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Abstract
The minimum hitting set of bundles problem (Mhsb) is a natural generalization of
the minimum hitting set problem, where instead of hitting single elements, bundles of
elements are hit. More specifically, we are given a ground set of elements and a family
of sets. Every set in this family contains bundles of elements, which are subsets of the
ground set. The task is to find a collection of elements of minimum size such that at
least one bundle of every set in the family is hit. Motivated by several applications, we
considerMhsb restricted to interval and 2-dimensional interval bundles. We study the
computational complexity and give polynomial-time algorithms for several classes of
instances with these special structured bundles.

Keywords Hitting set · Approximation algorithms · Maintenance scheduling

1 Introduction

The Minimum Hitting Set of Bundles Problem (Mhsb) was introduced by
Angel et al. [1]. It is defined in the following way: Let Ω be a finite set of elements
and let F be a family of sets. Every F ∈ F is a set of bundles, where a bundle U is a
subset U ⊆ Ω . A bundle U is covered by a set of elements S ⊆ Ω if U ⊆ S. We say
that a set F is hit if at least one bundle in F is covered. We want to find a collection of
elements S ⊆ Ω of minimum size such that every set F ∈ F is hit. We refer to S as a
hitting set of bundles. In the following, let U := ⋃

F∈F F be the set of all bundles of
an instance.

The minimum hitting set problem is the special case of Mhsb, where every bun-
dle contains exactly one element [1]. It corresponds to the optimization version of
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one of Karp’s 21 NP-complete problems, the minimum set cover problem [14]. This
immediately implies NP-hardness of Mhsb.

Mhsb has many applications. In particular, it provides an abstract framework for
several scheduling problems. In this paper, we want to highlight two particular appli-
cations. The first one is scheduling jobs (non-preemptively) on a single machine with
the objective of minimizing active time. It can be framed in the following way. Here,
Ω is a set of time slots and F represents a set of jobs. The bundles of a job refer to
its feasible operation times. The goal is to schedule all jobs such that the number of
occupied time slots is minimized. If all bundles of a job are time intervals of the same
length and refer to possible execution times of the job, the problem is referred to as
active (or busy) time minimization problem with unlimited capacities [5, 15].

The second application of Mhsb we want to point out is in the area of railway
maintenance scheduling. Consider a railway corridor with bidirectional traffic and
maintenance jobs that need to be carried out. Here, a train path is a movement over
time along the railway track. Whenever such a train path interferes with a particular
maintenance job, the train needs to be canceled. To minimize the impact of the manda-
tory maintenance on rail traffic, the goal is to schedule all maintenance jobs such that
the number of canceled trains is as small as possible. Here, Ω represents the set of
train paths andF is the family of maintenance jobs. The bundles of a maintenance job
refer to the corresponding sets of train paths that interfere with the feasible execution
times of a job. Eskandarzadeh et al. [9] study a variant of this problem in which bun-
dles are determined by job-specific release dates, deadlines, and processing times. For
unidirectional train traffic, this agrees with active time minimization with unlimited
capacities. In this paper, we also consider the railwaymaintenance scheduling problem
with bidirectional traffic.

Mhsb allows more general bundle structures than those studied in the context of
active time minimization or railway maintenance scheduling. Still, we often use the
scheduling terminology to give an intuition and a better understanding of the particular
cases of Mhsb that we consider in this paper.

1.1 RelatedWork

Asmentioned before, if every bundle contains only one element,Mhsb corresponds to
the minimum hitting set problem and its counterpart, the minimum set cover problem.
Both problems have been studied extensively. There exists a polynomial-time αmax-
approximation algorithm, where αmax refers to the maximum number of elements (in
Mhsb this is the maximum number of bundles) a set may contain and a polynomial-
time (ln(m) + 1)-approximation algorithm, where m denotes the number of elements
in the minimum set cover instance. For more details on the algorithms, see, e.g., [19].
Dinur and Steurer [8] proved that no polynomial-time (1−o(1)) ln(m)-approximation
algorithm exists for minimum set cover, unless P = NP. Assuming the Unique Games
Conjecture, the approximation factor αmax is best possible, due to a result by Bansal
and Khot [2].

The minimum hitting set of bundles problem was introduced by Angel et al. [1].
They presented a polynomial-time Fmax-factor approximation algorithm, where Fmax
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refers to the maximum number of bundles a set may contain. This approximation
guarantee is achieved by considering a relaxation of an integer linear programming
(ILP) formulation and a simple rounding strategy. By using randomized rounding they
were able to improve the approximation guarantee to Fmax(1−(1− 1

Fmax
)M ). Here, M

denotes the maximum number of bundles an element is contained in. Note that if the
same bundle is contained in different sets, it is accounted for several times. Angel et al.
[1] highlighted two applications of Mhsb, the multiple-query optimization problem
in database systems [18] and the min k-SAT problem [3].

Wan et al. [20] studied the minimum submodular cover problem with submodular
weights. In this problem, we are given a submodular, increasing function f . A set
S ⊆ Ω is a submodular cover, if f (S) = f (Ω). The objective is to find a submodular
cover of minimum weight with respect to a submodular, increasing weight function
w. Mhsb can be formulated as submodular cover problem with submodular weights
in the following way. Choose the ground set to be the set of bundles U . Define f to be
the function that maps a collection of bundles on the number of sets that are hit by at
least one bundle of the collection. The weight of a collection of bundles is simply the
cardinality of their union. The main result in [20] implies a H(γ )-approximation for
Mhsb, where H(i) denotes the i-th Harmonic number and γ is the maximum number
of sets a bundleU in U hits. Iwata and Nagano [13] studied the set cover problem with
submodular weights. They derived a polynomial-time αmax-approximation algorithm,
where αmax is the maximum number of sets an element appears in.

Being a generalization of the minimum hitting set problem, Mhsb is W [2]-hard
parameterized by the solution size |S|. Damaschke [7] proved that Mhsb, parameter-
ized by |F | and the solution size |S|, is W [1]-complete.

The active time minimization problem with capacity B was introduced by Chang
et al. [4]. It is a scheduling problem with job-specific release dates, deadlines, and
processing times and a bound B on the number of jobs that may be executed simul-
taneously. Chang et al. gave a polynomial-time algorithm for B = 2 and proved that
the problem is NP-hard for B = 3. More closely related to our problem is the version
with unlimited capacity, i.e. B = ∞, studied, e.g., by Fong et al. [11]. They pre-
sented a polynomial-time algorithm for agreeable deadlines, i.e., instances where any
job’s deadline is prior to every other job’s deadline that has a later release time. Also,
Fang et al. [10] studied the problem in context of wireless sensoring and presented
a polynomial-time 2-approximation algorithm for this special case. Online variants
of the active time minimization problem also exist and have been studied, e.g., by
Koehler and Khuller in [16].

Eskandarzadeh et al. [9] studied the maintenance scheduling in a railway corridor
problem, which is an application of Mhsb. They presented a polynomial-time algo-
rithm for active time minimization with unlimited capacities if all jobs have the same
processing time.More specifically, they presented an ILP formulation, tailored to their
restricted set of instances, for which they proved total unimodularity of the constraint
matrix. In their computational experiments, they compared different ILP formulations
for the bidirectional version.

Finally, Chekuri and Kumar [6] introduced a maximization variant of Mhsb, the
maximum coverage problem with group budgets. In this setting, we are given costs
on bundles and a budget per set. The goal is to choose bundles, respecting the budget
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constraints, such that the size of the union of chosen bundles is maximized. Chekuri
and Kumar presented a polynomial-time constant-factor approximation algorithm.

1.2 Our Results

In this paper we study the minimum hitting set of bundles problem on instances with
interval bundles and 2-dimensional interval bundles.
Minimum hitting set of interval bundles: The connection to the active time minimiza-
tion problem leads to a number of applications that can be modeled by Mhsb. In
Sect. 2, we take advantage of the structure that many of these applications have in
common, in order to obtain polynomial-time algorithms. Assuming that jobs have to
be executed without preemption, we obtain bundles of consecutive elements. We refer
to these bundles as interval bundles and call this special case of Mhsb the Minimum
Hitting Set of Interval Bundles Problem (Mhsib). Motivated by applica-
tions, we define the following properties of special cases of Mhsib. We say that F
is convex if for every job F ∈ F , the union of all possible operating times forms an
interval. We say that F is a-simple a ∈ N if all bundles have size a. In the scheduling
terminology this corresponds to equal processing times. In applications it also seems
reasonable to assume that, for example, the number of starting times is bounded or the
time horizon of feasible operating times for a job is bounded.

We present polynomial-time algorithms for several classes of interval bundle
instances. These algorithms use a graph construction and solve the problem by com-
puting a shortest path. However, the minimum hitting set of interval bundles problem
is NP-hard in general. We explore the boundary of polynomial-time solvable instances
and NP-hardness that arise from the aforementioned properties and parameters.
Minimum hitting set of 2-dimensional interval bundles: In Sect. 3, motivated by the
application ofMhsb to railwaymaintenance scheduling,we study another special class
of instances of Mhsb. In the maintenance scheduling in a railway corridor problem
presented by Eskandarzadeh et al. [9], Ω is the disjoint union of sets of train paths
in opposite directions on a single railway track. More generally, we can think of Ω

as being the disjoint union of two totally ordered sets. Assuming that every job has
to be executed without preemption implies that every bundle is a set of consecutive
elements in each of the two totally ordered sets. We call this special structure 2-
dimensional interval and denote the special case of Mhsb where all bundles are
2-dimensional interval by Minimum Hitting Set of 2- dimensional Interval
Bundles Problem (2- dim Mhsib). We show that 2- dim Mhsib remains NP-
hard on convex and 1-simple instances with Fmax = 2. Furthermore, we present a
polynomial-time approximation algorithm for all 1-simple instances with Fmax = 2
using a result by Hochbaum [12] with an approximation guarantee slightly better than
2. For another restricted class of instances we give a polynomial-time algorithm by
making use of a problem decomposition.

Remark 1 The introduction of a weight function w : Ω → R+ on the elements may
be of interest. For the ease of presentation, we only consider the unweighted Mhsb.
Techniques used throughout the paper also work for weighted instances, thus all of our
results can be easily transferred to weighted Mhsb. These results can either be trans-
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ferred directly with minor modifications of inequalities, or by simple modifications of
the constructed graph’s edge weights.

Remark 2 Due to the structure of the problem, we assume, w.l.o.g., that

(i) all bundles are non-trivial, that is, for all F ∈ F we have that ∅ /∈ F ;
(ii) bundles of a set are not subsets of each other, that is, for U ∈ F , if U ′ ⊂ U we

have that U ′ /∈ F ; and
(iii) for all distinct F, F ′ ∈ F there exists a bundle U ∈ F such that for all U ′ ∈ F ′

we haveU ′
� U . If there was no such bundleU ∈ F , any set of elements hitting

F also hits F ′.

2 MinimumHitting Set of Interval Bundles

In this section, we focus on bundle structures that arise in many applications. As
mentioned in the introduction,Ω often corresponds to time slots if viewed as a schedul-
ing problem. In this context, one may assume that jobs have to be executed without
preemption. In the following, we make use of this particular structure and identify
polynomial-time solvable special cases of Mhsb.

Throughout this section we look at instances in which we are given an ordering ≺
of Ω . To simplify notation, we may assume that Ω = [n] for some n ∈ N with the
natural ordering. In this context, we consider a special case of Mhsb, the Minimum
Hitting Set of Interval Bundles Problem (Mhsib), where every bundle U
corresponds to an interval. More specifically, if i, j ∈ U , then k ∈ U for all i ≤ k ≤ j .
In addition to the interval property, we define two other properties that a familyF may
have.

Definition 1 Let ([n],F) be an instance of Mhsib. We call the family F
(i) convex, if all F ∈ F are convex, i.e. the following holds. Let i ∈ U ′, j ∈ U ′′,

for some U ′,U ′′ ∈ F . For all k ∈ [n] with i ≤ k ≤ j there exists a bundle U in
F such that k ∈ U . In other words, the union of all interval bundles U in F is
again an interval.

(ii) a-simple for some a ∈ N if all bundles are a-simple, i.e. |U | = a for allU ∈ U ,
where U := ⋃

F∈F F .

Figure 1 is an example of an instance of the general Mhsb problem and visualizes
the properties we defined above. The next theorem shows thatMhsib remains NP-hard
even on restricted instances in terms of Definition 1.

Theorem 1 Let ([n],F) be an instance of Mhsib and let Fmax be themaximumnumber
of bundles a set may contain. The problem remains NP-hard, if F
(i) is 1-simple and Fmax = 2; or
(ii) is convex and Fmax = 3; or
(iii) is convex and a-simple for some a, where a is some function in n.

Proof (i) An easy reduction from vertex cover implies the statement. Given a graph
G = (V , E), we let Ω := V and F := {{{u}, {v}} : {u, v} ∈ E}. Observe that a
minimum vertex cover is an optimal solution to Mhsib and vice versa.
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Fig. 1 Example of a familyF to visualize the different sets and bundles properties: All bundles butU9 have
the property that they are interval. The sets F1, F2 and F3 are convex, and F1 and F2 are in addition to that
a-simple with a = 4. The bundle structure of the set F1 is determined by the release date 6, deadline 11
and processing time 4. This overlapping bundle structure occurs for example in active time minimization

(ii) The statement follows again from a reduction of vertex cover to Mhsib. Let
G = (V , E) be a graph with an arbitrary ordering ≺V of the vertices. The main
idea is to use the same construction as in i), i.e. introducing a set for every edge
{u, v} of the graph. The challenge is to guarantee that our constructed family is
convex, while respecting the structure assumed in Remark 2. We will do so by
constructing sets that additionally contain a large dummy bundle. Because of
its size, the dummy bundle is never entirely covered by an optimal solution. A
large number of dummy elements serves to ensure a one-to-one correspondence
between a minimum hitting set of bundles and a minimum vertex cover.

We begin by constructing the ground set of the corresponding instance of Mhsib.
We introduce d (any d ≥ |V | + 2 will work) elements for each vertex of the graph,
that is, Ωv := {ωv

i : i ∈ [d]} for all v ∈ V . A vertex v ∈ V is represented by the
element ωv

1 and we refer to the d − 1 elements ωv
2 . . . ωv

d as dummy elements. The
ground set is now given by Ω := ⋃

v∈V Ωv .
We use the ordering ≺V of V to obtain an ordering ≺Ω of Ω in a natural way by

ωu
i ≺Ω ωv

j ⇔
{
u ≺V v; or

u = v ∧ i < j .

Next, we define bundles and sets of the instance. As in the construction of i) for every
edge {u, v} ∈ E with u ≺V v we are given two bundles {ωu

1} and {ωv
1}. In addition,
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we define a dummy bundle U{u,v} containing all elements in Ω that are between ωu
1

and ωv
1. Formally, we define

U{u,v} := Ωu \ {ωu
1} ∪

⋃

u≺V w≺V v

Ωw.

Note, that all constructed bundles are indeed interval with respect to the ordering of
Ω induced by ≺Ω . The sets are then formally given by

F = {{{ωu
1}, {ωv

1},U{u,v}
} : {u, v} ∈ E

}
.

The dummy bundle U{u,v} contains a large number of elements, i.e. at least d and,
hence, is never entirely hit in an optimal solution. Its only purpose is to ensure convexity
of the respective family.

Any vertex cover C corresponds to a solution of the Mhsib instance of the same
size. This simply follows from the fact that the vertices in C cover every edge and
therefore all sets F ∈ F contain at least one covered bundle. Additionally, a solution
S of Mhsib of minimum size only contains elements that correspond to vertices of
the graph, i.e. S ⊆ {ωv

1 : v ∈ V }. This follows from the fact that if S covers any
bundle U{u,v}, this immediately implies |S| ≥ d − 1 = |V | + 1. Also, any element in
Ω \ {ωv

1 : v ∈ V } can be omitted unless it was needed to cover some U{u,v}.
Finally, we have that S hits all sets F ∈ F and covers the bundle {ωu

1} or {ωv
1}

for all {u, v} ∈ E , with either ωu
1 or ωv

1. Therefore, the set of vertices represented by
elements in S form a vertex cover in the graph.

(iii) Again, we prove the statement by a reduction of vertex cover to Mhsib. Let
G = (V , E) and let≺V an arbitrary ordering of the vertices. This timewe have to
ensure that the constructed family is convex and a-simple. For every edge {u, v}
we construct a corresponding set F{u,v} in the family. The set contains multiple
a-simple bundles, amongst them the bundles Uu and Uv which correspond to
the vertices u and v. Instead of a single large dummy bundle as in ii), the sets
contain a collection of dummy bundles, each of size a. To ensure that the optimal
solution toMhsib does indeed hit every set by covering a bundle corresponding
to a vertex in V , we introduce additional dummy sets Fv for every v ∈ V . The
set Fv contains a single bundle, that overlaps with the bundle Uv in all but one
element. Since there is only one bundle in Fv , it has to be in every feasible
solution of the instance of Mhsib. This ensures that hitting a set F{u,v} by a
bundle Uv or Uu only requires adding one additional element to the solution,
whereas hitting F{u,v} by any dummy bundle immediately increases the solution
size significantly (by at least a−1

2 ).

Again, we start by constructing the ground set of the corresponding instance of
Mhsib. Formally, let a := 4|V |+1 and let v0 be a dummy vertex with v0 ≺V v for all
v ∈ V . For every vertex in V and the dummy vertex v0 we introduce 3a elements, that
is, Ωv := {ωv

i : i ∈ [3a]} for all v ∈ V ∪{v0}. Intuitively, the element ωv
1 corresponds

to the vertex v ∈ V and all other elements in Ωv are dummy elements. The ground
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set of elements is then given by Ω := ⋃
v∈V∪{v0} Ωv . As in ii) we extend the ordering

≺V of the vertices in a natural way to an ordering ≺Ω of the elements in Ω .
We continue by constructing the bundles and the sets of the family F of the cor-

responding instance of Mhsib. For a vertex v ∈ V let Uv be the bundle that contains
the element ωv

1 and the a − 1 previous elements with respect to ≺Ω . Formally,

Uv := {ωv′
2a+2, ω

v′
2a+3, . . . , ω

v′
3a−1, ω

v′
3a, ω

v
1}

where v′ is the vertex preceding v in the natural ordering. Note that all bundlesUv are
indeed a-simple.

Next, we define a collection B of dummy bundles, which is a partition of Ω \
{ωv0

1 , ω
v0
2 , . . . , ω

v0
5a+1
2

} in a-simple, disjoint bundles. B will be later used to ensure

convexity of the family F . More explicitly B is given by

B :=
⋃

v∈V

{
{ωv′

5a+3
2

, . . . , ωv′
3a, ω

v
1, . . . , ω

v
a+1
2︸ ︷︷ ︸

a

}, {ωv
a+3
2

, . . . , ωv
3a+1
2︸ ︷︷ ︸

a

}, {ωv
3a+3
2

, . . . , ωv
5a+1
2︸ ︷︷ ︸

a

}
}
,

where, again, v′ is the vertex preceding v in the natural ordering. Note that the
bundles in B are well-defined, sincewe chose a to be odd.We continue by constructing
the sets of the family F . For every edge {u, v} ∈ E the family F contains a set

F{u,v} = {Uu,Uv} ∪ B.

In addition to that, for every vertex v ∈ V we add a dummy set containing a single
bundle with the a elements preceding ωv

1 to F . More explicitly,

Fv := {{ωv′
2a+1, ω

v′
2a−2, . . . , ω

v′
3a−1, ω

v′
3a}}

where, again, v′ is the vertex preceding v in the natural ordering. This concludes the
construction of the family. A visualization can be seen in Fig. 2.

Let C be a minimum vertex cover in G. We obtain the corresponding hitting set of
bundles in the following way. As already mentioned, every bundle of a dummy set Fv

has to be part of a feasible solution. Next, we ensure that every F{u,v} is hit. Adding the
element ωv

1 for every v ∈ C to the hitting set of bundles, we cover the bundle Uv and,
hence, hit the corresponding set F{u,v}. All in all, we obtain a hitting set of bundles
of size a · |V | + |C |. Note, every set F{u,v} is hit by one of the bundles Uu or Uv as
either u or v must be contained in C . We claim that there is no solution to Mhsib of
smaller cardinality. Observe, that an optimal solution toMhsib has to hit every set Fv ,
each containing only one bundle of size a. Since all these sets are pairwise disjoint, a
solution must be of size at least a · |V |. Any bundle from the collection B contains at
least a/2 > |V | elements not contained in the bundles of the dummy sets Fv that are
covered by the solution. Again, if such a bundle from B is covered the solution is of
size at least a · |V | + |V | + 1, which cannot be optimal by the previous argument, that
there always exists a solution of size at most a · |V | + |V |. ��
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Fig. 2 Illustration of a constructed Mhsib instance in the proof of proof of Theorem 1 (iii)

Theorem 1 states thatMhsib remainsNP-hard for convex familiesF with Fmax ≤ 3
for all F ∈ F . However, the following theorem shows that the computational com-
plexity changes for convex instances if we reduce Fmax by one.

Theorem 2 Let ([n],F) be an instance of Mhsib. If F is convex and Fmax = 2, then
it is solvable in polynomial time.

Proof We describe a reduction to a shortest path computation. The high level idea is
to construct a layered graph, such that the vertices contained in an s-t-path describe
an interval decomposition of the solution.

Before explaining the construction in more details, let us take a closer look at the
bundle structure of our instance to give some intuition. Since every set contains at
most two bundles, w.l.o.g., we may assume that for all F ∈ F , if U ,U ′ ∈ F then
U ∩ U ′ = ∅, as elements in the intersection have to be contained in any feasible
solution. Given some F ∈ F , since F is convex, there exist l, i and u ∈ [n] such
that F = {[l, i], [i + 1, u]}. To make sure that the bundle is hit, we have to guarantee
that either the set of elements {l, . . . i} or {i + 1, . . . , u} is contained in the minimum
hitting set of bundles.

Let ([n],F) be an instance of Mhsib. We define a graph, with layers V1, . . . Vn
corresponding to the elements 1, . . . n. A set Vi contains a vertex for every interval in
[1, n] containing i and, additionally, a vertex vi

∅
representing the empty set. Formally,

for every i ∈ [n] we define Vi := {vi[a,b] | 1 ≤ a ≤ i ≤ b ≤ n} ∪ {vi
∅

}. Note
that a, b ≤ n and therefore the number of vertices introduced for each i ∈ [n] is
polynomial in the size of the input. Let V0 := {s} and Vn+1 := {t}. Then the vertex
set of the layered graph is given by V := ⋃n+1

i=0 Vi .
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The graph being layered, means that there only exist edges from layer Vi to the
subsequent layer Vi+1. In particular, every shortest s-t-path contains exactly one vertex
vi from every layer Vi . Intuitively, if vi = vi

∅
, then the element i is not part of the

corresponding minimum hitting set of bundles. If vi = vi[a,b], we add i to the solution.
In particular, the solution contains all elements of the interval [a, b]. To ensure this,
we define the edges and edge weights of the layered graph in the following way. There
are four feasible types of edges:

(1) {vi
∅

, vi+1
∅

} of weight 0,
(2) {vi

∅
, vi+1

[i+1,b]} of weight 1,
(3) {vi[a,b], v

i+1
[a,b′]} for some b′ ≥ b of weight 1, and

(4) {vi[a,i], v
i+1
∅

} of weight 0.

Additionally, we add edges {s, v1} for all v1 ∈ V1 of weight 0 if v1 = v1∅ and of weight
1 in all remaining cases. Also, we add edges {vn, t} for all vn ∈ Vn , all of weight 0.
We only have positive weights of 1 on arcs of type {s, v1[1,b]} and {vi

∅
, vi+1

[i+1,b]} and
{vi[a,b], v

i+1
[a,b′]}. These correspond to adding the element 1 and i + 1 to the hitting set

of bundles, respectively.
In a next step, we tailor the graph to the set structure of our specific instance by

deleting certain edges. This step ensures that every set is hit. Consider a set F ∈ F
with F = {[l, i], [i +1, u]}. If not all elements {l, l+1, . . . , i} are part of the solution,
we have to make sure that all elements in {i + 1, . . . , u} are added to the solution.
To do so, for every F ∈ F with F = {[l, i], [i + 1, u]}, we delete all edges of the
following types:

(1) the edge {vi
∅

, vi+1
∅

},
(2) edges {vi

∅
, vi+1

[i+1,b′]} for which b′ < u,

(3) edges {vi[a,b], v
i+1
[a,b′]} for which a > l and b′ < u, and

(4) edges {vi[a,i], v
i+1
∅

} for which a > l.

As argued above, doing so for all sets in F , any s-t-path gives rise to a hitting set
of bundles. More formally, let s = v0I0 , v

1
I1
, . . . , vnIn , v

n+1
In+1

= t an s-t-path (where
I0 = In+1 = ∅). Then S = ⋃

0≤i≤n+1 Ii forms a hitting set of bundles of cardinality
of the length of the path. To see that, let F = {[l, i], [i + 1, u]} ∈ F be an arbitrary
set of bundles. Since {viIi , vi+1

Ii+1
} is an edge in the graph, we have that [l, i] ⊆ Ii or

[i + 1, u] ⊆ Ii+1. This implies that S hits F and, hence, forms a feasible hitting set
of bundles. Observe, that S is a collection of intervals and every {viIi , vi+1

Ii+1
} of the

path has weight 1 if and only if i + 1 ∈ Ii+1. Hence i + 1 ∈ S for 0 ≤ i ≤ n − 1
by the above construction. Note, {vnIn , t} has weight 0. Additionally, any hitting set of
bundles S with its interval decomposition J1 = [l1, u1], . . . , Jk = [lk, uk], such that
for all j, j ′ ∈ [k] with j �= j ′ we have J j ∩ J j ′ = ∅, gives rise to an s-t-path. I.e., let

Ii =
{

∅ if i /∈ S = ⋃
j J j ,

J j if i ∈ J j ⊆ S,
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Fig. 3 Illustration of the constructed graph on an instance of 3 elements Ω = {1, 2, 3} and set family
F = {F1, F2} with F1 = {{1}, {2, 3}} and F2 = {{2}, {3}}. Blue edges have weight 1, black edges weight
0. A shortest s-t-path is highlighted in bold. It corresponds to the minimum hitting set of bundles containing
the elements {1} and {3}

then s, v1I1 , . . . , v
n
In

, t is an s-t-path of length of the cardinality of S, as for every
F = {[l, i], [i + 1, u]} we have some J with [l, i] ⊆ J or [i + 1, u] ⊆ J and hence

(viIi
, vi+1

Ii+1
) ∈ E . A depiction of the constructed graph for a small instance is displayed

in Fig. 3.
We now compute a shortest s-t-path in the graph. Correctness of the algorithm

follows from the one-to-one correspondence of s-t-paths and the respective interval
decomposition of a hitting set of bundles and the fact that the weight of any path equals
the sum of the cardinality of the sets (intervals). ��

Theorem1 also states thatMhsib remainsNP-hard ifF is a-simple and convex. The
following theorem considers two different types of convex instances with an additional
property. In scheduling terminology, the first type of instances corresponds to the case,
where the difference of any job’s release date and deadline is bounded by k. In ii) the
processing time of every job is bounded by k and the number jobs intersection with
time slot i is bounded by fmax.

Theorem 3 Let ([n],F) be an instance of Mhsib. The problem is solvable

(i) in O(22kn) if |i − j | ≤ k for all i, j ∈ ⋃
U∈F U and all F ∈ F; or

(ii) in O(22(k+ fmax)n) if |U | ≤ k for all U ∈ U , F is convex and for all i ∈ [n],

|{F ∈ F | ∃ U ∈ F : i ∈ U }| ≤ fmax.

Proof (i) The key idea is to construct a weighted graph, whose shortest s-t-path
gives rise to a decomposition of a solution of the correspondingMhsib instance.
Here, we make use of the fact that the size of every set is bounded by k and,
thus, all subsets of elements that intersect and hit a set F can be represented by
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Fig. 4 Illustration of the constructed graph. Exemplary edge weights are highlighted in blue

a bounded number of sets. Note that we say that an element i intersects a set F
if there exists a bundle U ∈ F with i ∈ U .

We start by giving a formal construction of the graph G = (V , E). First, define
the vertex set V := V0 ∪ · · · ∪ Vn+1 with Vi := {viS : S ⊆ {i − min{i, k}, . . . , i}},
V0 := {s} and Vn+1 := {t}. Note that |Vi | ≤ 2k . In the following, for all i ∈ [n]
we let Fi be the family of sets with largest element i , i.e. i = max{ j ∈ ⋃

U∈F U }
for all F ∈ Fi . The set of arcs E is then defined as follows. Our graph G only has
arcs between subsequent layers, that is, there only exist arcs from Vi to Vi+1. More
specifically, arcs from a vertex viS ∈ Vi to all other vertices in Vi+1 exist if S hits all
sets in Fi . If Fi = ∅, we include all arcs in Vi × Vi+1. Finally, all arcs from s to V1
are contained in the edge set.

The weight of each arc (viS, v
i+1
S′ ) is given by the number of elements in S′ \ S. Arcs

(s, v1S) have weight |S|, and the exiting arcs (vnS, t) have weight 0. This concludes the
construction of the graph G. For a schematic picture of such a constructed graph see
Fig. 4.

Since the size of every set is bounded by k, i.e. |i − j | ≤ k for all i, j ∈ ⋃
U∈F U ,

every subset of elements that hits all sets in Fi is a subset of {i − min{i, k}, . . . , i}}.
Observe that any shortest s-t-path P passes through exactly one vertex of every Vi .
On that path, each vertex viS represents a set of elements S. Let S∗ := ⋃

S:viS∈P S.

We claim that S∗ is an optimal solution to the corresponding Mhsib instance. Every
set F has a largest element i , and only vertices viS where S hits all sets in Fi have
outgoing arcs. Thus, S∗ hits every set in F and, hence, S∗ is feasible. Observe, that
by the choice of the weight function the length of any shortest s-t-path P equals |S∗|.
On the other hand every hitting set of bundles S∗ gives rise to an s-t-path of same
cost in the corresponding graph G. The path is obtained by traversing the respective
vertices of the sets {i − min{i, k}, . . . , i} ∩ S∗ for all i ∈ [n]. Note that the size of
the constructed graph is in O(22kn), following by the bounds on |Vi | and the fact that
we only have edges between subsequent layers Vi and Vi+1. A simple BFS finds a
shortest path in linear time of the size of the graph.
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(ii) Again we make use of a graph G = (V , E) defined on V := V0 ∪ · · · ∪ Vn+1.
Here,

Vi := P({i − min{i, k}, . . . , i}) × P({F ∈ F | ∃U ∈ F : i ∈ U }),

whereP denotes the power set.V0 := {s} andVn+1 := {t}. In otherwords, every vertex
in Vi for i ∈ [n] corresponds to a tuple (SΩ, SF ) with SΩ ⊆ {i − min{i, k}, . . . , i}
and SF ⊆ {F ∈ F | ∃U ∈ F : i ∈ U }. The set SF shall be used to encode which
of the sets containing element i already have been hit. Note that by assumption, the
number of vertices in each set Vi is bounded by the number of tuples, which is at most
2k · 2 fmax .

Given the vertex set as defined above, we only allow arcs between subsequent
layers, that is, between vertices in Vi and vertices in Vi+1. More specifically, there
exists an arc from (SΩ, SF ) ∈ Vi towards (S̄Ω, S̄F ) ∈ Vi+1 if the two following
conditions hold:

(a) for all F ∈ S̄F \ SF there exists a bundle U in F such that U ⊆ S̄Ω . That is,
F ∈ S̄F \ SF if S̄Ω covers one bundle in F ; and

(b) if F ∈ Fi , then F ∈ SF . This ensures that any s-t-path corresponds to a feasible
solution of the respective instance of Mhsib.

All arcs in {s} × {(SΩ, SF ) ∈ V1 : SF = ∅} are contained in E . Let the weight
function w : E → N be defined as

w((SΩ, SF ), (S̄Ω, S̄F )) = |S̄Ω \ SΩ |.

We claim, that an optimal solution toMhsib can be obtained by computing a shortest
s-t-path in the corresponding graph G. A solution to the Mhsib instance is, again,
obtained by taking the union of all sets SΩ of elements represented by the traversed
vertices. Feasibility of the hitting set of bundles follows directly from the construction
of the arcs in b). Moreover, the size of the solution equals the length of the path.

Similarly to i), by the choice of the weights, any solution to the corresponding
instance of Mhsib gives rise to an s-t-path of same length. At this point we make
use of the fact that the family is convex, which implies that the set of elements that is
contained in a set forms an interval. Without this condition, there might exist layers
i , j with i < j − 1, and a set F such that i and j intersect F but j − 1 does not.
Due to condition b), this forces the set F to be hit by the elements from { j, . . . , n},
even though in an optimal solution the set F might only be hit by elements from
{1, . . . , j − 1}.

Note that the size of the constructed graph is in O(22(k+ fmax)n), following by the
bounds on |Vi | and the fact that we only have edges between subsequent layers Vi and
Vi+1. A simple BFS finds a shortest path in linear time of the size of the graph. ��
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Fig. 5 Example of an instance of railway maintenance. We are given a railway corridor between location
A and location B with bidirectional traffic. The parallel lines represent train paths. The paths {1, . . . n1}
correspond to trains from A to B and the paths {n1 + 1, . . . n} correspond to trains from B to A. Dashed
boxes represent maintenance jobs. In particular, the height of a box corresponds to the section of the railway
corridor that requires maintenance work and the length corresponds to the time window in which a job has
to be carried out. The length of a solid box represents the processing time of a job. This can be formulated
as an instance of 2- dim Mhsib in the following way: The ground set of elements is given by the set of
train paths. For every dashed box we introduce a set F . The bundles in F are determined by the sets of train
path that interfere with the solid box, given a certain position within the dashed box

3 MinimumHitting Set of 2-Dimensional Interval Bundles

So far we focused on instances with a given total ordering of Ω . In this section, we
consider instances with Ω := N1∪̇N2 where we are given a total ordering ≺1 of the
elements in N1 and a total ordering ≺2 of the elements in N2. Throughout this section
we may assume, w.l.o.g., that N1 := {1, . . . , n1} as well as N2 := {n1 + 1, . . . , n}
with cardinalities ni := |Ni | for i ∈ {1, 2}.

As mentioned in the introduction, this setting is also motivated by an application
to railway maintenance ( [9] and see Fig. 5). Interpret N1 and N2 as two sets of train
paths in opposite direction on a railway track and let Ω := N1∪̇N2. If we assume that
maintenance jobs are executed without preemption, we obtain bundles with a very
specific structure, so-called 2-dimensional interval bundles. More specifically, a set of
bundles is 2-dimensional interval if for all U ∈ U , if i1, i2 ∈ U with i1, i2 ∈ N1, then
for all i ′ ∈ N1 with i1 ≤ i ′ ≤ i2 we also have that i ′ ∈ U . Analogously, if j1, j2 ∈ U
with j1, j2 ∈ N2, then for all j ′ ∈ N2 with j1 ≤ j ′ ≤ j2 we also have that j ′ ∈ U . We
refer to this problem as theMinimum Hitting Set of 2- dimensional Interval
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Bundles Problem (2- dim Mhsib) and define the properties of being convex and
a-simple as follows.

Definition 2 Let (N1∪̇N2,F) be an instance of 2- dim Mhsib. For i ∈ {1, 2}, letF|Ni

be the family of sets restricted to Ni , that is,F|Ni := {(⋃U∈F {U ∩ Ni }
)\{∅} : F ∈ F}.

We call the family F
(i) 2-dim-convex if F|N1 and F|N2 are convex.
(ii) a-simple for some a ∈ N if |U | = a for all U ∈ U .

Remark 3 In applications of 2- dim Mhsib, such as the maintenance scheduling prob-
lem, the property of F being 2-dim-convex refers to a setting where the starting time
of a job can be anywhere in a given time window. a-simple is a natural property in a
regular train schedule setting where, independently of the starting time, a job always
interferes with the same number of train paths.

2- dim Mhsib remains NP-hard even on 2-dim-convex families [9]. We are able to
prove a slightly stronger result.

Theorem 4 The 2- dim Mhsib problem remains NP-hard if F is 2-dim-convex, 1-
simple, and Fmax = 2.

Proof We use the following graph construction to reduce vertex cover to an instance
with the required properties. Given a graph G = (V , E), subdivide each edge e =
{u, v} ∈ E into three edges {u, eu}, {eu, ev}, {ev, v} and denote the resulting graph by
G ′ = (V ′, E ′). Note that any vertex cover S in G yields a vertex cover in G ′ if we add
exactly one vertex eu, ev for every edge e = {u, v} ∈ E to the cover. This new cover
S′ has size S + |E |.

Also, w.l.o.g. a minimum vertex cover S′ in G ′ contains exactly one vertex eu, ev

for every edge e = {u, v} ∈ E (If not, it is either not a cover or we can add u and
remove eu from the cover without changing its cardinality). We claim that S′ ∩ V is
a vertex cover in G. Assume the contrary, i.e. there is an edge e = {u, v} that is not
covered. Then, since S′ was a cover in G ′, the edges {eu, ev} must be covered by S′ by
either eu or ev . Assume it is covered by eu , then it immediately follows by assumption
that v ∈ S′. A contradiction. Note that the cover S = S′ ∩V has cardinality |S′|− |E |.

Now, it is easy to see that F := {{{u}, {v}} : {u, v} ∈ E ′} is an instance which is
1-simple, Fmax = 2 and 2-dim convex. The latter follows from the fact that we do not
have edges in V and edges {eu, ev} only. Thus, all sets are convex using an arbitrary
ordering on V and an arbitrary ordering on the set of edge-vertices V ′ \ V as long
as ev, eu follow one after another for all e ∈ E . Figure 6 shows the construction and
indicates the partition of elements into V and V ′ \ V . ��

In the following, we outline a polynomial-time approximation algorithm for 2- dim
Mhsib where the family F is 1-simple and |F | ≤ 2 for all F ∈ F . Since Fmax ≤ 2 in
this setting, there already exists a 2-factor approximation algorithm [1].We improve the
approximation guarantee slightly by using techniques from approximation algorithms
for the vertex cover problem.
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Fig. 6 Construction of G′ from G and corresponding vertex covers S and S′ in G and G′, respectively

Theorem 5 Let (N1∪̇N2,F) be an instance of 2- dim Mhsib. If F is 1-simple and
Fmax = 2, then there exists a polynomial-time

(
2 − 1

k+1

)
-factor approximation algo-

rithm with

k := max
{
|i − j | : {{i}, { j}} ∈ F with either i, j ∈ N1 or i, j ∈ N2

}
.

Proof The proof of the theorem is based on a result by Hochbaum [12] for which we
are going to convert our instance of 2- dim Mhsib into a vertex cover instance. The
theorem is stated below.

Theorem 6 (Hochbaum [12])Let G be a k-colorable graph. There exists a polynomial-
time algorithm that finds a vertex cover with a size of at most

(
2 − 2

k

)
times the size

of an optimal vertex cover.

Given a 1-simple instance (N1∪̇N2,F) of 2- dim Mhsib with Fmax = 2, we
construct a graph G = (V , E) with V := N1∪̇N2 and E := {{i, j} : {{i}, { j}} ∈ F}.
Then, an optimal solution of 2- dim Mhsib corresponds to a minimum vertex cover
in the graph G and vice versa.

Consider the subgraphs of G[N1] and G[N2] and observe that by the construction
ofG and the definition of k it holds thatΔ(G[N1]) ≤ k andΔ(G[N2]) ≤ k. Therefore,
byBrooks’ Theoremboth induced subgraphs admit a (k+1)-coloring. These colorings
can be extended to a (2k + 2)-coloring of G.

Applying Theorem 6, a chromatic number of at most 2k+2 immediately guarantees
a polynomial-time algorithm that computes a vertex cover whose size is at most (2−
1

k+1 ) times the size of an optimal vertex cover. ��
Finally, we present a first polynomial-time algorithm for a special case of 2- dim
Mhsib. It is based on a decomposition of the problem.

Theorem 7 Let (N1∪̇N2,F) be a 2-dim-convex instance of 2- dim Mhsib with
Fmax ≤ 2. The problem is solvable in polynomial time if for all F ∈ F andU ,U ′ ∈ F,
the symmetric difference only contains two elements, i.e. |U�U ′| = 2 and either

(i) those elements belong to N1 or N2, i.e. U�U ′ ⊂ N1 or U�U ′ ⊂ N2; or
(ii) the symmetric difference always contains one element from N1 and one element

from N2, i.e. U�U ′ ∩ N1 �= ∅ and U�U ′ ∩ N2 �= ∅.
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Proof First, note that for any F = {U ,U ′} all elements inU ∩U ′ must be contained in
any hitting set of bundles. Let (N ′

1∪̇N ′
2,F ′) be the instance after removing all elements

in the respective intersections. Note that there is a one-to-one correspondence between
a minimum hitting set of bundles of F ′ and a minimum hitting set of bundles of F by
adding back or removing the aforementioned elements of the intersections. Due to 2-
dim-convexity and a 2-dimensional interval familyF , we have that the reduced family
F ′ on the reduced set of elements N ′

1∪̇N ′
2 is again 2-dim-convex and 2-dimensional

interval. Furthermore, w.l.o.g., |F | = 2 for all F ∈ F ′. (If |F | = 1 all elements in
U ∈ F are contained in any hitting set of bundles and can be removed to reduce the
instance even further.) Additionally, by assumption the family F ′ is 1-simple.

Observe, the graph on N ′
1∪̇N ′

2 with edges corresponding to the sets inF ′ is bipartite.
This follows from the fact that on the one hand, if U�U ′ ⊂ N1 or U�U ′ ⊂ N2 for
all {U ,U ′} ∈ F , due to convexity, the graph consists of a collection of paths since
each element in N ′

1∪̇N ′
2 can neighbor at most two others and cycles cannot occur. On

the other hand, if U�U ′ ∩ N1 �= ∅ and U�U ′ ∩ N2 �= ∅ for all {U ,U ′} ∈ F , edges
only occur between vertices representing the sets N ′

1 and N ′
2, but not within the sets

N ′
1 and N ′

2, respectively. Now, any vertex cover in the constructed graph corresponds
to a solution of 2- dim Mhsib and vice versa. Since the graph is bipartite, we can
find a vertex cover in polynomial time, which follows from König’s theorem and any
polynomial time maximum matching algorithm [17]. Finally, a solution to F ′ can
easily be lifted to a solution to F . ��

4 Conclusion

In this paper, we study the minimum hitting set of bundles problem on interval and
2-dimensional interval bundles. In the following, we provide an outlook on future
research directions. In Theorem 1, we show that Mhsib remains N P-hard if the
familyF is convex and a-simple, where a is some function in n. For convex, a-simple
families with constant a the complexity remains open.

The following application of Mhsb gives rise to several interesting questions for
future research. The universe is given by a collection of courses. Every set represents a
student and the bundles of the set correspond to a feasible subset of courses, the student
should take. In this case, the bundle constraints do not only express time overlaps, but
can also be used to encode that some courses might only be taken in combination (e.g.
lectures and corresponding exercise classes, lab experiments, etc.). In this setting, the
introduction of an upper bound on the number of students per course seems natural.
This corresponds to introducing an upper bound on the number of sets that are hit
by a bundle, containing a specific element. If the bundles are interval, this problem is
equivalent to active time minimization with capacity B.
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