
https://doi.org/10.1007/s00453-022-00976-2

Exponential-Time Quantum Algorithms for Graph Coloring
Problems

Kazuya Shimizu1 · Ryuhei Mori1

Received: 23 March 2021 / Accepted: 28 April 2022
© The Author(s) 2022

Abstract
The fastest known classical algorithm deciding the k-colorability of n-vertex graph
requires running time Ω(2n) for k ≥ 5. In this work, we present an exponential-space
quantum algorithm computing the chromatic number with running time O(1.9140n)
using quantum random access memory (QRAM). Our approach is based on Ambai-
nis et al’s quantum dynamic programming with applications of Grover’s search to
branching algorithms. We also present a polynomial-space quantum algorithm not
using QRAM for the graph 20-coloring problem with running time O(1.9575n). For
the polynomial-space quantum algorithm, we essentially develop (4− ε)n-time clas-
sical algorithms that can be improved quadratically by Grover’s search.

Keywords Quantum algorithm · Graph coloring · Grover’s search · Dynamic
programming

1 Introduction

Exhaustive search is believed to be (almost) the fastest classical algorithm for many
NP-complete problems including SAT, hitting set problem, etc [8]. Grover’s quan-
tum search quadratically improves the running time of exhaustive search [15]. Hence,
the best classical running time for many NP-complete problems can be quadratically
improved by quantum algorithms. On the other hand, non-trivial faster classical algo-
rithms are known for some NP-complete problems including the travelling salesman
problem (TSP), the graph coloring problem, etc. For these problems, more com-
plicated techniques, such as dynamic programming, arithmetic algorithm based on
inclusion–exclusion principle, etc., are used in the fastest known classical algorithms.

B Ryuhei Mori
mori@c.titech.ac.jp

Kazuya Shimizu
shimizu.k.ap@m.titech.ac.jp

1 School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan

123

Algorithmica (2022) 84:3603–3621

/ Published online: 1 June 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00976-2&domain=pdf
http://orcid.org/0000-0001-5474-5145

Table 1 O(2d
∗
k n)-time quantum algorithms not using QRAM for the graph k-coloring problem

k d∗
k 2d

∗
k k d∗

k 2d
∗
k k d∗

k 2d
∗
k

3 0.2051 1.1528 9 0.8041 1.7460 15 0.9488 1.9303

4 0.4039 1.3231 10 0.8298 1.7775 16 0.9488 1.9303

5 0.5553 1.4695 11 0.8298 1.7775 17 0.9488 1.9303

6 0.6099 1.5261 12 0.8676 1.8246 18 0.9536 1.9366

7 0.7234 1.6511 13 0.8874 1.8499 19 0.9690 1.9575

8 0.7299 1.6585 14 0.8938 1.8580 20 0.9691 1.9575

It is not obvious how to boost these classical algorithms by a quantum computer.
Recently, Ambainis et al. showed a general idea of quantum dynamic programming
using quantum random access memory (QRAM), and showed quantum speedup for
many NP-complete and NP-hard problems including TSP, set cover, etc [1]. Ambainis
et al.’s work gives a new general method for exact exponential-time quantum algo-
rithms.

In this work, we present exact exponential-time quantum algorithms for the graph
coloring problem. The fastest known classical algorithm computes the chromatic num-
ber of n-vertex graph with running time poly(n)2n on the random access memory
(RAM) model. The main result of this work is the following theorem.

Theorem 1 There is an exponential-space bounded-error quantum algorithm using
QRAM for the chromatic number problem with running time1 O∗((237/3533/7
5−9/707−5/28)n

) = O(1.9140n).

The quantum algorithm in Theorem 1 is based on Ambainis et al’s quantum dynamic
programming for TSP with applications of Grover’s search to Byskov’s algorithm
enumerating allmaximal independent sets (MISs) of fixed size [7]. Byskov’s algorithm
is not naive exhaustive search, but is a branching algorithm (also referred as Branch
& Reduce), for which Grover’s search can be applied [12]. While RAM is a widely
accepted model of classical computation, QRAM is sometimes criticized due to the
difficulty of implementation.
In this paper, we also present quantum algorithms not using QRAM.

Theorem 2 For k ≤ 20, there exists a constant ε > 0 such that there are polynomial-
space bounded-error quantum algorithms not using QRAM for the graph k-coloring
problem with running time 2(1−ε)n.

Note that classical algorithms with running time 2(1−ε)n are known only for k =
3, 4 [2, 7]. Running times of the quantum algorithms in Theorem 2 are shown in
Table 1. For proving Theorem 2, we essentially develop classical algorithms with
running time 4(1−ε)n that can be improved quadratically by Grover’s search. These
classical algorithms are obtained by generalizing Byskov’s techniques for reducing
the graph k(≥ 4)-coloring problem to the graph 3-coloring problem [7]. The proofs

1 In this paper, O∗(f (n)) means O(poly(n) f (n)).

123

Algorithmica (2022) 84:3603–36213604

of Theorems 1 and 2 in this paper require numerical calculations. More precicely,
the running time is represented by the maximum of some complicated function. The
maximum is approximately computed by evaluating the function at many points.

1.1 RelatedWork

Since a graph is k-colorable if and only if the set of vertices can be partitioned into k
independent sets, many algorithms for the graph k-coloring problem use enumeration
algorithms of independent sets. There is a simple branching algorithm enumerating
all MISs in time O∗(3n/3) = O(1.4423n) [11]. Lawler showed that 3-colorability can
be decided in time O∗(3n/3) by enumerating all MISs and checking the bipartiteness
of the subgraph induced by the complement of each MIS [17]. Lawler also showed
that the chromatic number can be computed in time O(2.4423n) by a simple dynamic
programming.

Beigel and Eppstein showed an efficient algorithm for the graph 3-coloring problem
with running time O(1.3289n) [2]. Byskov showed reduction algorithms from the
graph k(≥ 4)-coloring problem to the graph 3-coloring problem [7]. By using Beigel
andEppstein’s graph 3-coloring algorithm,Byskov showed classical algorithms for the
graph 4-, 5- and 6-coloring problems with running time O(1.7504n), O(2.1592n) and
O(2.3289n), respectively. Fomin et al. showed an algorithm for the graph 4-coloring
problem with running time O(1.7272n) by using the path decomposition [10].

In 2006, Björklund and Husfeldt, and Koivisto showed an exponential-space
O∗(2n)-time algorithm for the chromatic number problem in the RAMmodel [3, 16].
These algorithms are based on the inclusion–exclusion principle. They also showed
that if there is a polynomial-spaceO∗(αn)-time algorithmcounting the number of inde-
pendent sets, then there is a polynomial-space O∗((1+α)n)-time algorithm computing
the chromatic number [3, 5]. Since the fastest knownpolynomial-space algorithmcom-
putes the number of independent sets with running time O(1.2356n) [13], there is a
polynomial-space O(2.2356n)-time algorithm computing the chromatic number.

There is almost no previous theoretical work on quantum algorithms for the graph
coloring problems. Fürer mentioned that Grover’s algorithm can be applied to branch-
ing algorithms, and hence, Beigel and Eppstein’s algorithm for the graph 3-coloring
problem can be improved to running time O(

√
1.3289

n
) = O(1.1528n) [12]. The

quantum algorithms for Theorem 2 are basically obtained by applying Grover’s search
to generalized Byskov’s reduction algorithms on the basis of Fürer’s observation.

For general NP-hard problems, Ambainis et al. showed exponen-
tial-space exponential-time quantumalgorithms usingQRAMformanyNP-hard prob-
lems [1]. The quantum algorithm for Theorem 1 is based onAmbainis et al’s algorithm
for TSP with application of Grover’s search to Byskov’s algorithm enumerating MISs
of fixed size on the basis of Fürer’s observation.

123

Algorithmica (2022) 84:3603–3621 3605

1.2 Overview of Quantum Algorithms

1.2.1 Quantum Algorithm for the Chromatic Number Problem

Similarly to Ambainis et al.’s quantum algorithm for TSP, the quantum algorithm
for Theorem 1 is a simple divide-and-conquer algorithm with dynamic programming
approach. The basic classical algorithmwas shown in [4,Proposition 3]. The chromatic
number of a graphG is equal to a sum of the chromatic numbers ofG[S] andG[V \ S]
for some non-empty S � V , unless G is one-colorable. If we can assume that S has
size exactly �n/2� or �n/2	, thenwe can consider a classical algorithm that recursively
finds S of size �n/2� minimizing χ(G[S]) + χ(G[V \ S]). Let T (n) be the running
time of this algorithm. Then, it follows T (n) = (n

�n/2�
)
(T (�n/2�)+T (�n/2)), so that

we can apply Ambainis et al’s quantum dynamic programming straightforwardly and
obtain an O(1.7274n)-time quantum algorithm [1]. However, the balanced partition
S satisfying χ(G) = χ(G[S]) + χ(G[V \ S]) does not necessarily exist. Hence, we
use the following useful fact.

Fact 1 Let a1, . . . , ak be positive integers, and n := ∑k
i=1 ai . Assume that a1 ≥ ai for

all i ∈ {1, 2, . . . , k}. Then, for anym ∈ {1, 2, . . . , n−1}, there exists S ⊆ {2, 3, . . . , k}
such that

∑
i∈S ai ≤ m and

∑
i∈{2,...,k}\S ai ≤ n − m − 1.

Proof Let t := max
{
j ∈ {2, . . . , k} | ∑ j

i=2 ≤ m
}
. Let S := {2, 3, . . . , t}. Then,∑

i∈{t+1,t+2,...,k} ai ≤ ∑
i∈{1,t+2,t+3,...,k} ai = n − ∑

i∈{2,3,...,t+1} ai ≤ n − m − 1. �
From Fact 1, we can consider the following quantum algorithm computing the chro-
matic number. First, the algorithm precomputes the chromatic number of all induced
subgraphs with size at most �n/4�. This precomputation is based on Lawler’s formula

χ(G) = 1 + min
I∈MIS(G)

χ(G[V \ I]) (1)

where MIS(G) denotes the set of all MISs of G [17]. There is a classical algo-
rithm enumerating all MISs with running time O∗(3n/3). We will show in Sect. 3
that Grover’s search can be applied to this algorithm, and hence, the quantum
algorithm can search for all MISs with running time O∗(3n/6). Here, computed
chromatic numbers are stored to QRAM. Hence, we can apply Grover’s search
for computing the minimum in (1). The precomputation requires the running time

O∗
(∑�n/4�

i=1

(n
i

)
3i/6

)
= O(1.8370n). Then, the main part of the algorithm computes

the chromatic number of G by using the formula

χ(G) = 1 + min
I∈MIS(G)

min
S⊆V \I , |S|≤�n/2�, |V \I\S|≤�n/2�

{
χ(G[S]) + χ(G[V \ I \ S])

}

for χ(G) ≥ 3. This formula is justified by Fact 1 for m = �n/2�. Grover’s search is
used for finding S. For computing χ(G[S]) and χ(G \ I \ S]), the above formula is
used again. Then, we need the chromatic numbers of subgraphs of G of size at most

123

Algorithmica (2022) 84:3603–36213606

�n/4�, which were precomputed and stored to QRAM. The running time of the main
part of this quantum algorithm is

O∗
(

3n/6

√(
n

n/2

)
3n/12

√(
n/2

n/4

))

= O(2.2134n).

Quantum algorithm for Theorem 1 searches for all MISs of size t for each t ∈
{1, 2, . . . , n} separately. Therefore, the above estimate of the running time is larger
than the actual running time since if MIS I of size t is chosen, the remaining graph
G[V \ I] has only n − t vertices. Hence, the factor 2n/2 in the above estimate can
be replaced by 2(n−t)/2. Then, precise analysis shows that the running time of the
improved quantum algorithm is O(1.9140n).

1.2.2 Quantum Algorithms for the Graph k-coloring Problem

We will derive classical algorithms that can be improved quadratically by Grover’s
search. The ideas of the classical algorithms were obtained by Byskov [7]. In the
classical algorithms, the graph k(≥ 4)-coloring problem is reduced to the graph k′-
coloring problems for some k′ < k. A graph G is k(≥ 2)-colorable if and only if
there exists a subset S of vertices such that G[S] is �k/2�-colorable and G[V \ S] is
�k/2	-colorable. Let us consider a classical algorithm that simply searches for S ⊆ V
satisfying the above condition. Let Tk(n) be the running time of this algorithm for the
graph k-coloring problem. Then, Tk(n) satisfies

T1(n) = T2(n) = 1,

Tk(n) =
n∑

i=0

(
n

i

)
(T�k/2�(i) + T�k/2	(n − i)), k ≥ 3

where polynomial factors in n are ignored. Then, we obtain T4(n) = O∗(2n), T8(n) =
O∗(3n) and T16(n) = O∗(4n). Let us consider a quantum algorithm that uses Grover’s
search for finding S. Let T ∗

k (n) be the running time of the quantum algorithm. Then,

it follows T ∗
k (n) = ∑n

i=0

√(n
i

)
(T ∗�k/2�(i) + T ∗�k/2	(n − i)), which implies T ∗

k (n) =
O∗(

√
Tk(n)). Hence, we obtain T ∗

4 (n) = O(1.4143n), T ∗
8 (n) = O(1.7321n) and

T ∗
16(n) = O∗(2n). This yields a weaker version of Theorem 2 that is valid for k ≤ 8

rather than k ≤ 20. Better reduction algorithms are used for Theorem 2.

1.3 Organization

In Sect. 2, notations and known classical and quantum algorithms are introduced. In
Sect. 3, we present details of quantum algorithm for branching algorithms. In Sect. 4,
we prove Theorem 1. In Sect. 5, we prove a weaker version of Theorem 2 that is valid
for k ≤ 19 rather than k ≤ 20. Theorem 2 is obtained by improving the quantum
algorithms in Sect. 5. The details of the proof of Theorem 2 are shown in Appendix B.

123

Algorithmica (2022) 84:3603–3621 3607

2 Preliminaries

2.1 Definitions and Notations

For a finite vertex set V , a set E of edges consists of subsets of V of size two. A
pair (V , E) of finite vertex set V and a set E of edges is called an undirected simple
graph. In this paper, we simply call a graph rather than an undirected simple graph.
The number of vertices |V | is denoted by n. A mapping c : V → {1, 2, . . . , k} is
called k-coloring if c(v) �= c(w) for all {v,w} ∈ E . For a graph G, the smallest k
such that there exists a k-coloring is called the chromatic number of G, and denoted
by χ(G). A subset I ⊆ V of vertices is called an independent set if {v,w} /∈ E for
all v,w ∈ I . An independent set I is said to be maximal if there is no strict superset
of I that is an independent set. A maximal independent set of size t is called t-MIS.
For S ⊆ V , G[S] denotes the induced subgraph (S, {{v,w} ∈ E | v,w ∈ S}) of
G. Let h(δ) := −δ log δ − (1 − δ) log(1 − δ) for δ ∈ [0, 1] where 0 log 0 = 0. In
this paper, the base of logarithm is 2. The notation g(n) = O∗(f (n)) means that
g(n) = O(nc f (n)) for some constant c. For O∗(λn), we often round λ up to the
fourth digit after the decimal point. In this case, we can use O() rather than O∗().
For example, we often write g(n) = O(1.4143n) rather than g(n) = O∗(2n/2). The
notation g(n) = Õ(f (n)) means that g(n) = O((log f (n))c f (n)) for some constant
c.

2.2 Known Classical Algorithm for Enumerating all t-MISs

Byskov showed the following theorem.

Theorem 3 (Byskov [7]) The maximum number of t-MISs of n-vertex graphs is

I (n, t) := �n/t�(�n/t�+1)t−n(�n/t� + 1)n−�n/t�t .

Furthermore, there is a classical algorithm enumerating all t-MISs of an n-vertex
graph in time O∗(I (n, t)).

We can straightforwardly obtain the following lemma and corollary.

Lemma 1 For any constant δ ∈ (0, 1), I (n, �δn�) = O(2E(δ)n) where

E(δ) := ((�δ−1� + 1)δ − 1) log�δ−1� + (1 − �δ−1�δ) log(�δ−1� + 1).

Here, E(δ) is concave (and hence, continuous) and piecewise linear for δ ∈ (0, 1).
The maximum of E(δ) is given at δ = 1/3.

Proof It is easy to see that I (n, �δn�) = O(2E(δ)n). If �δ−1� in the definition of E(δ)

is replaced by δ−1, we obtain −δ log δ, which is obviously concave for δ ∈ (0, 1).
Furthermore, E(δ) = −δ log δ if δ is an inverse integer. For δ ∈ (1/(s + 1), 1/s)
where s is some positive integer, E(δ) is a linear function since �δ−1� is constant in
this domain. Therefore, it is sufficient to show that E(δ) is continuous at δ = 1/s for

123

Algorithmica (2022) 84:3603–36213608

all s ∈ Z≥1 for showing that E(δ) is concave. Obviously, E(δ) is left-continuous. At
δ = 1/s for some positive integer s, E(δ) is equal to −δ log δ = (log s)/s even if
�δ−1� = s is replaced by s − 1. This means that E(δ) is right-continuous as well.

Finally, by comparing E(1/2), E(1/3) and E(1/4), it is shown that the maximum
of E(δ) is given at δ = 1/3. �
Corollary 1 For any a ∈ R≥0 and t ∈ Z≥3, the maximum of E(δ)−aδ for δ ∈ [1/t, 1]
is given at δ = 1/s for some s ∈ {3, 4, . . . , t}.

2.3 Grover’s Search

Here, Grover’s search is briefly explainedwithout introducing quantum circuit, unitary
oracle, etc.

Theorem 4 (Grover [15], Boyer et al. [6]) Let A : {1, 2, . . . , N } → {0, 1} be a
bounded-error quantum algorithm with running time T . Then, there is a bounded-
error quantum algorithm computing

∨
x∈{1,...,N } A(x) with running time Õ(

√
NT). If

it is guaranteed that either |A−1(1)| ≥ M or |A−1(1)| = 0, then there is a bounded-
error quantum algorithm with running time Õ(

√
N/MT).

Theorem 5 (Dürr and Høyer [9]) Let A : {1, 2, . . . , N } → {1, 2, . . . , M} be a
bounded-error quantum algorithm with running time T . Then, there is a bounded-
error quantum algorithm computingminx∈{1,...,N } A(x) with running time Õ(

√
NT).

2.4 QRAM

QRAM is the quantum analogue of RAM that can be accessed in a superposition
[14]. QRAM has been used in many quantum algorithms [1]. RAM is the memory
that can be accessed in constant or logarithmic time with respect to the memory size.
For computing the minimum of some function f (x,W) for all x ∈ {1, 2, . . . , N }
where W denotes a read-only RAM, we can replace RAM with QRAM and apply
Grover’s search. Then, we obtain an Õ(

√
NT)-time quantum algorithm computing

minx f (x,W) where T denotes the running time for evaluating f .

3 Grover’s Search for Branching Algorithms

Fürer mentioned that Grover’s search can be applied to branching algorithms [12].
Since the details of the quantum algorithm were not explicitly described in [12], we
will show the details in this section. A branching algorithm is an algorithm which
recursively reduce a problem into some problems of smaller parameters. We now
consider decision problems with � parameters n1, n2, . . . , n� that are non-negative
integers. If the parameters are sufficiently small, we do not apply any branching rule
and solve this problem in some way. For a problem P with parameters n1, . . . , n� that
are not sufficiently small, we choose a branching rule b(P) such that P is reduced
to mb(P) problems P1, P2 . . . , Pmb(P)

of the same class. Here, Pi has parameters

123

Algorithmica (2022) 84:3603–3621 3609

f b(P),i
1 (n1), . . . , f b(P),i

� (n�) for some function f b(P),i
j satisfying f b(P),i

j (n j) ≤ n j

for i = 1, 2, . . . ,mb(P) and j = 1, 2, . . . , �. At least one of the parameters of Pi must
be smaller than the same parameter of P for all i ∈ 1, 2, . . . ,mb(P). The solution of
P is true if and only if at least one of the solutions of P1, . . . , Pmb(P)

is true. Hence,
we will call this algorithm OR-branching algorithm. For a problem P of this class, we
can consider a computation tree that represents the branchings of the reductions. The
computation tree for P is a single node if P has sufficiently small parameters, so that
no branching rule is performed, and is a rooted tree where children of the root node
are the root nodes of the computation trees for P1, P2, . . . , Pmb(P)

if some branch-
ing rule b(P) is applied to P . Let L(n1, . . . , n�) be the maximum number of leaves
of the computation tree for P with parameters n1, . . . , n�. Assume that the running
time of the computation at a non-leaf node, including computations of b(P), Pi , and
f b(P),i
j , is polynomial with respect to n1, . . . , n�. Then, the total running time of the

OR-branching algorithm is at most L(n1, . . . , n�)(poly(n1, . . . , n�) + T) where T is
the running time for the computation at a leaf node. We can apply Grover’s search
to OR-branching algorithms if we have an upper bound of L(n1, . . . , n�) with some
properties, as shown in the following lemma.

Lemma 2 Let U (n1, . . . , n�) be an upper bound of L(n1, . . . , n�) that can be com-
puted in polynomial time with respect to the parameters, and satisfies

U (n1, . . . , n�) ≥
mb∑

i=1

U (f b,i1 (n1), . . . , f b,i� (n�))

for any branching rule b. Then, there is a bounded-error quantum algorithm with
running time

√
U (n1, . . . , n�)(poly(n1, . . . , n�) + T).

Proof If we can assign an integer s ∈ {1, 2, . . . ,U (n1, . . . , n�)} to every leaf of the
computation tree, and can compute the corresponding leaf from given s in polynomial
time with respect to the parameters, then, we can apply Grover’s search for computing

a(P) =
∨

Q∈W (P)

a(Q)

where a(P) denotes the solution of a problem P and W (P) denotes the set of all
problems corresponding to leaves of the computation tree for P . Then, we obtain
a quantum algorithm with running time

√
U (n1, . . . , n�)(poly(n1, . . . , n�) + T) as

briefly mentioned in [12]. The algorithm computing the s-th leaf of a problem P
is shown in Algorithm 1, which was omitted in [12]. We will show the validity of
Algorithm 1.

Proposition 1 For any problem Q that corresponds to a leaf node of the computa-
tion tree of a problem P with parameters n1, . . . , n�, there exists s ∈ {1, 2, . . . ,
U (n1, . . . , n�)} such that Leaf(P, s) = Q.

Proof The proof is an induction on the depth of the computation tree for P . If the com-
putation tree for P consists of a single node, thenAlgorithm1 returns P for any s. Since

123

Algorithmica (2022) 84:3603–36213610

Algorithm 1 Algorithm computing s-th leaf of P
1: function Leaf(P , s)
2: if P is a leaf then return P
3: Compute the branching rule b ← b(P)

4: for i ∈ {1, 2, . . . ,mb − 1} do
5: Compute Pi and its parameters n′

1, . . . , n
′
�

= f b,i1 (n1), . . . , f b,i
�

(n�)

6: if s ≤ U (n′
1, . . . , n

′
�
) then return Leaf(Pi , s)

7: else s ← s −U (n′
1, . . . , n

′
�
)

8: return Leaf(Pmb , s)

U (n1, . . . , n�) is an upper bound of L(n1, . . . , n�), it followsU (n1, . . . , n�) ≥ 1, and
hence, {1, 2, . . . ,U (n1, . . . , n�)} is non-empty. Assume that the proposition holds for
any P with the computation tree of depth at most d.Wewill consider a problem P with
computation tree of depthd+1. Let i be the index of the branching at P that achieves Q.
From the induction hypothesis, there exists s′ ∈ {1, . . . ,U (f b,i1 (n1), . . . , f b,i� (n�))}
such that Leaf(Pi , s′) = Q. Let s := s′ + ∑i−1

j=1U (f b, j1 (n1), . . . , f b, j� (n�)). Then,

Leaf(P, s) = Q. Here, s ≤ ∑mb
j=1U (f b, j1 (n1), . . . , f b, j� (n�)) ≤ U (n1, . . . , n�). �

FromProposition 1 and a fact thatLeaf(P, s) always returns a problem corresponding
to one of the leaf nodes for P , we obtain

a(P) =
∨

s∈{1,...,U (n1,...,n�)}
a(Leaf(P, s)).

Since the depth of the computation tree for P is at most
∑�

j=1 n j , the running
time of Leaf(P, s) is polynomial with respect to the parameters. We have assumed
that there is a quantum algorithm computing a(Q) with running time T for Q ∈
W (P). Hence, there is a quantum algorithm computing a(Leaf(P, s)) for given
s ∈ {1, . . . ,U (n1, . . . , n�)} with running time poly(n1, . . . , n�) + T . By using the
quantum algorithm computing a(Leaf(P, s)) as the oracle, Grover’s search computes
a(P) with running time

√
U (n1, . . . , n�)(poly(n1, . . . , n�) + T). �

For a problem P whose solution is an integer, we can also consider a branching
algorithm satisfying a(P) = min

mb(P)

i=1 a(Pi) for children P1, . . . , Pmb(p) of P . In this
case, wewill call this algorithmMIN-branching algorithm. Similarly to OR-branching
algorithm,we can applyGrover’s search toMIN-branching algorithm fromTheorem5.

In this paper, we apply Lemma 2 to Byskov’s algorithm in Theorem 3. Byskov
showed the upper bound I (n, t) satisfying the conditions in Lemma 2 for the
branching algorithm with two parameters n and t [7, Theorem 2]. Hence, we can
apply Grover’s search to Byskov’s algorithm in Theorem 3. For example, since∑n

t=1 I (n, t) = O∗(3n/3), there is a bounded-error quantum algorithm searching
for all MISs in time O∗(3n/6).

123

Algorithmica (2022) 84:3603–3621 3611

4 QuantumAlgorithms for the Chromatic Number Problem

The overview of the quantum algorithm was described in Sect. 1.2.1. The quantum
algorithm for Theorem 1 is shown in Algorithm 2.

Algorithm 2 Algorithm computing the chromatic number of G. Grover’s search is
used for mins.
1: function CHR(G)
2: if G is two colorable then return the chromatic number of G
3: χ [∅] ← 0
4: for S ⊆ V , S �= ∅, |S| ≤ �n/4� do (In the loop, S is earlier than S′ if S ⊆ S′)
5: χ [S] ← 1 + minI∈MIS(G[S]){χ [S \ I]}
6: return CHR1(V)

7: function CHR1(S)
8: c ← |S|
9: for t ∈ {1, . . . , |S|}, s ∈ {max{�|S|/2	 − t, 1}, . . . , �(|S| − t)/2�} do
10: a ← minI∈MIS(G[S]), |I |=t minT⊆S\I , |T |=s (CHR2(T) + CHR2(S \ I \ T))

11: c ← min{c, a}
12: return c + 1

13: function CHR2(S)
14: if G[S] is two colorable then return the chromatic number of G[S]
15: c ← |S|
16: for t ∈ {1, . . . , |S|}, s ∈ {max{�|S|/2	 − t, 1}, . . . , �(|S| − t)/2�} do
17: a ← minI∈MIS(G[S]), |I |=t minT⊆S\I , |T |=s (χ [T] + χ [S \ I \ T])
18: c ← min{c, a}
19: return c + 1

For computing the chromatic number of G[S], when MIS I of size t is chosen,
we have to chose T ⊆ S \ I satisfying |T | ≤ |S|/2 and |S \ I \ T | ≤ |S|/2 as
mentioned in Sect. 1.2.1. This implies the condition |S|/2− t ≤ |T | ≤ |S|/2. Hence,
Algorithm 2 computes the chromatic number correctly. By analyzing the running time
of Algorithm 2, we obtain the following theorem.

Theorem 6 Algorithm 2 computes the chromatic number of an n-vertex graph with
running time O∗ (

(237/3533/75−9/707−5/28)n
) = O(1.9140n) with bounded error

probability.

Proof The running time of the precomputation is O∗
(∑�n/4�

i=1

(n
i

)
3i/6

)
= O∗(2h(1/4)n

3n/24
) = O(1.8370n). Let T1(n) be the running time of CHR1(V) and T2(m) be the

running time of CHR2(S) for S ⊆ V of size m. Then, we obtain

T2(m) =
m∑

t=1

√
I (m, t)

�(m−t)/2�∑

s=max{�m/2	−t, 1}

√(
m − t

s

)
, (2)

T1(n) =
n∑

t=1

√
I (n, t)

�(n−t)/2�∑

s=max{�n/2	−t, 1}

√(
n − t

s

)
(T2(s) + T2(n − t − s))

123

Algorithmica (2022) 84:3603–36213612

≤
n∑

t=1

√
I (n, t)

min{�n/2�, n−t}∑

s=0

√(
n − t

s

)
T2(s) (3)

by ignoring polynomial factors in n. Here, T2(m) ≤ ∑m
t=1

√
I (m, t)2

m−t
2 whose

exponent is equal tomaxδ∈[0,1] {(E(δ) + (1 − δ))/2}. FromCorollary 1, it is sufficient
to take maximum among δ being an inverse integer. Numerical calculation shows that
the maximum is given at δ = 1/5 and hence T2(m) = O∗(80m/10) = O(1.5500m).
Hence, the exponent of T1(n) is equal to

max
δ∈[0,1/3], λ∈[0,1/2]

{
1

2
E(δ) + 1

2
h

(
λ

1 − δ

)
(1 − δ) +

(
1

10
log 80

)
λ

}
.

Here,weonly considermaximumfor t ≤ n/3 since I (n, t) is decreasingwith respect to

t for t ≥ n/3, and the other part
∑

s

√(n−t
s

)
T2(s) in (3) is also decreasing with respect

to t . Numerical calculation shows that the maximum is given at δ = 1/7, λ = 1/2.
Hence, we obtain

T1(n) = O∗ ((
71/142h(7/12)3/7801/20

)n)

= O∗ (
(237/3533/75−9/707−5/28)n

)
= O(1.9140n).

�
Careful readers may notice that the running times of the precomputation and the main
computation are not balanced. If the quantum algorithm precomputes the chromatic
numbers of induced subgraphswith size atmost (1/4+ε)n for some ε > 0, the precom-
putation and the main computation require more and less running time, respectively
(we can use Fact 1 for unbalanced m). At first glance, it might be possible to improve
the running time by optimizing ε such that the both running time are balanced. Indeed,
this idea improved the running time of the quantum algorithm for TSP [1], but does not
improve the running time of Algorithm 2. Equation (2) is dominated by t = m/5 and
s = (2/5)m. Equation (3) is dominated by t = n/7 and s = n/2. In order to exclude
s = (2/5)n in the summation in (2), the chromatic number of induced subgraph with
size at most (3/10)n must be precomputed. However, the running time of the precom-
putation in this case is

∑(3/10)n
i=1

(n
i

)
3i/6 = Ω(1.9460n). Hence, the running time of

quantum algorithm is not improved.

5 QuantumAlgorithms Not Using QRAM

5.1 Known Classical Algorithms for k-coloring Problem

Beigel and Eppstein showed the fastest known classical algorithm for the graph 3-
coloring problem.

123

Algorithmica (2022) 84:3603–3621 3613

Theorem 7 (Beigel and Eppstein [2]) There is a classical algorithm for the graph 3-
coloring problem with running time O∗((23/4934/49Λ24/49)n) = O(1.3289n) where
Λ denotes the unique real positive root of x5 − 2x − 2.

For larger k, Byskov showed reduction algorithms from the graph k-coloring prob-
lem to the graph 3-coloring problem [7]. Since a graph G is k-colorable if and only if
there exists an MIS I of size at least �n/k	 such that G[V \ I] is (k − 1)-colorable,
we obtain the following reduction algorithm.

Reduction algorithm 1 (Byskov [7], Lawler [17]) For each t ∈ {�n/k	, �n/k	 +
1, . . . , n}, enumerate all t-MISs. For each t-MIS I , the algorithm for the graph (k−1)-
coloring is performed to G[V \ I].
Let T (1)

k (n) be the running time of an algorithm for the graph k-coloring problem
using Reduction Algorithm 1. Then, it satisfies

T (1)
k (n) =

n∑

t=�n/k	
I (n, t)T (1)

k−1(n − t) (4)

for k ≥ 4 by ignoring a polynomial factor. By using Reduction Algorithm 1 and
Theorem 7, Byskov obtained algorithms for the graph 4- and 5-coloring problems
with running time O(1.7504n) and O(2.1592n), respectively. Byskov also introduced
another reduction algorithm. Here, we introduce it in a general form. Since a graph G
is k-colorable if and only if there exists a subset S of vertices of size at least �nk′/k	
such that G[S] is k′-colorable and G[V \ S] is (k − k′)-colorable for arbitrary k′ < k,
we obtain the following reduction algorithm.

Reduction algorithm 2 (Byskov [7], Lawler [17])Fix k′ ∈ {2, 3, . . . , �k/2�}. For each
t ∈ {�nk′/k	, �nk′/k	+1, . . . , n}, enumerate all subsets of vertices of size t . For each
subset S of vertices of size t , the algorithms for the graph k′- and (k − k′)-coloring
problems are performed to G[S] and G[V \ S], respectively.
Let T (2)

k (n) be the running time of an algorithm for the graph k-coloring problem
using Reduction Algorithm 2. Then, it satisfies

T (2)
k (n) =

n∑

t=�nk′/k	

(
n

t

) (
T (2)
k′ (t) + T (2)

k−k′(n − t)
)

(5)

for k ≥ 4 by ignoring a polynomial factor. Reduction Algorithm 2 is a simple gen-
eralization of a reduction algorithm in [7]. For k = 6, Reduction Algorithm 2 with
k′ = 3 gives T (2)

6 (n) = O(2.3289n) while T (1)
6 (n) = O(2.5602n) [7]. Byskov did

not consider classical algorithms for the graph k(≥ 7)-coloring problem since the
classical algorithms obtained by Reduction Algorithms 1 and 2 are slower than the
fastest classical algorithm computing the chromatic number at that time with running
time O(2.4023n) [7].

123

Algorithmica (2022) 84:3603–36213614

5.2 Quantum Algorithms Not Using QRAM

In this section, we present quantum algorithms not using QRAM, and prove a weaker
version of Theorem 2 that is valid for k ≤ 19 rather than k ≤ 20. Theorem 2 is
obtained by improving quantum algorithms presented in this section. The improved
quantum algorithm and the proof of Theorem 2 are shown in Appendix B.

Fürer mentioned that Grover’s search can be applied to Beigel and Eppstein’s algo-
rithm.

Lemma 3 (Fürer [12]) There is a bounded-error quantum algorithm not using QRAM
for the graph 3-coloring problem with running time O∗((23/4934/49Λ24/49)n/2) =
O(1.1528n) where Λ denotes the unique real positive root of x5 − 2x − 2.

The quantum algorithm in Lemma 3 is obtained by application of Lemma 2 to classical
Beigel and Eppstein’s algorithm in Theorem 7. On the other hand, Beigel and Eppstein
also showed a very simple randomized algorithm for the graph 3-coloring problem
with running time O∗(2n/2) [2,Corollary 1]. This randomized algorithm searches for
one of the 2n/2 solutions from 2n leaves in a quaternary computation tree of depth
n/2. From Theorem 4, we can apply Grover’s search to the randomized algorithm and
obtain a quantum algorithm with running time O∗(2n/4). The quantum algorithms for
Theorem 2 reduce the graph k-coloring problems to the graph 3-coloring problem.
Theorem 2 can be obtained even if this simpler quantum 3-coloring algorithm is
used in place of the involved quantum 3-coloring algorithm in Lemma 3 although the
exponents increase. By applying Reduction Algorithms 1 and 2 boosted by Grover’s
search, the following Theorem is obtained.

Theorem 8 Assume that there is a polynomial-space bounded-error quantum algo-
rithm not using QRAM for the graph 3-coloring problem with running time O∗(2 f ∗

3 n)

for some f ∗
3 . Then, there is a polynomial-space bounded-error quantum algorithm not

using QRAM for the graph k-coloring problem with running time O∗(2 f ∗
k n) where

f ∗
k := min

{
maxs∈{3,4,...,k}{(log s)/(2s) + (1 − 1/s) f ∗

k−1},
min2≤k′≤�k/2� maxδ∈[k′/k,1]

{
h(δ)/2 + max{δ f ∗

k′ , (1 − δ) f ∗
k−k′ }

}

for k ≥ 4.

Proof We consider a quantum algorithm using Reduction Algorithms 1 and 2 with
Grover’s search. Since we can apply Lemma 2 to Byskov’s enumeration algorithm of
t-MIS in Reduction Algorithm 1, we obtain

T ∗
k (n) ≤

n∑

t=�n/k	

√
I (n, t)T ∗

k−1(n − t).

For Reduction Algorithm 2, we can simply apply Grover’s search, and obtain

T ∗
k (n) ≤

n∑

t=�nk′/k	

√(
n

t

) (
T ∗
k′(t) + T ∗

k−k′(n − t)
)

123

Algorithmica (2022) 84:3603–3621 3615

for any k′ ∈ {2, . . . , �k/2�}. Hence, by choosing the best reduction algorithm, we
obtain quantum algorithms with running time O∗(2F∗

k n) where F∗
3 = f ∗

3 and

F∗
k := min

{
maxδ∈[1/k,1]

{
E(δ)/2 + (1 − δ)F∗

k−1

}
,

min2≤k′≤�k/2� maxδ∈[k′/k,1]
{
h(δ)/2 + max{δF∗

k′ , (1 − δ)F∗
k−k′ }

}

for k ≥ 4. Since E(δ) is decreasing for δ ≥ 1/3, we can assume that δ ≤ 1/3. From
Corollary 1, it is sufficient to take maximum among δ = 1/s for s ∈ {3, 4, . . . , k}.
This proves F∗

k = f ∗
k . �

By using Theorem 8 with f ∗
3 = (3 + 4 log 3 + 24 logΛ)/98 ≤ 0.2051 or f ∗

3 = 1/4,
we obtain Theorem 2 for k ≤ 19. In Table 2 in Appendix A, the values of f ∗

k and best
choices of k′ are shown for f ∗

3 = (3 + 4 log 3 + 24 logΛ)/98. Here, we summarize
the quantum algorithm.

Algorithm 3 Algorithm for the k-colorability of G. Grover’s search is used for two∨
s.

1: function COL(G, k)
2: if k ≤ 2 then return the k-colorability of G by a polynomial-time algorithm

3: if k = 3 then return the 3-colorability ofG by Beigel and Eppstein’s algorithmwith Grover’s search

4: if k ≤ 5 then
5: for t ∈ {�n/k	, . . . , n} do
6: if

∨
I∈MIS(G),|I |=t COL(G[V \ I], k − 1) then return true

7: return false
8: Choose k′ depending on k from Table 2
9: for t ∈ {�nk′/k	, . . . , n} do
10: if

∨
S⊆V ,|S|=t COL(G[S], k′) ∧ COL(G[V \ S], k − k′) then return true

11: return false

It is easy to calculate the exponents f ∗
k efficiently and precisely. The details are

explained in Appendix A. Note that if Grover’s search is not used in Algorithm 3, we
obtain classical algorithms with running time O∗(4 f ∗

k n). We will obtain Theorem 2
by improving Algorithm 3. When Reduction Algorithm 2 is applied, we can assume
that k − k′ independent sets in G[V \ S] are smaller than k′ independent sets in G[S].
Hence, we can use the average size |S|/k′ of k′ independent sets in G[S] as an upper
bound on the size of independent sets in G[V \ S]. This idea reduces the running time
of Algorithm 3 and gives Theorem 2. The details are shown in Appendix B.

Acknowledgements This work was supported by JST PRESTO Grant Number JPMJPR1867 and JSPS
KAKENHI Grant Numbers JP17K17711, JP18H04090, JP20H04138 and JP20H05966. The authors thank
François Le Gall for the insightful comments.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

123

Algorithmica (2022) 84:3603–36213616

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Calculations of the Exponents f ∗
k

Here, we consider calculations of the exponents f ∗
k . The details of the numerical

calculations were not written in [1]. Fortunately, the calculation of f ∗
k is not difficult.

The non-trivial part is the calculation of

max

{
max

δ∈[k′/k,1]
{h(δ)/2 + δ f ∗

k′ }, max
δ∈[k′/k,1]

{h(δ)/2 + (1 − δ) f ∗
k−k′ }

}
.

In general, the sum of the binary entropy function and a linear function is a concave
function. Hence, it is sufficient to find a stationary point δ∗. For maximizing h(δ)/2+
δ f ∗

k′ , we need to find δ∗ ∈ [0, 1] such that

1

2
log

1 − δ∗

δ∗ + f ∗
k′ = 0.

Since the left-hand side is monotonically decreasing, δ∗ can be approximated effi-
ciently by the binary search. If δ∗ < k′/k, then δ = k′/k gives the maximum. The
precise values of f ∗

k computed by the above algorithm and chosen k′ are shown in
Table 2. Here, k′ = 1 means that Reduction Algorithm 1 is chosen.

Table 2 Precise values of f ∗
k

k f ∗
k 2 f ∗k k′ k f ∗

k 2 f ∗k k′

3 0.2050919796 1.1527598391 12 0.8675130685 1.8245150716 6

4 0.4038189847 1.3230054317 1 13 0.8873694503 1.8498001987 6

5 0.5552479972 1.4694212030 1 14 0.9096459955 1.8785844800 6

6 0.6098104848 1.5260587298 3 15 0.9487955413 1.9302604739 7

7 0.7233677736 1.6510316464 3 16 0.9487955413 1.9302604739 7

8 0.7298058730 1.6584159226 4 17 0.9535113456 1.9365803294 8

9 0.8040091395 1.7459462428 4 18 0.9565265484 1.9406319746 8

10 0.8297793332 1.7774134780 5 19 0.9713689548 1.9607001959 8

11 0.8297793332 1.7774134780 5 20 1.0059831384 2.0083116140 8

123

Algorithmica (2022) 84:3603–3621 3617

http://creativecommons.org/licenses/by/4.0/

B Improved QuantumAlgorithm for k-coloring Problems Not Using
QRAM

Theorem 9 Assume that there is a polynomial-space bounded-error quantum algo-
rithm not using QRAM for the graph 3-coloring problem with running time O∗(2 f ∗

3 n)

for some f ∗
3 . Then, there is a polynomial-space bounded-error quantum algorithm not

using QRAM for the graph k-coloring problem with running time O∗(2d∗
k (1)n) where

d∗
3 (μ) := f ∗

3 for all μ ∈ [1/3, 1] and

d∗
k (μ) := min

⎧
⎪⎨

⎪⎩

maxs∈{2,3,...,k}
{
(log s)/(2s) + (1 − 1/s)d∗

k−1(1)
}
,

min2≤k′≤�k/2� maxδ∈[k′/k,min{1,μk′}]
{
h(δ)/2

+max{δd∗
k′(min{1, μ/δ}), (1 − δ)d∗

k−k′(min{1, δ/(k′(1 − δ))})}}

for k ≥ 4 and μ ∈ [1/k, 1].
Proof The quantum algorithms are almost the same as those in Theorem 8. When we
apply Reduction Algorithm 2, we check for all subsets S of vertices of size t whether
G[S] is k′-colorable andG[V \S] is (k−k′)-colorable. Sincewe assume that S consists
of k′ largest independent sets in a coloring, we can safely assume that |S| ≥ �nk′/k	.
At the same time, we can assume that k−k′ independent sets in a coloring ofG[V \ S]
have size at most �|S|/k′�, which is the average size of independent sets in a coloring
of G[S]. This knowledge can be used for reducing the running time of quantum
algorithms. We can consider a partial function that outputs true if the given graph can
be partitioned into k independent sets of size at most u, outputs false if the given graph
is not k-colorable, and outputs either of true or false for other cases. For computing
this partial function, we can restrict the size of S in Reduction Algorithm 2. Since we
only have to consider independent sets of size at most u, we can assume that |S| is
at most uk′ and at least n − u(k − k′). We can assume that u is at least �n/k	 since
otherwise there is no solution. Then, �nk′/k	 ≥ n− u(k − k′). Hence, we can assume
that |S| is at least �nk′/k	 and at most min{n, uk′}. Let T ∗

k (n, u) denote the running
time of the quantum algorithm. Then, we obtain

T ∗
k (n, u) ≤

n∑

t=�n/k	

√
I (n, t)T ∗

k−1(n − t, n − t),

T ∗
k (n, u) ≤

min{n,uk′}∑

t=�nk′/k	

√(
n

t

) (
T ∗
k′(t,min{t, u}) + T ∗

k−k′(n − t,min{n − t, �t/k′�}))

for any k′ ∈ {2, 3, . . . , k}. Note that in Reduction Algorithm 1, we cannot assume that
enumerated MIS has size at most u since the size of MIS is not restricted. On the other
hand, T ∗

k−1(n−t, n−t) in the first inequality can be replaced by T ∗
k−1(n−t,min{t, u}).

However, we do not apply this improvement since numerical calculation show that
this does not improve the exponents of running time for k ∈ {3, 4, . . . , 21} \ {13}. By
choosing the best reduction algorithms, we obtain T ∗

k (n, �μn�) = O∗(2d∗
k (μ)n). �

123

Algorithmica (2022) 84:3603–36213618

By using Theorem 9 with f ∗
3 = (3+ 4 log 3+ 24 logΛ)/98 or 1/4, we obtain Theo-

rem 2. Table 1 shows the values of d∗
k (1). Here, k′ may depend on u. However, even if

k′ is determined only by k, the same exponents are obtained. Chosen k′s are the same
as those in Table 2 except for k′ = 7 for k = 17. Here, we summarize the quantum
algorithm.

Algorithm 4 Algorithm for the k-colorability of G. If G can be partitioned into k
independent sets of size at most u, then return true. If G is not k-colorable, then return
false. Otherwise, return either of true or false. Grover’s search is used for the two

∨
s

1: function COL(G, k, u)
2: if k ≤ 2 then return the k-colorability of G by a polynomial-time algorithm

3: if k = 3 then return the 3-colorability ofG by Beigel and Eppstein’s algorithmwith Grover’s search

4: if k ≤ 5 then
5: for t ∈ {�n/k	, . . . , n} do
6: if

∨
I∈MIS(G),|I |=t COL(G[V \ I], k − 1, |V \ I |) then return true

7: return false
8: Choose k′ that depends on k from Table 2, but k′ = 7 for k = 17
9: for t ∈ {�nk′/k	, . . . ,min{n, uk′}} do
10: if

∨
S⊆V ,|S|=t COL(G[S], k′, u) ∧ COL(G[V \ S], k − k′, �t/k′�) then return true

11: return false

The details of numerical calculation of d∗
k (1) and their precise values are shown in

Appendix C. Finally, we introduce our ideas that failed to improve the running time.
Similarly to Theorem 9, we can assume that in Reduction Algorithm 2, the size of
independent sets in a coloring of G[S] is lower bounded by (n − t)/(k − k′), which is
the average size of independent sets inG[V \ S]. However, this idea could not improve
the exponents in our numerical calculations. We also tried to use hybrid algorithms of
Reduction Algorithms 1 and 2. We introduce a threshold s of size of independent sets.
Then, Reduction Algorithms 1 and 2 are both applied on the assumptions that the size
of the largest independent set in a coloring is at least s + 1 and at most s, respectively.
The threshold s is optimized so that the running time of Reduction algorithms are
balanced. This algorithm failed to improve the running time as well.

C Calculations of the Exponents d∗
k(�)

It is much more difficult to calculate d∗
k (1) than f ∗

k . The non-trivial part is the calcu-
lations of

max
{

max
δ∈[k′/k,min{1,μk′}]

{
h(δ)/2 + δd∗

k′(min{1, μ/δ})},

max
δ∈[k′/k,min{1,μk′}]

{
h(δ)/2 + (1 − δ)d∗

k−k′(min{1, δ/(k′(1 − δ))})}
}
.

In the numerical calculations, the maximum for δ is taken for all δ ∈ {1/216, 2/216,
. . . , 216/216}. Computed d∗

k (μ) is cached and reused. Then,we obtain d∗
k (1) in Table 1.

123

Algorithmica (2022) 84:3603–3621 3619

Table 3 Precise values of d∗
k (1).

For k ≤ 13, d∗
k (1) = f ∗

k
k d∗

k (1) 2d
∗
k (1) k′

13 0.8873694503 1.8498001987 6

14 0.8937052065 1.8579416667 6

15 0.9487955413 1.9302604739 7

16 0.9487955413 1.9302604739 7

17 0.9487955413 1.9302604739 7

18 0.9535113456 1.9365803294 8

19 0.9689936620 1.9574747012 8

20 0.9690025400 1.9574867472 8

21 1.0086631422 2.0120457954 9

As another heuristic way, we assume that for each k′, the functions h(δ)/2 +
δd∗

k′(min{1, μ/δ}) and h(δ)/2 + (1 − δ)d∗
k−k′(min{1, δ/(k′(1 − δ))}) are unimodal,

i.e., functions with a single maximal. On this assumption, we can apply the golden-
section search for finding the maximum efficiently. Obtained approximations of d∗

k (1)
are very close to those calculated by the first method. Hence, we believe that the
golden-section search gives very precise approximations of d∗

k (1), which are shown
in Table 3.

References

1. Ambainis, A., Balodis, K., Iraids, J., Kokainis, M., Prūsis, K., Vihrovs, J.: Quantum speedups for
exponential-time dynamic programming algorithms. In: Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’19), pp. 1783–1793. SIAM (2019)

2. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54(2), 168–204 (2005)
3. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: Proceedings

of the Forty-Seventh Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp.
575–582. IEEE (2006)

4. Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number of perfect matchings.
Algorithmica 52(2), 226–249 (2008)

5. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput.
39(2), 546–563 (2009)

6. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der
Physik: Prog. Phys. 46(4–5), 493–505 (1998)

7. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper. Res.
Lett. 32(6), 547–556 (2004)

8. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S.,
Wahlström, M.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 41 (2016)

9. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv preprint
arXiv:quant-ph/9607014 (1996)

10. Fomin, F.V., Gaspers, S., Saurabh, S.: Improved exact algorithms for counting 3-and 4-colorings.
In: Proceedings of the Thirteenth Annual International Computing and Combinatorics Conference
(COCOON’07), pp. 65–74. Springer (2007)

11. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)
12. Fürer, M.: Solving NP-complete problems with quantum search. In: Latin American Symposium on

Theoretical Informatics (LATIN’08), pp. 784–792. Springer (2008)

123

Algorithmica (2022) 84:3603–36213620

http://arxiv.org/abs/quant-ph/9607014

13. Gaspers, S., Lee, E.J.: Faster graph coloring in polynomial space. In: Proceedings of the Twenty-
third Annual International Computing and Combinatorics Conference (COCOON’17), pp. 371–383.
Springer (2017)

14. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16),
160501 (2008)

15. Grover, L.K.: A fast quantummechanical algorithm for database search. In: Proceedings of the Twenty-
eighth Annual ACM Symposium on Theory of Computing (STOC’96), pp. 212–219. ACM (1996)

16. Koivisto, M.: An O∗(2n) algorithm for graph coloring and other partitioning problems via inclusion–
exclusion. In: Proceedings of the Forty-seventh Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pp. 583–590. IEEE (2006)

17. Lawler, E.L.: A note on the complexity of the chromatic number problem. Inf. Proc. Lett. 5, 66–67
(1976)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Algorithmica (2022) 84:3603–3621 3621

	Exponential-Time Quantum Algorithms for Graph Coloring Problems
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Overview of Quantum Algorithms
	1.2.1 Quantum Algorithm for the Chromatic Number Problem
	1.2.2 Quantum Algorithms for the Graph k-coloring Problem

	1.3 Organization

	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Known Classical Algorithm for Enumerating all t-MISs
	2.3 Grover's Search
	2.4 QRAM

	3 Grover's Search for Branching Algorithms
	4 Quantum Algorithms for the Chromatic Number Problem
	5 Quantum Algorithms Not Using QRAM
	5.1 Known Classical Algorithms for k-coloring Problem
	5.2 Quantum Algorithms Not Using QRAM

	Acknowledgements
	A Calculations of the Exponents f*k
	B Improved Quantum Algorithm for k-coloring Problems Not Using QRAM
	C Calculations of the Exponents d*k(µ)
	References

