

Fig. 3 On the left a depiction of Reduction Rule 4, which reduces a connected subgraph to one or two
vertices depending on its internal structure. On the right a depiction of Reduction Rule 5 which contracts a
connected subgraph to a single vertex if it is outerplanar together with the two adjacent vertices that form
its neighborhood

Proof In case (1), there exists a component Di adjacent to non-consecutive vertices u j ,
uh from V (P), j < h. Let Px , PC , Py denote the non-empty subpaths: (u1, . . . , u j )

(u j+1, . . . , uh−1), (uh, . . . , um). First, we remove all the connected components of
G[N [C]] − V (P) different from Di . Next, we contract Px into x , Py into y, PC into
a vertex denoted c1, and Di into a vertex denoted c2. By the choice of Di we see that
each of c1, c2 is adjacent to both x, y, therefore we have obtained G ′ through vertex
deletions and edge contractions.

In case (2), there exist distinct components Di1 , Di2 both adjacent to vertices u j ,
uh from V (P), j < h. Let Px , Py denote the subpaths (u1, . . . , u j ) and (uh, . . . , um).
Again, we begin by removing all the connected components of G[N [C]] − V (P)

different from Di1, Di2 . Next, we contract Px into x , Py into y, Di1 into a vertex
denoted c1, and Di2 into a vertex denoted c2, thus obtaining G ′.

In case (3), we simply contract C into a vertex c1. ��
In order to show correctness of the reduction rule, wewill prove that any outerplanar

deletion set in the new instance can be turned into an outerplanar deletion set in the
original instance without increasing its size. If we replaced the vertex set C with
two vertices, we show that any outerplanar deletion set must break all the connections
between the neighbors ofC which go outsideC . In the other case, when we replacedC
with just one vertex, we show that we can undo the graphmodification fromReduction
Rule 4 while preserving the outerplanarity.

Lemma 4.2 Let x, y ∈ V (G) and C ⊆ V (G) be such that Reduction Rule 4 applies
and let G ′ be the graph obtained after application of the rule. If S′ ⊆ V (G ′) is an
outerplanar deletion set in G ′, then there exists a set S ⊆ V (G) such that |S| ≤ |S′|
and which is an outerplanar deletion set in G.

Proof Let C ′ ⊆ V (G ′) consist of the vertices put in place of C , that is, c1 and, if we
replaced C with two vertices, c2. We naturally identify the elements of V (G ′) \ C ′
with V (G) \ C . In particular, NG ′(C ′) = NG(C) = {x, y}. We consider four cases:

• S′ ∩ {x, y} �= ∅. We show that G − S′ is outerplanar. If S′ ⊇ {x, y} then this
is immediate since G[C] is outerplanar by assumption and forms a connected
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component of G − S′, while (G − S′) − V (C) is a subgraph of G ′ − S′.
Otherwise, let z = S′ ∩ {x, y} and z = {x, y} \ {z}. As before, (G − S′) − V (C)

is outerplanar since it is a subgraph of G ′ − S′. The graph G − S′ can be obtained
from (G − S′) − V (C) by attaching G[C] onto the articulation point z, and is
therefore outerplanar by Observation 2.2.

• S′ ∩ V (C ′) �= ∅. We define the set S as (S′ \ V (C ′)) ∪ {x}. It clearly holds
that |S| ≤ |S′|. Furthermore, y is an articulation point in G − S. The graph
G − (S∪C ∪{x}) is isomorphic with G ′ − (S′ ∪C ′ ∪ {x}), hence it is outerplanar.
On the other hand, G[C ∪ {y}] is outerplanar by assumption.
Therefore, all the components obtained by splitting G− S at y are outerplanar and
thus G − S is outerplanar by Observation 2.2.

• S′ ∩ NG ′ [C ′] = ∅ and C ′ = {c1, c2}. We can simply write S = S′ as we have
identified elements ofV (G ′)\C ′ andV (G)\C . Let F1, F2 . . . , F
 be the connected
components of G ′ − (S′ ∪ C ′ ∪ {x, y}). Observe that no Fi can be adjacent to
both x, y, as otherwise x, y, c1, c2, Fi would form branch sets of a K2,3-minor in
G ′−S′. The graphG−S can be obtained fromG〈C〉 by appending the components
F1, F2 . . . , F
 at x or y. For each i ∈ [
] it holds thatG〈Fi 〉 is a subgraph ofG ′−S′,
so it is outerplanar. From Observation 2.2 we infer that G − S is outerplanar.

• S′ ∩NG ′ [C ′] = ∅ andC ′ = {c1}. We again set S = S′ via vertex identification and
we are going to transform G ′ − S′ into G − S while preserving outerplanarity of
the graph. Note that the path P contains at least one vertex from C as xy /∈ E(G).
Subdividing a subdivided edge multiple times preserves outerplanarity, and so
does replacing (x, c1, y) with P . Let G ′′ denote the resulting graph.
Since P is a shortest (x, y)-path in G〈C〉, there are no edges in G〈C〉 connecting
non-adjacent vertices of P . Recall that D1, D2, . . . , D
 are the connected com-
ponents of G〈C〉 − V (P). Since C ′ = {c1}, the conditions from cases (1, 2) in
Reduction Rule 4 are not satisfied. Therefore each component Di is either adjacent
to one vertex from V (P) or to two vertices which are consecutive. Furthermore,
for any pair of consecutive vertices on P , there can be only one component Di

adjacent to both of them.
For each i ∈ [
] it holds that NG [Di ] ⊆ NG [C], so G〈Di 〉 is outerplanar. If Di

has two neighbors u, v in P then any (u, v)-path in G ′′ \ uv includes x or y as
an internal vertex, hence there cannot be two induced internally vertex-disjoint
(u, v)-paths in G ′′ \ uv. By Lemma 2.4 appending Di to the edge uv in G ′′ sup-
plies at most one more induced (u, v)-path and no other Dj , j ∈ [
] \ {i}, can
supply a (u, v)-path in G ′′ \ uv, so this preserves outerplanariy due to Lemma 2.3
applied to the edge uv. Next, by Observation 2.2 the graph obtained by appending
each component adjacent to a single vertex is still outerplanar.We have replaced c1
back withC , thus transformingG ′−S′ intoG−S, while preserving outerplanarity
of the graph, hence G − S is outerplanar.

As NG ′ [C ′] = V (C ′) ∪ {x, y}, the case distinction is exhaustive and completes the
proof. ��
Lemma 4.3 Let G be a graph and G ′ be obtained from G by applying Reduction Rule
4. Then opd(G ′) = opd(G).
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Proof By Lemma 4.1 we know that G ′ is a minor of G, so opd(G ′) ≤ opd(G). On
the other hand, if G ′ admits an outerplanar deletion set of size at most 
, then Lemma
4.2 guarantees that the same holds for G. ��

We are now going to make use of Reduction Rule 4 to reduce the number of
biconnected components in an outerplanar graph with a small boundary. Recall that
the block-cut tree of a graph H has a vertex for each biconnected component of H
and for each articulation point in H . A biconnected component B and an articulation
point v are connected by an edge if v ∈ B. We will show that when the block-cut tree
of H = G〈A〉 is large then we can always find either one or two articulation points
that cut off an outerplanar subgraph which can be either removed or compressed.
Recall that ∂G(B) = NG(V (G) \ B) denotes the boundary of vertex set B ⊆ V (G)

in graph G.

Lemma 4.4 Consider a graph G and a vertex set A ⊆ V (G), such that |NG(A)| ≤ 4,
G[A] is connected, and G〈A〉 is outerplanar. There is a polynomial-time algorithm
that, given G and A satisfying the conditions above, outputs either

1. a block-cut tree of G〈A〉 with at most 25 biconnected components, where each
such biconnected component B satisfies |∂G(B)| ≤ 4, or

2. a vertex set C ⊆ A, to which either Reduction Rule 2 or Reduction Rule 4 applies
and decreases the number of vertices in the graph.

Proof Webeginby computing the block-cut treeT ofG〈A〉 and rooting it at an arbitrary
node [44]. For a node t ∈ V (T ) let χ(t) denote the vertex set represented by t , either
a biconnected component, or a single vertex of t that corresponds to an articulation
point. Note that each leaf in T must represent a biconnected component. Furthermore,
observe that no vertex from NG(A) can be an articulation point in G〈A〉, because
G[A] is connected. Therefore for each v ∈ NG(A) there is a unique biconnected
component containing v. Let tv ∈ V (T ) be the node in the block-cut tree representing
this component.

First suppose that there exists a biconnected component B ofG〈A〉with |∂G(B)| >

4. The set ∂G(B) is a disjoint union of NG(A)∩ B and the articulation points of G〈A〉
lying in B. Let d = |NG(A) ∩ B|. Then there are at least 5 − d articulation points of
G〈A〉 lying in B, but at most 4 − d vertices of NG(A) \ B. By a counting argument,
there is one articulation point v ∈ B of G〈A〉 which separates B \ {v} from a set
C ⊆ NG[A] which does not contain any vertex from NG(A). Hence, C ⊆ A and it
induces a connected outerplanar subgraph of G having exactly one neighbor in G.
Therefore, Reduction Rule 2 applies for C and removes it, decreasing the number of
vertices in G.

Suppose for the rest of the proof that there are at least 26 biconnected components
of G〈A〉. Let L ⊆ V (T ) denote the LCA closure of the set {tv | v ∈ NG(A)}. By
Lemma 2.8 we know that |L| ≤ 7 and each connected subtree of T −L then is adjacent
to at most two nodes from L . It follows that if t ∈ V (T ) \ L , then χ(t)∩ NG(A) = ∅.

Suppose that some component TC of T − L is adjacent to just one node from L .
It is either an articulation point or its neighbor in TC is an articulation point. The
set C = ⋃

t∈TC χ(t) has an empty intersection with NG(A) and contains a vertex v
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which separates C \ {v} from the rest of the graph G. Therefore we can find a subset
C ′ ⊆ C \ {v} which induces a connected subgraph of G, has exactly one neighbor v,
andC ′ ∪{v} ⊆ NG [A] induces an outerplanar graph. Hence, Reduction Rule 2 applies
for C ′ and removes it, decreasing the size of the graph.

A similar situation occurs when TC has a vertex of degree at least 3. Then there
exists a leaf t in TC which represents a biconnected component and is not adjacent to
L , so it is also a leaf in T . Again, χ(t) ∩ NG(A) = ∅, so χ(t) contains a single vertex
v which separates χ(t) \ {v} from the rest of the graph G. Analogously as above,
Reduction Rule 2 applies and decreases the size of the graph.

Suppose now that the previous cases do not hold. Then each connected component
of T − L is adjacent to exactly two nodes from L and induces a path in T with the
endpoints adjacent to L . If we contracted each such component to an edge connecting
two nodes from L , we would obtain a tree with vertex set L and |L|−1 edges. Hence,
the number of such components of T − L is at most 6. Since the total number of
biconnected components in G〈A〉 is at least 26, we infer that there exists a connected
component TC of T−L containing at least

⌈ 26−7
6

⌉ = 4 nodes representing biconnected
components of G〈A〉. The set C = ⋃

t∈TC χ(t) contains two vertices u, v which
together separate C − {u, v} from the rest of G〈A〉. Note that u, v belong to disjoint
biconnected components of G〈A〉, so uv /∈ E(G) and the set C − {u, v} induces a
connected subgraphofG.AsC∩NG(A) = ∅, this implies thatC−{u, v} is a connected
component of G − {u, v}. Furthermore, a union of 4 biconnected components has at
least 5 vertices (the corner case occurs when they are all single edges), so C − {u, v}
has at least 3 vertices. Therefore, Reduction Rule 2 applies forC −{u, v} and replaces
it with at most two new vertices, therefore the total number of vertices in the graph
decreases. All the described operations on the block-cut tree can be implemented to
run in polynomial time. ��

4.2 Reducing a Large Biconnected Component

We now give the remaining reduction rules to reduce the size of a biconnected com-
ponent of a protrusion. If a subgraph of a graph is outerplanar and adjacent only to
two connected vertices, we can use Lemma 2.3 to argue that the entire subgraph can
be replaced by any other outerplanar graph that is adjacent to the same two vertices.
The following reduction rule exploits this by replacing such a subgraph with a single
vertex, see also Fig. 3.

Reduction Rule 5 Suppose that there is an edge e = uv in a graphG such thatG−V (e)
has a connected component C such that G〈C〉 is outerplanar. Then contract C into a
single vertex.

Lemma 4.5 (Safeness) Let G, uv ∈ E(G), C satisfy the requirements of Reduction
Rule 5 and let G ′ be obtained from G by contracting C to a new vertex c. Then
opd(G) = opd(G ′).

Proof It suffices to prove inequality opd(G) ≤ opd(G ′). If |NG(C)| = 1, then
we obtain the case already considered in Reduction Rule 2, which is safe due to
Observation 2.2. Assume for the rest of the proof that NG(C) = {u, v}.
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Let S′ ⊆ V (G ′) be any outerplanar deletion set inG ′; wewill prove opd(G) ≤ |S′|.
We first deal with two easy cases.

If S′∩{u, v} �= ∅, thenweargue that S = (S′\{c}) is an outerplanar deletion set inG.
This follows from the fact that G〈C〉 is outerplanar while C has at most one neighbor
inG− S′, so that Observation 2.2 showsG− S is outerplanar. Hence opd(G) ≤ |S| ≤
|S′|.

If c ∈ S′ but S′ ∩ {u, v} = ∅, then S = (S′ \ {c}) ∪ {u} is not larger than S′. To
see that G − S is outerplanar, we apply Observation 2.2 to the articulation point v.
Since G〈C〉 is outerplanar by assumption, while (G − S) − V (C) is a subgraph
of G ′ − S′ and therefore outerplanar, Observation 2.2 ensures G − S is outerplanar.
Hence opd(G) ≤ |S′|.

Suppose now that S′ ∩ {u, v, c} = ∅. We check the requirements of Lemma 2.3 for
the graph G − S′ and edge uv. First, each connected component of G − S′ − {u, v} is
outerplanar when considered together with its neighborhood. It remains to show that
(G − S′) \ uv does not have three induced internally vertex-disjoint paths connecting
u and v. Since (u, c, v) already gives such a path and G ′ − S′ is outerplanar, the graph
G ′ − (S′ ∪ {c}) \ uv = (G − (S′ ∪ C)) \ uv does not have two induced internally
vertex-disjoint (u, v)-paths. By Lemma 2.4, there also cannot be two such paths in
G〈C〉 \ uv. Therefore replacing c with C does not increase the number of induced
internally vertex-disjoint (u, v)-paths and so Lemma 2.3 applies. We have thus shown
that S′ is an outerplanar deletion set in G, which concludes the proof. ��

The next reduction rule addresses high degree vertices within a biconnected com-
ponent. It uses the same idea as used in Reduction Rule 3, in fact, its safeness follows
directly from Lemma 3.19. See also Fig. 4.

Reduction Rule 6 Suppose we are given a graph G, a vertex x ∈ V (G), and five
vertices v1, . . . , v5 ∈ NG(x) that lie, in order of increasing index, on an induced
path P in G − x from v1 to v5, such that NG(x) ∩ V (P) = {v1, . . . , v5}. Let C be the
component of G − {v1, v5, x} containing P − {v1, v5}. If G〈C〉 is outerplanar, then
remove the edge xv3.

The final reduction rule reduces the number of “internal” edges of an outerplanar
biconnected graph. These are the edges whose endpoints form a separator in the graph.
The previous rule addresses the case where these edges share an endpoint. The final
reduction rule focuses on the case where the edges are disjoint: they form a matching.

Definition 4.6 For a graph G, a sequence of edges e1, . . . , e
 ∈ E(G) is an order-
respecting matching if the set of edges is a matching and if for all 1 ≤ i < j < k ≤ 


we have that ei and ek are in different connected components of G − V (e j ).

We can now formulate a property of biconnected graphs containing an order-
respecting matching. This allows us to identify a number of cycles in the graph that
are useful in the proof of the final reduction rule.

Lemma 4.7 For an integer 
 > 1, if G is biconnected and e1, . . . , e
 is an order-
respecting matching in G then there exist vertex-disjoint paths Px , Py in G, such that
each of Px , Py intersects every set V (ei ), i ∈ [
], and these intersections appear in
order of increasing index.
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Proof LetG ′ be the graphobtained fromG by subdividing e1 and e
 with newverticesa
and b. Since subdividing edges preserves biconnectivity, the graph G ′ is biconnected.
So then there are two internally vertex-disjoint (a, b)-paths P1 and P2. Take Px :=
P1 − {a, b} and Py := P2 − {a, b}. Let x1, x
, y1, and y
 be the unique vertices in
(respectively) V (Px ) ∩ V (e1), V (Px ) ∩ V (e
), V (Py) ∩ V (e1), and V (Py) ∩ V (e
).
Observe that Px is an (x1, x
)-path in G and Py is a (y1, y
)-path in G and both paths
are vertex disjoint.

For any ei ∈ {e2, . . . , e
−1} we have by definition of order-respecting matching
that x1 and x
 are in different connected components of G − V (ei ), hence one of the
endpoints of ei must lie on Px . Similarly one of the endpoints of ei must lie on Py .
For all 1 < i < 
 let xi denote the endpoint of ei that lies on Px and let yi denote the
endpoint of ei that lies on Py .

By Definition 4.6 we have for all 1 ≤ i < j < k ≤ 
 that xi and xk are in
different connected components of G − V (e j ). So the subpath of Px between xi
and xk must contain a vertex of V (e j ). Since y j lies on Py which is disjoint from Px
we must have that x j lies on Px between xi and xk . Since 1 ≤ i < j < k ≤ 
 are
arbitrary it follows that {x1, . . . , x
} occur in order of increasing index on the path Px .
Similarly, {y1, . . . , y
} occur in order of increasing index on the path Py . ��

We are now ready to formulate the final reduction rule. It applies within a bicon-
nected outerplanar part of the graph that has multiple “internal” edges.Wemake use of
the definition of order-respecting matching to define an order on the internal edges, so
that the endpoints of the first and the last one separate the biconnected outerplanar part
from the remainder of the graph. We show that in such a case the edges in the middle
can be removed without affecting the outerplanar deletion number of the graph (see
Fig. 4). To advocate the safeness of such a graph modification, we observe that if any
cycle in the modified outerplanar part is disjoint from a solution, then by Lemma 2.6
the solution must intersect all the paths connecting the endpoints of the first and the
last edge of the matching on the “outside”. This allows us to apply the outerplanarity
criterion from Lemma 2.3 to an edge on this cycle. In order to simplify the argument
that such a cycle exists, we require an order-respecting matching of size 7.

Reduction Rule 7 Let G be a graph, e1, . . . , e7 be a matching in G, and let C be a
connected component of G − (V (e1) ∪ V (e7)). If {e2, . . . , e6} ⊆ E(C), NG(C) =
V (e1) ∪ V (e7), G〈C〉 is biconnected and outerplanar, and e1, . . . , e7 is an order-
respecting matching in G〈C〉, then remove e4.

Lemma 4.8 (Safeness) Let e1, . . . , e7 be a matching in a graph G and let C be a con-
nected component of G−(V (e1)∪V (e7)). If Reduction Rule 7 applies to G, e1, . . . , e7,
and C, then opd(G \ e4) = opd(G).

Proof Clearly any solution to G is also a solution to G \e4 so opd(G \e4) ≤ opd(G).
To show opd(G \ e4) ≥ opd(G) suppose that G \ e4 − S is outerplanar. We will show
that there is a set S′ ⊆ V (G) of size at most |S| such that G − S′ is outerplanar. We
first formulate the following structural property:

Claim 4.9 If i ∈ {2, . . . , 6} then for any induced path P in G\ei between the endpoints
of ei , either P is an induced path in G〈C〉 \ ei , or P has a subpath disjoint from C
connecting an endpoint of e1 to an endpoint of e7.
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outerplanar outerplanar

Fig. 4 On the left a depiction of Reduction Rule 6 which is able to remove the middle edge of a fan structure
in an outerplanar subgraph that is sufficiently isolated from the rest of the graph. On the right a depiction
of Reduction Rule 7, which removes the middle edge of an order-respecting matching in an outerplanar
subgraph that is sufficiently isolated from the rest of the graph

Proof Let i ∈ {2, . . . , 6} be arbitrary. Suppose that P is an induced path in G \ ei
between the endpoints of ei that contains a vertex v outside G〈C〉. We show that P
contains a subpath disjoint from C connecting an endpoint of e1 to an endpoint of e7.
Consider the subpath P ′ of P from the last vertex x of G〈C〉 before v, to the first
vertex y of G〈C〉 after v. By definition x, y have neighbors outside G〈C〉 so x, y ∈
NG(C) = V (e1) ∪ V (e7), showing that P ′ is disjoint from C . Since P is induced, so
is P ′, hence there is no edge between x and y. It follows that one of x, y is an endpoint
of e1 and the other an endpoint of e7, hence P ′ is a subpath of P disjoint from C that
connects an endpoint of e1 to an endpoint of e7. ��

We apply Lemma 4.7 to G〈C〉 and the matching (e1, . . . , e7) to obtain vertex-
disjoint paths Px , Py inG〈C〉which intersect eachV (ei ), i ∈ [7], in order of increasing
index. For i ∈ [7] let {xi , yi } be the endpoints of edge ei , note that these are unrelated
to x and y used in the proof of the previous claim. For all 1 ≤ p < q ≤ 7 let Cp,q

denote the cycle in G〈C〉 as obtained by combining the edges ep, eq with the subpaths
in Px , Py from V (ep) to V (eq). Observe that whenever p1 < q1 < p2 < q2, then
V (Cp1,q1) ∩ V (Cp2,q2) = ∅. For brevity let Ci denote Ci,i+1 for all 1 ≤ i ≤ 6. We
consider the following cases:

• If |NG[C] ∩ S| ≥ 3 then take S′ := {x1, y1, x7} ∪ (S \ V (C)) and observe
that |S′| ≤ |S|. We show G − S′ is outerplanar using Observation 2.2. We show
for all connected components C ′ of G − S′ − y7 that (G − S′)〈C ′〉 is outerplanar.
Since S′ ∩ V (C) = ∅ we have that C is a connected component of G − S′ −
V (e1)−V (e7). Since (V (e1)∪V (e7))\ S′ = {y7} this yields thatC is a connected
component ofG−S′− y7. Clearly (G−S′)〈C〉 is outerplanar since it is a subgraph
of G〈C〉. Any other connected componentC ′ of G− S′ − y7 clearly is a connected
component of G − S′ − y7 − V (C), so then (G − S′)〈C ′〉 is a subgraph of G −
S′ − V (C). Since both endpoints of e4 are in C we have that G − S′ − V (C) =
G \ e4 − S′ − V (C). This is a subgraph of G \ e4 − S since S ⊆ S′ ∪ V (C).
BecauseG\e4−S is outerplanar we can conclude that (G−S′)〈C ′〉 is outerplanar.
By Observation 2.2 we have that G − S′ is outerplanar.
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• If |NG[C] ∩ S| = 2 and at least one of {C1,C6} does not intersect S, we may
assume without loss of generality (by symmetry) that C6 does not intersect S.
Take S′ := V (e1) ∪ (S \ V (C)) and observe that |S′| ≤ |S|. We show G − S′ is
outerplanar using Lemma 2.3 on the edge e7.
We first show for all connected components C ′ of (G − S′) − V (e7) that (G −
S′)〈C ′〉 is outerplanar. Since S′ ∩ V (C) = ∅ we have that C is a connected
component of G − S′ −V (e1)−V (e7) = (G − S′)−V (e7). Clearly (G − S′)〈C〉
is outerplanar since it is a subgraph of G〈C〉. Any other connected component C ′
of G − S′ − V (e7) is a connected component of G − S′ − V (e7) − V (C), so
then (G − S′)〈C ′〉 is a subgraph of G − S′ −V (C). Since both endpoints of e4 are
inC we have that G− S′ −V (C) is a subgraph ofG \e4− S, which is outerplanar.
Hence (G − S′)〈C ′〉 is outerplanar.
It remains to show that there do not exist three induced internally vertex-disjoint
paths in (G− S′)\e7 connecting the endpoints of e7. SinceC6 does not intersect S
or S′ and V (C6) ∩ V (e4) = ∅ we have that C6 \ e7 is a path connecting the
endpoints of e7 in (G − S) \ {e4, e7} and in (G − S′) \ e7. By shortcutting we
obtain an induced path P∗ in (G − S) \ {e4, e7} and in (G − S′) \ e7, so that P∗
connects the endpoints of e7 and its internal vertices are all contained in C6.
Suppose for a contradiction that (G − S′) \ e7 contains three induced internally
vertex-disjoint paths P1, P2, P3 connecting the endpoints of e7. Observe that if
such a path Pi in (G − S′) \ e7 intersects V (C), then its interior vertices belong
entirely to V (C), since NG(C) = V (e1) ∪ V (e7) while V (e1) ⊆ S′. If two
paths Pi , Pj out of {P1, P2, P3} intersect V (C), then we contradict Lemma 2.4
applied to the edge e7 of the outerplanar subgraph G[V (C) ∪ V (e7)] since C
is a connected component of G[V (C) ∪ V (e7)] − V (e7) and would contain the
interiors of two internally vertex-disjoint (u, v) paths. Hence at most one path Pi
intersects V (C), while the remaining two paths avoid V (C) and therefore also exist
in (G − S) \ {e4, e7}. But then we can replace Pi by P∗ to obtain three induced
internally vertex-disjoint paths in (G−S)\{e4, e7} connecting the endpoints of e7,
contradicting the outerplanarity of (G − S) \ e4 by Lemma 2.3. This shows also
the second condition of Lemma 2.3 is satisfied, hence G − S′ is outerplanar.

• Otherwise we are in one of the following cases: (1) |NG [C] ∩ S| ≤ 1, or
(2) |NG[C] ∩ S| = 2 and S intersects both C1 and C6. We show that G − S
is outerplanar.

Claim 4.10 Suppose the preconditions of Reduction Rule 7 hold, S ⊆ V (G), G \
e4 − S is outerplanar, and either |NG[C] ∩ S| ≤ 1 or |NG[C] ∩ S| = 2 and S
intersects both C1 and C6. Then any path in G \ e4 − S from an endpoint of e1 to
an endpoint of e7 intersects V (C).

Proof First we argue that at least one of C1,3,C3,5,C5,7 is disjoint from S. If S
intersectsC1 andC6, then S cannot intersectC3,5 sinceC1,C6, andC3,5 are vertex-
disjoint. If C1 or C6 does not intersect S then by assumption |NG[C]∩ S| ≤ 1 so S
cannot intersect both C1,3 and C5,7 as they are vertex-disjoint. Hence S is disjoint
from at least one of C1,3, C3,5, or C5,7.
For the sake of contradiction, suppose that there is a path Pz in G \ e4 − (S ∪ C)

which connects z1 ∈ V (e1) to z7 ∈ V (e7). First consider the case V (C3,5)∩S = ∅.
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Recall the paths Px , Py defined in the beginning of the proof. Let P ′
x (resp. P

′
y) be

the subpath of Px (resp. Py) from x1 ∈ V (e1) to x3 ∈ V (e3) (resp. y1 ∈ V (e1)
to y3 ∈ V (e3)). If |NG [C] ∩ S| = 2, then S intersects C6, which is disjoint from
V (P ′

x )∪V (P ′
y). We therefore have |(V (P ′

x )∪V (P ′
y))∩ S| ≤ 1 and by disjointness

of Px , Py we infer that one of the paths P ′
x , P

′
y is disjoint from S; assume w.l.o.g.

that it is P ′
x . Let P

′′
x be P ′

x if z1 ∈ V (P ′
x ) or P

′
x concatenated with e1 otherwise.

Then P ′′
x connects V (e3) to z1, it is internally vertex disjoint from C3,5 and, since

z1 /∈ S, it is vertex-disjoint from S. Using a symmetric argument we can construct
a path, disjoint from S, which connects V (e5) to z7. By concatenating these paths
with Pz we obtain that there is a connected component of (G \ e4 − S) − V (C3,5)

which is adjacent to at least two vertices on the cycle C3,5: one from V (e3) and
the other one from V (e5). Since V (e4) separates V (e3) from V (e5) in G〈C〉, these
vertices are non-consecutive on the cycle C3,5. By Lemma 2.6, this contradicts the
assumption that G \ e4 − S is outerplanar.
It remains to consider the case V (C1,3) ∩ S = ∅, as the case V (C5,7) ∩ S = ∅ is
symmetric. We have V (C1) ⊆ V (C1,3) so V (C1) ∩ S = ∅ and by the assumption
|NG[C]∩S| ≤ 1. Let P ′

x (resp. P
′
y) be the subpath of Px (resp. Py) from x3 ∈ V (e3)

to x7 ∈ V (e7) (resp. y3 ∈ V (e3) to y7 ∈ V (e7)). Recall that neither of Px , Py goes
through e4 as its endpoints lie on each of Px , Py . By disjointness of Px , Py we
infer that one of the paths P ′

x , P
′
y is disjoint from S; assume w.l.o.g. that it is P ′

x .
Similarly as before, we define P ′′

x to be P ′
x if z7 ∈ V (P ′

x ) or P
′
x concatenated with

e7 otherwise. Then P ′′
x connects V (e3) to z7 in G〈C〉 \ e4 − S and it is internally

vertex disjoint with C1,3. By concatenating P ′′
x with Pz we obtain that there is a

connected component of (G \ e4 − S) − V (C1,3) which is adjacent to two non-
consecutive vertices on the cycle C1,3 (z1 ∈ V (e1) and the other one from V (e3)).
By Lemma 2.6, this contradicts the assumption that G \ e4 − S is outerplanar.
Using this structural property we complete the proof of the third case. We start by
defining two edges ea and eb, whose endpoints are disjoint from S, as follows; see
Fig. 5. If S intersects both C1 and C6 then take ea = e3 and eb = e5, otherwise we
have |NG[C]∩S| ≤ 1 so at least one of ea ∈ {e2, e3} is not hit by S. Similarly there
is an edge eb ∈ {e5, e6} that does not intersect S. Nownote that {e1, ea, e4, eb, e7} is
an order-respecting matching in G〈C〉, NG(V (ea)) ⊆ NG [C], and NG(V (eb)) ⊆
NG[C].
To show G − S is outerplanar we use Lemma 2.3 on the edge ea , i.e., we show for
any connected component H of G − S − V (ea) that (G − S)〈H〉 is outerplanar
and there do not exist three induced internally vertex-disjoint paths in (G− S)\ ea
connecting both endpoints of ea .
To prove the latter, observe that any induced path in (G− S)\ea is also an induced
path in G \ ea and by Claim 4.10 they cannot contain a subpath from an endpoint
of e1 to an endpoint of e7. Now by Claim 4.9 we have any such path is an induced
path in G〈C〉\ea . Since G〈C〉\ea is outerplanar we have by Lemma 2.3 that there
are at most two such paths that are internally vertex-disjoint.
We now show for any connected component H of G− S−V (ea) that (G− S)〈H〉
is outerplanar. Consider the case that H does not intersect Ca,b. Then we know
that (G − S)〈H〉 does not contain the edge e4, hence (G − S)〈H〉 is a subgraph
ofG\e4−S, which is outerplanar. For the other case, let D1 be the graph consisting
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e1 e2 e3 e4 e5 e6 e7
ea eb

C

e1 e3 e4 e5 e7

D′
1D′

2

e6
eb

e2
ea

Fig. 5 Illustration of the last case of the proof of Lemma 4.8. The illustration shows a situation to which
Reduction Rule 7 is applicable to remove e4. A solution S in G \ e4 consisting of a singleton vertex is
visualized by a cross, leading to choices for ea = e2 and eb = e6. On the right, the induced subgraph D′

1
and its subgraph D′

2 are highlighted

of all connected components of G − S − V (ea) intersecting Ca,b. It suffices to
show that (G − S)〈D1〉 is outerplanar.
We use Lemma 2.3 on the edge eb in the graph D′

1 := (G − S)〈D1〉, i.e., we show
for any connected component H of D′

1−V (eb) that D′
1〈H〉 is outerplanar and there

are at most two induced internally vertex-disjoint paths in D′
1 \ eb connecting the

endpoints of eb. Let D2 be thegraph consistingof all connected components of D′
1−

V (eb) that intersect Ca,b. Since (e1, . . . , e7) is an order-respecting matching in
G〈C〉, the graph D′

1〈D2〉 is a subgraph of G〈C〉. Hence D′
1〈D2〉 is outerplanar.

Any other connected component H of D′
1 − V (eb) that does not intersect Ca,b

does not contain the edge e4, hence D′
1〈H〉 is a subgraph of G \ e4 − S, which is

outerplanar.
It remains to show that there are at most two induced internally vertex-disjoint
paths in D′

1 \ eb connecting both endpoints of eb. By Claim 4.10 such paths cannot
contain an endpoint of e1. Since such a path is also an induced path in G \ eb
so then by Claim 4.9 we have that such a path is an induced path in G〈C〉 \ eb.
Since G〈C〉 \ eb is outerplanar it follows from Lemma 2.3 that there are at most
two such internally vertex-disjoint paths. Hence D′

1 = (G− S)〈D1〉 is outerplanar
completing the argument that G − S is outerplanar.

We have shown in all cases that there exists a set S′ of size at most |S| such that G− S′
is outerplanar. ��

This concludes our final reduction rule. What remains is how they can be applied
in polynomial time to reduce the protrusions to a constant size. Since the number of
biconnected components can be bounded by a constant (see Lemma 4.4), we proceed
to show how to reduce the size of these biconnected components to a constant.

4.3 Reducible Structures in Biconnected Outerplanar Graphs

In this section we use the weak dual of a biconnected outerplanar graph to argue that
a large biconnected outerplanar graph contains a structure to which a reduction rule
is applicable. We therefore need some terminology to relate objects in a biconnected
outerplanar graph G with those in its weak dual Ĝ. The following properties are
well-known.

123



3446 Algorithmica (2022) 84:3407–3458

Observation 4.11 [21, Corollary 6] Any biconnected outerplanar graph on at least
three vertices has a unique Hamiltonian cycle.

Observation 4.12 [20] The weak dual of a biconnected outerplanar graph is a tree.

It is justified to speak of the weak dual of a biconnected outerplanar graph, since
all embeddings in which all vertices lie on the outer face have exactly the same set of
faces. This can easily be seen by noting that the unique Hamiltonian cycle has a unique
outerplanar embedding up to reversing the ordering, and that all remaining edges are
chords of this cycle drawn in the interior. For a biconnected outerplanar graph G we
can therefore uniquely classify its edges into exterior edges which lie on the outer face
of an outerplanar embedding, and interior edges which bound two interior faces and
are chords of the Hamiltonian cycle formed by the outer face.

For a biconnected outerplanar graph G we use Ĝ to denote its weak dual. For an
interior edge e ∈ E(G)we use ê to denote its dual in Ĝ. Note that exterior edges, which
lie on the outer face, do not have a dual in Ĝ since we work with the weak dual. Each
bounded face f of an outerplanar embedding ofG corresponds to a vertex f̂ of Ĝ. For a
vertex f̂ of Ĝ, we use VG( f̂ ) to denote the vertices ofG incident on face f . We extend
this notation to vertex sets and subgraphs of Ĝ, so that VG(Ĝ ′) = ⋃

f̂ ∈Ĝ ′ VG( f̂ ).

Similarly, for an edge ê of Ĝ we use VG (̂e) or simply V (e) to denote the endpoints of
the edge inG for which ê is the dual. For Ŷ ⊆ E(Ĝ)we define VG(Ŷ ) := ⋃

ê∈Y VG (̂e).
It is insightful to think about the weak dual Ĝ of a biconnected outerplanar graph G

as prescribing a way in which to build graph G as follows: starting from the disjoint
union of the induced cycles forming the interior faces corresponding to V (Ĝ), for
each edge f̂ ′ f̂ ′′ = ê ∈ E(Ĝ) glue together the induced cycles for f ′ and f ′′ at the
edge e that is common to both cycles. Since each interior face is an induced cycle
and therefore biconnected, while gluing biconnected subgraphs along edges preserves
biconnectivity, we observe the following.

Observation 4.13 If G is a biconnected outerplanar graph and R̂ is a nonempty con-
nected subtree of its weak dual Ĝ, then G[VG(R̂)] is biconnected.

Suppose we have a connected subtree R̂ of the weak dual Ĝ of a biconnected
outerplanar graph G. In the process of constructing G from the induced cycles formed
by its faces, the subgraphG[R̂] only becomes adjacent to vertices outside the subgraph
by gluing faces outside R̂ onto faces of R̂. Since these are glued along edges whose
dual has one endpoint inside and one endpoint outside R̂, we observe the following.

Observation 4.14 Let G be a biconnected outerplanar graph and let R̂ be a connected
subtree of its weak dual Ĝ. Let Ŷ ⊆ E(Ĝ) denote those edges which have exactly one
endpoint in R̂. The only vertices of VG(R̂) which have a neighbor outside VG(R̂) are
those in VG(Ŷ ).

From these observations, we deduce the following lemma stating how a subtree
of Ĝ that is attached to the rest of Ĝ at a single edge, represents a connected subgraph.

Lemma 4.15 Let G be a biconnected outerplanar graph, let ê ∈ E(Ĝ), and let R̂ be
one of the two trees in Ĝ \ ê. For C = VG(R̂) \ VG (̂e) the graph G[C] is connected
and NG(C) = VG (̂e).
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Proof By Observation 4.13, the graph G[VG(R̂)] is biconnected, so by Observation
4.11 it has a Hamiltonian cycle. It is easy to see that R̂ is the weak dual of G[VG(R̂)].
The latter graph contains edge e, since it is incident on both faces represented by
the endpoints of ê, one of which has its dual vertex in R̂. Since ê /∈ E(R̂), the
edge e is an exterior edge of G[R̂]. So e is an edge of the unique Hamiltonian cycle
of G[R̂], which implies that the removal of V (e) leaves that subgraph connected.
Hence VG(R̂) \ VG (̂e) is a connected subgraph of G. By Observation 4.14 the only
vertices of VG(R̂)which have neighbors inG outside VG(R̂) are those in VG (̂e), which
proves that G[R̂] − VG (̂e) is a connected component of G − VG (̂e). Its neighborhood
in G is equal to VG (̂e) since the predecessor and successor of the vertices of VG (̂e)
on the Hamiltonian cycle of G[R̂] are contained in G[R̂] − VG (̂e). ��

The following lemma gives a condition under which removing the endpoints of a
matching of two edges preserves connectivity. Recall the definition of order-respecting
matching (Definition 4.6).

Lemma 4.16 If G is a biconnected outerplanar graph and M = {e1, e2, e3} is an
order-respecting matching in G such that e1 and e3 are exterior edges while e2 is an
interior edge, then the subgraph G ′ := G − V ({e1, e3}) is connected and NG(G ′) =
V ({e1, e3}).
Proof Consider the unique Hamiltonian cycle C of G. The exterior edges e1 and e3
lie on C while the interior edge e2 is a chord of C . Since M is an order-respecting
matching, the vertex setsV (e1) andV (e3) lie in different connected components ofG−
V (e2). Partition the cycleC into two vertex-disjoint (V (e1), V (e3))-pathsC1,C2, and
let C ′

1,C
′
2 be the paths formed by the interior vertices of C1 and C2. Since V (e2)

separates V (e1) and V (e3), the paths C ′
1,C

′
2 are nonempty and both contain a vertex

of V (e2). This implies that the graph G[C ′
1 ∪ C ′

2] is connected, since the edge e2
connects the two paths. Since C ′

1 ∪ C ′
2 span all vertices of G except V ({e1, e3}) we

have G ′ = G[V (C ′
1) ∪ V (C ′

2)], and since each vertex of V ({e1, e3}) is adjacent to an
endpoint of C ′

1 or C
′
2, the lemma follows. ��

The following shows that the order-respecting property of a matching can be
deduced from its path-like structure in the dual.

Lemma 4.17 Let G be a biconnected outerplanar graph. If P̂ is a path in Ĝ and M =
{e1, . . . , e
} is a matching in G such that the dual edges ê1, . . . , ê
 appear on P̂ in
the order as given by the indices, but not necessarily consecutively, then M is an
order-respecting matching in G.

Proof For 1 < i < 
 let Ĝi denote the tree in Ĝ \ êi that contains ê1. Since the
edges êi lie on P̂ in order of increasing index, tree Ĝi contains {̂e j | j < i} but no
edge of {̂e j | j > i}. Since the edges in the matching M are vertex-disjoint, this
implies that VG(Ĝi ) contains VG (̂e j ) for j < i but contains no vertex of VG (̂e j )
for j > i .

By Lemma 4.15, we have NG(VG(Ĝi ) \ VG (̂ei )) = VG (̂ei ) for all 1 < i < 
,
which implies that the only vertices of VG(Ĝi ) which have neighbors outside that set
are those in VG (̂ei ). Hence the removal of VG (̂ei ) breaks all paths from endpoints
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of VG (̂e j ) to endpoints of VG (̂er ) for j < i < r . This establishes that the matching M
is order-respecting. ��

The previous observation leads to the following lemma. Intuitively, it gives a prop-
erty similar to that of a tree decomposition, saying that the vertices of Ĝ representing
faces containing a fixed vertex t ∈ V (G) form a connected subtree of Ĝ.

Lemma 4.18 Let G be a biconnected outerplanar graph and let t ∈ V (G). If interior
faces f and f ′ both contain t , then t ∈ V (e) for each edge ê on the unique ( f̂ , f̂ ′)-
path P̂ in Ĝ.

Proof Let ê be an edge on P̂ and consider the two trees Ĝ1, Ĝ2 of Ĝ \ ê. Since ê lies
on the path between f̂ and f̂ ′, with t ∈ VG( f̂ ) ∩ VG( f̂ ′), we have t ∈ VG(Ĝ1) ∩
VG(Ĝ2). By applying Observation 4.14 twice, once for Ĝ1 and once for Ĝ2, the
graph G − VG (̂e) has one connected component on vertex set VG(Ĝ1) \ VG (̂e) and
one connected component on vertex set VG(Ĝ2) \ VG (̂e), which implies VG(Ĝ1) ∩
VG(Ĝ2) ⊆ VG (̂e) = V (e). Since t belongs to VG(Ĝ1) ∩ VG(Ĝ2), we have t ∈ V (e).

��
The next lemma analyzes how a star of edges incident on a common vertex x are

represented in the weak dual.

Lemma 4.19 Let G be a biconnected outerplanar graph and let P̂ be a path in Ĝ
consisting of consecutive vertices and edges f̂0, ê1, f̂1, ê2, f̂2, . . . , ê
, f̂
 of Ĝ, such
that x ∈ V (e1) ∩ V (e
). Then x ∈ V (ei ) for all i ∈ [
], and letting vi denote the
endpoint of ei other than x for each i , the vertices {vi | i ∈ [
]} lie in order of
increasing index on an induced (v1, v
)-path P in G[VG({ f̂1, . . . , f̂
−1})] − x that
contains no other neighbors of x.

Proof Since f̂0 (respectively f̂
) is incident on ê1 (̂e
) and x ∈ V (e1) ∩ V (e
), we
have x ∈ VG( f̂0)∩VG( f̂
). By Lemma 4.18, this implies that x ∈ V (ei ) for all i ∈ [
].

Since G is a simple graph without parallel edges, the fact that x ∈ V (ei ) for
all i ∈ [
] implies that the other endpoints of the edges ei are all distinct. Let {vi } =
V (ei ) \ {x} for each i . Since P̂ is a path in Ĝ, we can construct the graph G ′ :=
G[VG({ f̂1, . . . , f̂
−1})] from disjoint induced cycles for the faces f1, . . . , f
−1 by
gluing them back-to-back along the edges e1, . . . , e
, all of which are incident on x .
Note that we do not use the faces f0 and f
. Since in this construction we glue disjoint
cycles together at distinct edges in a path-like sequence, and all edges along which we
glue are incident on x , it follows that G ′ − x is an induced path. It contains v1, . . . , v


in this order and no other neighbors of x . ��
The last property of a weak dual we need states how removing two nonadjacent

vertices incident on a common interior face separates the graph.

Lemma 4.20 Let G be a biconnected outerplanar graph and let Ĝ be its weak dual.
Let f̂ ∈ V (Ĝ) and let u, v ∈ V (G) be nonadjacent vertices incident on f . Let E1, E2
be the edge sets of the two (u, v)-subpaths along the boundary of f , respectively.
Let Ĝi for i ∈ [2] denote the union of all trees R̂ of Ĝ − f̂ for which the unique
edge connecting R̂ to f̂ is the dual of an edge in Ei . Then the connected components
of G − {u, v} are G[(V (Ei ) ∪ VG(Ĝi )) \ {u, v}] for i ∈ [2].

123



Algorithmica (2022) 84:3407–3458 3449

Proof Consider the process of constructing G from the disjoint cycles bounding its
interior faces as dictated by the weak dual Ĝ. Since any interior face is an induced
cycle, removing the nonadjacent vertices u, v from the induced cycle bounding f
separates the cycle into exactly two paths P1, P2. Since weak dual witnesses that G
can be constructed by gluing the subgraphs G[R̂] for R̂ a tree of Ĝ − f̂ onto an edge
of the cycle bounding f , the interior vertices of the paths P1, P2 belong to different
connected components of G −{u, v}. Since each subgraph G[R̂] is glued onto at least
one interior vertices of a path P1, P2, the graph G − {u, v} has exactly two connected
components and their contents are as claimed; note that V (Ei ) \ {u, v} are exactly the
interior vertices of path Pi . ��

Using these properties we can now prove that a large biconnected outerplanar
graph contains a reducible structure. Each of the three types of structures below can
be reduced by one of our reduction rules.

Lemma 4.21 Let G be a biconnected outerplanar graph and let T ⊆ V (G) be a
nonempty subset of vertices with |T | ≤ 4. If |V (G)| > 6288, then in polynomial time
we can identify one of the following reducible structures in G:

• two (possibly adjacent) vertices u, v such that there is a component C of G−{u, v}
that does not contain any vertex of T , for which |V (C)| > 2,

• a matching e1, . . . , e7 in G, such that there is a single connected component C
of G − (V (e1) ∪ V (e7)) which contains {e2, . . . , e6} but no vertex from T , such
that NG(C) = V (e1) ∪ V (e7), the graph G〈C〉 is biconnected, and e1, . . . , e7 is
an order-respecting matching in G〈C〉, or

• a vertex x ∈ V (G) and five vertices v1, . . . , v5 ∈ NG(x) that lie, in order of
increasing index, on an induced path P in G − x from v1 to v5, such that NG(x)∩
V (P) = {v1, . . . , v5}, and such that the connected component of G − {v1, v5, x}
which contains P − {v1, v5} contains no vertex from T .

Proof We will refer to vertices from T as terminals. For each t ∈ T , fix an interior
face f (t) ofG incident on t and define f̂ (T ) := { f̂ (t) | t ∈ T }. Let ĜT be theminimal
subtree of the weak dual Ĝ spanning f̂ (T ). We say a vertex of ĜT is important if it
belongs to f̂ (T ) or has degree unequal to two in the graph ĜT . By minimality of ĜT

each leaf of ĜT belongs to f̂ (T ), from which it easily follows that the edges of ĜT

can be partitioned into at most five paths between important vertices, such that no
interior vertex of such a path is important. The number five corresponds to the fact
that any tree on at most four leaves without vertices of degree two has at most two
internal vertices, so at most six vertices and hence five edges in total. The following
claim shows the relevance of the set of important vertices.

Claim 4.22 Let R̂ be a connected subtree of Ĝ and let

S = {V (e) | ê has exactly one endpoint in R̂}.

If R̂ contains no important vertex of ĜT , then VG(R̂) \ S contains no vertex of T .
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Proof Suppose there exists t ∈ T with t ∈ VG(R̂), so t lies on a face f whose dual f̂
is in R̂. Since R̂ contains no important vertex, some tree R̂′ of Ĝ − V (R̂) contains
the chosen face f̂ (t) representing t . The edge ê connecting R̂ to R̂′ lies on the path
between f̂ and f̂ (t) in Ĝ and has exactly one endpoint in R̂. By Lemma 4.18, we
have t ∈ V (e) and therefore t ∈ S.

We derive a number of claims showing how to find a reducible structure under
certain conditions. After presenting these claims, we show that at least one of them
guarantees the existence of a reducible structure if G is sufficiently large. The first
claim shows that if any subtree of Ĝ attaches to ĜT at a single edge and represents
more than two vertices other than the attachments, we find a reducible structure of the
first type.

Claim 4.23 Let R̂ be a connected component of Ĝ − V (ĜT ), which is a tree, and let ê
be the unique edge of Ĝ connecting R̂ to ĜT . If |VG(R̂) \ V (e)| > 2, then G contains
a reducible structure.

Proof ByLemma4.15we know that VG(R̂)\V (e) is the vertex set of a connected com-
ponent ofG−V (e), and by Claim 4.22 this component contains no terminals since ĜT

spans all important vertices. As the number of vertices in the connected component is
larger than two, this yields a reducible structure of the first type for {u, v} = V (e).

Next we show that if ĜT contains a long path of non-important vertices, we find a
reducible structure of the second or third type.

Claim 4.24 Let P̂ be a subpath of ĜT such that no vertex of P̂ is important. If |V (P̂ ′)| >

6 · 4 + 1, then G contains a reducible structure.

Proof Consider such a subpath P̂ of ĜT . Let ê0, . . . , ê24 be the first 25 edges on P̂ .
Partition these into sets Ê1, . . . , Ê6 of four consecutive edges each, and let Ê7 be a
singleton set with the next edge. Observe that for any two edges êi , ê j on P̂ with i <

j − 1, the subtree R̂ of Ĝ \ {̂ei , ê j } containing êi+1 contains no important vertex
since the only vertices of ĜT it contains belong to P̂; here we exploit the fact that
all vertices of degree three or more in ĜT are important. Hence by Claim 4.22 the
set VG(R̂) \ V ({ei , e j }) contains no vertex of T . We will use this property below to
find a reducible structure of the second or third type via a case distinction.

Suppose first that there exists i ∈ [6] such that VG (̂e4i ) ∩ VG (̂e4(i+1)) �= ∅, that
is, some vertex x ∈ V (G) is a common endpoint of e4i and e4(i+1). Let Ê ′

i :=
Êi ∪ {̂e4(i+1)} and let E ′

i := {e | ê ∈ Ê ′
i }. Let P̂ ′ be the four vertices of Ĝ

which are incident on two edges of Êi , that is, the four internal vertices of the path
formed by the five edges Êi . By applying Lemma 4.19 to the path formed by Êi

we find x ∈ V (e) for each e ∈ E ′
i while the other endpoints v1, . . . , v5 of the

edges in E ′
i are all distinct and lie on an induced (v1, v5)-path P in G[VG(P̂ ′)] − x

containing no other neighbors of x . Let R̂ be the tree of Ĝ \ {̂e4i , ê4(i+1)} contain-
ing ê4i+1 and note that VG({̂e4i , ê4(i+1)}) = {v1, v5, x} and VG(R̂) ⊇ VG(P̂ ′). By
Observation 4.14, the only vertices of VG(R̂) which have neighbors outside VG(R̂)

are those in VG({̂e4i , ê4(i+1)}) = {v1, v5, x}. Consider the connected component C
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ofG−{v1, v5, x} that contains P−{v1, v5}. By the previous argument,V (C) ⊆ VG(R̂)

while the construction ensures V (C) ∩ {v1, v5, x} = ∅. By the argument in the first
paragraph of this claim, VG(R̂) \ V ({ei , e j }) = VG(R̂) \ {v1, v5, x} contains no ver-
tex of T , implying that no vertex of T belongs to C . Hence G contains a reducible
structure of the third type.

Now suppose the previous case does not apply; then the set M = {e4i | 0 ≤ i ≤ 6}
is a matching in G. Since M̂ lies on the path P̂ in Ĝ in the relative order given by
the indices, by Lemma 4.17 the set M is an order-respecting matching in G, which
implies it is order-respecting in all subgraphs containing this matching. Let R̂ be the
tree of Ĝ\{̂e0, ê24} containing the rest of M̂ . ByObservation 4.13, the graphG[VG(R̂)]
is biconnected. Since for each 0 ≤ i ≤ 6 the tree R̂ contains a vertex incident on ê4i ,
which corresponds to a face in G incident on e4i , it follows that G[VG(R̂)] con-
tains all edges of M . Since R̂ is the weak dual of G[VG(R̂)], while R̂ does not
contain the edges ê0 and ê24, the edges e0, e24 are exterior edges of G[VG(R̂)];
since ê4 ∈ E(R̂) the edge e4 is an interior edge ofG[VG(R̂)]. By applying Lemma 4.16
to the order-respecting matching {e0, e4, e24} in the biconnected graph G[VG(R̂)], we
find that C = G[VG(R̂)] − V ({e0, e24}) is connected and contains a vertex adjacent
to each member of V ({e0, e24}), so that G〈C〉 = G[VG(R̂)] is biconnected and con-
tains the order-respecting matching M . By the argument in the first paragraph, the
set VG(R̂) \ V ({e0, e24}) contains no vertex of T , so that C contains no vertex of T .
Since Observation 4.14 shows that no vertex of C has a neighbor outside V ({e0, e24})
it follows that C is a connected component of G − V ({e0, e24}). Hence we find a
reducible structure of the second type.

As the last ingredient, we show that if any interior face of G contains more than 16
vertices, we find a reducible structure.

Claim 4.25 If G contains an interior face f that is incident on more than 16 vertices,
then G contains a reducible structure of the first type.

Proof Let f be a bounded face in G and consider the cycle bounding f on the edge
set E( f ). We call an edge e that lies on f a portal if the tree in Ĝ \ {̂e} that does not
contain f̂ contains a vertex of f̂ (T ). Since | f (T )| ≤ 4 at most four edges on f are
portals. By Lemma 4.18, if a terminal t lies on f but f (t) �= f̂ , then the edge e for
which ê lies on the path from f̂ to f̂ (t) is a portal.

Let T ′ := (T ∩ V ( f )) ∪ {V (e) | e ∈ E( f ) is a portal}. Since each terminal t
for which f̂ (t) �= f̂ contributes two adjacent vertices to T ′, while each terminal t
with f̂ (t) = f̂ contributes one vertex, it follows that T ′ can be partitioned into at most
four sets of two vertices each, such that the vertices in each subset are consecutive
along the face. Since f is incident on more than 16 vertices, this implies that there
is a subpath P of the boundary of f consisting of five vertices, whose three interior
vertices do not belong to T ′. Let {u, v} be the endpoints of P . Let Ĝ P denote the union
of all trees R̂ of Ĝ − f̂ for which the unique edge ê connecting R̂ to f̂ satisfies e ∈
E(P). By Lemma 4.20 there is a connected component C of G − {u, v} on vertex
set (V (P)∪VG(Ĝ P ))\ {u, v}. This implies that all three interior vertices of P belong
to C .
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We conclude the proof by showing that C contains no vertex of T . To see this, note
first that V (P) \ {u, v} contains no vertex of T by choice of P . Since all endpoints
of portals belong to T ′, while no interior vertex of P belongs to T ′, it follows that no
edge of P is a portal. Consequently, for each edge e ∈ E(P) the tree of Ĝ \ ê that does
not contain f̂ does not contain any vertex of f̂ (T ). We exploit this in the following
argument. Suppose there exists t ∈ T with t ∈ VG(Ĝ P ), and let e be the edge of P
such that Ĝ \ ê contains a tree R̂ with t ∈ VG(R̂). Since e is not a portal, f̂ (t) does
not belong to R̂. Hence f̂ (t) is either equal to f̂ , or belongs to some tree R̂′ of Ĝ − f̂
for which the edge ê′ connecting R̂′ to f̂ satisfies e′ /∈ E(P). We consider these cases
separately.

• If f̂ (t) = f̂ , then t ∈ V ( f ) and therefore t ∈ T ′. By construction, no interior ver-
tex of P belongs to T ′. Since all vertices that belong both to V ( f ) and to VG(Ĝ P )

belong to P , it follows that t is an endpoint of P , so t ∈ {u, v}. This shows that t
does not belong to the component C on vertex set (V (P) ∪ VG(Ĝ P )) \ {u, v}, as
required.

• If f̂ (t) �= f̂ , then f̂ (t) lies in some tree R̂′ of Ĝ − f̂ for which the edge ê′
connecting R̂′ to f̂ satisfies e′ ∈ E( f ) \ E(P), where E( f ) are the edges of G
bounding face f . Since both ê and ê′ lie on the path in Ĝ between f̂ (t) and
a vertex of R̂ representing a face containing t , by Lemma 4.18 we have t ∈
V (e′) ∩ V (e). So t is simultaneously an endpoint of the edge e that lies on P and
the edge e′ that lies on face f but not in P . Consequently, t is an endpoint of P
and therefore t ∈ {u, v}, showing that t does not belong to the component C on
vertex set (V (P) ∪ VG(Ĝ P )) \ {u, v}.
The preceding argument established that there is a component of G − {u, v} con-

taining at least three vertices and no terminals, which forms a reducible structure of
the first kind and completes the proof.

We can now complete the proof of Lemma 4.21 by combining the claims above.
Recall from the beginning of the proof that ĜT is a tree containing atmost six important
vertices, such that each vertex of f̂ (T ) and each vertex whose degree in ĜT is unequal
to two is important. Removing the important vertices from ĜT splits it into at most
five paths P̂1, . . . , P̂
 of non-important vertices. If any of these paths has more than
25 vertices, we find a reducible structure via Claim 4.24. Assume that this is not
the case; then ĜT consists of at most 5 · 25 non-important and 6 important vertices.
If there exists f̂ ∈ ĜT such that face f contains more than 16 vertices, we find a
reducible structure via Claim 4.25. If not, then the faces represented by ĜT span at
most (5·25+6)·16 edges. All remaining vertices ofG lie on faces whose duals are not
contained in ĜT , and therefore each such vertex lies on a face f for which f̂ belongs to
some tree R̂ of Ĝ−V (ĜT ).When ê is the edge connecting R̂ to ĜT then e lies on a face
represented by ĜT . If for any such tree R̂ the number of vertices |R̂\V (e)|which are not
already accounted for is larger than two, thenClaim 4.23 yields a reducible structure. If
not, then since the number of attachment edges is bounded by (5·25+6)·16,while each
attached tree contributes at most two additional vertices, the total number of vertices
inG is bounded by (5·25+6)·16+2·(5·25+6)·16 = 3(5·25+6)·16 = 6288. Hence
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any biconnected outerplanar graph with more than this number of vertices contains a
reducible structure. The proof above easily turns into a polynomial-time algorithm to
find such a structure. ��

5 Wrapping Up

Finally, we combine the decomposition from Claim 3.26 with the rules that reduce
protrusions. If A is sufficiently large, G〈A〉 is outerplanar, and |NG(A)| ≤ 4, we
explicitly detect a reducible structure within G〈A〉. First, we use Reduction Rule 4 to
reduce the number of biconnected components in G〈A〉. Next, we apply Lemma 4.21
to a biconnected component B of G〈A〉 and the set T = ∂G(B). It provides us with
one of several reducible structures which match our reduction rules. It is crucial that
when C is a subgraph of B and C ∩ ∂G(B) = ∅, then the neighborhood of C in both
B and G is the same.

We remark that the following lemma can be turned into an iterative procedure that
maintains the decomposition from Lemma 3.26 without the need to recompute the set
L . However, we state it in the simplest form as our analysis does not keep track of the
polynomial in the running time.

Lemma 5.1 Consider a graphG and a vertex set A ⊆ V (G), such that |A| > 25·6288,
|NG(A)| ≤ 4, G[A] is connected, and G〈A〉 is outerplanar. There is a polynomial-
time algorithm that, given G and A satisfying the conditions above, outputs a proper
minor G ′ of G, so that opd(G ′) = opd(G).

Proof Within this proof,we say that replacinggraphGwithG ′ is safewhenopd(G ′) =
opd(G). With G and A as specified, we can execute the algorithm from Lemma 4.4.
Suppose that it outputs a vertex set C ⊆ S to which either Reduction Rule 2 or
Reduction Rule 4 applies and shrinks the graph. They are safe due to Observation 2.2
and Lemma 4.3. In this case we can terminate the algorithm.

Otherwise Lemma 4.4 provides us with a block-cut tree of G〈A〉 with at most
25 biconnected components, where each such biconnected component B satisfies
|∂G(B)| ≤ 4. By a counting argument we can choose one biconnected component
B with more than 6288 vertices. We execute the algorithm from Lemma 4.21 for
the graph B and the set T = ∂G(B). Note that B is a subgraph of G〈A〉, which is
outerplanar by the assumption. Depending on the type of returned structure, we select
an appropriate reduction rule.

• Case 1. We find two (possibly adjacent) vertices u, v such that there is a compo-
nentC of B−{u, v} that does not contain any vertex of ∂G(B), for which |V (C)| >

2. Clearly NG(C) ⊆ {u, v} and G〈C〉 is outerplanar as a subgraph of B. If
uv ∈ E(G), then we apply Reduction Rule 5 to contract C into a single ver-
tex. This reduction is safe due to Lemma 4.5.
If uv /∈ E(G), we apply Reduction Rule 4. The criterion in the statement of the
rule can be easily checked in polynomial time. By Lemma 4.1, the replacement
operation is equivalent to a series of edge contractions. The safeness follows from
Lemma 4.3. Since |V (C)| > 2, we always perform at least one contraction.
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• Case 2. We obtain a matching e1, . . . , e7 in B, such that there is a single connected
component C of B − (V (e1) ∪ V (e7)) which contains {e2, . . . , e6} but no vertex
from ∂G(B), such that NB(C) = V (e1) ∪ V (e7), the graph B〈C〉 is biconnected,
and e1, . . . , e7 is an order-respecting matching in B〈C〉. SinceC∩∂G(B) = ∅, we
get that NG(C) = NB(C) = V (e1) ∪ V (e7). This allows us to apply Reduction
Rule 7 and remove the edge e4. This is safe thanks to Lemma 4.8.

• Case 3. We find a vertex x ∈ V (B) and five vertices v1, . . . , v5 ∈ NB(x) that lie,
in order of increasing index, on an induced path P in B − x from v1 to v5, such
that NB(x) ∩ V (P) = {v1, . . . , v5}, and such that the connected component C
of B − {v1, v5, x} which contains P − {v1, v5} contains no vertex from ∂G(B).
This means that C is also the connected component of G − {v1, v5, x} which
contains P −{v1, v5}. Furthermore, the path P is also induced in the graph G − x
because B is an induced subgraph of G. The graph G〈C〉 is outerplanar as a
subgraph of B and thus Reduction Rule 6 applies so we can remove the edge xv3.
This operation is safe due to Lemma 3.19.

In each case we are able to perform a contraction or removal operation while
preserving the outerplanar deletion number of the graph. The claim follows. ��

It is important that the graph is guaranteed to shrink at each step, so after poly-
nomially many invocations of Lemma 5.1 we must arrive at an irreducible instance.
We are now ready to prove the main theorem with the final bound on the size of
compressed graph 2 · (25 · 6288 + 5) · f5(c, f3(c)) · (k2 + 3)4 (see Lemmas 3.16
and 3.26), where c = 40. Recall that instances (G, k) and (G ′, k′) are equivalent if
opd(G) ≤ k ⇔ opd(G ′) ≤ k′.

Theorem (1.1, restated) TheOuterplanar Deletion problem admits a polynomial-
time kernelization algorithm that, given an instance (G, k), outputs an equivalent
instance (G ′, k′), such that k′ ≤ k, graph G ′ is a minor of G, and G ′ has O(k4)
vertices and edges. Furthermore, if opd(G) ≤ k, then opd(G ′) = opd(G) − (k − k′).

Proof of Theorem 1.1 We use Lemma 3.16 to either conclude that opd(G) > k or to
find an equivalent instance (G1, k1), where G1 is a subgraph of G and k1 ≤ k. In
the first case, either K4 or K2,3 must be a minor of G. We check it in polynomial
time and depending on the result we output an instance (H , 0), where H = K4 or
H = K2,3, which is then equivalent to (G, k). Otherwise we are guaranteed that
opd(G) ≤ k implies opd(G1) = opd(G) − (k − k1) and we also obtain a (k1, c, d)-
outerplanar decomposition ofG1, where d = f3(c), which we supply to the algorithm
from Lemma 3.26. In the first scenario, it applies Reduction Rule 3 or Reduction
Rule 2 to the instance (G1, k1). These rules may remove vertices or edges, but do not
change the value of the parameter and transform the instance into an equivalent one
due to Lemma 3.20 and Observation 2.2. Moreover, when opd(G1) ≤ k1, then the
outerplanar deletion number also stays intact. If this is the case, we shrink the graph
and rerun the algorithm from scratch on the smaller graph, starting from recomputing
the outerplanar decomposition.

Since the graph shrinks at each step, at some point the routine from Lemma 3.26
terminates with the set L as the outcome. Let (G2, k2) be the instance equivalent to
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(G, k)obtained so far. Then for the returned set L ⊆ V (G2)wehave that f5(c, d)·(k2+
3)4 upper bounds each of: |L|, |EG(L, L)|, and the number of connected components
inG2−L . Furthermore, for each connected component A ofG2−L it holds thatG2〈A〉
is outerplanar and |NG2(A)| ≤ 4. If any of these components has more than 25 · 6288
vertices, then Lemma 5.1 applies and produces an equivalent instance (G3, k2), where
G3 is a proper minor of G2. This reduction does not affect the parameter nor the
outerplanar deletion number. We can thus again rerun the algorithm from scratch on
the smaller graph.

Otherwise, each connected component of G2 − L has bounded size and (G2, k2) is
the outcome of the kernelization algorithm.We check that G2 has at most (25 ·6288+
1) · f5(c, d) · (k2 + 3)4 vertices. The number of edges in G2 can be upper bounded by
|EG(L, L)| plus the sum of edges in each G〈A〉, where A is connected component of
G2−L . Note that this also takes into account the edges with just one endpoint in L .We
estimate |V (G〈A〉)| ≤ 25·6288+4 and byObservation 2.7we have that |E(G〈A〉)| ≤
2 · |V (G〈A〉)|. Therefore, |E(G2)| is at most 2 · (25 ·6288+5) · f5(c, d) · (k2 +3)4. ��

As a consequence of the theorem above, we obtain the first concrete bounds on the
sizes of minor-minimal obstructions to having an outerplanar vertex deletion set of
size k.

Corollary (1.2, restated) If G is a graph such that opd(G) > k but each proper minor
G ′ of G satisfies opd(G ′) ≤ k, then G has O(k4) vertices and edges.

Proof of Corollary 1.2 Let p : N → N be a function such that for each instance (G, k)
of Outerplanar Deletion there is an equivalent instance (G ′, k′) where G ′ is a
minor of G on at most p(k) vertices and at most p(k) edges. Theorem 1.1 provides
such a function with p(k) ∈ O(k4). In the remainder of the proof, we refer to a vertex
set S whose removal makes a graph outerplanar as a solution, regardless of its size.

Let (G, k)be apair satisfying thepreconditions to the corollary.Note thatopd(G) ≤
k + 1 since the graph G ′ obtained after removing an arbitrary vertex v satis-
fies opd(G ′) ≤ k and therefore has a solution S of size at most k, so that S ∪ {v}
is a solution in G of size at most k + 1.

Next, we argue that for each vertex v ∈ V (G) there is a solution of size k + 1 in G
without v. If v is an isolated vertex in G then this is trivial. Otherwise, let uv ∈ E(G)

be an arbitrary edge incident on v. Since G ′ := G \ uv is a proper minor of G, it has a
solution S′ of size k by assumption. We have v /∈ S′: if v ∈ S′, then G ′ − S = G − S
which would imply that G has a solution of size k, contradicting opd(G) > k. Now
observe that S′ ∪ {u} is a solution in G, because the graph G − (S′ ∪ {u}) is a minor
of G ′ − S, as removing vertex u also removes the edge uv. Hence S′ ∪ {u} is a solution
of size k + 1 in G that does not contain v.

Consider the effect of applying the kernelization algorithm of Theorem 1.1 to the
instance (G, k + 1), resulting in an instance (G ′, k′). Since opd(G) = k + 1, we
have that opd(G ′) = opd(G) − (k + 1 − k′). We also know that G ′ is a minor of
G and the number of vertices and edges in G ′ is at most p(k + 1). We are going to
show that G ′ = G. Suppose otherwise and consider the series of graph modifying
reductions applied by the kernelization algorithm, resulting in successive instances
(G, k + 1) = (G1, k1), (G2, k2), . . . , (G
, k
) = (G ′, k′). We consider two cases:
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k2 < k1 and k2 = k1. In the first case, the only reduction rule that may decrease the
value of the parameter is the one from Lemma 3.5. However, as k1 = k + 1 and for
each vertex v ∈ V (G) there is a solution of size k + 1 in G without v, this reduction
must produce a new instance with k2 = k1; a contradiction. In the second case, the
graph G2 is a proper minor of G1 = G and opd(G2) = opd(G) = k + 1 because no
reduction can change the outerplanar deletion number unless it is greater than k1 or
k2 < k1. But each proper minor of G has a solution of size at most k by assumption,
which again leads to a contradiction. This implies that G ′ = G and hence the number
of vertices and edges in G is at most p(k + 1) ∈ O(k4). ��

6 Conclusion

We presented a number of elementary reduction rules for Outerplanar Dele-
tion that can be applied in polynomial time to obtain a kernel of O(k4) vertices
and edges. This kernel does not use protrusion replacement and the constants hidden
by the O-notation can be derived easily. This is the first concrete kernel for Out-
erplanar Deletion, and a step towards more concrete kernelization bounds for
Planar-F DELETION. We hope it inspires new kernelization bounds for Planar
Deletion.

In earlier work Dell and Van Melkebeek [45, Theorem 3] have shown that there is
no kernel for Outerplanar Deletion of bitsize O(k2−ε) unless NP ⊆ coNP/poly.
This naturally leads to the question, can these two bounds be brought closer together?

Another interesting direction for further research is to obtain concrete kerneliza-
tion bounds for other Planar-F DELETION problems. Our work exploits the fact
that K2,3-minor-free graphs cannot have many disjoint paths between two vertices.
Previous work [4] used a similar observation to derive a kernel for θc-MINOR-FREE
Deletion. An interesting next case would be a Planar-F DELETION problem
where F does not contain K2,c or θc for some c.
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