
Algorithmica (2022) 84:2414–2461
https://doi.org/10.1007/s00453-022-00967-3

Space-Efficient Vertex Separators for Treewidth

Frank Kammer1 · Johannes Meintrup1 · Andrej Sajenko1

Received: 1 October 2020 / Accepted: 3 April 2022 / Published online: 29 April 2022
© The Author(s) 2022

Abstract
For n-vertex graphs with treewidth k = O(n1/2−ε) and an arbitrary ε > 0, we present
a word-RAM algorithm to compute vertex separators using only O(n) bits of work-
ing memory. As an application of our algorithm, we give an O(1)-approximation
algorithm for tree decomposition. Our algorithm computes a tree decomposition in
ckn(log log n) log∗ n time using O(n) bits for some constant c > 0. Together with the
result of Banerjee et al. (Proceedings of 21st international conference on computing
and combinatorics (COCOON 2015). LNCS, vol 9198, Springer, pp 349–360, 2015.
https://doi.org/10.1007/978-3-319-21398-9_28) we are able to compute a solution
for all monadic-second-order problems (MSO) with O(n+τ(k) · p(logp n) log n) bits
in O(τ (k) · n2+(2/ log p)) time where k is the treewidth of the given graph, p is some
arbitrary parameter with 2 ≤ p ≤ n and τ is some function depending on the MSO
formula. We finally use the tree decomposition obtained by our algorithm to solve
Vertex Cover, Independent Set, Dominating Set,MaxCut and q-Coloring
by using polynomial time and O(n) bits as long as the treewidth of the graph is smaller
than c′ log n for some problem dependent constant 0 < c′ < 1.

Keywords FPT · Tree decomposition · Network flow · Subgraph stack

Johannes Meintrup and Andrej Sajenko: Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 379157101.

B Andrej Sajenko
Andrej.Sajenko@mni.thm.de

Frank Kammer
Frank.Kammer@mni.thm.de

Johannes Meintrup
Johannes.Meintrup@mni.thm.de

1 THM, University of Applied Sciences Mittelhessen, Giessen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00967-3&domain=pdf
http://orcid.org/0000-0001-5946-8087
https://doi.org/10.1007/978-3-319-21398-9_28

Algorithmica (2022) 84:2414–2461 2415

1 Introduction

For solving problems in the context of the ever-growing field of big data we require
algorithms and data structures that do not only focus on runtime efficiency, but consider
space as an expensive and valuable resource. Some reasons for saving memory are
that slower memory in the memory hierarchy has to be used, less cache faults arise
and the available memory allows us to run more parallel tasks on a given problem.

As a solution researchers began to provide space-efficient algorithms and data struc-
tures to solve basic problems like graph-connectivity problems [3, 5, 14, 20, 24], other
graph problems [27, 32], memory initialization [26, 33], dictionaries with constant-
time operations [12, 15, 23] or graph interfaces [6, 27] space efficiently, i.e., they
designed practical algorithms and data-structures that run (almost) as fast as standard
solutions for the problem under consideration while using asymptotically less space.
Several space-efficient algorithms and data structures mentioned above are imple-
mented in an open source GitHub project [31].

Our model of computation is the word RAM where we assume to have the stan-
dard operations to read, write as well as arithmetic operations (addition, subtraction,
multiplication and bit shift) take constant time on a word of size Θ(log n) bits where
n ∈ IN is the size of the input. To measure the total amount of memory that an algo-
rithm requires we distinguish between the input memory, i.e., the read-only memory
that stores the input, and the working memory, i.e., the read-write memory an algo-
rithm additionally occupies during the computation. In contrast, the streaming model
[35] allows us to access the input only in a purely sequential fashion, and the main
goal is to minimize the number of passes over the input. There are several algorithms
for NP-hard problems on a streaming model, e.g., a kernelization algorithm due to
Fafianie and Kratsch [21]. Elberfeld et al. [19] proved that the problem of obtaining a
so-called tree decomposition is contained in LSPACE.

We continue the previous research of Banerjee et al. [4] on space-efficient algo-
rithms on the word RAM for NP-hard problems. However, they assumed that a tree
decomposition is already given with the input. With our space efficient construction
of said tree decomposition we improve upon their result, as it is no longer required to
have a tree decomposition as the input. More on this in Sect. 8.

One approach to solve NP-hard graph problems is to decompose the given graph
into a tree decomposition (T , B) consisting of a tree T where each node w of the tree
has a bag B(w) containing a small fraction of the original vertices of the graph. The
quality of a tree decomposition is measured by its width, i.e., the number of vertices
of the largest bag minus 1. The treewidth of a graph is the smallest width over all tree
decompositions for the graph. Having a tree decomposition (T , B) of a graph, the
problem is solved by first determining the solution size of the problem in a bottom-up
traversal on T and second in a top-down process computing a solution for the whole
graph. Treewidth is also a topic in current interdisciplinary research, such as smart
contracts using cryptocurrency [13] or computational quantum physics [18], which
are fields that often work with big data sets. So it is important to have space efficient
algorithms.

Several algorithms are known for computing a tree decomposition. For the follow-
ing, we assume that the given graphs have n vertices and treewidth k. Based on ideas

123

2416 Algorithmica (2022) 84:2414–2461

in [39], Reed [37] showed an algorithm for computing a tree decomposition of width
O(k) in time O(ckn log n) for some constant c. The idea is to find a separator S of the
given input graphG = (V , E) such that each of the connected components ofG[V \S]
contains a constant fraction of the vertices of V , roughly speaking. This is repeated
recursively for each of the connected components of G[V \ S]. Algorithm 1 gives a
pseudo-code description of general separator based tree decomposition algorithms. A
detailed description of Reed’s algorithm can be found in Sect. 4.

Algorithm 1: Separator based tree decomposition algorithm
Input: G = (V , E), X = ∅
Result: Outputs a tree decomposition (T , B) of G

1 S ← findASeparator(G);
2 B ← S ∪ (X ∩ V);
3 Initialize a tree T with a single root vertex r ;
4 Initialize a bag B(r) = B;
5 foreach Connected component C of G[V \ S] do
6 G′ ← G[C ∪ S];
7 X ′ ← (X ∩ C) ∪ S;
8 Recurse for G′ and X ′ to obtain a tree decomposition (T ′, B′) for G′;
9 Connect the root r ′ of T ′ to the root r of T ;

10 Set B(w) = B′(w) for all nodes w of T ′;
11 end
12 Output (T , B) as the tree decomposition of G;

A similar result to ours is due to Izumi and Otachi ([28], Theorem 2). They showed
that for a given graph G with treewidth k ≤ √

n there exists an algorithm that obtains
a tree decomposition of width O(k

√
n log n) in polynomial time and O(k

√
n log2 n)

bits. A refined analysis shows a runtime of Ω(n2). In comparison, our algorithm uses
O(n) bits for graphs of treewidth O(n1/2−ε) for an arbitrary ε > 0 and obtains a tree
decomposition ofwidth O(k)with a runtime that is quasi-linear in n and exponential in
k. Depending on the use-case our result can be viewed as an improvement, in particular
in cases where O(n) bits are available and a constant approximation is needed. In the
case of low treewidth and an availability of only o(n) bits our algirithm is not an
option.

Further tree-decomposition algorithms can be found in [2, 8, 9, 22, 34]. The basic
strategy of repeated separator searches is the foundation of all of these treewidth
approximation algorithms, as mentioned by Bodlaender et al. [11]. Using the same
strategy, Bodlaender et al. also presented an algorithm that runs in 2O(k)n time and
finds a tree decomposition having width 5k + 4.

To obtain a space-efficient approximation algorithm for treewidthwemodifyReed’s
algorithm. We finally use a hybrid approach, which combines our new algorithm and
Bodlaender et al.’s algorithm [11] to find a tree decomposition in bkn(log∗ n) log log n
time for some constant b. The general idea for the hybrid approach is to use our space-
efficient algorithm for treewidth only for constructing the nodes of height at most
bk log log n. For the subgraph induces by the bags of the vertices below a node of

123

Algorithmica (2022) 84:2414–2461 2417

height bk log log n, we use Bodlaender et al.’s algorithm. The most computationally
difficult task of this paper is the computation of the separators with O(n) bits.

Finding separators requires finding vertex-disjoint paths for which a DFS as a
subroutine is usually used. The idea for finding a separator for a graph G = (V , E) is
to use standard network flow techniques to construct all vertex-disjoint paths starting
from some source vertex s and ending at some sink vertex t . We then get a separator
by taking a single vertex from each of these vertex-disjoint paths such that s and t are
in different connected components of G[V \ S]. This description omits some details
specifically for constructing balanced separators as needed by Reed’s algorithm, but
the general idea is the same. More details can be found in Sects. 3 and 4.

All recent space-efficient DFS require Ω(n) bits [3, 14, 20, 24] or Ω(n2) time due
to Ω(n) separator searches [28]. Thus, our challenge is to compute a separator and
subsequently a tree decomposition with O(n) bits with a running time almost linear
in n.

To compute a separator of size at most k with O(n log k) bits, the idea is to store up
to k vertex disjoint paths by assigning a color c ∈ {0, . . . , k} to each vertex v such that
we know to which path v belongs. We also number the vertices along a path P with
1, 2, 3, 1, 2, 3, etc. as a way to encode the direction of the path. To give an intuition, if
we output a path P stored by our scheme that starts at a vertex v (numbered by 1) we
next output the vertex u that is part of P and adjacent to v and numbered 2. From there
we continue the same way with the vertex w adjacent to u numbered 3 and from there
to the vertex x numbered 1 and so on. By using the numbering, we can reconstruct a
subpath P ′ of P and its direction starting from an arbitrary vertex v of P: the subpath
continues exactly at the neighbor u of v numbered higher than v, or numbered 1 if
v is numbered 3. Since we want to find separators with only O(n) bits, we further
show that it suffices to store the color information only at every Θ(log k)th vertex.
We so manage to find separators of size at most k with O(n + k2(log k) log n) bits. If
k = O(n1/2−ε) for an arbitrary ε > 0, we thus use O(n) bits.

Our solution to find a separator is in particular interesting because previous space-
efficient graph-traversal algorithms either reduce the space from O(n log n) bits to
O(n), e.g., depth first search (DFS) or breath first search (BFS) [14, 20, 24], or reduce
the space from O(m log n) to O(m), e.g., Euler partition [27] and cut-vertices [29].
In contrast, we reduce the space for the separator search from O((n + m) log n) bits
to O(n) bits for small treewidth k.

Besides the separator search, many algorithms for treewidth store large subgraphs
of the n-vertex, m-edge input graph during recursive calls, i.e., they require Ω((n +
m) log n) bits. We modify and extend the algorithm presented by Reed with space-
efficiency techniques (e.g., store recursive graph instances with the so-called subgraph
stack [27]) to present an iterator that allowsus to output the bags of a tree decomposition
of width O(k) in an Euler-traversal order using O(kn) bits in ckn log n log∗ n time for
some constant c. To lower the space bound further, we use the subgraph stack only
to store the vertices of the recursive graph instances. For the edges we present a new
problem specific solution.

In Sect. 2, we summarize known data structures and algorithms that we use after-
wards. Our main result, the computation of k-vertex disjoint paths is shown in Sect. 3.
We sketch Reed’s algorithm in Sect. 4, where we also show a space-efficient computa-

123

2418 Algorithmica (2022) 84:2414–2461

Table 1 The space requirements in bits to run the different parts of the algorithm to compute a tree decom-
position (t.d.) with applications for an n-vertex graph with sufficiently small treewidth k

Standard Intermediate goal Final goal

k vertex-disjoint paths Ω(kn log n) Θ(n) (Sect. 3)

Balanced vertex separator Ω(kn log n) Θ(n) (Sect. 4)

Subgraph stack Ω(kn log n) Θ(kn) (Sect. 5) Θ(n) (Sect. 6)

Iterator for a t.d. Ω(kn log n) Θ(kn) (Sect. 5) Θ(n) (Sect. 7)

NP-hard problems above Ω(kn log n) Θ(n) (Sect. 8)

tion of a balanced vertex separator using O(n) bits. In Sect. 5we present an iterator that
outputs the bags of a tree decomposition using O(kn) bits. Following that, in Sect. 6,
we show intermediate results necessary to further lower the space bound. In Sect. 7
we combine the results of all previous sections with the approximation algorithm of
Bodlaender et al. [11] to obtain an iterator using O(n) bits for graphs with treewidth
O(n1/2−ε). We conclude the paper by showing in Sect. 8 that our tree decomposi-
tion iterator can be used together with the framework of Banerjee et al. [5] to solve
arbitrary MSO problems. For NP-hard problems like Vertex Cover, Independent
Set, Dominating Set, MaxCut and q-Coloring we provide an alternative faster
framework that uses O(n) bits on graphs with small treewidth. The Table 1 below
summarizes the space bound of the algorithms described in this paper.

2 Preliminaries

Let G = (V , E) be an undirected n-vertex m-edge graph. If it is helpful, we consider
an edge {u, v} as two directed edges (called arcs) (u, v) and (v, u). As usual for graph
algorithms we define V = {1, . . . , n}. The degree of a vertex v ∈ V is accessed via the
degG function. Sometimes we operate in directed graphs, in which case we access the
in- and out-degree of v ∈ V through functions degin

G,degout
G : V → IN that returns

the number of incoming and outgoing edges of a vertex v, respectively. Moreover,
in this case degG = degin

G + degoutG . We denote by N (v) ⊂ V the neighborhood
of v. For A = {(v, k) ∈ V × IN | 1 ≤ k ≤ degG(v)}, let headG : A → V be a
function such that headG(v, k) returns the kth neighbor of v. Intuitively speaking,
each vertex has an adjacency array. In the following let V ′ ⊂ V be a set of vertices of
a graph G = (V , E). A path P of a graph G = (V , E) is an ordering of V ′ such that
subsequent vertices in the ordering are connected by an edge. An s-t path P is a path
where the first vertex in the ordering is s and the last vertex is t for some s, t ∈ V ′. We
say the s-t path P connects s and t and we call s the start vertex of P and t the end
vertex of P . We call the vertices of P \ {s, t} the internal vertices of P . Given two
vertices u, v part of some path P we call v the successor of u exactly if v is ordered
directly after u in P . In this case u is called the predecessor of v. In the case that v

is ordered somewhere after u in P we say v is behind u on P and u is before v on
P . Given a path P in a graph G = (V , E), we call an edge {u, v} a chord exactly if
u, v ∈ P , u
= v and v is not a successor or predecessor of u. We call P chordless if

123

Algorithmica (2022) 84:2414–2461 2419

no such edge exists. Given a path P = (u1, u2, . . . , u�) and some integers i, j such
that 1 ≤ i ≤ j ≤ � we call P ′ = (ui , . . . , u j) a subpath of P .

If space is not a concern, it is customary to store each graph that results from
a transformation separately. To save space, we always use the given graph G and
store only some auxiliary information that helps us to implement the following graph
interface for a transformed graph.

Definition 1 (Graph interface) A data structure for a graph G = (V , E) implements
the graph interface (with adjacency arrays) exactly if it provides the functions degG :
V → IN , headG : A → V , where A = {(v, k) ∈ (V × IN) | 1 ≤ k ≤ degG(v)}, and
gives access to the number n of vertices and the number m of edges. If G is directed,
deginG and degoutG are also supported.

Let G = (V , E) be a graph and let V ′ ⊆ V . During our computation, some of
our graph interfaces can support headG(v, k) and degG(v) only for vertices v /∈ V ′.
For vertices in V ′, we can access their neighbors via adjacency lists, i.e., we can
use the functions adjfirst : V ′ → P ∪ {null}, adjhead : P → V and
adjnext : P → P∪{null} for a set of pointers P to output the neighbors of a vertex
v as follows: p := adjfirst(v); while (p
= null) { print adjhead(p);
p := adjnext(p); }. We then say that we have a graph interface with |V ′| access-
restricted vertices.

In an undirected graph it is common to store an edge at both endpoints, hence, every
undirected edge {u, v} is stored as an arc (directed edge) (u, v) at the endpoint u and
as an arc (v, u) at the endpoint v. We also use the two space-efficient data structures
below.

Definition 2 (Subgraph stack [27, Theorem 4.7]) The subgraph stack is a data struc-
ture initialized for an n-vertex m-edge undirected graph G0 = (V , E) that manages
a finite list (G0, . . . ,G�), called the client list, of ordered graphs such that Gi is a
proper subgraph of Gi−1 for 0 < i ≤ �. Each graph in the client list implements
the graph interface supporting the access operations (headG and degG) in O(log∗ n)

time. Additionally, it provides the following operations:

• push(BV , BA): Appends a new graph G�+1 = (V�+1, E�+1) to the client list.
BV and BA are bit vectors that represent the vertices and arcs contained in the
subgraph G�+1 respectively, with |BV | = |V�| and |BA| = 2|E�| (each edge is
represented by two arcs). In each of the bit vectors a bit at index i is set to 1 exactly
if the respective vertex or arc is contained in G�+1. The push-operation runs in
O((|BV | + |BA|) log∗ n) time and uses O(|BV | + |BA|) bits.

• pop: Removes G� from the client list in constant time.
• toptune: Subsequent accesses to the interface of G� can run in O(1) time. Runs
in O((|V�| + |E�|) log∗ n) time and uses O(n + m) bits additional space.

For the special case where we have a constant ε with 0 < ε < 1 such that
|Vi+1| < ε|Vi | and |Ei+1| < ε|Ei | for all 0 ≤ i < �, the entire subgraph stack
uses

∑∞
i=0((ε1)

i n + (ε2)
im) = O(n + m) bits of space. We will use the subgraph

stack only in this special case with ε = 2/3.
Using rank-select data structures with fast word RAM operations [7] one can easily

support the following data structure.

123

2420 Algorithmica (2022) 84:2414–2461

Definition 3 (Static space allocation) For n ∈ IN , let V = {1, . . . , n} be the universe
and K ⊂ V a fixed set of keys with |K | = O(n/ log b) for some b ≤ n. Assume
that the keys are stored within an array of n bits so that a word RAM can read K in
O(n/ log n) time. Then there is a data structure using O(n) bits that allows us to read
and write O(log b) bits in constant time for each k ∈ K and the initialization of the
data structure can be done in O(n/ log n) time.

We now formally define a tree decomposition.

Definition 4 (Tree decomposition [38], bag) A tree decomposition of a graph G =
(V , E) is a pair (T , B) where T = (W , F) is a tree and B is a mapping W →
{V ′ | V ′ ⊆ V } such that the following properties hold: (TD1)

⋃
w∈W G[B(w)] = G,

and (TD2) for each vertex v ∈ V , the nodes w with v ∈ B(w) induce a subtree in T .
For each node w ∈ W , B(w) is called the bag of w.

Recall from the introduction that the width of a tree decomposition is defined as
the number of vertices in a largest bag minus 1 and the treewidth of a graph G as
the minimum width among all possible tree decompositions for G. We subsequently
also use the well-known fact that an n-vertex graph G with treewidth k has O(kn)

edges [38]. Another well known property of treewidth is the following. Given an n-
vertex graph G with treewidth k any minor H = (V ′, E ′) of G has treewidth k′ ≤ k.
This also implies that |E ′| = O(k|V ′|).

Our algorithms use space-efficient BFS and DFS.

Theorem 1 (BFS [20]) Given an n-vertex m-edge graph G, there is a BFS on G that
runs in O(n + m) time and uses O(n) bits.

Theorem 2 (DFS [24]) Given an n-vertex m-edge graph G, there is a DFS on G that
runs in O(m + n log∗ n) time and uses O(n) bits.

The DFS of Theorem 2 assumes that we provide a graph interface with adjacency
arrays. Later we run a DFS on an n-vertex graph G with treewidth k, but can only
provide a graph interface with O(k) access-restricted vertices, i.e., O(k) vertices are
provided by a list interface.

Lemma 1 Assume that a graph interface for an n-vertex, m-edge graph G with O(k)
access-restricted vertices for some k ∈ IN is given. Assume further that we can iterate
over the adjacency list of an access-restricted vertex v in O(f (n,m)) time for some
function f , whereas we can access an entry in the adjacency array of another vertex
still in O(1) time. Then, there is a DFS that runs in O(k · f (n,m) + m + n log∗ n)

time and uses O(n + k log n) bits.

Proof To get an idea consider first a standard DFS starting from a vertex r . Basically it
visits each vertex of the connected component ofG that contains r while iterating over
the incident edges of each visited vertex once. If the DFS visits a vertex w, then the
current r -w-path ismanaged in a stack that stores the status of the current iteration over
the incident edges of each vertex on the path, i.e., for each vertex on the path, it stores
a pointer to the edges of the path such that the DFS can return to a vertex and proceed

123

Algorithmica (2022) 84:2414–2461 2421

with the next edge to explore another path. The space-efficient DFS (Theorem 2) stores
only a small part of the entire DFS stack and uses further stacks with approximations
of the index pointers to reconstruct removed information from the stack. The reason
for storing only small parts of the stack as well as approximate indices is to bound the
space-usage by O(n) bits. Let V ′ be the set of access-restricted vertices with |V ′| = k.
For the access restricted vertices V ′ we are not able to use this space-saving strategy
since we only have a list interface, i.e, we are unable to use indices. Thus, for the
vertices of V ′ we simply ignore the space restrictions imposed by the storage scheme
of the DFS and instead store a pointer with Θ(log n) bits into the adjacency list for
each vertex v′ ∈ V ′ additionally to the storage scheme already in place for the DFS,
just as any regular DFS working with adjacency lists would need. This of course uses
extra space and thus results in a DFS using O(n + k log n) bits instead of O(n) bits.
Since there is one iteration over the incident edges of each of the O(k) access-restricted
vertices, the running time of the DFS increases to O(k · f (n,m)+m+n log∗ n) time.

��
We make use of standard network flow techniques in the following chapter. A flow

network (G = (V , E), c, s, t) consists of a directed graph G = (V , E), a capacity
function c : E → IR and two vertices s, t ∈ V called the source and sink. The
capacity of an edge e is c(e). For easier definitions it is assumed without loss of
generality that for a flow network it holds (v, u) ∈ E for each (u, v) ∈ E . If this
is not the case, the edge can simply be added with capacity 0. A pseudo-flow is a
function f : E → IR constructed for a given flow network that satisfies the following
constraints: f ((u, v)) = − f ((v, u)) and f ((u, v)) ≤ c((u, v)) for each (u, v) ∈ E .
A pseudo flow f is called a flow if for all v ∈ V \ {s, t} it holds

∑
e∈Ein

f (e) =∑
e∈Eout

f (e) where Ein is the set of all edges into v and Eout is the set of all edges
out of v. Intuitively, the flow into a vertex v must equal the flow out v. The residual
capacity of an edge e with respect to a flow f is defined as c f = c(e) − f (e).
For a given flow network (G = (V , E), c, s, t) and a flow f we can construct a
residual network (G f = (V , E f), c f , s, t) with c f being the residual capacity and
E f = {e ∈ E |c f (e) > 0}. An augmenting path is a path P in a residual network
starting at s and ending at t such that c f (e) > 0 for all e that are part of P . Intuitively,
the flow f can be increased via P . A flow f is called amaximum flow if no augmenting
paths exists. We only make use of a special type of flow network, called a unit flow
network, where each edge has a capacity of 1. Many network flow problems are often
constructed for the case where s and t are not single vertices, but sets of vertices
S and T . In this case a modified flow network can be constructed by introducing a
vertex s and vertex t such that s has only outgoing edges to all vertices of S and t has
only incoming edges from all vertices of T . We use standard network flow techniques
described further in the next section.

3 Finding k Vertex-Disjoint Paths UsingO(n+ k2(log k) logn) Bits

To compute k vertex-disjoint s-t-paths we modify a standard network-flow technique
where a residual network [1] and a standard DFS is used.

123

2422 Algorithmica (2022) 84:2414–2461

s t. . .
...

...
...

...
...

Fig. 1 Vertex-disjoint s-t-paths with colored boundaries. Some regions are exemplary sketched by green
rectangles (Color figure online)

Lemma 2 (Network-Flow Technique [1]) Given an integer k as well as an n-vertex
m-edge graph G = (V , E)with k unknown pairwise internal vertex-disjoint s-t-paths
for some vertices s, t ∈ V , there is an algorithm that can compute � ≤ k internal
pairwise vertex-disjoint s-t-paths using O((n + m) log n) bits by executing � times a
depth-first search, i.e., in O(�(n + m)) time.

The well-known network-flow technique increases the size of an initially empty
set of internal vertex-disjoint s-t-paths one by one in rounds. It makes usage of (1)
a residual network for extending a set of edge-disjoint paths by another one and (2)
a simple reduction that allows us to find vertex-disjoint paths by constructing edge-
disjoint paths in a modified graph.

We can neither afford storing any copy of the original graph, a graph transformated
nor the exact routing of the paths because it would take Ω(n log n) bits. Instead, we
use graph interfaces that allow us access to amodified graph on the fly andwe partition
the paths in parts belonging to small so-called regions that allow us to store exact path
membership on the boundaries and recompute the paths in between the boundaries
of the regions on the fly if required. For a sketch of the idea, see Fig. 1. Storing
the exact path membership only for the boundaries has the drawback that we cannot
recompute the original paths inside a region, but using a deterministic algorithm we
manage to compute always the same one. It is important to remark that the network-
flow technique above also works even if we change the exact routing of the s-t-paths
(but not their number) before or after each round.

For the rest of this section, let G = (V , E) be an n-vertex m-edge graph with
treewidth k, let P be a set of � = O(k) internal pairwise vertex-disjoint s-t-paths for
some vertices s, t ∈ V and assume that G has more than � such paths, but not more
than O(k). Let V ′ be the set that consists of the union of all vertices over all paths
in P . Note that the restriction to O(k) is natural, as due to our specific use-case of
searching for separators of size O(k) in the following sections. Additionally, it makes
the runtime and space analysis more pleasant to read. Note that generally everything
that follows works even if � = Ω(k), but the runtime and space analysis will be
different.

Before we can present our algorithm, we present two lemmas that consider proper-
ties of internal pairwise vertex-disjoint paths as given in P . To describe the properties
we first define a special path structure (with respect to G). A deadlock cycle in G with
respect to P consists of a sequence P1, . . . , P�′ of paths in P for some 2 ≤ �′ ≤ �

such that, for all 1 ≤ i ≤ �′ , there is a subpath xi , . . . , yi on every path Pi and there
is an edge {xi , y(i mod �′)+1} ∈ E . We call a deadlock cycle simple if every subpath
consists of exactly two vertices, and otherwise extended (see Fig. 2).

123

Algorithmica (2022) 84:2414–2461 2423

P

P

P2

P1

...
...

...
...

P

P

P2

P1

...
...

...
...

Fig. 2 A simple and an extended deadlock cycle (left and right, respectively) (Color figure online)

Fig. 3 The extended deadlock
cycle constructed in the proof of
Lemma 3 (Color figure online)

P1

P2

P3

Pi

u v1

v2

w

Lemma 3 Assume that the paths in P are chordless and that G has no extended
deadlock cycle with respect toP . Any other setQ of � internal pairwise vertex-disjoint
s-t-paths in G[V ′] uses only vertices V ′ of the paths in P .

Proof Note that each path in P uses another neighbor of s and since the paths are
chordless, s can not have another neighbor in V ′. In other words, s has exactly �

neighbors inV ′ and each path inQmust use exactly one of these neighbors. This allows
us to name the paths in P and in Q with P1, . . . , P� and Q1, . . . , Q�, respectively,
such that the second vertex of Pi and Qi are the same for all i ∈ {1, . . . , �}. The
following description assumes suitable indices of the paths in P and is illustrated in
Fig. 3. Assume for a contradiction that the lemma is not true. This means that P1 uses
a vertex v1 ∈ V ′ whereas Q1 leaves the vertices of P1 at some vertex u to avoid using
v1. Let v1 be the first such vertex (while traversing P1 from s to t).

Since the paths are chordless, Q1 must continue with a vertex v2 of a path P2. We
call such a continuation a jump. Since the paths are chordless, this means that Q2 must
leave before reaching v2 and jump to a path P3. At the end, there must be a path Qi

(i
= 1) that jumps to a vertex w on P1. If w is before v1 (while walking on P1 from s
to t), then Q1 must leave P1 before v1; a contradiction. If w is behind v1, we have an
extended deadlock cycle in G with respect to P; again a contradiction. ��

The next lemma show that, if there is a set Q of � pairwise internal vertex disjoint
paths that uses the same vertices V ′ as P , then Q has the same nice properties of P
we later require.

Lemma 4 Assume that the paths in P are chordless and that G has no extended
deadlock cycle with respect toP . Any other setQ of � internal pairwise vertex-disjoint
s-t-paths in G[V ′] is chordless and G has no extended deadlock cycle with respect to
Q.

Proof For a contradiction assume that Q has a path Q with a chord {u, w} such that
some vertex v is in between u and w on the path Q. This allows us to construct a path
Q′ from Q that uses the edge {u, w} instead of the subpath of Q between u and w,
leaving v unused. We so get � paths {Q′} ∪ (Q \ {Q}) that do not use v ∈ V ′, which
is a contradiction to Lemma 3.

Assume now that there is an extended deadlock cycle Z in G with respect toQ and
some vertex v on Z such that v is an internal vertex of one of the subpaths of Z . By

123

2424 Algorithmica (2022) 84:2414–2461

P

P

P2

P1
v

...
...

...
...

P

P

P2

P1
v

...
...

...
...

Fig. 4 On the left an extended deadlock cycle Z is shown in red with respect to �′ paths in Q. On the right
a rerouting is sketched such that the new path Q′ do not use vertex v anymore (Color figure online)

removing the common edges of Z and the paths inQ from the paths inQ and adding
the remaining edges of Z to the paths in Q, we get a set of pairwise vertex-disjoint
s-t-paths Q′ in G[V ′ \ {v}]. An example is sketched in Fig. 4. The existence of Q′ is
again a contraction to Lemma 3. ��

We begin with a high-level description of our approach to compute P space effi-
ciently. Afterwards, we present the missing details. A chordless s-t-path P can be
computed by a slightly extended DFS and to identify the path it suffices to store its
vertices in an O(n)-bit array A (Lemma 5). However, if we want to store � > 1 chord-
less pairwise internally vertex-disjoint s-t-paths in A, we cannot distinguish them
without further information. For an easier description assume that each path with its
vertices is colored with a different color. Using an array of n fields of O(log �) bits
each we can easily store the coloring of each vertex and thus � chordless paths with
O(n log �) bits in total. However, our goal is to store � paths with O(n + f (�) log n)

bits for some polynomial function f . We therefore define a so-called path data scheme
that stores partial information about the � paths using O(n) bits (Definition 5).

Recall that our graph under consideration has treewidth k. The idea of our scheme
is to select and color a set B ⊆ V ′ of vertices along the paths with the property that
|B| = O(n/ log k) and G[V ′ \ B] consists only of small connected components of
O(k log k) vertices. We call these connected components regions.

We show such a set B exists if the paths have so-called good properties (Def-
inition 7). Once a path data scheme is created we lose the information about the
exact routing of the original paths, but are able to realize operations to construct �

possibly different paths. These operations are summarized in a so-called path data
structure (Definition 6). In particular, it allows us to determine the color of a vertex
v on a path P or to run along the paths by finding the successor or predecessor of
v in O(deg(v) + f (k)) time for some polynomial f (Lemma 7). The idea here is
to explore the region containing v and use Lemma 2 to get a fixed set of � paths
connecting the equally colored vertices. By Lemma 4, the new paths still have our
good properties. However, assuming that we have a set P of good paths and some
new chordless path P∗ /∈ P , whose computation is shown in Lemma 10, P ∪ {P∗}
is not necessarily good. Our approach to make the paths good is to find a rerouting
R(P ∪ {P∗}) that outputs a set P ′ of good paths where |P ′| = |P| + 1 (Lemma 11).

Let V ∗ be the vertices of P ∪ P∗.
We realize R by a mapping −→r : V ∗ → {0, . . . , k} that defines the successor of a

vertex v as a vertex u ∈ N (v) of another path with color −→r (v). Intuitively speaking,
we cut the paths in P ∪ {P∗} in pieces and reconnect them as defined in −→r .

123

Algorithmica (2022) 84:2414–2461 2425

The rerouting may consist of O(n) successor information, each of O(log k) bits.
Therefore, we compute a rerouting by considering only the s-p-subpath P ′ of P∗ for
some vertex p. We compute the rerouting in O(log k) batches by moving p closer to
t with each batch. Each batch consists of Θ(n/ log k) successor information (or less
for the last batch). Using the rerouting −→r and path data structures storing P and P∗,
we realize a so-called weak path data structure for the paths R(P ∪ {P ′}). We call
it a weak path data structure because it can not be used to determine the color of a
vertex. After that we use it to compute a new valid path data scheme for the paths
R(P ∪{P ′}) such that we need neither the rerouting−→r nor V ∗ anymore (Lemma 13).
However, since P ′ is only a subpath of P∗ we repeat the whole process described
in this paragraph with another subpath P ′′ of P∗, i.e., the subpath of P∗ whose first
vertex is adjacent to the last vertex of P ′. Finally, we so get a valid path data structure
storing |P| + 1 good s-t-paths (Corollary 1). Intuitively, this can be thought of as a
sliding window algorithm, where the window is moved to adjacent regions.

We now describe our approach in detail. To store a single s-t-path we number the
internal vertices along the path with 1, 2, 3, 1, 2, 3, etc. and store the numbers of all
vertices inside an array A of 2n bits. For a vertex v outside the paths, we set A[v] = 0.
We refer to this technique as path numbering. By the numbering,we know the direction
from s to t even if we hit a vertex in the middle of the path. Note that A completely
defines the vertices of the single path.

To follow a path stored in A, begin at a vertex v and look for a neighbor w of v

with A[w] = (A[v] mod 3) + 1. Note that this approach only works if v has only
one such neighbor. To avoid ambiguities when following a path we require that the
path is chordless.

Lemma 5 Assume that we are given access to a DFS that uses a stack to store a path
from s to the current vertex and that runs in ft(n,m) time using fb(n,m) bits. Then,
there is an algorithm to compute a path numbering for a chordless s-t-path P in time
O((n + m) + ft(n,m)) by using O(n + fb(n,m)) bits.

Proof We call the internal subpath P ′ ⊆ P from a vertex vi to a vertex v j skippable
exactly if P ′ consists of at least 3 vertices and there exists a chord, i.e., an edge from
vi to v j . The idea is to construct first an s-t-path P in G with the DFS and, directly
after finding t , we stop the DFS and then pop the vertices from the DFS stack and
remove skippable subpaths until we arrive at s.

Let P = (s = v1, v2, . . . , vx = t) be the vertices on the DFS stack after reaching
t and let M be an n-bit array marking all vertices with a one that are currently on the
stack. (We say that a vertex v is marked in M exactly if M[v] = 1.) The algorithm
moves backwards from t to s, i.e., by first popping t , setting vi+1 = t and then popping
the remaining vertices from the DFS stack as follows.

Pop the next vertex vi from the stack, unmark vi in M , and let vi−1 be the vertex
that is now on top of the DFS stack. We check vi ’s neighborhood N (vi) in G for all
vertices u /∈ {vi−1, vi+1} that are marked in M , mark them in an n-bit array M ′ as
chords and store in a variable x the number of these chords.

The internal subpaths between vi and all vertices marked in M ′ are skippable. We
remove the skippable paths as follows: As long as x
= 0, we pop a vertex u from the
DFS stack. If u is marked in M ′, we unmark u in M ′ and reduce x by one. If x ≥ 1,

123

2426 Algorithmica (2022) 84:2414–2461

we unmark u in M . When x = 0, the edge {u, vi } is the last chord, we set vi := u and
vi+1 := vi and continue our algorithm as described in this paragraph until vi = s,
i.e., we search for the next skippable subpath.

Once P is chordless, we can output the path as follows. Allocate an array A with
2 bits for each vertex and initialize all entries with 0. Let i = 1. Starting from u = s
go to its only neighbor w
= u that is marked in M . Set i := (i mod 3) + 1 and
A[w] := i . Unmark u in M , set u := w, and continue assigning the path numbering
until w = t . Finally return A.

Observe that the DFS runs once to find a path P from s to t and then we only pop
the vertices from the stack. During the execution of the DFS we manage membership
of vertices using only arrays of O(n) bits. The construction of A uses a single run over
the path by exploring the neighborhood of each marked vertex. In total our algorithm
runs in O(n + m) time and uses O(n) bits in addition to the time and space needed
by the given DFS. ��

Recall that the path numbering does not uniquely define � > 1 chordless vertex-
disjoint paths since there can be edges, called cross edges, between vertices of two
different paths inP . Due to the cross edges, the next vertex of a path can be ambiguous
(see again Fig. 1). Coloring these vertices would solve the problem, but we may have
to many to store their coloring.

Our idea is to select a set B ⊆ V ′ of vertices that we call boundary vertices such
that |B| = O(n/ log k) holds and by removing B fromG[V ′]we get a graphG[V ′ \B]
that consists of connected components of size O(k log k). In particular, B contains all
vertices with large degree, i.e., vertices with a degree strictly greater than k log k. Note
that a graph with treewidth k has at most kn edges, and so we have only O(n/ log k)
vertices of large degree. We store the color of all boundary vertices B. This allows
us to answer their color directly. Recall that a region is a connected component in
G[V ′ \ B]. Note that a boundary vertex can be adjacent to vertices part of several
regions. Let v ∈ B be a vertex of some path P . To avoid exploring several regions
when searching the predecessor/successor of v on P , we additionally store the color
of the predecessor/successor w /∈ {s, t} of each v ∈ B. According to our described
setting above, we formally define our scheme.

Definition 5 (Path Data Scheme) A path data scheme for P in G is a triple (A, B,C)

where

• A is an array storing the path numbering of all paths in P ,
• B is a set of all boundary vertices with |B| = O(n/ log k) and B defines regions
of size O(k log k), and

• C stores the color of every vertex in B and of each of their predecessors and
successors.

We realize A as well as B as arrays of O(n) bits, and C as a O(n)-bit data structure
using static space allocation. Altogether our path data scheme uses O(n) bits.

A further crucial part of our approach is to (re-)compute (parts of our) paths fast—
in particular, we do not want to use a k-disjoint-path algorithm—but we also want
to guarantee that vertices of the same color get connected with a path constructed by

123

Algorithmica (2022) 84:2414–2461 2427

a deterministic network-flow algorithm. In other words, our path data scheme must
store the same color for each pair of colored vertices that are connected by our fixed
algorithm of Lemma 2. We call a path data scheme that has this property valid (with
respect to our fixed algorithm).

To motivate the stored information of our path data scheme, we first show how it
can be used to realize a path data structure that allows us to answer queries on all
vertices V ′ and not only a fraction of V ′. Afterwards, we show the computation of a
path data scheme.

Definition 6 (Path Data Structure) A path data structure supports the following oper-
ations where v ∈ V ′.
• prev/next(v): Returns the predecessor and the successor, respectively, of v.
• color(v): Returns the color i of a path Pi ∈ P to which v belongs to.

To realize the path data structure, our idea is first to explore the region R inG[V ′\B]
containing the given vertex v by using a BFS and second to construct a graph of the
vertices and edges visited by the BFS. We partition the visited colored vertices inside
R into two sets S′ (successors of B) and T ′ (predecessors of B), as well as extend
R by two vertices s′ and t ′ that are connected to S′ and T ′, respectively. Then we
sort the vertices of R and the respective adjacency arrays by vertex ids and run the
deterministic network-flow algorithm of Lemma 2 to construct always the same fixed
set of paths (but not necessarily the original paths). The construction of the paths in
a region consisting of a set U of vertices is summarized in the next lemma, which
we use subsequently to support the operations of our path data structure. We use the
next lemma also to make a path data scheme valid. We so guarantee that our network-
flow algorithm connects equally colored vertices and no k-disjoint path algorithm
is necessary. This is the reason why the following lemma is stated in a generalized
manner and does not simply assume that a path data scheme is given.

Lemma 6 Assume that we are given the vertices U of a region in G as well as two sets
S′, T ′ ⊆ U of all successors and predecessors vertices of vertices on the boundary,
respectively. Take n′ = |U |. Then O(n′k2 log2 k) time and O(k2(log k) log n) bits
suffice to compute paths connecting each vertex in S′ with another vertex in T ′.

Proof We construct a graph G ′ = G[U], add two new vertices s′ and t ′ and connect
them with the vertices of S′ and T ′, respectively. To structurally get the same graph
independent of the permutation of the vertices in the representation of the setU we sort
the vertices and the adjacency arrays of the graph representation for G ′. The details to
do that are described in the three subsequent paragraphs. Finally we run the algorithm
of Lemma 2 to compute all s′-t ′-paths in the constructed graph G ′. Since S′ and T ′ are
the endpoints of disjoints subpaths of paths in P , we can indeed connect each vertex
in S′ with another vertex in T ′.

We now show the construction of G ′. We choose an arbitrary v ∈ U and run
a BFS in graph G[U] starting at v three times. (We use a standard BFS with the
restriction that it ignores vertices of G that are not in U .) In the first run we count the
number n′ = O(k log k) of explored vertices. Knowing the exact number of vertices
and knowing that all explored vertices can have a degree at most k log k in G[U],

123

2428 Algorithmica (2022) 84:2414–2461

we allocate an array D of n′ + 2 fields and, for each D[i] (i = 1, . . . , n′ + 2),
an array of �k log k� fields, each of �log(k log k)� bits. We will use D to store the
adjacency arrays for G ′ isomorphic to G[U]. For reasons of performance, we want
to use indirect addressing when operating on G ′. We use a bidirectional mapping
fromU to {1, . . . , n′} and use vertex names out of {1, . . . , n′} for G ′. More exactly, to
translate the vertex names of G ′ to the vertex names of G, we use a translation table
M : {1, . . . , n′} → U , and we realize the reverse direction M−1 : U → {1, . . . , n′}
by using binary search in M , which can be done in O(log n′) time per access. For the
table we allocate an array M of n′ fields, each of �log n� bits.

In a second runof theBFSwefillM with the vertices exploredby theBFSand sortM
by the vertex names. In a third run, for each vertex v explored by theBFS,we determine
the neighbors u1, . . . , ux of v sorted by their ids and store M−1(u1), . . . , M−1(ux)
in D[M−1(v)]. Thus, D allows constant time accesses to a graph G ′ isomorphic to
G[U]. During the third BFS run we want to compute and store the two sets S′ and T ′
(using a standard balanced tree representation). Afterwards, we are able to compute
the paths in G[U] and using the mapping M translate the vertex ids in G ′ back to
vertex ids in G.

EfficiencyWe now analyze the space consumption and the runtime of our algorithm.
SinceG has treewidth k andG ′ consists of vertices of a region ofG, we can follow that
G ′ has n′ = O(k log k) vertices and O(n′k) edges. D uses O(n′ log n) bits to store n′
pointers, each of O(log n) bits, that point at adjacency arrays. The adjacency arrays
use O(n′k log k) bits to store O(n′k) vertex ids out of {1, . . . , n′}. The translation table
M and the sets S′ and T ′ use O(n′ log n) bits. The BFS can use O(n′k log k) bits. The
space requirement of an in-place sorting algorithm is negligible. Lemma 2 runs with
O((n′ + kn′) log n′) = O(n′k log k) bits. In total our algorithm uses O(n′k log k) +
O(n′ log n) = O(k2(log k) log n) bits.

To compute the graph G ′ and construct M we run a BFS. Running the BFS comes
with an extra time factor of O(log n′) to translate a vertex id of G to a vertex id of
G ′ (i.e., to access values in M−1) and costs us O(n′k log n′) time in total. Since G ′
has O(n′k) edges D has O(n′k) non-zero entries and a sorting of D can be done in
O(n′k) time. Sorting M can be done in the same time. Finally, Lemma 2 has to be
executed once for up to O(k log k) paths (every vertex of the region can be part of
S′ ∪ T ′), which can be done in O((n′k)(k log k) log k) time since O(n′k) bounds the
edges of the region and since we get an extra factor of O(log k) by using the translation
table M . In total our algorithms runs in time O(n′k2 log2 k). ��

Since the number of vertices in a region is bound by O(k log k), we can useLemma6
and the coloring C to support the operations of the path data structure in the bounds
mentioned below.

Lemma 7 Given a valid path data scheme (A, B,C)we can realizeprev andnext in
time O(deg(v)+k3 log3 k) as well as color(v) in O(k3 log3 k) time. All operations
use O(k2(log k) log n) bits.

Proof In the case that a vertex v is in B, we find its color and the color of its predecessor
and successor in C . (Vertices neighbored to s or t have s as the predecessor and t as

123

Algorithmica (2022) 84:2414–2461 2429

the successor, respectively.) Thus, we can answer prev and next by iterating over
v’s neighborhood and determining the two neighbors u, w ∈ V ′ that are colored the
same as v. By using the numbering A we know the incoming and outgoing edge of
the path through v and so know which of the vertices u and w is the predecessor or
successor of v.

For a vertex v /∈ B, we explore v’s region in G[V ′ \ B] by running a BFS in G[V ′]
with the restriction that we do not visit vertices in B. We use a balanced heap to store
the set U of visited vertices. Moreover, we partition all colored vertices of U into the
set S′ (of successors of B) and the set T ′ (of predecessors of B) with respect to the
information in C . In detail, if a colored vertex u ∈ U has an equally colored neighbor
w ∈ B, then u is the successor of w if A[v] = (A[w] mod 3) + 1 holds and the
predecessor of v if A[w] = (A[v] mod 3) + 1 holds. Having U , S′ and T ′ we call
Lemma 6 to get the paths in the region.

Note that a path within a region can be disconnected by vertices with large degree
so that we can have more than two vertices of each color in S′ and T ′. E.g., a path
may visit s1, t1, s2, t2, s3, t3, . . . ∈ U with s1, s2, s3 ∈ S′ and t1, t2, t3 ∈ T ′. Since our
path data scheme is valid, we can conclude the following: assume that we connect
the computed subpaths using their common equally colored boundary vertices. By
Lemma 3 each solution has to use all vertices and the network-flow algorithm indeed
connects s1 with t1, s2 with t2, etc. By Lemma 4 the paths and thus our computed
subpaths are chordless and have no extended deadlock cycles in G with respect to P ′.
Using the paths we can move along the path of v to a colored vertex and so answer
v’s color and both of v’s neighbors on the path.

Efficiency We now analyze the runtime of our algorithm and its space consumption.
Realizing the operations prev and next for a vertex of B can be done in O(deg(v))

time since both colored neighbors have to be found, and their color can be accessed
in constant time using C . The operation color runs in constant time.

For the remaining vertices we have to explore the region in G[V ′ \ B]. Since every
region has n′ = O(k log k) vertices and also treewith k, the exploration can be done in
linear time per region, i.e., in O(n′k) time using a standard BFS. Filling U , S′ and T ′
requires us to add O(n′) vertices into balanced heaps, which uses O(n′ log n′) time.
The execution of Lemma 6 can be done in O(n′k2 log2 k) time and running along the
paths to find the actual color runs in O(n′) time. Thus, in total prev and next run
in time O(deg(v) + k3 log3 k) and color(v) in time O(k3 log3 k).

A BFS to explore a region in G[V ′ \ B] uses O(n′k log n) = O(k2(log k) log n)

bits, while U , S′ and T ′ use O(n′ log n) bits in total. The execution of Lemma 6 uses
O(k2(log k) log n) bits, which is also an upper bound for all remaining operations. ��

To be able to compute a storage scheme for � > 1 paths, P must satisfy certain
so-called good properties that we summarize in Definition 7.

Definition 7 (Good paths) We call a set P ′ of s-t-paths good if and only if

1. All paths in P ′ are pairwise internal vertex disjoint,
2. Each path in P ′ is chordless, and
3. There is no extended deadlock cycle in G with respect to P ′.

123

2430 Algorithmica (2022) 84:2414–2461

We call a path P ′ dirty with respect to a set of good s-t paths P if extending
P by P ′ would invalidate any of the good properties of P . The next lemma shows
the computation of a valid path data scheme for one path P . The computation is
straightforward. Since there is only one path, this path is uniquely defined by the path
numbering in A and we can run along it and select every k�log k� vertex as a boundary
vertex and compute and store the remaining information required for a valid path data
scheme. After the lemma we always assume that a chordless path P is given together
with a valid path data scheme and thus a path data structure so that we can easily
access the predecessor and successor of a vertex on the path.

Lemma 8 Given a path numbering A for one chordless s-t-path P, we can computes
a valid path data scheme (A, B,C) for P in O(n) time using O(n) bits.

Proof Since A stores a single chordless path P , we can run along it from s to t while
adding every �k log k�th vertex and every vertex of large degree into an initially empty
set B. We then can easily determine the predecessor and successor. Thus, we can store
C using static space allocation. A path data scheme storing a single path is valid by
default since there is no second path to that an algorithm could switch. We so get a
path storage scheme storing � = 1 good s-t-path in O(n) time using O(n) bits. ��

Assume that, for some � ∈ N, we have already computed � good s-t-paths, which
are stored in a valid path data scheme, and that there are more than � such paths in G.

Our approach to compute an (�+1)th s-t-path is based on the well-known network-
flow technique [1] described in the beginning of the section, which we now modify to
make it space efficient.

By the standard network-flow technique, we do not search for vertex-disjoint paths
inG. Instead, we modify G into a directed graph G ′ and search for edge-disjoint paths
in G ′. To make the approach space efficient, we do not store G ′ separately, but we
provide a graph interface that realizes G ′.

Lemma 9 Given an n-vertex m-edge graph G = (V , E) there is a graph interface rep-
resenting an directed n′-vertex m′-edge graph G ′ = (V ′, E ′)where V ′ = {v′, v′′ | v ∈
V } and E ′ = {(u′′, v′), (v′′, u′)|{u, v} ∈ E} ∪ {(v′, v′′)|v ∈ V } and thus n′ = 2n and
m′ = 2m + n. The graph interface allows us to access outgoing edges and incoming
edges of G ′, respectively, by supporting the operations headoutG ′ , degout

G ′ and headinG ′ ,
deginG ′ . The graph interface can be initialized in constant time and the operations have
an overhead of constant time and O(log n) bits.

Proof We now show how to compute the operations for G ′ from G on the fly. For
each vertex v in V , we define two vertices v′ = v and v′′ = v + n for V ′. By
the transformation we can see that every vertex v′ (with v′ ≤ n) has exactly one
outgoing edge to v′′ = v′ + n and degG(v′) incoming edges from some vertices
u′′ = headG(v′, j) + n (j ≤ degG(v′)). Moreover, every vertex v′′ (with v′′ > n)
has degG(v′′ − n) outgoing edges to some vertices u′ = headG(v′′ − n, j) (j ≤
degG(v′′ − n)) and one incoming edge from v′ = v′′ − n. With these information we
can provide our stated operations for G ′.

123

Algorithmica (2022) 84:2414–2461 2431

degout
G ′ (v) =

{
1 v ≤ n

degG(v) v > n
headout

G ′ (v, j) =
{

v + n v ≤ n

headG(v − n, j) v > n

degin
G ′(v) =

{
degG(v) v ≤ n

1 v > n
headinG ′(v, j) =

{
headG(v, j) + n v ≤ n

v − n v > n

Theoperationsdegout
G ′ ,deginG ′ andheadout

G ′ ,headin
G ′ have the sameasymptotic bounds

as degG and headG , respectively. ��
We next show that we can compute an (� + 1)st paths.

Lemma 10 Given a valid path data scheme for a set P of � ∈ N good s-t-paths in
G, O(n(k + log∗ n)k3 log3 k) time and O(n + k2(log k) log n) bits suffice to compute
an array of 2n bits storing a path numbering of an (� + 1)th chordless s-t-path P∗,
which can be a dirty path with respect to P .

Proof To solve the lemma, we adapt the standard network-flow approach as follows.
We first use the graph interface of the Lemma 9 to obtain a graph G ′′ in that we can
search for edge-disjoint paths instead of vertex-disjoint paths in G. We provide the
operations prev, next, color and a virtual array A that gives access to the paths
P adjusted to G ′ by using a simple translation to the corresponding data structure of
G.

According to the construction of G ′ a vertex v in G is equivalent to two vertices,
an in-vertex v′ = v and an out-vertex v′′ = v + n in G ′. Moreover, every in-vertex
u′ in G has a single outgoing edge and this edge points to its out-vertex u′′ = u′ + n,
which has only outgoing edges that all point to some in-vertices in G ′. Taken our
stored � good paths into account a path (v1, v2, v3, . . .) ∈ P in G translates into a path
(v′

1, v
′′
1 , v

′
2, v

′′
2 , v

′
3, v

′′
3 , . . .) in G ′ and the edges between them must be reversed in G ′.

Next, we want to build the residual network of G ′ and P . This means that we have
to reverse the edges on the paths of P . To identify the edges incident to a vertex v, it
seems to be natural to use prev(v) and next(v). Unfortunately, we cannot effort to
query these two operations many times to find out which of the incident edges of v is
reversed since v can be a vertex of large degree and the runtime of both operations
depends on degG ′(v). This issue becomes especially important when using a space-
efficient DFS that may query prev(v) more than a constant number of times (e.g., by
running several restorations of a stack segment including v).

To avoid querying prev(v) for any vertex v of G ′, we present the DFS a graph G ′′
where v has as outgoing edges first all outgoing edges of v inG ′ and then all incoming
edges of v in G ′. In detail, we present the DFS a graph G ′′ with all vertices of G ′
and one further vertex d with no outgoing edges. We also make sure that the DFS has
colored d black (e.g., start the DFS on d before doing anything else). A sketch of the
graph G ′ with a blue path, graph G ′′ and the reversal of the edges in G ′′ can be seen
in Fig. 5. As we see in the next paragraph, we will use d as a kind of dead end.

Every vertex v
= d ofG ′′ has degout
G ′ (v)+degin

G ′(v)many outgoing edges defined
as follows. The heads of the first degoutG ′ (v) outgoing edges of v in G ′′ are the same as

123

2432 Algorithmica (2022) 84:2414–2461

Fig. 5 From top left to bottom right, a sketch of G, G′, G′′ and G′′ with reversed edges. Each black vertex
is the same vertex b. The blue edges are edges of a path. The dashed lines in the graphs sketches an edge
connecting the middle rightmost with the middle leftmost vertex (Color figure online)

in G ′ with the exception that we present edge (v, d) for possibly one outgoing edge
(v, z) that is reversed (i.e., color(v) = color(z) ∧ A[z] = (A[v] − 1) mod 3)).
The heads of the next degin

G ′(v) incoming edges of v in G ′′ are presented as an edge
(v, d) with the exception that we present possibly one incoming edge (z, v) that is
reversed as an outgoing edge (v, z).

Intuitively speaking, this ensures that a DFS backtracks immediately after using
edges that do not exist in the residual graph. Note that we so can decide the head of
an edge in G ′′ by only calling color twice.

The graph G ′′ has asymptotically the same amount of vertices and edges as G. To
guarantee our space bound we compute a new s-t-path P in G ′′ using a space-efficient
DFS on G ′′ and consecutively make P chordless by Lemma 5. Finally, we transform
P into a path P∗ with respect to P by merging in and out vertices together.

Efficiency Concerning the running time we use a space-efficient DFS (Lemma 2) to
find a new s-t-path in G ′′. To operate in G ′′ we need to query the color of vertices.
We pay for that with an extra factor of O(k3 log3 k) (Lemma 7) in the running time.
Since our graph has O(n) vertices and O(kn) edges we find a new s-t-path in G ′′
in time O(n(k + log∗ n)k3 log3 k). The time to transform the found path into P∗
and store it can be done in the same bound. The total space used for the algorithm is
O(n+k2(log k) log n) bits—O(n) bits for the space-efficient DFS, O(k2(log k) log n)

bits for Lemma 7, and O(n) bits for storing P∗ and its transformation. ��
Let us call an s-t-path P∗ a clean path with respect to P if P ∪ {P∗} is a set of

good paths, and a dirty path with respect to P if for all P ∈ P , the common vertices
and edges of P∗ and P build subpaths each consisting of at least two vertices and
used by the two paths in opposite direction when running from s to t over both paths.
Intuitively, if we construct an (� + 1)st path P∗ in the residual network of G ′ with
� paths in P , then P∗ can run backwards on paths in P , and we call P∗ a dirty path
(see Fig. 6). After a rerouting, we obtain � + 1 internal vertex disjoint s-t-paths. To

123

Algorithmica (2022) 84:2414–2461 2433

Fig. 6 The green subpath of P∗
is clean until it hits a common
vertex u with P3, then it is a
dirty path (Color figure online)

P ∗

P

P3

P2

P1

u
...

...

store the paths P ∪ {P∗} with our path data structure, the paths must be good, which
we can guarantee through another rerouting. The details are described below.

Let P∗ be an s-t-path returned by Lemma 10. We first consider the case where
P∗ is a dirty path with respect to P . To make the paths good we cut the paths into
subpaths and by using the subpaths we construct a set of new � + 1 good s-t-paths.
To achieve that we have to get rid of common vertices and extended deadlock cycles.
We handle common vertices and extended deadlock cycles in a single process, but we
first briefly sketch the standard network-flow technique to remove common vertices
of P∗ with a path Pc ∈ P . By the construction of the paths, the common vertices of
an induced subpath are ordered on Pc as vσ1 , vσ2 , . . . , vσx (for some function σ and
x ≥ 2) and on P∗ as vσx , vσx−1 , . . . , vσ1 . P

c and P∗ can be split into vertex disjoint
paths by (1) removing the vertices vσ2 , . . . , vσx−1 from P∗ as well as from Pc, (2) by
rerouting path Pc at vσ1 to follow P∗, and (3) by rerouting P∗ at vσx to follow Pc.

We denote by R(P ∪{P∗}) a rerouting function that returns a new set of |P ∪{P∗}|
good paths. We so change the successor and predecessor information of some vertices
of the paths P ∪ {P∗}. Let V ∗ be a set of all vertices in R(P ∪ {P∗}). To define
successor and predecessor information for the vertices we use the mappings −→r ,

←−r :
V ∗ → {0, . . . , k} where for each vertex u ∈ V ∗ with −→r (u)
= 0, u’s new successor
is a vertex v ∈ N (v) ∩ V ∗ with −→r (u) = color(v). Similarly we use ←−r to define a
new predecessor of some u ∈ V ∗. The triple (V ∗,−→r ,

←−r) realizes our rerouting R.
To avoid using too much space by storing rerouting information for too many

vertices our approach is to compute a rerouting R(P ∪ {P ′}) only for an s-p-subpath
P ′ of P∗ where p is a vertex of P∗. This means that R(P∪{P ′}) consists of � s-t-paths
and one s-p-path.

Moreover, wemake the rerouting in such a way that, for all paths Pi ∈ R(P∪{P ′}),
there is a vertex vi with the following property: replacing the vi -t-subpath of Pi by
a virtual edge {vi , t} for all paths Pi we get � + 1 good paths. Let Pc consist of the
s-vi -subpaths for each Pi . We then call the set of vertices part of the paths in Pc a
clean area Q for R(P ∪ {P ′}).

The idea is to repeatedly compute a rerouting in O(log k) batches and thereby
extend Q with each batch by Θ(n/ log k) vertices—the last batch may be smaller—
such that we store O(n/ log k) entries in −→r and ←−r with each batch. After each batch
we free space for the next one by computing a valid path storage scheme storing good
s-t-paths R(P ∪{P ′})\ P ′′, where P ′′ is the only path in R(P ∪{P ′}) not ending in t ,
and a valid path storage scheme for the s-t-pathP∗∗ obtained from P∗ by replacing P ′
via P ′′. (For an example consider the p-w-subpath of P∗ in Fig. 7a, which is replaced
by a beginning of P2 in Fig. 7d.)

We now sketch our ideas of the rerouting that removes extended deadlock cycles in
P ∪ {P∗}. Recall that every extended deadlock cycle must contain parts of P∗ since

123

2434 Algorithmica (2022) 84:2414–2461

P ∗

P1

P2

P3

P

p

u
...

...

P 01320 . . . 010 . . . 030102 . . . 2n bits

(a) Look for common vertices or cross edges.

P ∗

P1

P2

P3

P

u

w

...
...

p

A 10 . . . 0101 . . . 010 . . . 010 n bits

(b) Explore subpaths with ext. deadl. cycles.

P ∗

P1

P2

P3

P

u

w

...
...

p

(c) Run a DFS to find a path fromu to w.

P1

P2

P ∗

P3

P

p

u

w

...
...

(d) A rerouting over cross edges.

Fig. 7 Steps and data structures of the algorithm to create good paths (Color figure online)

all remaining paths are good. Hence by moving along P∗ we look for an vertex u of
P∗ that is an endpoint of a cross edge {u, v}. Since a deadlock cycle is a cycle, there
must be some vertex w after u on P∗, that is connected by subpaths of P and cross
edges connecting the paths in P ∪ {P∗}.

Since common vertices and deadlock cycles may intersect, vertices u and w can
have a cross edge or be common vertex on a path in P (Fig. 7a). To find u and w,
our idea is to move over P∗ starting from s and stop at the first such vertex u of P∗.
Then use a modified DFS at u that runs over paths in P only in reverse direction
and over cross edges—but never over two subsequent cross edges1—and so explores
subpaths of P (marked orange in Fig. 7b). Whenever a vertex v of the clean area is
reached, the DFS backtracks, i.e., the DFS assumes that v has no outgoing edges.
We so guarantee that the clean area is not explored again and again. Afterwards we
determine the latest vertex w on P∗ that is a common vertex or has a cross edge with
one of the explored subpaths. If such a vertex w is found, we either have a common
subpath from u to w between a path Pc ∈ P and P∗ (which is removed as described
above) or a deadlock cycle. If it is an extended deadlock cycle, we have a subpath on
the cycle consisting of at least three vertices. As the proof of the following lemma
shows the extended deadlock cycle can be destroyed by removing the inner vertices
of the subpath and rerouting the paths via cross edges part of the extended deadlock
cycle. We find an extended deadlock cycle by an additional run of the modified DFS
from u to w (Fig. 7c) and reroute it along the cross edges. Figure 7d shows a rerouting
where the path in R(P ∪ {P ′}) starting with the vertices of the old path P2 becomes
the “new” path P∗.

1 This is due to a technical reason, the correctness paragraph in the proof of Lemma 11.

123

Algorithmica (2022) 84:2414–2461 2435

An s-p-path P̃ is called a clean subpath with respect to a set of good paths P ′ if,
for the extension Pext of P̃ by both an edge {p, t} and a vertex t , P ′ ∪ {Pext} is a set
of good paths. The green path in Fig. 6 is a clean subpath.

The next lemma summarizes the computation of our rerouting R. We initially call
the lemma with a clean subarea Q = {s} and a clean path that consists only of vertex
p = s.

Lemma 11 There is an algorithm that accepts as input a valid path data scheme for
� good s-t-paths P , a valid path data scheme for a possibly dirty s-t-path P∗, as
well as a clean area Q for P including a clean s-p subpath P̃ of P∗ and outputs a
rerouting R, a clean area Q′ including a clean s-p′ subpath P̃ ′ with the properties
that P̃ is a subpath of P̃ ′, and |Q′| = |Q|+Ω(n/ log k)∨ p′ = t . The algorithm runs
in O(nk3 log3 k) time and uses O(n + k2(log k) log n) bits.

Proof We begin to describe our algorithm to detect common vertices and extended
deadlock cycles. Afterwards we compute the rerouting R which is realized by
(V ∗,−→r ,

←−r). Initially, V ∗ is an array of bits consisting of all vertices of P ∪ {P∗}.
During the algorithm we remove vertices from V ∗ whenever we change our paths. We
want to use static space allocation to store the mappings −→r and ←−r , which requires us
to know the key set of the mapping in advance. We solve it by running the algorithm
twice and compute the key set in the first run, reset Q and p from a backup, and com-
pute the values and store them in a second run. For simplicity, we omit these details
below and assume that we can simply store the values inside −→r and ←−r .

Starting from vertex p we run along path P∗. We stop at the first vertex u if u is a
common vertex of P∗ and a path in P (Fig. 7a) or it is an endpoint of a cross edge.
For a simpler notion, we call such a vertex u of P∗ a vertex touching the vertices inP .
Next we use a DFS without restorations (due to our details described below, the DFS
stack consists of only O(�) vertices, which are incident to cross edges of the current
DFS path). We so explore the vertices Q′ from u that are reachable from u via edges
on the paths P used in reverse direction and cross edges, but ignore a cross edge if it
immediately follows after another cross edge and ignore the vertices in the clean area
Q. To allow an economical way of storing the stack, the DFS prefers reverse edges
(edges on a path P ∈ P) compared to cross edges when iterating over the outgoing
edges of a vertex. This guarantees that the vertices on the DFS-stack consist of at most
� subpaths of paths in P . We store the vertices Q′ processed by the DFS in a choice
dictionary [23, 25, 30] since a choice dictionary allows us to compute Q := Q ∪ Q′
in a time linear to the amount of elements in Q′. Moreover, we count the number q of
vertices of P∗ that touch Q′. Running over P∗ starting from u we can determine the
last such vertex w (Fig. 7b).

Then we run a modified DFS to construct a u-w-path P̃ that (1) consists only of
vertices in Q′, that (2) uses no subsequent cross edges and that (3) uses every path in
P only once (Fig. 7c).

Note that these restrictions (1) – (3) still allow us to reach all vertices of Q′. To
ensure restriction (3) wemaintain a bit array F of forbidden paths where i ∈ F exactly
if a subpath of Pi ∈ P is part of the currently constructed path. To construct P̃ the
DFS starts at vertex u and processes a vertex v as follows:

1. Stop the DFS if w is reached.

123

2436 Algorithmica (2022) 84:2414–2461

2. // To guarantee restriction (1):
If v /∈ Q′, then backtrack the DFS and color v white.

3. Iterate over all reversed edges (v, v′): recursively process v′.
4. // To guarantee restriction (2) and (3):

Iterate over all cross edges {v, v′}:
If color(v′) /∈ F and v′ was not discovered by a cross edge, recursively process
v′.

5. Backtrack the DFS to the predecessor ṽ of v on P̃ . If {̃v, v} is a cross-edge, color
v white.
// Coloring v white guarantees that we can explore outgoing cross-edges of v if
we reach v again over a reverse edges.

Let 1, . . . , � be the colors of the paths inP and (�+1) be the color of P∗. In the case
that u and w are both on one path of P , we reroute the paths as follows. Set −→r (u) =←−r (w) = color(u),←−r (u) = −→r (w) = �+1 and update V ∗ accordingly, i.e., remove
all internal vertices of the u-w subpath of P∗ from V ∗ (Fig. 8a). Afterwards, we set
Q := Q ∪ Q′ and p = next(w) and repeat the whole algorithm above, unless −→r
is defined for Θ(n/ log k) vertices (R uses O(n) bits) or we reached t while moving
over P∗. In this case we are done and break the entire procedure.

Recall that the construction of the u-w-path uses only one subpath of every path
in P . Without loss of generality, let P̃ be w, x1, . . . , y1, x2, . . . , y2, x3, . . . , y�′ , u,
where (yi , xi+1) are cross edges and xi , . . . , yi are subpaths of a path Pi ∈ P (for
some order of P and some �′ with 0 < i < �′ ≤ �).

We first assume that (w, x1) and (y�′ , u) are both cross edges (Fig. 8b). If the xi -yi -
subpath of every Pi as well as the u-w-subpath of P∗ consists of exactly two vertices,
then we found a simple deadlock cycle, in particular, u and w are the only vertices of
P ′ that touch Q′. We keep the simple deadlock cycle by setting Q := Q ∪ Q′ and
p = next(w) and repeat or break the whole algorithm analogously to the end of the
previous paragraph.

Otherwise we have an extended deadlock cycle and we compute a rerouting as
follows. For every cross edge (yi , xi+1) with 0 < i < �′ on the DFS stack, we set−→r (xi+1) = i , ←−r (yi) = i + 1, remove all vertices of each path Pi in between xi and
yi as well as all vertices of path P∗ in between u andw from V ∗. We now describe the
rerouting at w. Vertex u is handled analogously. If as assumed (w, x1) is a cross edge,
set−→r (x1) = �+1 and←−r (w) = 1 (Fig. 8c). Otherwise,w is on path P1 before vertex
y1, or w = x1. Then remove all vertices in between w and y1 on path P1 from V ∗
and set −→r (w) = � + 1 and ←−r (w) = 1 (Fig. 8d). For the case where neither (w, x1)
nor (y�′ , u) is a cross edge, as well as u and w are on different paths, see Fig. 8e for
the rerouting. For all cases described in this paragraph, finally set Q := Q ∪ Q′ and
repeat or break the algorithm exactly as described at the end of the previous paragraph.

Note that in all cases above, we only add information for O(k) predecessors and
successors with each extension of Q to our rerouting. Thus, our rerouting information
increases in small pieces. Whenever −→r is defined for Θ(n/ log k) vertices (R uses
O(n) bits) or we reached t while moving over P∗, we break the algorithm above. By
applying Lemma 5 on each rerouted path (the graph induced by the vertices of the paths
is taken as input graph), we can make all paths chordless without introducing further

123

Algorithmica (2022) 84:2414–2461 2437

P +1

P

P3

P2

P1

uw...
...

(a) u,w are on same path P ∈ P.

P +1

P

P3

P2

P1

u

w

x1

y1

x2

y2

x3

y3

x

y...
...

(b) (w, x1) and (y , u) are cross edges.

P +1

P

P3

P2

P1

u

w

x1

y1

x2

y2

x3

y3

x

...
...

(c) (w, x1) is a cross edge and y = u.

P +1

P

P3

P2

P1

u

w y1

x2

y2

x3

y3

x

y...
...

(d) (y , u) is a cross edge and x1 = w.

P +1

P

P3

P2

P1

u

w y1

x2

y2

x3

y3

x

...
...

(e) Neither (w, x1) nor (y , u) is a cross edge.

Fig. 8 Sketch of rerouted paths to remove common vertices and extended deadlock cycles. The dotted and
dashed subpaths are removed from the paths and the red lines with an arrow show a switch to another path
(Color figure online)

cross edges or extended deadlock cycles. Finally, return the rerouting (V ∗,−→r ,
←−r) as

well as the new clean area Q and the end vertex p of a new clean path in R(P ∪ P ′).

Correctness One can see that our algorithm discovers every common subpath of P∗
with a path Pc ∈ P as well as every extended deadlock cycle since, in both cases,
we have a vertex u followed by w on P∗ such that w is discovered from u while
running backwards on P . Since V ∗ only shrinks (no new cross edges can occur),
since by construction the new paths have no common vertices accept s and t (here it
is important that the constructed u-w-path has no subsequent cross edges) and since
we choose w as the latest vertex of P∗ touching Q′, Q maintains a clean area when
adding Q′ to it. Note that each vertex with a rerouting information becomes part of
Q. Thus, the size of Q increases by Ω(n/ log k) when our algorithm stops unless we
reach t while running on P∗.

Efficiency Concerning the running time, note that we travel along P∗ as well as
construct a set Q′ with a DFS on the paths in P . We process all vertices of Q′ at most

123

2438 Algorithmica (2022) 84:2414–2461

once by each of the two standard DFS runs (once to construct Q′ as well as once to
find a u-w-path for computing the rerouting) before Q′ is added into Q. Within the
processing of each vertex v, we call prev(v) only once.

Since each access to a vertex v can be realized in O(deg(v) + k3 log3 k) time
(Lemma 7), the total running time is O(nk3 log3 k).

Concerning the space consumption observe that−→r and←−r , a backup of Q and p as
well as all arrays use O(n) bits. To run the DFS, O(n+� log n) bits suffice (storing the
colorswhite, grey and black in O(n) bits and O(� log n) bits for theDFS stack sincewe
only have to store the endpoints of O(�) subpaths that are part of the stack). Together
with the space used by Lemma 7, our algorithm can run with O(n + k2(log k) log n)

bits. ��
We can not store our rerouted paths directly in a valid path data scheme, with the

reasons outlined shortly. Instead, to follow the path with respect to the rerouting we
provide a so-called weak path data structure for all s-t-paths of R(P ∪{P ′}), defined
in the following.

Recall that we have a path data scheme storing the single path P∗ and a path data
scheme storing the setP of paths. Let Q, p as well as R—realized by (V ∗,−→r ,

←−r)—
be returned by the previous lemma.Our valid path data scheme can only store s-t-paths,
but R(P ∪ {P ′}) may contain an s-p′-path P ′′ with p′
= t . In the case that p′
= t ,
we compute a path numbering and a valid path data scheme for the path P∗∗ obtained
from P∗ by replacing the subpath P ′ by P ′′. (The path P∗∗ replaces the path P∗ in the
computation of the next batch.) Furthermore, we remove the path P ′′ from R(P∪{P ′})
by removing its vertices from V ∗. It is easy to see that this modification of the paths
can be done in the same bounds as stated in Lemma 11.

After the modification of the paths we show how to follow the paths with respect
to R. Since we can find out in O(1) time if a vertex u belongs to P∗, a call of prev
and next below is forwarded to the correct path data scheme. We now overload the
prev and next operations of our path data structure as follows, and so get a weak
path data structure for R(P ∪ {P ′}) \ {P ′′} that supports prev′ and next′ in time
O(deg(v)+k3 log3 k) by using O(n+k2(log k) log n) bits and that supports access to
V ∗ in constant time. The runtime is due to the fact that we realize prev′ and next′
by computing the paths within at most one region, from which we know the color
of all neighbors of u. In detail, the weak path data structure supports the following
operations where u ∈ V ∗.

• prev′(u): If ←−r (u) = 0, return prev(u). Else, return v ∈ N (u) ∩ V ∗ with
color(v) = ←−r (u).

• next′(u): If −→r (u) = 0, return next(u). Else, return v ∈ N (u) ∩ V ∗ with
color(v) = −→r (u).

• inVStar(u): Returns true exactly if u ∈ V ∗.

Note that the key difference between a weak path data scheme and a valid path data
scheme is that we are unable to provide a color operator without fully traversing all
paths, which of course takes too long. To compute a valid path data scheme for � ∈ N

good s-t-paths we have to partition G[V ∗] into regions via set a boundary vertices
B ′ ⊆ V ∗. To construct B ′ we start with the set S of neighbors of s that belong to V ∗ and

123

Algorithmica (2022) 84:2414–2461 2439

s

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

2

3

18

4

5

1

6

7

8

9

10

11

13

12

14

15

16

17

18

19

1

2

3

t. . .

Fig. 9 Our algorithm determines a boundary by moving from s along all paths with respect to the cross
edges (colored edges), i.e., it cannot move from a vertex that is an endpoint of a cross edge if the other
endpoint is not yet reached. In the example, we assume that k log k = 18. The number inside the vertices
denotes the seen vertices since adding vertices to the boundary the last time (Color figure online)

P1

P2

P3

P4

P5

P6

P7

(a) Three simple deadlock cycles.

P1

P2

P3

P4

P5

P6

P7

(b) An extended deadlock cycle.

Fig. 10 Illustration of the construction of an extended deadlock cycle (Color figure online)

move S to the right “towards” t such that S always is a separator that disconnects s and
t in G[V ∗]. Whenever there are O(k log k) vertices “behind” the previous separator
that was added to our boundary, we add S to our boundary—see also Fig. 9. While
moving S towards t , we always make sure that the endpoints of a cross edge are not in
different components in G[V ∗ \ S]. Again, this can be thought of as a sliding window
algorithm. This means, we do not move S over an endpoint of a cross edge unless the
other endpoint is also in S. We show in the next lemma that this is possible if we
have no extended deadlock cycles with the help of the following structural lemma, for
which we define the following notion. Given a simple deadlock cycle Z consider a
partition of the vertices of Z in two sets Z left and Zright such that each v ∈ Z left has a
successor in Zright. Such a partition is possible for every simple deadlock cycle.

Lemma 12 Assume that we have no extended deadlock cycles in G with respect to P .
Then there is a partial ordering among the simple deadlock cycles defined as follows:
A simple deadlock cycle Z is smaller than a simple deadlock cycle Z ′ if there is a path
P ∈ P with vertices u before v such that (1) u in Z left and (2) there is a cross edge
{v′, v} with v′ ∈ Z ′

left.

Proof For a cross edge e = {v′, v} with the property of the lemma we say that e is a
cross edge of Z ′ that jumps behind Z . Assume that the ordering is not well defined.
Then there is a sequence of x ≥ 1 simple deadlock cycles Z1, Z2, . . . , Zx such that
Z1 jumps behind Zx and, for 1 ≤ i < x , Zi+1 has a cross edge that jumps behind Zi .
Figure 10a shows an example for x = 3 with the two different kinds of interaction
between two simple deadlock cycles: a cross edge part of the simple deadlock cycles

123

2440 Algorithmica (2022) 84:2414–2461

is used to jump on a common paths P ∈ P (see the red and orange simple deadlock
cycles) or another extra cross edge is used (see the green and red simple deadlock
cycles). It is easy to see that we then can use this sequence of simple deadlock cycles
and possibly some extra cross edges to build one or more extended deadlock cycles;
a contradiction.

We use the following strategy for resolving simple deadlock cycles: move S one
vertex further along the path for all vertices part of the simple deadlock cycle.

In the case that the previous lemma returned paths containing an s-p′-path with
p′
= t , then our weak path data structure gives access to � good s-t-paths. Otherwise,
p′ = t and we have access to � := � + 1 good s-t-paths.

Lemma 13 Given a weak path data structure for accessing � good s-t-paths P ′ there
is an algorithm that computes a valid path data scheme storing � good s-t-paths. The
algorithm runs in O(nk3 log3 k) time and uses O(n + k2(log k) log n) bits.

Proof Let V ∗ be the vertices of P∗ andP ′ obtained from the weak path data structure.
As in the last proof, we assume that the paths in P ′ are colored from 1, . . . , �. For the
case that p′
= t , we compute a new path data scheme for P∗ by Lemma 8. Moreover,
we remove the vertices of P∗ from V ∗ and start to compute our path data scheme
for P ′.

Our algorithm works in three steps. First we compute the boundary, then a path
data scheme, and finally make it valid.

Compute the boundary Start with the set S of all |P ′| neighbors u of s inG[V ∗]. Note
that the vertices in S are candidates for a boundary because our paths are chordless
and thus S cuts all s-t-paths; in other words, there is no path inG[V ∗ \S] that connects
s and t . For performance reasons, we cache next′(u) for each vertex u in S as long
as u is in S so that we have to compute it only once. From S we can compute the next
set S′ of candidates for a boundary. The idea is to try to put for each vertex u ∈ S the
vertex v = next′(u) of the same path into S′. However, we cannot simply do this if u
has a cross edge that can bypass S′. In that case we take u into S′. If S = S′, then one
(or multiple) deadlock cycles restrain us to add new vertices to S′. We are either able
to take the next vertex of every vertex of S that is part of a a simple deadlock cycle
into S′ or show that an extended deadlock cycle exists, which is a contradiction to our
property that our paths are good.

We now focus on the structures that we use in the subsequent algorithm. Let D
(initially D := S ∪ {s}) be a set consisting of all vertices of the connected component
of G[V ∗ \ S] that contains s as well as the vertices of S. (Intuitively speaking, D
is the set of vertices for which the membership in a boundary was already decided.)
We associate a vertex with the index of the path to which is belongs. Technically
we realize S and S′ as arrays of |P ′| fields such that S[i] and S′[i] store vertices ui
and vi , respectively, of Pi ∈ P ′ (1 ≤ i ≤ |P ′|). Moreover, for each ui ∈ S on path
Pi ∈ P ′ we store the number d(i) = |(N (ui) ∩ V ∗) \ D| in an array of |P ′| fields.
These numbers represents the number of edges whose head points at a vertex ui of
Pi outside of D. If d(i)
= 1, then ui has a cross edge to some vertex not in D and we
cannot simply put vi := next′(ui) inside S′, because we might get a cross edge that

123

Algorithmica (2022) 84:2414–2461 2441

can be used by an s-t-path in G[V ∗ \ S′]. Otherwise, if d(i) = 1, then ui has no cross
edge possibly bypassing S′ and we can take vi into S′. Let B ′ be an initially empty set
of boundary vertices. To know when the next set S can be added to the boundary B ′
while ensuring that B ′ defines regions of size O(k log k), we use a counter c (initially
c := 0) to count the number of vertices that we have seen until extending the boundary
the last time.

We now show our algorithm to compute S′ given S. Take B ′ := S, initialize d(i)
as |(N (ui) ∩ V ∗) \ D| for each ui ∈ S, and compute a set S′ in phases as follows. For
each ui ∈ S, if d(i) = 1, take vi = next′(ui) into S′, increment c by one, and set
d(i) = |(N (vi) ∩ V ∗) \ D|. Moreover, for each w j ∈ (N (vi) ∩ S) decrement d(j) by
one. If d(i)
= 1, take u into S′. If S
= S′, add S′ into D, set S := S′ and repeat the
phase.

Otherwise (i.e., S = S′) we run into the special case where we have encountered
a deadlock cycle (possible a combination of deadlock cycles), which we can handle
as follows. Since P ′ is good and P̃ is clean, we have one or more simple deadlock
cycles with vertices in S. Set c = c+|P ′| and take S̃ = {next′(u) | u ∈ S}. Note that
all these simple deadlock cycles have only vertices in S ∪ S̃, but not all vertices of S̃
have to be part of a simple deadlock cycle. To compute S′ from S̃, we have to remove
the vertices from S̃ that are not part of the simple deadlock cycle, which we can do as
follows. Take S′ := S̃. Check in rounds if S′ separates S from t , i.e., for each vi ∈ S′
with 1 ≤ i ≤ |P ′|, choose ui ∈ S and check if d(j) > �. If not, additionally check
if a w j ∈ (N (ui) ∩ V ∗) \ (D ∪ {S′[j]}) exists. If one of the check passes, some edge
of ui bypasses S′ and we replace vi by ui in S′ and decrement c by one. We then say
that we withdraw from vi . Then repeat the round until no such w can be found for any
vertex. Afterwards, set S′ as the new S, add S into D, and compute the d-values for
the new vertices in S, and proceed with the next phase.

If c > k log k after adding S into D, add the vertices of S to B ′, and reset c := 0.
Repeat the algorithm until S = N (t) ∩ V ∗ and add the vertices of S to B ′. Finally,
add all vertices of V ∗ with large degree to B ′.

Correctness of the boundary We show the following invariant whenever we update
S: the removal of S inG[V ∗] disconnects s and t . Initially, this is true for the neighbors
of s because their removal disconnects each chordless path in G[V ∗]. If we have a
vertex u ∈ S on Pi ∈ P with only one neighbor in G[V ∗ \ D], i.e., we have d(i) = 1,
then S′ = (S \ {u}) ∪ {next′(u)} is again a valid separator.

If we have no such vertex u, then we construct a set S′ and we check for each vertex
in S if it has a cross edge that destroys S′ being a separator, i.e., we have an s-t path
using the cross edge, but no vertex of S′. We only set S := S′ if S′ is again a separator.

We next show that we make progress with each separator S over all phases, i.e.,
we find a new separator so that D increases. As long as we do not run into the special
case having a deadlock cycle, we can clearly make progress. Let S′ be defined as in
the beginning of the special case, i.e., S′ consists of the successors on the paths of
each vertex in S. In the following we show that we only enter the special case exactly
if there exists a simple deadlock cycle Z with (Property 1) Z left ⊆ S and (Property 2)
there exists no cross edge {v1, v2} with v1 ∈ Z left and v2 /∈ Zright. We call a simple
deadlock cycle for which these properties hold a special deadlock cycle.

123

2442 Algorithmica (2022) 84:2414–2461

Since we are in the special case we know that all vertices of S are part of some
deadlock cycle. By Lemma 12 we have a partial ordering φ among all deadlock cycles
having a vertex in S. Then for a smallest deadlock cycle Z with respect to φ we must
have Z left ⊆ S, i.e., Property 1 of a special deadlock cycle holds for Z . Since Z is a
smallest deadlock cycle with respect to φ there can not be a cross edge described in
Property 2 of a special deadlock cycle. Now, for each u ∈ Z left, v being a successor
of u and for each cross edge {u, u′}, v and u′ are in Zright ⊆ S′ and we do not have to
withdraw any vertex of Zright from S′, and thus we make progress also in the special
case.

Computing the new valid path data scheme We already know V ∗ and the new
boundary B ′. For a valid path data scheme it remains to compute a path numbering
A′, the colors for the boundary vertices and their predecessors and successors that we
store in an O(n)-bit structure C ′ using static space allocation. We can compute A′ by
moving along each path from s to t .

It is important that all vertices of an s-t-path are colored with the same color,
however we want to use Lemma 6 that computes path inside one region. We first give
an intuition of our approach and describe the details in the subsequent paragraphs.
Since s-t-paths are disconnected by boundary vertices our approach is to start with an
arbitrary coloring of the neighbors W of s part of the paths that are the first boundary
vertices and from these make a parallel run over the paths.Whenever we enter a region
we explore it with our fixed deterministic network-flow algorithm and compute paths
within the region. Using the paths we propagate the colors of the boundary vertices
along the paths to the next boundary vertices, their predecessors and successors and
repeat our algorithm.

Let D ⊆ V ∗ (initially D := W ∪{s}) be the set of vertices for that we have already
decided their color. To find a fixed routing within a region we explore the region of
every neighbor of W in G[V ∗ \ (B ′ ∪ D)] using a BFS that skips over vertices in
B ′ ∪ D. We collect all visited vertices of one region in a set U realized by a balanced
heap. (If U is empty, the region was already explored from another neighbor of a
vertex of W and we continue with the next vertex v ∈ W .) In addition we construct
two sets S′ and T ′. Each visited vertex u ∈ U is put in S′ if prev′(u) ∈ B ′ holds and
put in T ′ if next′(u) ∈ B ′ holds (a vertex u can be part of S′ as well as T ′ if both
holds). We apply Lemma 6 with U , S′ and T ′ as input and get paths connecting each
vertex of S′ with another vertex of T ′. We set D := D ∪ U to avoid the exploration
of explored regions again.

Let F be a set of vertices whose successors ofW are inU . Intuitively, by having F
we can avoid computing the paths of a region again and gain. For each vertex v ∈ F
we use next′(v) and so move to a vertex u of S′—we are now on a path computed by
Lemma 6. We determine q as the color of v, store q as color for u, run along the path
until it ends. We store the color q for the last vertexw of the path and use next′(w) to
move to a boundary vertex v′ that we also color with q. If the vertex u′ = next′(v′)
is on a computed path we repeat this paragraph with v := v′. Otherwise, we put u′
into a set W ′ and remove v from F . If F loses its last vertex we set W := W ′ and
F = W ′ = ∅ and repeat the iteration. Otherwise, we proceed with the next vertex
v ∈ W .

123

Algorithmica (2022) 84:2414–2461 2443

While moving over the paths we extend D by the visited vertices. Moreover we
compute the path numbering for A′ and all colors are stored in C ′. Recall that in order
to use static space allocation we first need to know the set of all vertices in advance
that we afterwards want to color. Do get that set we can run the algorithm in two steps.
In the first we do not store the colors but only compute a set of vertices that must be
colored. Using it as a key set for static space allocation we repeat our algorithm in a
second step and store the coloring.

The triple (A′, B ′,C ′) represents the new valid path data structure.

Correctness of the new valid path data scheme The boundary and the rerouted
paths represented by the weak path data structure fixes the boundary vertices and their
predecessor and successors. Hence our selection of the vertices forU , S′ and T ′ is also
fixed for each region. Computing the paths using Lemma 6 fixes the path numbering.
Since a (re)computation with the same algorithm produces the same paths (being
subpaths of our s-t-paths) and since we used the paths to propagate the coloring, the
endpoints of a path and thus, all all colored vertices along a path are equally colored
in C ′. Therefore our path data scheme is valid. Moreover, S′ and T ′ consists of the
endpoints of subpaths of good paths. Hence, a network-flow algorithm can connect
each vertex of S′ with another vertex of T ′ and by Lemma 4 our paths are chordless
and deadlock free paths.

Efficiency We first consider the time to compute the boundary. For each new vertex
u in S, we spend O(deg(u)) time to determine once its degree in G[V ∗ \ D] and
to decrement already stored degrees of the neighbors of u. In each phase we iterate
over all elements of S and make |S	S′| = Ω(1) progress on at least one path, which
means that we need at most O(n) phases. Determining the previous / next vertex u on
a path can be done in time O(deg(u) + k3 log3 k).

Dealing with simple deadlock cycles requires us to compute the � initial members
of S′, which cost us O(�(deg(u) + k3 log3 k)) time and roundwise replace members
in S′ by their predecessors. Because |S′| = O(�), this can cause O(�) rounds. We
spend O(�2) time to check if S′ is a separator. Thus, O(�3) time allows us to compute
S′ in the special case, and O(�) time allows us to add the at most � vertices to D within
each phase.

To construct a valid path data scheme we need to explore all regions once, which
can be done in time linear to the size of each region plus the number of edges that
leave the region, i.e., in O(nk) total time. The construction of S′ and T ′ requires
the execution of prev′ and next′ on each vertex once, which runs in O(nk3 log3 k)
time. Lemma 6 uses O(n′k2 log2 k) time for a region of size n′. Using it on every
region once can be done in O(nk2 log2 k) time. Propagating the color requires us to
move along the paths, which can be done in total time O(nk3 log3 k) time. Thus, our
algorithm runs in time O(nk3 log3 k).

Our space bound is mainly determined by D, V ∗, A′, B ′ and C ′ each of Θ(n) bits
and the application of Lemma 7 (O(k2(log k) log n) bits), which is used in the weak
path data structure whenever we access a previous or next vertex on a path. For S, W
and F (and their copies) we need Θ(� log n) bits. The construction of the paths inside
regions uses O(k2(log k) log n) bits (Lemma 6). In total, we use O(n+k2(log k) log n)

bits. ��

123

2444 Algorithmica (2022) 84:2414–2461

Given path storage scheme storing � = O(k) good s-t-paths and an (� + 1)th path
P∗ we can batchwise compute a path storage scheme storing (� + 1) good s-t-paths
by subsequently executing O(log k) times Lemma 11 and Lemma 13.

Corollary 1 Given a path storage scheme storing � = O(k) good s-t-paths P and an
(� + 1)th dirty path with respect to P we can compute a path storage scheme storing
(� + 1) good s-t-paths in O(nk3 log3 k) time using O(n + k2(log k) log n) bits.

Initially our set of s-t-paths P is empty. Then a repeated execution of Corollary 1
allows us to show our final theorem, which will be used to find separators of size
O(k). Note that we gain an extra factor of (k log k + log∗ n) in the runtime due to
non-constant time access to the graph interface presented to the DFS, with the log∗ n
factor coming from the use of the space-efficient DFS of Lemma 1.

Theorem 3 Given an n-vertex graph G = (V , E) with treewidth k and two vertices
s, t ∈ V there is an algorithm that can compute a maximum amount of O(k) chordless
vertex-disjoint paths from s to t in O(n(k log k + log∗ n)k4 log3 k) time using O(n +
k2(log k) log n) bits.

Knowing a maximum set of � = O(k) vertex-disjoint paths between two vertices
s and t , we can easily construct a vertex separator for s and t .

Corollary 2 Given an n-vertex graph G = (V , E) with treewidth k, and two vertices
s ∈ V and t ∈ V , O(n(k log k + log∗ n)k4 log3 k) time and O(n + k2(log k) log n)

bits suffice to construct a bit array S marking all vertices of a vertex separator of size
O(k) for s and t.

Proof First construct the maximum number O(k) of possible chordless pairwise
vertex-disjoint paths from s to t (Theorem 3). Then try to construct a further s-t-
path with a DFS as describe in the proof of Lemma 10 and store the set Z of vertices
that are processed by the DFS. Finally run along the paths from s to t and compute
the set S consisting of the last vertex on each path that is part of Z . These vertices are
an s-t-separator. ��

Many practical applications that use treewidth algorithms have graphs with
treewidth k = O(n1/2−ε) for an arbitrary ε > 0, and then our space consumption
is O(n) bits.

4 Sketch of Reed’s Algorithm

In this section we first sketch Reed’s algorithm to compute a tree decomposition and
then the computation of a so-called balanced X -separator. In the following sections,
we modify his algorithm to make it space efficient.

Reed’s algorithm [37] takes an undirected n-vertexm-edge graphG = (V , E)with
treewidth k and an initially empty vertex set X as input and outputs a balanced tree
decomposition of width 8k+6. To decompose the tree he makes use of separators. An
X -separator is a set S ⊂ V such that S separates X among the connected components

123

Algorithmica (2022) 84:2414–2461 2445

of G[V \ S] and no component contains more than 2/3|X | vertices of X . A balanced
X -separator S is an X -separator with the additional property that no component of
G[V \ S] contains more than 2/3|V | vertices.

The decomposition works as follows. If n ≤ 8k+6, we return a tree decomposition
(T , B) consisting of a tree with one node r (the root node) and a mapping B with
B(r) = V . Otherwise, we search for a so-called balanced X -separator S of size
2k + 2 that divides G such that G[V \ S] consists of x ≥ 2 connected components

 = {G1, . . . ,Gx }. Then, we create a new tree T with a root node r , a mapping B,
and set B(r) to X ∪ S. For each graph Gi ∈
 with 1 ≤ i ≤ x , we proceed recursively
with G ′ = Gi [V (Gi) ∪ S] and X ′ = ((X ∩ V (G ′)) ∪ S). Every recursive call returns
a tree decomposition (Ti , Bi) (i = 1, . . . , x). We connect the root of Ti to r , we then
set B(w) = Bi (w) for all nodes w ∈ Ti . After processing all elements of
 return the
tree decomposition (T , B).

Since a balanced X -separator is used, the tree has a depth of O(log n), and thus
the recursive algorithm produces at most O(log n) stack frames on the call stack—
each stack frame is associated with a node w of T . A standard implementation of the
algorithmneeds a newgraph structure for each recursive call. In theworst-case, each of
these graphs contains 2/3 of the vertices of the previous graph. Thus, the graphs on the
stack frame use Θ((n +m) log n) = Θ(kn log n) bits. Storing the tree decomposition
(T , B) requires Θ(kn log n) bits as well. The various other structures needed can be
realized within the same space bound. In conclusion, a standard implementation of
Reed’s algorithm requires Θ(kn log n) bits.

The next lemma shows a space-efficient implementation for finding a balanced
X -separator.

Lemma 14 Given an n-vertex graph G = (V , E) with treewidth k and X ⊆ V of
at most 6k + 6 vertices, there is an algorithm for finding a balanced X-separator
of size 2k + 2 in G that, for some constant c, runs in O(ckn log∗ n) time and uses
O(n + k2(log k) log n) bits.

Proof We now sketch Reed’s ideas to compute a balanced X -separator. To compute
a balanced X -separator we compute first an X -separator S1. To make it balanced, we
compute an additional R-separator S2 where R is a set of vertices that is in some sense
equally distributed in G. Then S = S1 ∪ S2 is a balanced X -separator.

Reed computes an X -separator by iterating over all 3|X | possibilities to split X
into three vertex-disjoints sets X1, X2 ⊆ V and XS with |XS| ≤ k and |X1|, |X2| ≤
max{k, 2/3|X |}.

For each iteration connect two new vertices s′ and t ′ with all vertices of X1 and X2,
respectively, compute vertex disjoint paths with Corollary 2 to find a separator S and
check if XS ⊆ S holds.

We now shortly describe Reed’s computation of the set R. Run a DFS on the graph
G and compute in a bottom up process for each vertex v of the resulting DFS tree the
number of descendants of v. Whenever this number exceeds n/(8k + 6), add v to the
initially empty set R and reset the number of descendants of v to zero. At the end of
the DFS, the set R consist of at most 8k + 6 vertices, which can be used to compute a
balanced X -separator as described above. Similar to the X -separator, we compute an
R-separator.

123

2446 Algorithmica (2022) 84:2414–2461

We now show how to compute R using O(n) bits. To prove the lemma, we use the
following observation.Whenever the number of descendants for a node u is computed,
the numbers of u’s children are not required anymore.

The idea is to use a balanced parentheses representation, which consists of an
open parenthesis for every node v of a tree, followed by the balanced parentheses
representation of the subtrees of every child of v, and a matching closed parenthesis.

Consequently, if v is a vertex with x descendants having its open parenthesis at
position i and its closed parenthesis at position j , then the difference between i and j
is 2x .

Note that, taking an array A of 2n bits, we can store the number of descendants of
v in A[i . . . j] as a so-called self-delimiting number by writing x as 1x0. This means
that we overwrite the self-delimiting numbers stored fo the descendants of the children
of v.

To construct R we run a space-efficient DFS twice, first to construct a balanced
parentheses representation of the DFS tree, which is used to compute the descendants
of each vertex in the DFS tree and so choose vertices for the set R, and a second time to
translate the ids of the chosen vertices since the balanced parentheses representation
is an ordinal tree, i.e., we lose our original vertex ids and the vertices get a numbering
in the order the DFS visited the vertices. After choosing the vertices that belong to the
set R and marking them in a bit array R′, we run the DFS again and create a bit array
R∗ that marks every vertex v that the DFS visits as the i th vertex if and only if i is
marked in R′.

It remains to show how to compute the bit array R′. Let P be a bit array of 2n bits
storing the balanced parentheses representation, and let A be a bit array of 2n bits
that we use to store the numbers of descendants for some vertices. Note that a leaf
is identified by an open parenthesis followed by an immediately closed parenthesis.
Moreover, since the balanced representation is computed via a DFS in pre-order, we
will visit the vertices by running through P in the same order. Note that Munro and
Raman [36] showed a succinct data structure for balanced representation that initializes
in O(n) time and allows to compute the position of a matching parenthesis, i.e.,
given an index i of an open (closed) parenthesis there is an operation findclose(i)
(findopen(i)) that returns the position j of the matching closed (open) parenthesis.

The algorithm starts in Case 1 with i = 1 (i ∈ {1, . . . , 2n}). We associate 0 with
an open parenthesis and 1 with a closed parenthesis.

Case 1 Iterate over P until a leaf is found at position i , i.e., find an i with P[i] =
0 ∧ P[i + 1] = 1. Since we found a leaf we write a 1 as a self-delimiting
number in A[i . . . i + 1]. Set i := i + 2 and check if P[i] = 1. If so, move to
Case 2, otherwise repeat Case 1.

Case 2 Atposition i is a closingparenthesis, i.e., P[i] = 1. In this caseswe reached the
end of a subtreewith j = findopen(i) being the position of a corresponding
open parenthesis. That means we have already computed all numbers for the
whole subtree. Using an integer variable x , sum up all the self-delimiting
numbers in A[j + 1 . . . i − 1]. Check if the sum x + 1 exceeds �. If it does
write 0 as a self-delimiting number in A[j . . . i] and set R′[j] = 1, otherwise
write x + 1 in A[j . . . i]. Note that we store only one self-delimiting number

123

Algorithmica (2022) 84:2414–2461 2447

between an open parenthesis and its matching closed parenthesis, and this
number does not necessary occupy the whole space available. Hence, using
findclose operation we jump to the end of the space that is reserved for a
number and start reading the second.
After writing the number we set i := i + 1. We end the algorithm if i is out
of P , otherwise we check in which case we fall next and proceed with it.

Efficiency: To compute the set R, we run two space-efficient DFS with O(n) bits
in O(m + n log∗ n) = O(nk log∗ n) time (Lemma 1). The required X -separator and
R-separator are computed in O(n(k log k + log∗ n)k4 log3 k) time (Corollary 2). We
so get a balanced X -separator in (3|X |((nk log∗ n)+(n(k log k+ log∗ n)k4 log3 k))) =
O(ckn log∗ n) time for some constant c.

The structures P , A, and the space-efficient DFS use O(n) bits. The size of the sets
X1, X2, XS and R are bound by O(k) and so use O(k log n) bits. Corollary 2 uses
O(n + k2(log k) log n) bits, which is the bottleneck of our space bound. ��

5 Tree-Decomposition Iterator UsingO(kn) Bits

We now introduce our iterator by showing a data structure, which we call tree-
decomposition iterator.We think of it as an agentmoving through a tree decomposition
(T , B), one node at a time in a specific order. We implement such an agent to traverse
T in the order of an Euler-traversal and, when visiting some node w in T , to return
the tuple (B(w), dw) with dw being the depth of the node w.

The tree-decomposition iterator provides the following operations:

• init(G, k): Initializes the structure for an undirected n-vertex graph G with
treewidth k.

• next:Moves the agent to the next node according to an Euler-traversal and returns
true unless the traversal of T has already finished. In that case, it returns false.

• show: Returns the tuple (B(w), dw) of the node w where the agent is currently
positioned.

We refer to initializing such an iterator and using it to iterate (callshow() after every
call of next()) over the entire tree decomposition (T , B) of a graph G as iterating
over a tree-decomposition (T , B) of G. Our goal in this section is to show that we can
iterate over the bags of a tree decomposition by using O(kn) bits and ckn log n log∗ n
time for some constant c. Recall that Reed’s algorithm computes a tree decomposition
using separators. Assume we are given a separator S in G. The separator divides G
into several connected components, which we have to find for a recursive call. We
refer to a data structure that implements the functionality of the lemma below as a
connected-component finder. In the next lemma we use a choice dictionary [23, 25,
30] that manages a subset U ′ of a universe U = {1, . . . , n} and provides—besides
constant-time operations contains, add and remove—a linear-time iteration over U ′.

Lemma 15 Given an undirected n-vertex m-edge graph G = (V , E) and a vertex set
S ⊆ V , there is an algorithm that iterates over all connected components of G[V \ S].
The iterator is realized by the following operations.

123

2448 Algorithmica (2022) 84:2414–2461

• init(G, S): Initializes the iterator.
• next: Returns true exactly if there is another connected component left to iterate
over. Returns false otherwise.

• show: Returns the triple (C, p, n′) where C is choice dictionary containing all
n′ vertices of a connected component, and p ∈ C.

The total runtime of all calls of next is O(n + m) unless next returns false, and the
running time of init(G, S) as well as of show is O(1). All operations use O(n)

bits.

Proof The iterator is initialized by creating a bit array D tomark all vertices that are part
of connected components overwhichwe already have iterated. To hold the current state
of the iterator and answer a call of show we store the triple (C = ∅, p = 0, n′ = 0)
(as defined in the lemma). Technically, to avoid modifications of the internal state of
the iterator, we maintain a copy of C that we return if show is called.

If next is called, we iterate over V starting at vertex p until we either find a vertex
p′ ∈ V \ (S ∪ D) or reach |V | + 1 (out of vertices). If p′ exists, we have found a
connected component whose vertices are not part of D. We prepare a possible call
of show by computing new values for (C, p, n′) as follows: using a space-efficient
BFS explore the connected component in G[V \ S] starting at p′. Collect all visited
vertices in a choice dictionary C ′ as well as add them to D. Set C := C ′, p := p′ and
n′ = |C ′|. Finally output true. Otherwise, p′ does not exits and we reached |V | + 1,
set p′ = |V | + 1 and return false. For a call of show return (C, p, n′).

A choice dictionary can be initialized in constant time, thus init as well as show
run in constant time. The operation show has to scan V for the vertex p′ in O(n) time
and runs a BFS in O(n +m) time to explore the connected component containing p′.
However, the total time of allnext operation isO(n+m) since the operation continues
the scan in V from p (the last found p′) and avoids the exploration all vertices in D,
i.e., all already explored connected components. The bit array D as well as the choice
dictionary C use O(n) bits.

��
To implement our tree-decomposition iterator we turn Reed’s recursive algo-

rithm [37] into an iterative version. For this we use a stack structure called record-stack
that manages a set of data structures to determine the current state of the algorithm.
Informally, the record-stack allows us to pauseReed’s algorithm at specific time-points
and continue from the last paused point. With each recursive call of Reed’s algorithm
we need the following information:

• an undirected ni -vertex graph Gi = (Vi , Ei) (i = 0, 1, 2, . . .) of treewidth k,
• a vertex set Xi , a separator Si , and
• an instance Fi of the connected-component-finder data structure that iterates over
the connected components of G[Vi \ Si] and that outputs the vertices of each
component in a bit array.

We call the combination of these elements a record. Althoughwe use a record-stack
structure, often we think of it to be a combination of specialized stack structures: a
subgraph-stack, which manages to store the recursive graphs used as a parameter

123

Algorithmica (2022) 84:2414–2461 2449

for the call of Reed’s algorithm, a stack for iterating over the connected components
of G[V \ S], called component-finder stack, a stack containing the separators as bit
arrays, called S-stack, a stack containing the vertex sets X as bit arrays, called X -
stack. The bit arrays Si , Xi and Fi contain information referring to Gi and are thus
of size O(ni). On top of Si and Xi we create rank-select data structures. Pushing a
record r�+1 = (G�+1, S�+1, X�+1, F�+1) to the record-stack is equivalent to pushing
each element in r�+1 to the corresponding stack (and analogous for popping).

Lemma 16 When a record-stack R is initialized for an undirected n-vertex graph G
with treewidth k such that each subgraph Gi of G0 = G on the subgraph-stack of
R contains 2/3 of the vertices of Gi−1 for 0 < i < � and � = O(log n), then the
record-stack occupies O(n + k log2 n) bits plus O(kn) bits for the subgraph stack.

Proof Letm be the number of edges inG. We know that the size of the subgraph-stack
structure is O(n + m) bits when the number of vertices of the subgraphs shrink with
every push by a factor 0 < c < 1. Since each subgraph of G0 has also a treewidth
k, the number of edges of each subgraph is bound by k times the number of vertices.
Thus, the subgraph stack uses O(n + m) = O(kn) bits.

The size of the bit arrays Xi , Si (including the respective rank-select structures) and
the component-finder Fi is O(ni) for 0 ≤ i ≤ �. This means the total size of the stacks
containing these elements is O(n) bits since they shrink in the same way as the vertex
sets of the subgraphs. Storing the bag that is currently being output uses O(k log n)

bits. Thus, the size of the record-stack without the subgraph stack is O(n + k log2 n)

bits. ��
We call a tree decomposition (T , B) balanced if T has logarithmic height, and

binary if T is binary. Using our space-efficient separator computation for finding a
balanced X -separator we are now able to show the following theorem.

Theorem 4 Given an undirected n-vertex graph G with treewidth k, there exists an
iterator that outputs a balanced and binary tree decomposition (T , B) of width 8k+6
in Euler-traversal order using O(kn) bits and ckn log n log∗ n time for some constant
c.

Proof We implement our tree-decomposition iterator by showing init, next and
show. We initialize the iterator for a graph G with n > 8k+6 vertices, by initializing
a flag f = 0, which indicates that the agent is not yet finished, and initialize a record-
stack. The record stack is initialized by first initializing its subgraph stack with a
reference to G as the first graph G0. Next, we push the empty vertex set X0 on the
X -stack in form of an initial-zero bit array X0 of length n. Now, using the techniques
described in Lemma 14, we find a balanced X0-separator S0 of G0 and push it on the
S-stack. Then we create a new connected-component-finder instance F0 (Lemma 15)
and push F0 on the component-finder stack.

We now view our implementation of next(), which has the task to calculate the
next bag on the fly. Since the tree T of our tree decomposition does not exist as a real
structure, we only virtually move the agent to the next node by advancing the state of
Reed’s algorithm. If f = 1, we return false (the agent can not be moved) and do not

123

2450 Algorithmica (2022) 84:2414–2461

change the state of the record-stack. Otherwise, we first virtually move the agent and
then return true.

Move to parent If n� ≤ 8k + 6 (we leave a leaf), we pop the record stack.
Otherwise, if the connected-component-finder instance F� has iterated over all

connected components and the record-stack contains more than one record, we pop
it. If afterwards the record-stack contains only one record, we set f = 1 (the agent
moved to the root from the rightmost child; the traversal is finished).

Move to next child If F� has not iterated over all connected components (the agent
is moving to a previously untraversed node), we use F� to get the next connected-
component C in G�[V� \ S�], we push the vertex-induced subgraph G[C ∪ S�] on the
subgraph stack as G�+1 = (V�+1, E�+1) and proceed with one of the next two cases.

• If n�+1 ≤ 8k+6, we are calculating the bag of a leaf of T by setting B(w) = V�+1.
We do this by pushing a bit array with all bits set to 1 on the S-stack and X -stack
and an empty component-finder on the component-finder stack.

• If n�+1 > 8k + 6, the agent is moving to a new internal node whose bag we are
calculating as follows: we push a new bit array X�+1 = (X� ∩ V�+1) ∪ S� on the
X -stack. We then find the balanced X�+1-separator S�+1 of G�+1 and push it on
the S-stack. Then, create a new connected component-finder F�+1 for G�+1 and
S�+1 and push it on the component-finder stack and return true.

Anytime we pop or push a new record, we call the toptune function of the
subgraph stack to speed up the graph-access operations. This finishes our computation
of next().

To implement show(), we return the tuple (B(w), dw)with B(w) being the current
bag, and dw being the number of records of the record-stack. The current bag is defined
as S∪X . Thus,we iterate over all elements of S∪X via their rank-select data structures.
Note that, since the subgraph G� on top of the record stack is toptuned, we can return
the bag as vertices of G0 or G� in O(k) time.

EfficiencyThe iterator uses a record-stack structure, which occupies O(kn) bits. Since
the running time of Lemma 14 is O(ckn log∗ n), for some constant c, and the input
graphs are split in each recursion level into vertex disjoint subgraphs, the running time
in each recursion level is O(ckn log∗ n). Summed over all O(log n) recursion levels
we get a running time of O(ckn log n log∗ n).

Make T binary The balanced X -separator S partitions V \ S into any number of
vertex disjoint sets between 2 and n such that no set contains more than 2/3 of the
vertices of V (and X). The idea is to combine these vertex sets into exactly two sets
such that neither contains more than 2/3|V | vertices. For this we change our usage of
the connected component finder slightly. After we initialize F� we also initialize two
bit arrays C1 and C2 of size n� each with all bits set to 0. We also store the number of
bits set to 1 for each of the bit arrays as s1 and s2, i.e., the number of vertices contained
in them (initially 0). We now want to collect the vertices of all connected components
ofG�[V� \ S�] inC1 andC2. While there are still connected components to be returned
by F�, this is done by obtaining the size of the next connected component via F� as
s. If s1 + s ≤ 2/3|V�|, we collect the next connected component in C1 and increment

123

Algorithmica (2022) 84:2414–2461 2451

s1 = s1+s. Otherwise, we do the same but forC2 and s2. Doing this until all connected
components are found results in C1 and C2 to contain all connected components of
G�[V� \ S�]. For (C1,C2) we implement a function that returns C1 if it was not yet
returned, or C2 if it was not yet returned, or null otherwise. We store (C1,C2) with
the respective functions on the connected component finder stack (instead of F�). Any
time we do this during our iterator, the graphG� is toptuned, resulting in constant time
graph access operations. The previous runtime and space bounds still hold. ��

Often it is needed to access the subgraph G[B(w)] induced by a bag B(w) of a tree
decomposition (T , B) for further computations.We call such a subgraph bag-induced.
For this we show the following:

Lemma 17 Given an undirected n-vertex graph G with treewidth k and an iterator
A : G → (T ,B) that iterates over a balanced tree decomposition of width O(k) we
can additionally output the bag-induced subgraphs using O(k2 log n) bits additional
space and O(kn log n) additional time.

Proof To obtain the edges we use a bit matrix M� of size O(k2) whose bit at index
[v][u] is set to 1 exactly if there exists an edge {v, u} in G[B(w)�]. To quickly find
the edges in G[B(w)�] we use M� together with rank-select data structures on S� and
X� that allow us to map the vertices in B(w)� = S� ∪ X�, names as vertices of G�, to
{1, . . . , k}.

We create M� anytime a new record r� is pushed on the record stack, and anytime
r� is popped, we throw away M�. For reasons of performance relevant in Sect. 7, we
want to avoid accessing vertices multiple times in a graph. Hence, when we push a
bit matrix M�, we first use M�−1 to initialize edges that were contained in B(w)�−1
and are still contained in B(w)�. To obtain the edges of a vertex v in B(w)�, we can
iterate over all the edges of v in G� and check if the opposite endpoint is in B(w)�.
However, by using definition (TD2) of a tree decomposition, it suffice to iterate only
over the edges of such a vertex once, i.e., the first time they are contained in a bag to
create M�.

EfficiencyWecan see that we store atmost O(log n)matrices this way since the record
stack contains O(log n) records (i.e., the height of the treedecomposition). Storing all
bit matrices uses O(k2 log n) bits and initializing all bit matrices takes O(kn log n)

time, including initializing and storing the rank-select structures if not already present.
��

We conclude the section with a remark on the output scheme of our iterator. The
specific order of an Euler-traversal encompasses many other orders of tree traversal
such as pre-order, in-order or post-order. To achieve these orders we simply filter the
output of our iterator, i.e., skip some output values.

6 Modifying the Record Stack toWork withO(n+ k2 logn) Bits

The space requirements of the record stack used by the iterator shown in Theorem 4
is O(kn) bits. Our goal in Sect. 7 is to reduce it to O(n) bits. The bottleneck here

123

2452 Algorithmica (2022) 84:2414–2461

is the record stack. Assume that, for � = O(log n), a graph G� = (V�, E�) with n�

vertices is on top of the record stack. When considering the record r� on top of the
record stack we see that most structures use O(n�) bits: a separator S�, a vertex set X�

and a connected component finder F�. The only structure that uses more space is the
subgraph stack, which uses O(kn�) bits. This is due to the storage of the edge set E�

using O(kn�) bits. The strategy we want to pursue is to store only the vertices of the
subgraphs (but not the edges) such that the space requirement of the subgraph stack is
O(n) bits. We call such a subgraph stack a minimal subgraph stack. In the following
we always assume that the number of subgraphs on the minimal subgraph stack is
O(log n) and that the subgraphs shrink by a constant factor. This is in particular the
case for the subgraphs generated by Reed’s algorithm.

In the following we make a distinction between complete and incomplete vertices.
Only complete vertices have all their original edges, i.e., they have the same degree
in the original graph as they do in the subgraph. Note that the number of incomplete
vertices in each subgraph is O(k), which follows directly from the separator size. To
clarify, a vertex in the subgraph G� on top of the subgraph stack is incomplete exactly
if it is contained in a separator of the parent graph G�−1.

Lemma 18 Assume that we are given an undirected n-vertex graph G = (V , E) with
treewidth k as well as a toptuned minimal subgraph stack (G0 = G, . . . ,G�) with
� ∈ O(log n). Assume further that each graphGi (1 ≤ i ≤ �) has ni vertices, mi edges
and contains O(k) incomplete vertices. The modified subgraph stack can be realized
with O(n+k2 log n) bits and allows us to push an n�+1-vertex graph G�+1 on top of a
minimal subgraph stack in O(k2n� log∗ �) time. The resulting graph interface allows
us to access the adjacency array of the complete vertices in constant time whereas an
iteration over the adjacency list of an incomplete vertex runs in O(m�) time.

Proof Recall that the subgraph stack considers every edge as a pair of directed arcs. Let
φ be the vertex translation betweenGi andG0. Each complete vertex ofGi = (Vi , Ei)

has the same degree in both Gi and G0. Thus, to iterate over all arcs of a complete
vertex v ∈ Vi , iterate over every arc (φ(v), u) of φ(v) and return the arc (v, φ−1(u)).
For a complete vertex v we can use the adjacency array of v. To iterate over the arcs
of an incomplete vertex v (via support of adjacency lists of v), we differ two cases: (1)
the arcs to a complete vertex and (2) the arcs to another incomplete vertex. To iterate
over all arcs of (1) we iterate over all complete vertices u of Gi and check in G0 if
φ(u) has an edge to φ(v). If it does, {v, u} is an edge of v. Thus, the iteration over all
arcs incident to an incomplete vertex of (1) runs in O(mi) time.

For the arcs according to (2), we use matrices Mi storing the edges in between
incomplete vertices. To build the matrices we proceed as follows. Whenever a
new graph G�+1 is pushed on the subgraph stack, we create a bit matrix M�+1
of size k2 and a rank-select data structure I�+1 of size n�+1 with I�+1[v] = 1
exactly if v is incomplete. M�+1 is used to store the information if G�+1 con-
tains an edge {u′, v′} between any two incomplete vertices u′ and v′ of G�+1,
which is the case exactly if M�+1[I�+1.rank(u′)][[I�+1.rank(v′)]] = 1 and
M�+1[I�+1.rank(v′)][[I�+1.rank(u′)]] = 1.

First, we initialize M�+1 to contain only 0 for all bits. Then we use M� to find
edges between incomplete vertices of G� and set the respective bits in M�+1 to 1 if

123

Algorithmica (2022) 84:2414–2461 2453

those incomplete vertices are still contained in G�+1 (if � = 0, we set all bits to 0).
Afterwards we are able to find edges between incomplete vertices that are already
incomplete in the previous graph. We need to update M�+1 to contain the information
of the edges between the vertices that are complete in G�, but are not complete in
G�+1. Since they are complete in G�, we can simply iterate over all complete edges
e of G� in O(km�) time and check if both endpoints of e are incomplete in G�+1 via
I�+1. If so, we set the respective bits in M�+1 to 1.

Efficiency Queries on Mi (1 ≤ i ≤ �) allow us to iterate over all arcs of (2) of an
incomplete vertex in O(k) time. This results in a combined runtime of O(m� + k) =
O(m�) by ignoring zero-degree vertices in M�.

Storing all bit matrices Mi uses O(k2�) = O(k2 log n) bits and the space used by
the rank-select structures is negligible.

The adjacency lists are realized by storing a pointer for each vertex. This uses
negligible additional Θ(k log n) bits for implementing the interface. Our modified
subgraph stack uses O(n + k2 log n) bits. ��

The last lemma allows us to store all recursive instances of Reed’s algorithm with
O(n + k2 log n) bits. We use the result in the next section to show our first O(n)-bit
iterator to output a tree decomposition on graphs of small treewidth.

7 Tree-Decomposition Iterator UsingO(n) Bits for k = O(n1/2−�)

By combining the O(kn)-bit iterator of Theorem 4 with the modified record stack of
Lemma 18 we can further reduce the space to O(n) bits for a sufficiently small k.
Recall that the only structure using more than O(n) bits in the proof of Theorem 4
was the subgraph stack whose space is stated in Lemma 16. This allows us to show
the following theorem.

Theorem 5 Given an undirected n-vertex graph G with treewidth k, there is an iter-
ator that outputs a balanced binary tree decomposition (T , B) of width 8k + 6 in
Euler-traversal order using O(n + k2 log2 n) bits and ckn log n log∗ n time for some
constant c. For k = O(n1/2−ε) with an arbitrary ε > 0, our space consumption is
O(n) bits.

Proof Recall that the tree decomposition iterator of Theorem 4 uses the algorithm of
Theorem 3 to find k vertex-disjoint paths for the construction of the separators.

With the construction of the k vertex-disjoint paths we have to compute and access
path storage schemes. To avoid querying the neighborhood of an incomplete vertex v

several times by querying the region with v several times, we add the O(k) incomplete
vertices to the boundary vertices when we build a path data structure. This neither
increases our asymptotical time nor our total space bounds. Moreover, by adding the
O(k) incomplete vertices v to the boundary vertices and storing prev(v)/next(v),
we avoid running a BFS on incomplete vertices and searching for the predecessor and
successor of v. If we afterwards construct a path, we iterate over the adjacency lists
of incomplete vertices only once—even if regions are constructed several times.

123

2454 Algorithmica (2022) 84:2414–2461

The construction of a vertex-disjoint path involves O(log k) reroutings. Recall that
each rerouting extends a clean area by traversing over a path P∗ (two DFS) and then
searches “backwards” within the area with two further DFS. Altogether, a rerouting
can be done with O(1) DFS runs and O(log k) DFS runs over all reroutings for one
path P∗.

To construct a balanced X -separator a set R is constructed by another DFS run.
However, this iterates over the neighbors of each vertex only once. To sum up a
balanced X -separator can be constructed by O(c̃k) DFS runs for some constant c̃.

Given an ni -vertex, mi -edge graph Gi stored in a minimal subgraph stack, we can
run the space-efficient DFS of Lemma 1 in O(kmi + ni log∗ ni) = O(k2ni log∗ ni)
time and O(n + k log n) bits, which is a factor of O(k) slower than the DFS of The-
orem 2. Thus, a balanced X -separator can be constructed in O(c̄kni log∗ ni) time for
some constant c̄, which is the same time as stated in the proof of Theorem 4 (the
constant c̄ here is larger). Concerning the space consumption note that we have a
record-stack of size O(n + k log2 n) bits by Lemma 16 by using our minimal sub-
graph stack of O(n + k2 log n) bits. The O(k) extra values for prev and next are
negligible. Finally note that we can search a separator with O(n+k2(log k) log n) bits
by Corollary 2. ��

We next combine the theorem above with a recent tree-decomposition algorithm
by Bodlaender et al. [11] as follows. The algorithm by Bodlaender et al. finds a tree
decomposition for a given n-vertex graph G of treewidth k in bkn time for some
constant b [11]. The resulting tree decomposition has a width of 5k + 4. The general
strategy pursued by them is to first compute a tree decomposition of large width and
then use dynamic programming on that tree decomposition to obtain the final tree
decomposition of width 5k + 4. For an overview of the construction, we refer to [11,
p. 3]. The final tree decomposition is balanced due to the fact that its construction uses
balanced X -separators at every second level , alternating between an 8/9-balanced and
an unbalanced X -separator [11, p. 26]. Further details of the construction of different
kinds of the final tree decomposition can be found in [11, p. 20, and p. 39]. Since
its runtime is bounded by bkn, it can write at most bkn words and thus has a space
requirement of at most bkn log n bits.

Our following idea is to use a hybrid approach to improve the runtime of our
iterator. We first run our iterator (Theorem 5). Once the height of the record-stack
of our tree-decomposition iterator is equal to z = bk log log n, the call of next()

uses an unbalanced X -separator S∗. This ensures that the size of the bag is at most
4k + 2 instead of 8k + 6. (We later add all vertices in the bag to all following bags.)
Note that using a single unbalanced X -separator S∗ on all root-to-leaf paths of our
computed tree decomposition increases the height of the tree decomposition only by
one. A following call of next() toptunes the graph G� and then uses Bodlaender et
al.’s linear-time tree-decomposition algorithm [11] to calculate a tree decomposition
(T ′, B ′) of an n� vertex subgraph G�, which we then turn by folklore techniques into
a binary tree decomposition (T ′′, B ′′) by neither increasing the asymptotic size nor
the width of the tree decomposition. In detail, this is done by repeatedly replacing all
nodes w with more than two children by a node w0 with two children w1 and w2,
with B(w0) = B(w1) = B(w2) = B(w), followed by adding the original children

123

Algorithmica (2022) 84:2414–2461 2455

of w to w1 and w2, alternating between them both. To ensure property (T D2) of a
tree decomposition, we add the vertices in S∗ to all bags of (T ′′, B ′′). We so get a tree
decomposition of the width (5k + 4) + (4k + 2) = 9k + 6.

Since G� contains n� = O(n/2z) = O(n/(bk log n)) vertices, the space usage of
the linear-time tree-decomposition algorithm is bkn� log n = O(n) bits. The runtime
of the algorithm is bounded by bkn�. Once we obtain (T ′, B ′), we also need to trans-
form each bag b′ of B ′ since B ′ contains mappings in relation to G ′, but we want them
to contain mappings in relation to G. This can be done in negligible time since G ′
was toptuned before. We then initialize a tree-decomposition iterator I for (T ′, B ′) as
described in the beginning of Sect. 5. Now, as long as I ′ has not finished its traversal
of (T ′, B ′), a call to next on I is equal to a call to next on I ′. Similarly, a call to
show on I now returns the tuple (B ′(w), dw) with dw being the depth of w in T ′ plus
the size of the record stack of I . Once iterator I ′ is finished, we throw away (T ′, B ′).
Then, the operations of next and show work normally on I until the size of the
record stack again is O(bk log log n) or until the iteration is finished. Since we use our
iterator only to recursion depth z, our algorithm runs in akn(log∗ n)z time for some
constant a. The total runtime is akn(log∗ n)(bk log log n)+bkn = ckn log log n log∗ n
for some constant c.

Corollary 3 There is an iterator to output a balanced binary tree decomposition (T , B)

of width 9k + 6 for an n-vertex G = (V , E) with treewidth k in Euler-traversal
order in ckn log log n log∗ n time for some constant c using O(n+ k2 log2 n) bits. For
k = O(n1/2−ε) and an arbitrary ε > 0, the space consumption is O(n) bits.

If we try to run our iterator from the last corrolary on a graph that has a treewidth
greater than k, then either the computation of a vertex separator or the computation
of Bodleander et al.’s algorithm for finding a tree decomposition [11] fails. In both
cases, our iterator stops and we can output that the treewidth of G is larger than k.

8 Applications

Courcelle [16] showed that all monadic-second-order (MSO) problems can be solved
in polynomial time on graphs with treewidth bounded by a constant, and Elberfeld
et al. [19] showed that the same is possible when using logarithmic space. As briefly
mentioned in the introduction, due to Banerjee et al. [4] there exists a framework that
takes as input a graph G and a tree decomposition (T , B) and computes a solution
set for a given MSO problem. Their framework allows a tradeoff between the runtime
and space usage. In particular, they showed the following theorem.

Theorem 6 [4] Let G be an n-vertex graph given with a tree decomposition (T =
(VT , ET), B) of width k. Then a solution set for all weighted MSO problems can be
found in O(τ (k) · n2+(2/ log p)) time and O(τ (k) · p logp n) variables, i.e., O(τ (k) ·
p(logp n) log n) bits, for any parameter 2 ≤ p ≤ n and a problem dependent function
τ depending on the MSO formula.

123

2456 Algorithmica (2022) 84:2414–2461

As we are able to provide the tree decomposition interface required by their frame-
work in O(n) bits (for graphs of small enough treewidth) via Corollary 3, this directly
implies the following theorem.

Theorem 7 Let G be an n-vertex graph with treewidth k. Then a solution set for
all weighted MSO problems can be found in time O(τ (k) · n2+(2/ log p)) time and
O(n + τ(k) · p(logp n) log n) bits for any parameter 2 ≤ p ≤ n and a problem
dependent function τ depending on the MSO formula.

In the following we outline a faster O(n)-bit approach for vertex cover that can
easily be generalized to other problems. We know from [17, Theorem 7.9] that there
is an algorithm that solves all problems mentioned in Theorem 8 on an n-vertex
graph with treewidth k in ckn time for some constant c when a tree decomposition
with approximation-ratio O(1) is given. The general strategy used for solving these
problems is almost identical. First, traverse the tree decomposition bottom-up and
compute a table for each nodew. The table stores the size of all best possible solutions
in the graph induced by all bags belonging to nodes below w under certain conditions
for the vertices in bag B(w). E.g., forVertex Cover the table contains 2k+1 solutions
(v ∈ B(w) does belong or does not belong to the solution) and for Dominating Set
it contains 3k+1 solutions (one additionally differs, if a vertex is already dominated
or not). We only consider problems whose table has at most ck solutions for some
constant c. For each possible solution, the table stores the size of the solution and thus
uses O(ck log n) bits. After the bottom-up traversal, the minimal/maximal solution
size in the table at the root is the solution for the minimization/maximization problem,
respectively. An optimal solution set can be obtained in a top-down traversal by using
the tables.

It is clear that, for large k, we can not store all tables when trying to use O(n)

bits. Our strategy is to store the tables only for the nodes on a single root-leaf path
of the tree decomposition and for nodes with a depth less than some threshold value.
The other tables are recomputed during the construction of the solution set. For a
balanced tree decomposition this results in O(ck log2 n) bits storing O(log n) tables
for vertices on a root-leaf path each of size O(ck log n) bits. Using this strategy we
have all information to use the standard bottom-up traversal to compute the size of
the solution for the given problem for G. To obtain an optimal solution set we need a
balanced and binary tree decomposition with a constant-factor approximation of the
treewidth.

We conclude this section by giving a list of problems that can be solved with the
same asymptotic time and space bound.

A vertex cover of a graph G = (V , E) is a set of vertices C ⊆ V such that, for
each edge {u, v} ∈ E , u ∈ C ∨ v ∈ C holds. For graphs with a small treewidth, one
can find a minimum vertex cover by first computing a tree decomposition of the graph
and then, using dynamic programming, calculate a minimal vertex cover. We start to
sketch the standard approach.

Let (T , B) be a tree decomposition of width O(k) of an undirected graph G with
treewidth k. Now, iterate over T in Euler-traversal order and, if a node w is visited
for the first time, calculate and store in a table Tw all possible solutions of the vertex

123

Algorithmica (2022) 84:2414–2461 2457

cover problem for G[B(w)]. Also store the value of each solution, which is equal to
the number of vertices used for the cover. If the solution is not valid, store ∞ instead.

When visiting a node w and Tw already exists, we update Tw by using Tw′ with w′
being the node visited during the Euler-traversal right before w (w′ is a child of w).
The update process is done by comparing each solution s in Tw with each overlapping
solution in Tw′ . A solution s′ ∈ Tw′ is chosen if it has the smallest value among
overlapping solution. The value of s′ is added to the value of s, and the two solutions
are linked with a pointer structure. Two solutions s and s′ are overlapping exactly if,
for each v ∈ B(w) ∩ B(w′), (v ∈ s ∧ v ∈ s′) ∨ (v /∈ s ∧ v /∈ s′) is true. Once the
Euler-traversal is finished, the table Tr , with r being the root of T , contains the size
of the minimum vertex cover C of G as the smallest value of all solutions. This is the
first step of the algorithm.

The second step is obtaining C , which is done by traversing top-down through all
tables with the help of the pointer structures, starting at the solution with the smallest
value in Tr , and adding the vertices used by the solutions to the initially empty set C if
they are not yet contained inC . For simplicity, we first only focus onVertex Cover,
but use a problem specific constant λ for the size of the tables and runtime of solving
subproblems. For Vertex Cover λ = 2. This allows us an easy generalization step
to other problems subsequently. In the following the default base of log is 2.

Lemma 19 Given an n-vertex graph G with treewidth k ≤ logλ n − 2 logλ log n
the size of an optimal Vertex Cover C of G can be computed with O(n) bits
in ckn log log n log∗ n time for some constant c.

Proof For an n-vertex graphG with treewidth k and a given tree decomposition (T , B)

of width k′ = O(k) the runtime of the algorithm is O(2k
′
n). A table Tw constructed

for a bag B(w) consists of a bit array of size O(k′) for each of the 2k
′+1 possible

solutions, and their respective values and pointer structures. This uses O(2k
′+1(k +

log n)) = O(λk log n) bits per table for some problem specific constant a, which is
two for Vertex Cover. Thus, storing the tables for the entire tree decomposition
uses O(λkn log n) bits. Our goal is to obtain the optimal vertex cover using only
O(n) bits for both the tree decomposition (T , B) and the storage of the tables. For
obtaining only the size of C , i.e., the first step of the algorithm, we only need to
store the tables for the current root-node path of the tree decomposition iterator. The
reason is that once a table has been used to update its parent table it is only needed
for later obtaining the final cover via the pointer structures. We can iterate over a
balanced binary tree decomposition of width O(k) in c̃kn log log n log∗ n time using
O(n) bits (Theorem 3) for some constant c̃. To obtain the bag-induced subgraphs we
use Lemma 17. We have to store O(log n) tables, which results in O(λk log2 n) bits
used, which for k ≤ logλ n − 2 logλ log n equals O(n) bits (λk log2 n ≤ n ⇒ λk ≤
n log−2 n ⇒ k ≤ logλ n − 2 logλ log n). Initializing and updating all tables can be
done in O(λkn) time. ��

To obtain the final vertex cover we need access to all tables and bags they have been
initially created for. We now use the previous lemma with modifications. Our idea is
to fix some � ∈ IN and to use partial tree decompositions of depths � rooted at every
�th node of a root-leaf path. For this, let us define ptdG,�(w) to be the partial tree
decomposition (T ′, B) where T ′ is a subtree of T with root w and depths �.

123

2458 Algorithmica (2022) 84:2414–2461

Lemma 20 Assume that we are given an n-vertex graph G with treewidth k ≤
logλ n − 3 logλ log n = c′ log n for some constant 0 < c′ < 1. Then we can cal-
culate the optimal vertex cover C of G in ckn log n log∗ n time using O(n) bits for
some constant c.

Proof By iterating over (T , B) we first compute the tables and pointer structures for
(T ′, B) = ptdG,�(r) where r is the root of the tree decomposition of G and where
� = log log n. Thus, the partial tree T ′ consists of O(log n) nodes, each with a table
of O(λk log n) bits. (Recall that for Vertex Cover λ = 2.)

We then start to follow the pointer structures starting from r . When we arrive
at a node w having a table where the pointer structure is invalid (because the next
table does not exist) we build ptdG,�(w). Afterwards, we can continue to follow the
pointer structures since the next tables now exist. We repeat to build the partial tree
decompositions anytime we try to follow a pointer that is invalid until we arrive at a
leaf (at which point we backtrack). When we have built and processed all tables of
a subtree with root w, we can throw away all tables of ptdG,�(w). In other words,
we have to store tables for only O(log n/�) partial trees. Note that each partial tree
uses O(log n) tables of O(λk log2 n) bits in total. Summed over all partial trees on a
root-leaf path, we need to store O(λk log3 n) bits. For k ≤ logλ n − 3 logλ log n this

uses O(n) bits (λk log3 n
log log n ≤ n ⇒ λk ≤ n log log n

log3 n
⇒ k ≤ logλ n − 3 logλ log n +

logλ log log n). It remains to show the impact on the runtime. Anytime we want to
obtain the tables of ptdG,�(w), we need to compute the tables of the subtree rooted
by w. Thus partial subtrees ptdG,�(w) with deepest nodes w need to be calculated
O(log n/ log log n)-times, the partial subtrees above (O(log n/ log log n) − 1)-times
and so forth. This can be thought of as iterating over the tree decomposition (T , B) of
G for O(log n/ log log n) times. In other words, we run the algorithm of Theorem 19,
O(log n/ log log n) times. ��

We finally present our last theorem.

Theorem 8 Let G be an n-vertex graph with treewidth k ≤ c′ log n for some constant
0 < c′ < 1. Using O(n) bits and ckn log n log∗ n time for some constant c we can
solve the following problems: Vertex Cover, Independent Set, Dominating
Set, MaxCut and q-Coloring.

Proof As in the proof of Lemma 19 k′ = O(k) is the width of the tree decomposition.
To change the previous two proofs to the different problems mentioned in Theorem 8
the only change is in the computation of the tables and the size of the tables. Thus,
we have to take another value for the problem specific constant λ of the Lemmas 19
and 20. For Vertex Cover, Independent Set and Max Cut the tables contain
2k

′+1 possible solutions and thus λ = 2. For Dominating Set they contain 3k
′+1 and

q-Coloring they contain qk
′+1 possible solutions, so λ = 3 and λ = q, respectively.

For further details see [10]. ��
Acknowledgements We thank the anonymous reviewers for their careful reading of our manuscript and
their helpful comments.

123

Algorithmica (2022) 84:2414–2461 2459

Funding Open Access funding enabled and organized by Projekt DEAL. Johannes Meintrup and Andrej
Sajenko: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—
379157101.

Availability of Data and Materials Not applicable.

Declarations

Conflict of interest Not applicable.

Code Availability Not applicable.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Pren-
tice Hall, Hoboken (1993)

2. Amir, E.: Approximation algorithms for treewidth. Algorithmica 56(4), 448–479 (2010). https://doi.
org/10.1007/s00453-008-9180-4

3. Asano, T., Izumi, T., Kiyomi, M., Konagaya, M., Ono, H., Otachi, Y., Schweitzer, P., Tarui, J., Uehara,
R.: Depth-first search using o(n) bits. In: Proceedings of 25th International Symposium on Algorithms
and Computation (ISAAC 2014). LNCS, vol. 8889, pp. 553–564. Springer (2014). https://doi.org/10.
1007/978-3-319-13075-0_44

4. Banerjee, N., Chakraborty, S., Raman, V., Roy, S., Saurabh, S.: Time-space tradeoffs for dynamic
programming algorithms in trees and bounded treewidth graphs. In: Proceedings of 21st International
Conference on Computing and Combinatorics (COCOON 2015). LNCS, vol. 9198, pp. 349–360.
Springer (2015). https://doi.org/10.1007/978-3-319-21398-9_28

5. Banerjee, N., Chakraborty, S., Raman, V., Satti, S.R.: Space efficient linear time algorithms for
BFS, DFS and applications. Theory Comput. Syst. 62(8), 1736–1762 (2018). https://doi.org/10.1007/
s00224-017-9841-2

6. Barbay, J., Aleardi, L.C., He, M., Munro, J.I.: Succinct representation of labeled graphs. Algorithmica
62(1), 224–257 (2012). https://doi.org/10.1007/s00453-010-9452-7

7. Baumann, T., Hagerup, T.: Rank-select indices without tears. In: Proceedings of 16th International
Symposium onAlgorithms and Data Structures (WADS 2019). LNCS, vol. 11646, pp. 85–98. Springer
(2019). https://doi.org/10.1007/978-3-030-24766-9_7

8. Bodlaender, H., Gilbert, J., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize,
and shortest elimination tree. J. Algorithms 18(2), 238–255 (1995). https://doi.org/10.1006/jagm.1995.
1009

9. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25(6), 1305–1317 (1996). https://doi.org/10.1137/S0097539793251219

10. Bodlaender, H.L., Bonsma, P., Lokshtanov, D.: The fine details of fast dynamic programming over tree
decompositions. In: Parameterized and Exact Computation, pp. 41–53. Springer (2013)

11. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A ckn 5-
approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016). https://doi.org/10.
1137/130947374

12. Brodnik, A., Munro, J.I.: Membership in constant time and almost-minimum space. SIAM J. Comput.
28(5), 1627–1640 (1999). https://doi.org/10.1137/S0097539795294165

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00453-008-9180-4
https://doi.org/10.1007/s00453-008-9180-4
https://doi.org/10.1007/978-3-319-13075-0_44
https://doi.org/10.1007/978-3-319-13075-0_44
https://doi.org/10.1007/978-3-319-21398-9_28
https://doi.org/10.1007/s00224-017-9841-2
https://doi.org/10.1007/s00224-017-9841-2
https://doi.org/10.1007/s00453-010-9452-7
https://doi.org/10.1007/978-3-030-24766-9_7
https://doi.org/10.1006/jagm.1995.1009
https://doi.org/10.1006/jagm.1995.1009
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/130947374
https://doi.org/10.1137/130947374
https://doi.org/10.1137/S0097539795294165

2460 Algorithmica (2022) 84:2414–2461

13. Chatterjee, K., Goharshady, A.K., Goharshady, E.K.: The treewidth of smart contracts. In: Proceedings
of 34th ACM/SIGAPP Symposium on Applied Computing (SAC 2019), pp. 400–408. ACM (2019).
https://doi.org/10.1145/3297280.3297322

14. Choudhari, J., Gupta, M., Sharma, S.: Nearly optimal space efficient algorithm for depth first search.
CoRR arXiv:1810.07259 (2018)

15. Clark, D.R.: Compact pat trees. Ph.D. thesis, Waterloo, Ont., Canada, Canada (1998). UMI Order No.
GAXNQ-21335

16. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf.
Comput. 85, 12–75 (1990)

17. Cygan,M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-21275-3

18. Dumitrescu, E.F., Fisher, A.L., Goodrich, T.D., Humble, T.S., Sullivan, B.D., Wright, A.L.: Bench-
marking treewidth as a practical component of tensor-network-based quantum simulation. CoRR
arXiv:1807.04599 (2018)

19. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bodlaender and Courcelle.
In: Electronic Colloquium on Computational Complexity (ECCC 2010), vol. 17, p. 62 (2010)

20. Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient basic graph algorithms. In: 32nd International
SymposiumonTheoretical Aspects of Computer Science, (STACS2015). LIPIcs, vol. 30, pp. 288–301.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015). https://doi.org/10.4230/LIPIcs.STACS.
2015.288

21. Fafianie, S., Kratsch, S.: Streaming kernelization. In: Proceedings of 39th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2014), pp. 275–286 (2014). https://doi.
org/10.1007/978-3-662-44465-8_24

22. Feige,U., Hajiaghayi,M.T., Lee, J.R.: Improved approximation algorithms forminimum-weight vertex
separators. In: Proceedings of 37th ACMSymposium on Theory of Computing (STOC 2005), pp. 563–
572. ACM (2005). https://doi.org/10.1145/1060590.1060674

23. Hagerup, T.: Small uncolored and colored choice dictionaries. CoRR arXiv:1809.07661 (2018)
24. Hagerup, T.: Space-efficient DFS and applications to connectivity problems: simpler, leaner, faster.

Algorithmica 82(4), 1033–1056 (2020). https://doi.org/10.1007/s00453-019-00629-x
25. Hagerup, T., Kammer, F.: Succinct choice dictionaries. CoRR arXiv:1604.06058 (2016)
26. Hagerup, T., Kammer, F.: On-the-fly array initialization in less space. In: Proceedings of 28th Interna-

tional Symposium on Algorithms and Computation (ISAAC 2017). LIPIcs, vol. 92, pp. 44:1–44:12.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ISAAC.
2017.44

27. Hagerup, T., Kammer, F., Laudahn, M.: Space-efficient Euler partition and bipartite edge coloring.
Theor. Comput. Sci. 754, 16–34 (2019)

28. Izumi, T., Otachi, Y.: Sublinear-space lexicographic depth-first search for bounded treewidth graphs
and planar graphs. In: Proceedings of 47th International Colloquium on Automata, Languages, and
Programming, (ICALP 2020). LIPIcs, vol. 168, pp. 67:1–67:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.67

29. Kammer, F., Kratsch,D., Laudahn,M.: Space-efficient biconnected components and recognition of out-
erplanar graphs. Algorithmica 81(3), 1180–1204 (2019). https://doi.org/10.1007/s00453-018-0464-
z

30. Kammer, F., Sajenko, A.: Simple 2 f -color choice dictionaries. In: Proceedings of 29th International
Symposium onAlgorithms and Computation (ISAAC 2018). LIPIcs, vol. 123, pp. 66:1–66:12. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.ISAAC.2018.66

31. Kammer, F., Sajenko, A.: Space efficient (graph) algorithms. https://github.com/thm-mni-ii/sea (2018)
32. Kammer, F., Sajenko, A.: Sorting and ranking of self-delimiting numbers with applications to tree

isomorphism (2020)
33. Katoh, T., Goto, K.: In-place initializable arrays. CoRR arXiv:1709.08900 (2017)
34. Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. J. Algorithms 20(1),

20–44 (1996). https://doi.org/10.1006/jagm.1996.0002
35. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theor. Comput. Sci. 12(3),

315–323 (1980)
36. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static trees and planar graphs.

In: Proceedings of 38th Annual Symposium on Foundations of Computer Science (FOCS 1997), pp.
118–126. IEEE Computer Society (1997). https://doi.org/10.1109/SFCS.1997.646100

123

https://doi.org/10.1145/3297280.3297322
http://arxiv.org/abs/1810.07259
https://doi.org/10.1007/978-3-319-21275-3
http://arxiv.org/abs/1807.04599
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.4230/LIPIcs.STACS.2015.288
https://doi.org/10.1007/978-3-662-44465-8_24
https://doi.org/10.1007/978-3-662-44465-8_24
https://doi.org/10.1145/1060590.1060674
http://arxiv.org/abs/1809.07661
https://doi.org/10.1007/s00453-019-00629-x
http://arxiv.org/abs/1604.06058
https://doi.org/10.4230/LIPIcs.ISAAC.2017.44
https://doi.org/10.4230/LIPIcs.ISAAC.2017.44
https://doi.org/10.4230/LIPIcs.ICALP.2020.67
https://doi.org/10.1007/s00453-018-0464-z
https://doi.org/10.1007/s00453-018-0464-z
https://doi.org/10.4230/LIPIcs.ISAAC.2018.66
https://github.com/thm-mni-ii/sea
http://arxiv.org/abs/1709.08900
https://doi.org/10.1006/jagm.1996.0002
https://doi.org/10.1109/SFCS.1997.646100

Algorithmica (2022) 84:2414–2461 2461

37. Reed, B.A.: Finding approximate separators and computing tree width quickly. In: Proceedings of 24th
Annual ACM Symposium on Theory of Computing (STOC 1992), pp. 221–228. ACM (1992). https://
doi.org/10.1145/129712.129734

38. Robertson, N., Seymour, P.: Graph minors xiii. The disjoint paths problem. J. Comb. Theory Ser. B
63(1), 65–110 (1995). https://doi.org/10.1006/jctb.1995.1006

39. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3),
309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-4

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1145/129712.129734
https://doi.org/10.1145/129712.129734
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/0196-6774(86)90023-4

	Space-Efficient Vertex Separators for Treewidth
	Abstract
	1 Introduction
	2 Preliminaries
	3 Finding k Vertex-Disjoint Paths Using O(n + k2 (logk) logn) Bits
	4 Sketch of Reed's Algorithm
	5 Tree-Decomposition Iterator Using O(kn) Bits
	6 Modifying the Record Stack to Work with O(n + k2 logn) Bits
	7 Tree-Decomposition Iterator Using O(n) Bits for k = O(n1/2-ε)
	8 Applications
	Acknowledgements
	References

