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Abstract
We study universal sets of slopes for computing upward planar drawings of planar
st-graphs. We first consider a subfamily of planar st-graphs, called bitonic st-graphs.
We prove that every set S of Δ slopes containing the horizontal slope is universal for
1-bend upward planar drawings of bitonic st-graphs with maximum vertex degree Δ,
i.e., every such digraph admits a 1-bend upward planar drawing whose edge segments
use only slopes in S. This result is worst-case optimal in terms of number of slopes,
and, for a suitable choice ofS, it gives rise to drawingswithworst-case optimal angular
resolution.We then prove that every such setS can be used to construct 2-bend upward
planar drawings of n-vertex planar st-graphs with at most 4n − 9 bends in total.
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1 Introduction

Let G be a graph with maximum vertex degreeΔ. The k-bend planar slope number of
G is theminimumnumber of slopes for the edge segments needed to construct a k-bend
planar drawing of G, i.e., a planar drawing where each edge is a polyline with at most
k ≥ 0 bends. Since nomore than two edge segments incident to the same vertex can use
the same slope, �Δ/2� is a trivial lower bound for the k-bend planar slope number of
G, irrespectively of k. Besides their theoretical interest, k-bend planar drawings with
small slope number form a natural extension of two well-established graph drawing
models: The orthogonal [5, 23, 25, 44] and the octilinear drawing models [2, 3, 6,
40], both having several applications, such as in VLSI and floor-planning [38, 45],
and in metro-maps and map-schematization [15, 30, 41, 43], respectively. Orthogonal
drawings use only two slopes for the edge segments (the horizontal one and the vertical
one), while octilinear drawings use no more than four slopes (the horizontal, the
vertical, and the two diagonal slopes). Consequently, they are limited to graphs with
Δ ≤ 4 and Δ ≤ 8, respectively.

These twodrawingmodels have been generalized to graphswith arbitrarymaximum
vertex degree Δ in [21, 22]. Concerning planar graphs, Keszegh, Pach and Pálvölgyi
[33] prove that every such a graph admits a 2-bend planar drawing using a set of �Δ/2�
equispaced slopes. (Intuitively, a set of slopes is equispaced if the angles formed by
pairs of adjacent edges using consecutive slopes in this set are all the same; see also
Sect. 2 for a formal definition.) As a witness of the tight connection between the two
problems, the result by Keszegh et al. is built upon an older result for orthogonal
drawings of degree-4 planar graphs by Biedl and Kant [5]. In the same paper, Keszegh
et al. also study the 1-bend planar slope number and show an upper bound of 2Δ and a
lower bound of 3

4 (Δ − 1) for this parameter. The upper bound has been progressively
improved. Initially, Durocher and Mondal [24] establish 2

3Δ and Δ as upper bounds
for the 1-bend planar slope number of 2-trees and of planar 3-trees, respectively. Later,
the upper bound for general planar graphs has been set to 3

2 (Δ − 1) by Knauer and
Walczak [36] and subsequently to Δ−1 by Angelini et al. [1]. Angelini et al. actually
prove a stronger result: Given any set S of Δ − 1 slopes, every planar graph with
maximum vertex degree Δ admits a 1-bend planar drawing whose edge segments
use only slopes in S. Any such slope set is hence called universal for 1-bend planar
drawings. This result simultaneously establishes the best-known upper bound on the
1-bend planar slope number of planar graphs and the best-known lower bound on the
angular resolution of 1-bend planar drawings, i.e., on the minimum angle between
any two edge segments incident to the same vertex. The second implication follows
from the fact that if the slopes in S are equispaced, the resulting drawings have angular
resolution of at least π

Δ−1 . For the case k = 0, the best-known upper bound is 2O(Δ),
while the corresponding best-known lower bound is 3Δ−6 [33]. The large gap between
these bounds on the (0-bend) planar slope number motivated an array of results for
subclasses of planar graphs, namely improved upper bounds (which are polynomial
in Δ) have been proved for nested pseudo-trees [8], planar partial 3-trees [17, 31],
partial 2-trees [39], outerplanar graphs [37], while the planar slope number of planar
graphs of maximum degree three is four [18].
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(a) (b)

Fig. 1 a A 1-bend upward planar drawing of a bitonic st-graph, and b a 2-bend upward planar drawing of
a planar st-graph, both defined on the same set of four slopes, that is, the horizontal, the vertical, and the
two diagonal ones

In this paper we study slope sets that are universal for k-bend upward planar draw-
ings of directed graphs (or digraphs for short). A drawing of a digraph G is upward if
every oriented edge (u, v) is drawn as a y-monotone non-decreasing curve from u to
v, while it is strictly upward, if (u, v) is a y-monotone increasing curve. It is known
that G admits an upward planar drawing if and only if it is a subgraph of a planar
st-graph [16, 32]. Since such drawings are common for representing planar digraphs,
they have been extensively studied in the literature (see, e.g., [4, 9, 20, 25, 29]). A
preliminary result for this setting is due to Di Giacomo et al. [19], who prove that
every series-parallel digraph (a subclass of the directed partial 2-trees) with maximum
vertex degree Δ admits a 1-bend (not necessarily strictly) upward planar drawing that
uses at most Δ slopes, and this bound on the number of slopes is worst-case optimal.
Notably, their construction gives rise to drawings with optimal angular resolution π

Δ
(but it uses a predefined set of slopes). For the case k = 0, Czyzowicz [12] and Czy-
zowicz et al. [13] study 0-bend strictly upward drawings of posets with few slopes.
Moreover, Klawitter and Mchedlidze [34] and Klawitter and Zink [35] have recently
investigated the complexity of testing for the existence of a 0-bend upward planar
drawing with the minimum number of slopes.

Contribution The focus of this paper is on the k-bend upward planar slope number of
planar st-graphs, for the cases k = 1 and k = 2. A key ingredient of the presented
techniques is a linear ordering of the vertices of a planar digraph introduced by Grone-
mann [27], called bitonic st-ordering (formally defined in Sect. 2), which is a special
type of an st-ordering. Our contribution is twofold and can be summarized as follows.

– We show that any set S ofΔ slopes containing the horizontal slope is universal for
1-bend upward planar drawings of degree-Δ planar digraphs having a bitonic st-
ordering. Suchgraphs represent a notable subclass of planar st-graphs; for instance,
they are exactly the graphs admitting a so-called upward planar L-drawing [7], and
they have been used to obtain the best-known upper bound on the number of total
bends for 1-bend upward planar drawings [27]. Furthermore, we remark that the
size of S is worst-case optimal [19] and, if the slopes of S are chosen to be
equispaced, the angular resolution of the resulting drawing is at least π

Δ
(that is,

optimal); see Fig. 1a for an illustration.
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– We then extend our construction to all planar st-graphs by using two bends on
a restricted number of edges. More precisely, we show that, given a set S of Δ

slopes containing the horizontal slope, every n-vertex upward planar digraph with
maximum vertex degree Δ has a 2-bend upward planar drawing that uses only
slopes in S and has at most 4n−9 bends in total (that is, linearly many edges have
less than two bends); see Fig. 1b for an illustration.

We note that, in the literature, the strictly upward planar and non-strictly upward
planar models are usually not distinguished, because if a digraph admits an upward
drawing, then it also admits a strictly upward drawing.However, our drawing technique
makes use of the horizontal slope and hence leads to upward drawings that are not
strict. On the positive side, it is always possible tomake these drawings strictly upward
by increasing the number of slopes by only one unit (see Corollaries 2 and 3).

Comparison with Previous Work Before entering into the technical details of our
contribution, it is worth remarking some important differences and similarities with
previous work. Angelini et al. [1] prove that any given set of Δ− 1 slopes is universal
for 1-bend planar drawings of undirected graphs. One of the key intuitions in [1]
lies in the fact that, in an incremental construction of the drawing, there exists a set
of horizontal edges whose removal disconnects the drawing into two pieces. This
set of edges can be used to modify the horizontal distance of the vertices along the
drawing boundary, which in turn makes it possible to use any given set of slopes
to draw the edges attached to such vertices. This intuition is exploited also in our
work, in particular, Lemmas 3 and 4 mirror Lemmas 1 and 2 in [1], although they
require adjusted proofs to deal with the upward setting. Besides this very useful tool
borrowed from [1], our layout algorithm requires additional new ingredients, such
as an enriched set of geometric invariants, the notion of upward canonical ordering
and suitable augmentation techniques that yield such an ordering, the introduction of
“fake” slopes to deal with those dummy edges added to augment the graph. Notably,
this last idea of augmenting the graph and using “fake” slopes to draw the inserted
edges avoids the usage of more complex data structures, such as SPQR-trees, which
are instead used in [1], thus resulting in a simpler and more elegant algorithm.

Another paper linked to ours is the one of Keszegh et al. [33]. Recall that, among
other results, they prove that planar graphs admit 2-bend planar drawings with �Δ/2�
equispaced slopes. In particular, their technique draws the vertices incrementally fol-
lowing an st-ordering (see Sect. 2 for definitions) computed on the undirected planar
graph in input. Since each vertex is drawn above its predecessors in the ordering, the
technique has the potential to produce upward drawings. However, the main objective
of the technique in [33] is to minimize the number of slopes and consequently, some
edges are not drawn as y-monotone curves. Nevertheless, it is not difficult to see that
a simple adjustment would solve this issue, essentially providing Δ slopes to be used
rather than �Δ/2�. Thus, the algorithm in [33] yields 2-bend upward planar drawings
of planar st-graphs using at most Δ slopes. On the other hand, the algorithm that we
propose has two main advantages: (i) it computes drawings with 4n−9 bends in total,
whereas the technique of Keszegh et al. may lead to drawings with 5n − 11 bends,
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and (ii) it can use any set of Δ slopes with the horizontal one, whereas the technique
of Keszegh et al. uses a fixed set of Δ slopes.

Paper Structure Section 2 contains basic definitions and notation. In Sect. 3 and in
Sect. 4, we study universal slope sets for 1-bend and 2-bend upward planar drawings,
respectively. Conclusions and open problems are in Sect. 5.

2 Preliminaries

We assume familiarity with basic graph-theoretic notions; for standard definitions, we
point the reader to [28]. In this section, we give preliminary notions and notation that
are used throughout this paper.

2.1 Drawings and Embeddings

We only consider simple graphs, i.e., graphs with neither loops nor multiple edges. A
directed graph (or digraph for short) is a graph whose edges are oriented. A drawing
Γ of a graph G is a mapping of the vertices of G to distinct points of the plane,
and of the edges of G to Jordan arcs connecting their corresponding endpoints but
not passing through any other vertex. A drawing is planar if no two edges intersect,
except possibly at a common endpoint. A planar graph is a graph that admits a planar
drawing. A planar drawing subdivides the plane into topologically connected regions,
called faces. The infinite region is called the outer face; any other face is an inner
face. A planar embedding of a planar graph is an equivalence class of topologically
equivalent (i.e., isotopic) planar drawings of G. A planar embedding of a connected
planar graph can be described by the clockwise circular order of the edges around
each vertex together with the choice of the outer face. A planar graph with a given
planar embedding is a plane graph. A plane graph is maximal (or triangulated) if the
boundary of each face contains exactly three vertices.

An upward drawing of a digraph G is a drawing such that each edge of G is drawn
as a curvemonotonically non-decreasing in the y-direction from its source to its target.
A drawing is strictly upward if its edges are monotonically increasing. It is easy to
see that if a digraph admits an upward drawing, then it also admits a strictly upward
drawing. A digraph is upward planar if it admits a drawing that is both upward and
planar.

A plane acyclic digraph G with a single source s and a single sink t , such that s and
t belong to the boundary of the outer face and the edge (s, t) belongs to G, is called
planar st-graph [16] (note that, other works do not explicitly require the edge (s, t)
to be part of G; see, e.g., [27]). It is well-known that a digraph is upward planar if and
only if it is a subgraph of a planar st-graph [16].

The slope of a line � is commonly defined as the angle α by which a horizontal line
must be rotated counter-clockwise in order to make it overlap with �.1 If α = 0, we
say that the slope of � is horizontal. The slope of a segment is the slope of the line

1 Note that, formally, for a straight line �, the angle that a horizontal line needs to be rotated counter-
clockwise in order to make it overlap with � is the angle of incline of �, while its slope s is the tangent of
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containing it. Let S = {α1, . . . , αh} be a set of h slopes such that αi < αi+1. The
slope set S is equispaced if αi+1 − αi = π

h , for i = 1, . . . , h − 1.
Consider a k-bend planar drawing Γ of a graph G, i.e., a planar drawing in which

every edge is mapped to a polyline containing at most k + 1 segments. For a vertex v

in Γ each line through v and having slope α defines two different rays that emanate
from v. We say that these two rays have slope α. If α is horizontal, these rays are called
left horizontal ray and right horizontal ray. Otherwise, one of them is the top and the
other one is the bottom ray of v. We say that a ray rv of a vertex v is free if there is
no edge incident to v through rv in Γ . We also say that rv is outer if it is free and the
first face encountered when moving from v along rv is the outer face of Γ (note that,
in general, there might exist several faces intersecting rv).

The slope number of a k-bend drawing Γ is the number of distinct slopes used for
the edge segments of Γ . The k-bend upward planar slope number of an upward planar
digraphG is theminimum slope number over all k-bend upward planar drawings ofG.

2.2 Orderings

An st-ordering of an n-vertex planar st-graph G = (V , E) is a linear ordering σ =
(v1, v2, . . . , vn) of V such that for each edge (u, v) ∈ E , vertex u precedes vertex v in
σ , that is σ(u) < σ(v). In particular, any st-ordering of G is a linear extension of the
partial order defined by the edges of G, and therefore it holds that s = v1 and t = vn .
Every planar st-graph has an st-ordering, which can be computed in O(n) time (see,
e.g., [11]). If u and v are two adjacent vertices of G such that σ(u) < σ(v), we say
that v is a successor of u, and u is a predecessor of v.

Let e be an outgoing edge of a vertex u ofG, let e′ and e′′ be the next edges incident
to u going counter-clockwise and clockwise around u from e, respectively (the circular
order of the edges around u is defined by the planar embedding of G). We say that e
is the leftmost outgoing edge of u if either e and e′ are both edges of the outer face or
e′ is an incoming edge. Similarly, e is the rightmost outgoing edge of u if either e and
e′′ are both edges of the outer face or e′′ is an incoming edge. Also, observe that if u
has only one outgoing edge, then such an edge is both leftmost and rightmost. Denote
by S(u) = (u1, u2, . . . , uq) the sequence of successors of u such that, in the planar
embedding of G, we have that: (i) edge (u, u1) is the leftmost outgoing edge of u, and
(ii) edge (u, ui ) precedes (u, ui+1) (for i = 1, . . . , q − 1) scanning the edges around
u clockwise. The sequence S(u) is bitonic if there exists an integer 1 ≤ h ≤ q such
that σ(u1) < · · · < σ(uh−1) < σ(uh) > σ(uh+1) > · · · > σ(uq); see Fig. 2a for an
illustration. Notice that when h = 1 or h = q, S(u) is actually a monotonic decreasing
or increasing sequence (which is a special case of a bitonic sequence). A bitonic st-
ordering of G is an st-ordering such that, for every vertex u ∈ V , S(u) is bitonic [26].
A planar st-graph G is a bitonic st-graph if it admits a bitonic st-ordering. Deciding
whether G is bitonic can be done in linear time in both cases when we assume that
a planar embedding is given as part of the input [27] and when we do not have such
information and hence we search over all possible planar embeddings of G [7].

this angle. However, for simplicity reasons, and similarly as in previous papers (see, e.g., [17, 21, 22]), we
refer to the angle of incline of � as its slope.
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(a) (b)

Fig. 2 Illustration of a bitonic sequence, and of b a forbidden configuration

A sequence of successors S(u) of a vertex u forms a forbidden configuration if there
exist two indices i and j ,with i < j , such thatσ(ui ) > σ(ui+1) andσ(u j ) < σ(u j+1),
i.e. there is a path from ui+1 to ui and a path from u j to u j+1; see Fig. 2b. If G is not
bitonic, every st-ordering σ of G contains a forbidden configuration [27].

Let G = (V , E) be an n-vertex triangulated plane graph with vertices u, v, and w

on the boundary of the outer face. A canonical ordering [14] of G is a linear ordering
χ = (v1, v2, . . . , vn) of V , such that u = v1, v = v2,w = vn , and for every 3 ≤ i ≤ n:

C1: The subgraph Gi induced by v1, v2, . . . , vi is 2-connected and internally trian-
gulated, while the boundary of its outer face Ci is a simple cycle containing
(v1, v2);

C2: If i + 1 ≤ n, vi+1 belongs to Ci+1 and its neighbors in Gi form a subpath of the
path obtained by removing (v1, v2) from Ci .

Computing a canonical ordering χ of G can be done in O(n) time [14]. When G is
a digraph, a canonical ordering χ of G is called an upward canonical ordering if for
every edge (u, v) of G, vertex u precedes vertex v in χ . It is worth observing that χ is
a special st-ordering of G and hence a particular linear extension of the partial order
defined by the edges of G.

3 1-Bend Upward Planar Drawings

Overview In this section, we first describe a constructive algorithm to compute 1-bend
upward planar drawings of bitonic st-graphswithmaximumvertex degreeΔ using any
set ofΔ slopes that includes the horizontal one (Theorem 1). The section is concluded
by discussing some interesting implications of this result (Corollaries 1 and 2 , and
Theorem 2).

An overview of our strategy to prove Theorem 1 is as follows. We first define a
suitable augmentation technique for the input graph G, which leads to a triangulated
planar st-graph ̂G having an upward canonical ordering χ (Lemmas 1 and 2 ).We then
describe a layout algorithm that takes ̂G as input and computes the desired drawing.
The algorithm incrementally adds a vertex per step according to χ , while maintaining
a set of geometric invariants that guarantee the desired properties of the drawing
(Lemmas 3–7).

The Augmentation Technique Let G = (V , E) be an n-vertex planar st-graph with
a bitonic st-ordering σ = (v1, v2, . . . , vn); see, e.g., Fig. 3a. We describe how to
“transform” σ into an upward canonical ordering of a suitable supergraph ̂G of G.
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(a) (b) (c)

Fig. 3 a A planar st-graph G with a bitonic st-ordering σ = (v1, . . . , v8), b a canonical augmentation G′
of G with an st-ordering χ = (vL , vR , v1, . . . , v8), and c a planar st-graph ̂G obtained by triangulating
G′, such that χ is an upward canonical ordering of ̂G

We start from a result by Gronemann [27], whose properties are summarized in the
following lemma; for an illustration refer to Fig. 3b.

Lemma 1 (Gronemann [27]) Let G = (V , E) be an n-vertex planar st-graph that
admits a bitonic st-ordering σ = (v1, v2, . . . , vn). It is possible to compute in
O(n) time a planar st-graph G ′ = (V ′, E ′) where V ′ = V ∪ {vL , vR}, E ′
is a superset of E that includes edge (vL , vR), and there exists an st-ordering
χ = (vL , vR, v1, v2, . . . , vn) of G ′ such that:

(i) vertices vL and vR are on the boundary of the outer face of G ′, and
(ii) every vertex of G with less than two predecessors in σ has exactly two predeces-

sors in χ .

We call G ′ a canonical augmentation of G. Observe that G ′ always contains the
edges (vL , v1) and (vR, v1) because of Property (ii) of Lemma 1. We proceed by
inserting the edge (vL , vn), which is required according to our definition of planar
st-graph; this addition is always possible because vL and vn are both on the boundary
of the outer face. The next lemma shows that any planar st-graph obtained by trian-
gulating G ′ admits an upward canonical ordering; for an illustration refer to Fig. 3c.
We anticipate that, in order to construct a drawing of G, we will use a different set of
“fake” slopes for the edges inserted by the triangulation procedure; such edges will
be anyway removed at the end of the construction.

Lemma 2 Let G ′ be a canonical augmentation of an n-vertex bitonic st-graph G and
let χ = (vL , vR, v1, v2, . . . , vn) be an st-ordering of G ′. Every triangulated planar
st-graph ̂G obtained by adding only edges to G ′ has the following properties:

(a) graph ̂G has no parallel edges, and
(b) ordering χ is an upward canonical ordering.

Proof Concerning Property (a), suppose for a contradiction that ̂G has two parallel
edges e1 and e2 connecting u with v. Let C be the 2-cycle formed by e1 and e2 and let
VC be the set of vertices distinct from u and v that are inside the topological region
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bounded by C in the embedding of ̂G. Without loss of generality, we shall assume that
C contains no further edge connecting u and v. Set VC is not empty, as otherwise C
would be a non-triangular face of ̂G contradicting either the fact that G ′ is simple or
the fact that ̂G is obtained by triangulating G ′. Let w be the vertex with the lowest
number in χ among those in VC . Since ̂G is planar (in particular e1 and e2 are not
crossed) and has a single source, it contains a directed path from u to every vertex in
VC . Hence, ̂G has an edge from u to w. Also, by assumption, there is no vertex z in
VC such that χ(z) < χ(w), which implies that either u is the only predecessor of w

in χ , or u and v are the only two predecessors of w in χ . The first case contradicts
Property (ii) of Lemma 1. The second case implies the existence of a sink inside C,
which contradicts the fact that G ′ (and hence ̂G) is an st-graph. It follows that graph
̂G has no parallel edges.

Concerning Property (b), we first observe that if χ is a canonical ordering of ̂G,
then χ is actually an upward canonical ordering because it is also an st-ordering. To
see that χ is a canonical ordering, observe first that vertices vL , vR and vn are on the
boundary of the outer face of ̂G by construction. In the following, we prove that χ

satisfies Conditions C.1 and C.2 of canonical ordering.
Denote by ̂Gi the subgraph of ̂G induced by vL , vR, v1, . . . , vi and let ̂Ci be the

boundary of its outer face. We first prove by induction on i that ̂Gi is 2-connected
(for i = 1, 2, . . . , n). In the base case i = 1, graph ̂G1 is a 3-cycle and therefore it is
2-connected. In the case i > 1, graph ̂Gi−1 is 2-connected by induction and vi has at
least two predecessors in ̂Gi−1 by Property (ii) of Lemma 1, thus ̂Gi is 2-connected.
We now prove that for each i = 1, 2, . . . , n, graph ̂Gi is internally triangulated,
which concludes the proof of Condition C.1 of canonical ordering. Suppose, for a
contradiction, that there exists an inner face f of ̂Gi that is not a triangle. Since ̂G is
triangulated, there exists a vertex v j , with j > i , that is embedded inside f in ̂G j . We
show that this is not possible. Namely, since χ is an st-ordering, there is no directed
path from v j to any vertex of f . On the other hand, either v j = vn holds or there is
a directed path from v j to vn . Both cases contradict the fact that vn belongs to the
boundary of the outer face of ̂G.

It remains to prove Condition C.2. Since we already proved that ̂Gi is triangulated,
it suffices to show that vi belongs to ̂Ci , for i = 2, . . . , n. By the planarity of ̂Gi , there
is a face f in ̂Gi−1 such that all the neighbors of vi in ̂Gi−1 belong to the boundary of
f . Such a face is the outer face of ̂Gi . Indeed, if f were an inner face, then vi would
be embedded inside f in ̂Gi and, as we proved above, this is not possible. 	


The Layout Algorithm Let G be an n-vertex bitonic st-graph with maximum vertex
degree Δ; see Fig. 3a. We show that any set S of Δ slopes that contains the horizontal
slope can be used to construct a 1-bend upward planar drawing of G. The algorithm
first computes a triangulated canonical augmentation ̂G of G; see Fig. 3b, c. An edge
is dummy if it belongs to ̂G but not to G and it is real otherwise. By Lemma 2, graph
̂G admits an upward canonical ordering χ = (vL , vR, v1, v2, . . . , vn), where χ is an
st-ordering such that each vertex distinct from vL and vR has at least two predecessors.
Let S = {ρ1, . . . , ρΔ} be any set of Δ slopes, which we call real slopes. Let ρ∗ be the
smallest angle between any two slopes in S and let Δ∗ be the maximum number of
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(a) (b)

Fig. 4 Illustration for Invariants I.3–I.5; real rays are dashed, dummy rays are dotted

dummy edges incident to a vertex of ̂G. For each slope ρi (1 ≤ i ≤ Δ), we introduce
Δ∗ dummy slopes δi1, . . . , δ

i
Δ∗ such that:

δij = ρi + j · ρ∗

Δ∗ + 1
, for j = 1, 2, . . . , Δ∗.

It follows that there areΔ∗ dummy slopes between any two consecutive real slopes.
A ray emanating from a vertex is called real or dummy if its slope is real or dummy,
respectively. We will use the real slopes to represent the real edges and the dummy
slopes for the dummy edges of ̂G.

Let ̂Gi be the subgraph of ̂G induced by vL , vR, v1, v2, . . . , vi . Note that ̂G2
contains a path P that is either the (non-oriented) path 〈vL , v1, v2, vR〉 or the (non-
oriented) path 〈vL , v2, v1, vR〉. In both cases, we denote by ̂G−

i the digraph obtained
from ̂Gi by removing all the edges of ̂G2 that are not part of P . The algorithm con-
structs a drawing ̂Γi of ̂G−

i by incrementally adding the vertices according to χ ,
similarly as in the shift-method by de Fraysseix et al. [14] (the details about the actual
construction will be given soon). Let ̂Ci be the boundary of the outer face of ̂Gi ,
and let ̂Pi be the path obtained by removing (vL , vR) from ̂Ci . For a vertex v of ̂Pi ,
we denote by mr (v, i) and by md(v, i) the number of real or dummy edges incident

to v that are not in ̂Gi , respectively. We also denote by
�

ρ j (v, i) (resp.
�

ρ j (v, i)) the
j-th outer real top ray in ̂Γi encountered in clockwise (resp. counterclockwise) order
around v starting from the left (resp. right) horizontal ray. For dummy top rays, we

define analogously
�

η j (v, i) and
�

η j (v, i). Drawing ̂Γi , for i = 2, 4, . . . , n − 1, will
satisfy the following invariants:

I.1: ̂Γi is a 1-bend upward planar drawing whose real edges use only slopes in S.
I.2: For every j = 2, . . . , i , each edge of ̂Pj contains a horizontal segment.
I.3: Every vertex v of ̂Pi has at least mr (v, i) outer real top rays; see Fig. 4a.

I.4: Every vertex v of ̂Pi has at leastmd(v, i) outer dummy top rays between
�

η1(v, i)

and
�

ρ1(v, i) including
�

η1(v, i), and at least md(v, i) outer dummy top rays

between
�

η1(v, i) and
�

ρ1(v, i) including
�

η1(v, i); see Fig. 4b.
I.5: For every j = 2, . . . , i , let � be any horizontal line and let p and p′ be any two

intersection points between � and the polyline representing ̂Pj in ̂Γ j . Walking
along � from left to right, p and p′ are encountered in the same order as when
walking along ̂Pj from vL to vR ; see Fig. 4b.
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(a) (b) (c)

Fig. 5 Illustration for Lemma 3: a Properties (P.1) and (P.2). b The case in which 〈u1, u2, . . . , uq 〉 all
belong to Li−1(u, v). c The case in which (u, v) does not belong to ̂Pi−1 and it coincides with (u1, vi )

For i = n, the final drawing ̂Γn , obtained after the addition of the last vertex vn to
̂Γn−1, will only satisfy Invariant I.1.
The next two lemmas state important properties of any 1-bend upward planar draw-

ing satisfying Invariants I.1–I.5.

Lemma 3 Let ̂Γi be a drawing of ̂G−
i that satisfies Invariants I.1–I.5. Let (u, v) be any

edge of ̂Pi such that u is encountered before v along ̂Pi when going from vL to vR, and
let λ be a positive number. There exists a drawing ̂Γ ′

i of ̂G−
i that satisfies Invariants

I.1–I.5 and such that:

(i) the horizontal distance between u and v is increased by λ, and
(ii) the horizontal distance between any two other consecutive vertices along ̂Pi is

the same as in ̂Γi .

Proof We prove by induction on i that there exists a cut (Li (u, v), Ri (u, v)) in ̂Γi

with the following two properties; see Fig. 5a for an illustration: (P.1) the vertices of
the subpath of ̂Pi from vL to u belong to Li (u, v), while the vertices of the subpath
of ̂Pi from v to vR belong to Ri (u, v), and (P.2) every edge that crosses the cut has a
horizontal segment.

When i = 2, Property (P.1) clearly holds and (P.2) follows from Invariant I.2.
Assume that Properties (P.1) and (P.2) hold for ̂Γi−1 by induction (i > 2). Let
u1, u2, . . . , uq be the neighbors of vi in ̂Pi−1; observe that ̂Pi is obtained from
̂Pi−1 by replacing the subpath 〈u1, u2, . . . , uq〉 with 〈u1, vi , uq〉. Consider an edge
(u, v) of ̂Pi . If (u, v) also belongs to ̂Pi−1, then 〈u1, u2, . . . , uq〉 all belong to either
Li−1(u, v) or to Ri−1(u, v), say to Li−1(u, v); see also Fig. 5b. This implies that the
cut (Li (u, v), Ri (u, v))with Li (u, v) = Li−1(u, v)∪{vi } and Ri (u, v) = Ri−1(u, v)

satisfies Property (P.1), while (P.2) holds by induction (because the edges that cross
the cut are the same as in ̂Γi−1). If (u, v) does not belong to ̂Pi−1, then (u, v) is
either (u1, vi ) or (vi , uq); see Fig. 5c. Suppose it is (u1, vi ) (the other case is simi-
lar). Consider the cut (Li−1(u1, u2), Ri−1(u1, u2)). The cut (Li (u, v), Ri (u, v)) with
Li (u, v) = Li−1(u1, u2) and Ri (u, v) = Ri−1(u1, u2) ∪ {vi } satisfies Property (P.1).
On the other hand, there is a face of ̂Γi that contains both (u1, u2) and (u1, vi ).
Thus there exists a cut that is crossed by the edges that cross the cut (Li−1(u1, u2),
Ri−1(u1, u2)) and by edge (u1, vi ). The edges in the first set have a horizontal seg-
ment by induction, while edge (u1, vi ) contains a horizontal segment by Invariant I.2.
Hence (P.2) holds.
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(a) (b)

Fig. 6 Illustration for Lemma 4

We construct the drawing ̂Γ ′
i from ̂Γi by increasing the length of the edges that

cross the cut (Li (u, v), Ri (u, v)) by λ units. In other words, we increase by λ units
the x-coordinate of all vertices in Ri (u, v) without changing the y-coordinate of any
vertex. It is immediate to verify that ̂Γ ′

i is a 1-bend upward drawing whose real edges
use only slopes in S and that ̂Γ ′

i satisfies Invariants I.2–I.4.
In order to show that Invariant I.1 holds for ̂Γ ′

i , it remains to prove that ̂Γ ′
i is

planar, that is, the operation of translating the subdrawing induced by Ri (u, v) does
not violate planarity. Suppose for a contradiction that ̂Γ ′

i is not planar. Then there exist
two non-adjacent edges eL and eR of ̂Pi that intersect in a point p. Since eL and eR did
not cross in ̂Γi , point p belongs to only one of the two edges in ̂Γi , say eL , and there
exists a point p′ of eR in ̂Γi that has been translated to p when transforming ̂Γi into
̂Γ ′
i . This means that p′ is encountered before p when walking from left to right along

the horizontal line � passing through p and p′. Since p′ has been translated and p has
not, point p′ belongs to the subpath of ̂Pi that goes from v to vR , while p belongs to
the subpath of ̂Pi from vL to v. In other words, when walking along ̂Pi from vL to vR ,
p is encountered before p′. But this contradicts Invariant I.5 for ̂Γi , which means that
̂Γ ′
i is in fact planar.
We finally prove that Invariant I.5 holds for ̂Γ ′

i . Let � be any horizontal line and let
p and p′ be any two intersection points between � and the polyline representing ̂Pi in
̂Γi , with p to the left of p′ along �. If, in ̂Γ ′

i , the order of p and p′ along � is reversed
or p and p′ coincide, then p has been translated while p′ has been not. On the other
hand, since Invariant I.5 holds for ̂Γi , p precedes p′ when walking along ̂Pi from vL
to vR and therefore if p is translated, p′ is also translated. Thus, Invariant I.5 holds
for ̂Γ ′

i . This completes the proof of the lemma. 	


Lemma 4 Let ̂Γi be a drawing of ̂G−
i that satisfies Invariants I.1–I.5. Let u be a vertex

of ̂Pi , and let tu be any outer top ray of u that crosses an edge of ̂G−
i in ̂Γi . There

exists a drawing ̂Γ ′
i of ̂G−

i that satisfies Invariants I.1–I.5 in which tu does not cross
any edge of ̂G−

i .

Proof The ray tu can cross the subpath of ̂Pi from vL to u and/or the subpath of ̂Pi
from u to vR . Let v andw be the vertices that are encountered before and after u along
̂Pi when going from vL to vR , respectively. To remove the crossing(s) it is sufficient
to apply Lemma 3 to (v, u) and/or to (u, w) for a sufficiently large λ; see Fig. 6a, b
for an illustration. 	
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(a) (b)

Fig. 7 a, bApplication of Lemma 3 to guarantee that all the intersection points along � appear in the desired
order, in the extreme case in which the initial order of the intersection points is reversed with respect to the
desired order

We now describe our drawing algorithm starting with the computation of ̂Γ2. Recall
that ̂G−

2 is either the path 〈vL , v1, v2, vR〉 or the path 〈vL , v2, v1, vR〉. We draw such
a path along a horizontal segment. Clearly, drawing ̂Γ2 satisfies Invariants I.1, I.2,
and I.:5. Since mr (vL , 2) = mr (vR, 2) = 0, Invariant I.3 trivially holds for vL and
vR in ̂Γ2. Vertices v1 and v2 are connected by a real edge in ̂Γ2 and therefore each of
them has at most Δ − 1 real incident edges that are not in ̂G2. Since there are Δ − 1
real top rays and they are all outer, Invariant I.3 holds also for v1 and v2 in ̂Γ2. Finally,
Invariant I.4 holds because all dummy top rays are outer. Hence, we can conclude that
drawing ̂Γ2 satisfies Invariants I.1–I.5. We can summarize this discussion as follows.

Observation 1 Drawing ̂Γ2 satisfies Invariants I.1–I.5.

Assume now that we have constructed drawing ̂Γi−1 of ̂G−
i−1 satisfying Invari-

ants I.1–I.5 for some 3 ≤ i < n. Let u1, . . . , uq be the neighbors of the next vertex

vi along ̂Pi−1. Let t1 be either
�

ρ1(u1, i − 1), if (u1, vi ) is real, or
�

η1(u1, i − 1), if

(u1, vi ) is dummy. Symmetrically, let tq be either
�

ρ1(uq , i − 1), if (uq , vi ) is real, or
�

η1(uq , i − 1), if (uq , vi ) is dummy. Let t j (for 1 < j < q) be any outer real (resp.
dummy) top ray emanating from u j , if (u j , vi ) is real (resp. dummy). By Invariants I.3
and I.4 all such top rays exist and by Lemma 4 we can assume that none of them
crosses ̂Γi−1.

Let � be a horizontal line above the topmost point of ̂Γi−1. For j = 1, 2, . . . , q, let
p j be the intersection point of t j and �. We can assume that, for j = 1, 2, . . . , q − 1,
point p j is to the left of p j+1. If this is not the case, we can increase the distance
between u j and u j+1 so to guarantee that p j and p j+1 appear in the desired order
along �; this can be done by applying Lemma 3 to each edge (u j , u j+1) for a suitable
choice of λ; see Fig. 7a, b for an illustration and also Fig. 8a, b for a complete running
example.

We will place vi above � using q − 2 bottom rays b2, b3, . . . , bq−1 of vi for the
segments of the edges (u j , vi ) ( j = 2, 3, . . . , q − 1) incident to vi such that: (i)
b j (1 < j < q) is real (resp. dummy) if (u j , vi ) is real (resp. dummy), and (ii) b j

precedes b j+1 in the counterclockwise order around vi starting from b2.
This choice is possible for the real rays because vi has Δ − 1 real bottom rays

and it has at least one incident real edge not in ̂Gi (otherwise it would be a sink of
G, which is not possible because i < n). Concerning the dummy rays, we have at
most Δ∗ dummy edges incident to vi and Δ∗ dummy bottom rays between any two
consecutive real rays.
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(a) (b) (c)

(d) (e)

Fig. 8 Addition of vertex vi . a, bApplication of Lemma 3 to guarantee that all the intersection points along
� appear in the desired order. c Placing vi on a point p based on the ray t1. d Application of Lemma 3 to
translate each intersection point p j to the corresponding point p

′
j . e Drawing of the edges incident to vi

Consider the ray t1 and choose a point p to the right of t1 and above � such that
placing vi on p guarantees that the following relationship holds

min
j=1...q−2

{

x(p′
j+1) − x(p′

j )
}

> x(pq) − x(p1),

where p′
1 = p1 and p′

2, p
′
3, . . . , p

′
q−1 are the intersection points of the rays

b2, b3, . . . , bq−1 with the line �; refer to Fig. 8c for an illustration.
Note that for a sufficiently large y-coordinate, point p can always be found. We

now apply Lemma 3 to each of the edges (u1, u2), (u2, u3), . . . , (uq−2, uq−1), in this
order, choosing λ ≥ 0 so that each p j is translated to p′

j (for j = 2, 3, . . . , q − 1).
We finally apply again the same procedure to (uq−1, uq) so that the intersection point
between tq and the horizontal line �H passing through vi is to the right of vi ; see
Fig. 8d. After this translation procedure, we can draw the edge (u1, vi ) (resp. (uq , vi ))
with a bend at the intersection point between t1 (resp. tq ) and �H and therefore using
the slope of t1 (resp. tq ) and the horizontal slope; see Fig. 8e. The edges (u j , vi ), for
j = 2, 3, . . . , q − 1, are drawn with a bend point at p j = p′

j and therefore using
the slopes of t j and b j . In the following lemma, we formally prove that the obtained
drawing ̂Γi satisfies Invariants I.1–I.5.

Lemma 5 For i = 3, 4, . . . , n − 1, drawing ̂Γi satisfies Invariants I.1–I.5.

Proof The proof is by induction on i ≥ 3. By Observation 1, drawing ̂Γi−1 satisfies
Invariants I.1–I.5 when i = 3. By induction we assume that, for some 3 < i < n − 1,
drawing ̂Γi−1 satisfies Invariants I.1–I.5 and in the following we prove that drawing
̂Γi satisfies Invariants I.1–I.5, as well.

Invariant I.1: By construction, each edge (u j , vi ) ( j = 1, 2, . . . , q) is drawn as a chain
of at most two segments that use real and dummy slopes. In particular, if
(u j , vi ) is real, then it uses real slopes, i.e., slopes in S. By the choice of
�, the bend point of (u j , vi ) has y-coordinate strictly greater than that of
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u j and smaller than or equal to that of vi . Since each (u j , vi ) is oriented
from u j to vi (as χ is an upward canonical ordering), the drawing is
upward. Concerning planarity, we first observe that ̂Γi−1 is planar and
it remains planar each time we apply Lemma 3. Also, by Lemma 4 each
edge (u j , vi ), for j = 1, 2, . . . , q, does not intersect ̂Γi−1 (except at
u j ). Further, the order of the bend points along � guarantees that the
edges incident to vi do not cross each other.

Invariant I.2: The invariant holds for ̂Pi−1. The only edges of ̂Pi that are not in ̂Pi−1
are (u1, vi ) and (uq , vi ). For both these edges the segment incident to
vi is horizontal by construction.

Invariant I.3: For each vertex of ̂Pi distinct from u1, uq and vi , Invariant I.3 holds
by induction. Invariant I.3 also holds for vi because mr (vi , i) ≤ Δ − 1
(as otherwise vi would be a source of G, which is not possible because
i > 1) and all the real top rays of vi , which areΔ−1, are outer. Consider
now vertex u1 (a symmetric argument applies to uq ). If (u1, vi ) is real,

then mr (u1, i) = mr (u1, i − 1) − 1; in this case t1 = �

ρ1(u1, i − 1) and
therefore all the othermr (u1, i −1)−1 outer real top rays of u1 in ̂Γi−1
remain outer in ̂Γi . If (u1, vi ) is dummy, thenmr (u1, i) = mr (u1, i−1);

in this case t1 = �

η1(u1, i − 1) and therefore all the mr (u1, i − 1) outer
real top rays of u1 in ̂Γi−1 remain outer in ̂Γi .

Invariant I.4: For each vertex of ̂Pi distinct from u1, uq and vi , Invariant I.4 holds by
induction. Invariant I.4 also holds for vi because md(vi , i) ≤ Δ∗ and
there are Δ∗ dummy top rays between

�

η1(vi , i) and
�

ρ1(vi , i) including
�

η1(vi , i) (all the top rays of vi are outer).Analogously, there areΔ∗ outer
dummy top rays between

�

η1(vi , i) and
�

ρ1(vi , i) including
�

η1(vi , i).
Consider now u1 (a symmetric argument applies to uq ). If (u1, vi ) is

real, then md(u1, i) = md(u1, i − 1); in this case t1 = �

ρ1(u1, i − 1)
and there are Δ∗ outer dummy top rays between

�

η1(u1, i) and
�

ρ1(u1, i)

including
�

η1(u1, i) (namely, all those between t1 = �

ρ1(u1, i − 1) and
�

ρ2(u1, i−1)). If (u1, vi ) is dummy, thenmd(u1, i) = md(u1, i−1)−1;

in this case t1 = �

η1(u1, i − 1) and therefore all the other md(u1, i −
1) − 1 outer dummy top rays of u1, which by induction were between
�

η1(u1, i − 1) and
�

ρ1(u1, i − 1), remain outer in ̂Γi .
Invariant I.5: Notice that the various applications of Lemma 3 to ̂Γi−1 preserve Invari-

ant I.5. Let p and p′ be any two intersection points between a horizontal
line � and the polyline representing ̂Pi in ̂Γi , with p to the left of p′
along �. If p and p′ belong to ̂Pi−1, Invariant I.5 holds by induction.
If both p and p′ belong to the path 〈u1, vi , uq〉, Invariant I.5 holds by
construction. If p belongs to ̂Pi−1 and p′ belongs to 〈u1, vi , uq〉, then
p belongs to the subpath of ̂Pi−1 that goes from vL to u1 because the
subpath from uq to vR is completely to the right of tq , hence Invariant I.5
holds also in this case. If p belongs to 〈u1, vi , uq〉 and p′ belongs to
̂Pi−1, the proof is symmetric. 	
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We now describe how to add the last vertex vn to the drawing ̂Γn−1 such that the
obtained drawing is a 1-bend upward planar drawing ̂Γn of ̂G−

n that uses only slopes
in S (recall that G is a subgraph of ̂G−

n ).

Lemma 6 Graph G admits a 1-bend upward planar drawing Γ using only slopes in
S.
Proof By Lemma 5, drawing ̂Γn−1 satisfies Invariants I.1–I.5. We explain how to add
the last vertex vn to obtain a drawing that satisfies Invariant I.1. Let u1, . . . , uq be the
predecessors of vn on ̂Pn−1. Notice that, in this case u1 = vL and uq = vR . Vertex vn
is added to the drawing similarly to all the other vertices added in the previous steps of
the algorithm. The only difference is that the number of real incoming edges incident
to vn in ̂Γn−1 can be up to Δ. If this is the case, since the real bottom rays are Δ − 1,
they are not enough to draw all the real edges incident to vn . Let h be the smallest
index such that (uh, vn) is a real edge. We ignore all the dummy edges (u j , vn), for
j = 1, 2, . . . , h−1, and apply the construction used in the previous steps considering
only uh, uh+1, . . . , uq as predecessors of vn (notice that such predecessors are at
least two because vn has at least two incident real edges). By ignoring these dummy
edges, the segment of the real edge (uh, vn) incident to vn will be drawn using the left
horizontal slope. Denote by ̂Γn the resulting drawing. As in the proof of Lemma 5, we
can prove that Invariant I.1 holds for ̂Γn and therefore ̂Γn is a 1-bend upward planar
drawing whose real edges use only slopes in S. The drawing Γ of G is obtained from
̂Γn by removing all its dummy edges and the two dummy vertices vL and vR . 	

The next lemma establishes an upper bound for the time complexity of our algo-

rithm. Similar ideas are used in [10], where a linear-time implementation of the
algorithm by de Fraysseix et al. [14] is presented. On the other hand, differently
from the result by de Fraysseix et al., the coordinates of the vertices of Γ may not be
whole numbers and may be superpolynomial. To cope with the potential need for real
numbers we adopt the real RAM model of computation, which is a standard model
frequently used in computational geometry. To properly account for the cost of opera-
tions on large numbers we express the time complexity of our algorithm as a function
of n and of the maximum number of bits bΓ required to store the coordinates of a
vertex2.

Lemma 7 Drawing Γ can be computed in O(n bΓ ) time.

Proof We first show that a straightforward implementation of our algorithm requires
O(n2) operations and hence O(n2 bΓ ) time complexity. Indeed, a bitonic st-ordering
σ of G can be computed in O(n) time in both the fixed [27] and the variable [7]
embedding setting. The same time complexity suffices to compute a canonical aug-
mentation G ′ of G by Lemma 1. A triangulated planar st-graph ̂G can be obtained
in O(n) time by augmenting G ′ as follows. For every non-triangular face f of G ′,
let t f be the (unique) sink in f . For each vertex u of face f different from t f we
add the edge (u, t f ) inside f , unless this edge already belongs to the boundary of f .

2 It isworth observing the sameconsideration applies to thedrawing algorithm in [1],whose timecomplexity
is in fact O(n bΓ ) rather than O(n) (as incorrectly stated in [1]).
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Clearly, the newly-added edges do not violate planarity and each face of the resulting
digraph is triangular. By construction, for any edge (u, v) added to triangulate G ′
there exists a directed path from u to v in G ′. Thus edge (u, v) does not create any
directed cycle and ̂G has a single source (namely, vertex vL ) and a single sink (namely,
vertex vn) that are the same as in G ′. Therefore, the triangulated digraph ̂G is a planar
st-graph. The construction of ̂Γi from ̂Γi−1, for i = 3, 4, . . . , n, requires O(deg(vi ))
applications of Lemma 3, where deg(vi ) is the degree of vi in ̂G−

i . Since a straight-
forward implementation of the technique of Lemma 3 takes O(n bΓ ) time, and since
∑n

i=3 O(deg(vi )) = O(n), the overall time complexity would be O(n2 bΓ ).
To reduce the number of operations to linear, the algorithm can be implemented

to work in two phases. In the first phase, the exact coordinates of the vertices are not
computed, but we only store information on the edges to reconstruct these coordinates
in the second phase. More precisely, in the first phase, we consider each vertex vi
according to χ and assign to each edge e = (u, v) that is in ̂G−

i but not in ̂G−
i−1 two

pairs of numbers (s(e, u), l(e, u)) and (s(e, v), l(e, v)). For each i = 2, 3, . . . , n, we
aim at guaranteeing the following properties once vertex vi has been considered:

P.1: s(e, u) (resp. s(e, v)) represents the slope of the segment of e incident to u
(resp. v) in ̂Γi .

P.2: l(e, u) (resp. l(e, v)) represents the length of the segment of e incident to u
(resp. v) in ̂Γi if at least one of the following two conditions apply: (a) e is on
the boundary of ̂Pi , or (b) s(e, u) �= 0 (resp. s(e, v) �= 0), i.e., the segment does
not use the horizontal slope.

For each edge e = (u, v) in ̂Γ2, we set s(e, u) = s(e, v) = 0 and l(e, u) = l(e, v) =
1. It is immediate to verify that Properties P.1 and P.2 hold. Assume, by induction,
that Properties P.1 and P.2 hold once vertex vi−1 has been considered and let vi be the
next vertex, for some i > 2. Let u1, u2, . . . , uq be the neighbors of vi along ̂Pi−1.
Consider any edge e j = (u j , vi ), for j = 1, . . . , q. We choose the slopes for the two
segments of e j as explained above and set s(e j , u j ) and s(e j , vi ) accordingly (the
choice of the slopes can be done in O(1) time). In order to compute l(e j , u j ) and
l(e j , vi ), it is sufficient to compute the positions of u1, u2, . . . , uq relative to u1. This
can be done in O(deg(vi ) bΓ ) time, because, by Properties P.1 and P.2, we know both
the slope and the length of each edge segment along ̂Pi−1 from u1 to uq . We can then
calculate, again in O(deg(vi ) bΓ ) time, the (relative coordinates of) the intersection
points p1, p2, . . . , pq . Afterwards, wemay need to (repeatedly) apply Lemma 3. Note
that the application of this lemma does not modify the slope of any edge segment, and
thus it preserves Property P.1 for all the edges of ̂Γi−1. Instead, it changes the length
of some horizontal segments. However, all the involved horizontal segments do not
belong to ̂Pi . Finally, in order to set l(e j , u j ) and l(e j , vi ), it suffices to know the
values of λ used in all the applications of Lemma 3, which can be computed by only
looking at the intersection points p1, p2, . . . , pq . It follows that Properties P.1 and P.2
hold.

Once vn has been considered, we have information on all the edges of ̂Γn = ̂Γ . In
particular, by Properties P.1 and P.2, we know the slope and the length in ̂Γ of all the
edges that do not contain any horizontal segment. These edges form a tree3 rooted at

3 In fact, this tree is one of the three trees obtained by a Schnyder decomposition [42].
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(a) (b)

Fig. 9 a A graph that requires Δ slopes and angular resolution at most π
Δ

in every 1-bend upward planar
drawing. b Illustration for the proof of Theorem 2

vn spanning the graph obtained by removing vL and vR from ̂G. To see this, observe
that, for j = 1, 2, . . . , n − 1, each vertex v j has been connected exactly once to a
vertex vz , with j < z, with an edge that does not contain any horizontal segment,
as otherwise v j would belong to the outer face of ̂Γ . Hence, vz is the (only) parent
of v j in the spanning tree. Furthermore, vertex vn is incident to at least one of these
edges since it has degree at least three and exactly two of its edges contain a horizontal
segment. Therefore, an assignment of valid coordinates to the vertices of G can be
obtained through a pre-order visit of this spanning tree (recall that for all the edges of
the spanning tree we know the slope and length of its two segments). Finally, all edges
that contain a horizontal segment (including those that are incident to vL and vR) can
be drawn as we know the slopes of both segments and the y-coordinate of the bend
point. 	


Lemmas 6 and 7 are summarized by Theorem 1.

Theorem 1 Let S be any set of Δ ≥ 2 slopes including the horizontal slope and let G
be an n-vertex bitonic planar st-graph with maximum vertex degree Δ. Graph G has
a 1-bend upward planar drawing Γ using only slopes in S, which can be computed
in O(n bΓ ) time.

Implications and Extensions We now discuss some consequences of Theorem 1. We
start with Corollary 1, which follows from Theorem 1 and from a result in [19].

Corollary 1 Every bitonic st-graph with maximum vertex degree Δ ≥ 2 has 1-bend
upward planar slope number at most Δ, which is worst-case optimal.

Proof Every bitonic st-graph has 1-bend upward planar slope number at most Δ by
Theorem 1. Also, for every Δ ≥ 2 there is a bitonic st-graph (shown in Fig. 9a) that
requires at least Δ slopes in any 1-bend upward planar drawing [19]. 	


If S is equispaced, Theorem 1 implies a lower bound of π
Δ
on the angular resolution

of the computed drawing, which is worst-case optimal [19]. Furthermore, we observe
that an upward drawing constructed by the algorithm of Theorem 1 can be transformed
into a strictly upward drawing that uses Δ + 1 slopes rather than Δ. It suffices to
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replace every horizontal segment oriented from its leftmost (rightmost) endpoint to its
rightmost (leftmost) one with a segment having slope ε (−ε), for a sufficiently small
value of ε > 0. Thus, the next corollary follows.

Corollary 2 Every bitonic st-graph with maximum vertex degree Δ ≥ 2 has 1-bend
strictly upward planar slope number at most Δ + 1.

Finally, Theorem 1 can be extended to planar st-graphs with Δ ≤ 3, as any such
digraph can be made bitonic by only rerouting the edge (s, t).

Theorem 2 Every planar st-graph with maximum vertex degree 3 has 1-bend upward
planar slope number at most 3.

Proof Let G be a planar st-graph with maximum vertex degree 3. By Theorem 1, if
G has a bitonic st-ordering, then the statement follows. If G is not bitonic, it contains
a forbidden configuration (see Sect. 2). Recall that a forbidden configuration consists
of at least three outgoing edges incident to the same vertex. Since the only vertex of G
with three outgoing edges is the source vertex s ofG, it follows thatG contains exactly
one forbidden configuration, which involves s and the edge (s, t). We can remove this
forbidden configuration by mirroring the embedding of the subgraph obtained by
removing (s, t) from G (see Fig. 9b for an illustration). 	


4 2-Bend Upward Planar Drawings

We now extend the result of Theorem 1 to non-bitonic planar st-graphs. Let G be an
n-vertex non-bitonic planar st-graph. It is known that all forbidden configurations of
G can be eliminated in linear time by subdividing at most n − 3 edges of G [27]. Let
Gb be the resulting bitonic st-graph, called a bitonic subdivision of G. Let 〈u, d, v〉
be a directed path of Gb obtained by subdividing the edge (u, v) of G with the dummy
vertex d. We call (u, d) the lower stub, and (d, v) the upper stub of (u, v). We prove
the existence of an augmentation technique similar to that of Lemma 1, but with an
additional property on the upper stubs. Note that a direct application of the algorithm
of Theorem 1 to the graph in output from the next lemma would lead to a 3-bend
drawing of G (by interpreting subdivision vertices as bends). Hence, the challenge
will be to derive a drawing with at most 2 bends per edge (and 4n − 9 bends in total).

Lemma 8 Let G = (V , E) be an n-vertex planar st-graph that is not bitonic. Let
Gb = (Vb, Eb) be an N-vertex bitonic subdivision of G, with a bitonic st-ordering
σ = (v1, v2, . . . , vN ). It is possible to compute in O(n) time a planar st-graph
G ′ = (V ′, E ′) where V ′ = Vb ∪ {vL , vR}, E ′ is a superset of Eb that includes edge
(vL , vR), and there exists an st-ordering χ = (vL , vR, v1, v2, . . . , vN ) of G ′ such
that:

(i) vertices vL and vR are on the boundary of the outer face of G ′, and
(ii) every vertex of Gb with less than two predecessors in σ has exactly two prede-

cessors in χ , and
(iii) every vertex of G ′ is such that neither its leftmost nor its rightmost incoming

edge is an upper stub.
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(a) (b)

Fig. 10 Addition of dummy edges to guarantee Properties (ii) and (iii) of Lemma 8. Illustration of the cases
in which a vi has a single predecessor, and b vi has a leftmost incoming edge that is an upper stub (the
squared vertex is a dummy vertex)

Proof We constructG ′ together with its embedding by adding a vertex per step accord-
ing to χ . We start with the 3-cycle whose edges are (vL , vR), (vL , v1), and (vR, v1)

embedded so that, starting from the outer face, the edge (vL , vR) is the first edge in the
clockwise circular order of the edges around vR . Let G ′

i be the plane digraph induced
by vL , vR, v1, . . . , vi . The neighbors of vi that are in G ′

i−1 all belong to the boundary
of the outer face (because σ is an st-ordering of Gb). Thus vi can be planarly con-
nected to its neighbors in G ′

i−1. In order to guarantee Properties (i) and (ii) we may
add dummy edges connecting vi to some vertex of the outer face of G ′

i−1 that is not
adjacent to vi in Gb.

Suppose first that vi has only one predecessor u in χ . We claim that all the edges
connecting u to vertices that are after vi in χ appear consecutively either in clockwise
or in counterclockwise order around u starting from (u, vi ) in the embedding of Gb.
If this were not the case, then there would exist two vertices v j and vh , with i < j
and i < h, such that v j precedes vi and vh follows vi in the circular order around u.
But this would imply that the vertices v j , vi and vk form a forbidden configuration
for Gb, which would contradict the fact that Gb is bitonic. If all these edges appear
after vi in clockwise (resp. counterclockwise) order, then we can add the edge (vi , w),
where w is the vertex preceding (resp. following) u when walking clockwise along
the boundary of G ′

i−1; see Fig. 10a for an illustration.
Suppose now that vi has more than one predecessor in χ , but its leftmost (resp.

rightmost) incoming edge (u, vi ) is an upper stub. This means that u is a dummy vertex
and therefore it has no successor in σ ′ other than vi . Then we can add the edge (vi , w),
where w is the vertex preceding (resp. following) u when walking clockwise along
the boundary of G ′

i−1; see Fig. 10b for an illustration. Since G
′ has O(n) vertices and

edges, the above procedure can be implemented to run in O(n) time as claimed, which
completes the proof of this lemma. 	


We are now ready to prove the main theorem of this section.

Theorem 3 Let S be any set of Δ ≥ 2 slopes including the horizontal slope and let
G be an n-vertex planar st-graph with maximum vertex degree Δ. Graph G has a
2-bend upward planar drawing Γ using only slopes in S, which has at most 4n − 9
bends in total and which can be computed in O(n bΓ ) time.

Proof We compute a triangulated canonical augmentation ̂G of G by applying
Lemma 8 and by triangulating the resulting digraph. By Lemma 2, graph ̂G has
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Fig. 11 Illustration for the proof of Theorem 3: Vertices u2 and u3 correspond to dummy vertices; thus,
the edges (u2, vi ) and (u3, vi ) are drawn bendless

an upward canonical ordering χ . As already mentioned, a direct application of the
algorithm of Theorem 1 to ̂G would lead to a 3-bend drawing of G (by interpreting
subdivision vertices as bends). We explain how to modify it in order to construct a
drawing ̂Γ of ̂G with at most 2 bends per edge and 4n − 9 bends in total.

Let vi the next vertex to be added according toχ and let u1, u2, . . . , uq its neighbors
in ̂Pi−1. Suppose that u j is a dummy vertex and that (u j , vi ) is an upper stub. To
save one bend along the edge subdivided by u j , we draw (u j , vi ) without bends.
By Property (iii) of Lemma 8, we have that 1 < j < q. The ray t j used to draw the
segment of (u j , vi ) incident to u j can be any outer real top ray; we choose the ray with
same slope as the real bottom ray b j used to draw the segment of (u j , vi ) incident to
vi ; see Fig. 11. This is possible because all real top rays of u j are outer (since (u j , vi )

is the only real outgoing edge of u j ). Hence, edge (u j , vi ) has no bends.
The drawingΓ ofG is obtained from ̂Γ by removing dummyedges and by replacing

dummy vertices (except vL and vR , which are removed) with bends. Since the upper
stubs of subdivided edges have zero bends, each edge of Γ has at most 2 bends. Since,
in the worst case, each edge in Γ can have at least one bend, the total number of bends
is upper bounded by the total number of edges of G (which is at most 3n − 6) plus
the corresponding number of edges with exactly two bends (which is at most n − 3).
Hence, in total Γ has at most 4n − 9 bends, as desired.

To complete the proof, we remark that, by Lemma 8, graph ̂G can be computed in
O(n) time and the modified drawing algorithm still runs in time (n bΓ ). Hence, the
proof of the theorem follows. 	


A planar st-graph with a source or a sink of degree Δ requires at least Δ−1 slopes
in any upward planar drawing; thus the gap with Theorem 3 is one unit. Similarly to
Theorem 1, Theorem 3 implies a lower bound of π

Δ
on the angular resolution of Γ ; an

upper bound of π
Δ−1 can be proven with the same digraph used for the lower bound

on the slope number.
The next theorem extends the result of Theorem 3 to every upward planar graph

using one additional slope.

Theorem 4 Let S be any set of Δ + 1 slopes including the horizontal slope and let
G be an upward planar graph with maximum vertex degree Δ ≥ 2. Graph G has a
2-bend upward planar drawing using only slopes in S.
Proof Since G is upward planar, it is possible to augment G with dummy edges to a
planar st-graph Gst ; see, e.g., [16]. Let Δst be the maximum vertex degree of Gst .
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If we apply the algorithm of Theorem 3 to Gst , we obtain a 2-bend upward planar
drawing using any set of Δst slopes including the horizontal one. However, it is not
immediate to augment G so that Δst ≤ Δ + 1. On the other hand, the algorithm can
be applied so to draw the dummy edges of Gst using dummy slopes. In this case we
should take into account the fact that a vertex v that is a source (resp. a sink) in G and
not in Gst may have Δ outgoing (resp. incoming) real edges. To cope with this issue
it suffices to use any set of Δ + 1 real slopes that includes the horizontal one. 	


Similarly to Corollary 2, we can observe that any non-strictly upward drawing
obtained by applying either Theorem 3 or Theorem 4 can be made strict by replacing
the horizontal segments with nearly horizontal ones of the same slope. Hence, we
conclude with the following corollary.

Corollary 3 The 2-bend strictly upward planar slope number of an upward planar
graph G with maximum vertex degree Δ ≥ 2 is at most Δ + 1 if G is a planar
st-graph, and it is at most Δ + 2 otherwise.

5 Conclusions and Open Problems

In this paper we extended the study of universal sets of slopes to upward planar
drawings, and presented the first constructive technique that works for all planar st-
graphs. One of the main ingredients of our algorithms was the recently introduced
bitonic st-ordering. Using this new approach, we proved that any set S of Δ slopes
containing the horizontal is universal for 1-bend upward planar drawings of planar
st-graphs admitting such an ordering. This result implies a tight bound for the 1-bend
upward planar slope number of bitonic st-graphs and gives rise to drawings with
worst-case optimal angular resolution. We then extended the technique to prove that
any such S is universal for 2-bend upward planar drawings of planar st-graphs.

Our research gives rise to interesting questions, among them:

– Our technique exploits the existence of a bitonic st-ordering in order to augment
the input graph to an st-planar triangulation that admits an upward canonical
ordering. The upward canonical ordering is then utilized to compute the 1-bend
upward planar drawing. A natural question is hence whether the existence of a
bitonic st-ordering is a necessary condition to obtain an upward canonical ordering
or it is only a sufficient condition.

– More in general, the most intriguing question is whether every planar st-graph can
be drawn with at most one bend per edge (or with at most two bends per edge and
less than 4n − 9 bends in total) and Δ slopes.

– Moreover, it remains open whether the 2-bend upward planar slope number of
planar st-graphs is Δ or Δ − 1.

– Our drawing technique produces drawings with large area, possibly super-
polynomial; it would be interesting to derive lower bounds for the area requirement
of 1-bend upward planar drawings with few slopes and good angular resolution.

– Finally, the study of the 0-bend upward planar slope number of upward planar
digraphs is also a challenging research direction.
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