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Abstract
The dispersion of a point set P ⊂ [0, 1]d is the volume of the largest box with sides
parallel to the coordinate axes, which does not intersect P . It was observed only
recently that, for any ε > 0, certain randomized constructions provide point sets with
dispersion smaller than ε and number of elements growing only logarithmically in d.
Based on deep results fromcoding theory,we present explicit, deterministic algorithms
to construct such point sets in time that is only polynomial in d. Note that, however,
the running-time will be super-exponential in ε−1. Our construction is based on the
apparently new insight that low-dispersion point sets can be deduced from solutions
of certain k-restriction problems, which are well-known in coding theory.
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1 Introduction and Results

For d ∈ N and a point set P ⊂ [0, 1]d we define the dispersion of P by

disp(P) := sup
B : B∩P=∅

|B|,

where the supremum is over all axis-parallel boxes B = I1 × · · · × Id with intervals
I� ⊂ [0, 1], and |B| denotes the (Lebesgue) volume of B. As we are interested in point
sets which make the above quantity as small as possible, we additionally define, for
n, d ∈ N, the n-th-minimal dispersion

disp(n, d) := inf
P⊂[0,1]d :
#P=n

disp(P),

where #P denotes the cardinality of the set P . For ε ∈ (0, 1), we also introduce

N (ε, d) := min
{
n : disp(n, d) ≤ ε

}
.

i.e., the minimal cardinality of a point set P ⊂ [0, 1]d that has dispersion smaller
than ε.

Besides the fact that the above geometric quantities are interesting in its own right,
they also attracted attention in the numerical analysis community, especially when
it comes to very high dimensional applications. The reason is that bounds on the
(minimal) dispersion lead to bounds on worst-case errors, and hence the complexity,
for some numerical problems, including optimization and approximation in various
settings, see [5, 24, 31, 34, 38, 42, 43, 46]. This is a similar situation as for the
much more studied discrepancy, which corresponds to certain numerical integration
problems, see e.g. [9, 10, 13, 32, 33, 35].

Moreover, bounding the dispersion is clearly also related to the problem of finding
the largest empty box. In dimension two, this is theMaximum Empty Rectangle Prob-
lem, which is one of the oldest problems in computational geometry. For the state of
the art and further references we refer to [8, 14–17, 28].

Regarding bounds on the inverse of the minimal dispersion, we have

log2(d)

8ε
≤ N (ε, d) ≤ Cd

ε

for someC < ∞ and all ε < 1/8, see [1], where the upper bound is attained by certain
digital nets. See also [15, 38] for a related upper bound. Although these bounds show
the correct dependence on ε, they are rather bad with respect to the dimension d. This
gap was narrowed in the past years by several authors, see e.g. [23, 25, 39, 41, 45],
including the importantwork of Sosnovecwho proved that the logarithmic dependence
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on d is optimal. With this respect, the best bound at present is

log2(d)

8ε
≤ N (ε, d) ≤ 27 log2(d)

(
1 + log2(ε

−1)
)2

ε2
, (1.1)

see [45] and Theorem 4.1 below. Note that the logarithmic dependence is special for
the cube, as it is known that, for the same problem on the torus, we have a lower
bound linear in d, see [44]. Depending on the relation between d and ε−1, (1.1) can
sometimes be improved.We refer to [7, 26] for recent results in this direction as well as
for further references. Let us stress, that we are mainly interested in the regime, where
d is (much) larger than ε−1 and where the logarithmic dependence on d is crucial.

The main drawback of most of these results is that they only show the existence
of point sets with small dispersion. Often, such point sets are at the core of approxi-
mation algorithms and are the only non-constructive ingredient in the corresponding
proofs, see e.g. [5, 34, 42, 43] and references therein (in particular, [34,Thm. 11] and
[43,Thm. 2.2]). Hence, explicit, deterministic constructions for point sets lead directly
to “constructive” algorithms for certain high-dimensional approximation problems.

For example, the bound from [34,Thm. 11] on the minimal number of function
evaluations needed for uniform recovery of certain (tensor-product) functions is based
on a random construction, and is therefore only an existence result. If we plug in our
deterministic construction, and note that the “dispersion part” of the upper bound is
insignificant compared to the “approximation part”, when it comes to high dimensions,
we see that we can achieve basically the same bound, but in a purely constructive way.

In this paper, we consider explicit constructions of point sets with small dispersion,
i.e., deterministic algorithms, which for given integer d ≥ 2 and positive parameter
ε > 0 construct a point set P ⊂ [0, 1]d with dispersion at most ε. The quality of the
algorithm is measured by the cardinality of the output set P and by its running time,
i.e., by the number of algebraic operations on real numbers executed by the algorithm.
Concerning such explicit constructions, we are only aware of the above mentioned
digital nets, which lead to a bad d-dependence, and sparse grids, which satisfy the
upper bound N (ε, d) ≤ (2d)log2(1/ε), see [23]. It is already clear from the number of
points, that both do not lead to constructions of point sets with small dispersion that
can be carried out in time that is polynomial in d.

Moreover, as the existence proofs are based on random points on a finite grid,
one could use the naive algorithm: try each of the possible configurations, calculate
its dispersion (if possible) and output a set that satisfies the requested bound. The
running-time of this algorithm is (in the worst case) clearly at least exponential in d.

Under the name Small Hitting Sets, a more involved construction from [25] leads
to point sets of size poly

( d log(d)
ε

)
, and the running-time of the presented algorithm is

polynomial in d and ε−1. (Note that the additional parameter in [25] has to be set to
m = d/ε, see [25,p. 217].) Hence, there is a fully polynomial-time algorithm for the
dispersion, if the parameters are d and ε−1.

Reconsidering the bound (1.1), one may think, however, that log(d) (instead of d)
would be an appropriate parameter for the problem complexity. Here, we show, using
deep results from the theory of error-correcting codes, that point sets with dispersion
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at most ε > 0 and size of the order log(d) · poly(1/ε) can be constructed in time that
is polynomial in d. Unfortunately, we do not have a good control on the dependence
on ε−1, and it remains an open problem to find a construction that is also polynomial
in ε−1.

Our two main results are derandomized versions of the results from [41, 45]. Both
use different approaches and lead to somewhat different results. The first one, as
discussed in Sect. 3, leads to point sets of size Oε(log d) that can be constructed
in time linear in the size of the output, i.e., in time Oε(d log d), see Algorithm 1
and Theorem 3.3 in Sect. 3.3. Here, and in the following, Oε(log d) means that the
implied constant depends on ε in an unspecified way. A second, and much more
involved, construction will be given by Algorithm 2 in Sect. 4.4. The corresponding
result reads as follows.

Theorem 4.4 There is an absolute constant C < ∞ such that, for all ε ∈ (0, 1
4 ] and

d ≥ 2, Algorithm 2 constructs a set P ⊂ [0, 1]d with disp(P) ≤ ε and

#P ≤ C

(
1 + log2(ε

−1)

ε

)4

log(d∗),

where d∗ := max(d, 2/ε). The running-time of Algorithm 2 is Oε

(
d log(d)

)
.

Note that, in contrast to Algorithm 1, the point set that is constructed by Algorithm
2 has size that is polynomial in ε−1. However, as the proof shows, its computational
cost is at least exponential in ε−1.

Our general approach is as following. We start with a detailed inspection of the
random constructions of point sets with small dispersion. This will allow us to clearly
separate the setting of the construction and its randomized part. It will turn out then,
which properties are crucial for each of the approaches and what exactly is the role of
randomness. Afterwards, we replace the randomized part by a deterministic one.

Remark 1.1 Regarding the discrepancy of point sets, it is known that the decision
problem, if a given point set has discrepancy smaller than ε, is known to be NP-hard,
see [20] or [12,Section 3.3], and the same is true for the dispersion, if the dimension
d is part of the input, cf. [6]. For upper bounds on the cost of constructing points
with small discrepancy and further literature, see [11, 12, 18, 19]. However, all known
algorithms for this problem so far have running-time exponential in d, or do not lead
to a point set of size polynomial in d and ε−1. We hope that the results of this paper
will lead to some progress also for this problem.

2 Basics from Coding Theory

Our deterministic constructions of point sets with small dispersion will be essentially
obtained by certain “derandomization” of recent proofs from [41, 45]. As we will rely
on rather deep tools from coding theory, we summarize in this section the necessary
definitions and results for later use.
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2.1 Universal Sets

First, we introduce the concept of (n, k)-universal sets, which is also known in coding
theory under the name of t-independent set problem. It has its roots in testing of logical
circuits [40].

Definition 2.1 ((n, k)-universal sets) Let 1 ≤ k ≤ n be positive integers. We say that
T ⊂ {0, 1}n is an (n, k)-universal set, if for every index set S ⊂ {1, . . . , n} with
#S = k, the projection of T on S contains all possible 2k configurations.

Naturally one is interested in (randomized and deterministic) constructions of small
(n, k)-universal sets. The straightforward randomized construction provides the exis-
tence of an (n, k)-universal set of size 	k2k log(n)
. On the other hand, [22] gives a
lower bound on the size of an (n, k)-universal set of the order �(2k log(n)). There
exist several deterministic constructions of (n, k)-universal sets in the literature (cf.
[2, 3, 29]) and we shall rely on the results given in [30].

Theorem 2.2 [30,Theorem 6] There is a deterministic construction of an (n, k)-
universal set of size 2kkO(log(k)) log(n) = 2k+O(log2(k)) log(n), which can be listed
in linear time of the length of the output.

Although the notion of an (n, k)-universal set is not very flexible and comes from a
different area of mathematics, we will see in Sect. 3, that there is indeed a link to sets
with small dispersion. Reusing the known results from coding theory, it will already
allow us to obtain our first deterministic construction of a point set with cardinality
of order log(d). However, in this approach we have only very limited control of the
dependence on ε.

We also need the following natural generalization of (n, k)-universal sets.We could
not find this concept in the literature, but we assume that this and the proceeding lemma
are known.

Definition 2.3 ((n, k, b)-universal sets) Let 1 ≤ k ≤ n and b ≥ 2 be positive integers.
We say that T ⊂ {0, 1, . . . , b − 1}n is an (n, k, b)-universal set, if for every index
set S ⊂ {1, . . . , n} with #S = k, the projection of T on S contains all possible bk

configurations.

If b = 2, Definitions 2.1 and 2.3 coincide, i.e. (n, k, 2)-universal sets are just
the usual (n, k)-universal sets. We use the following two observations to transfer the
known results about (n, k)-universal sets to our setting.

Lemma 2.4 Let 1 ≤ k ≤ n and b ≥ 2 be positive integers.

(i) Let T ⊂ {0, 1, . . . , b}n be an (n, k, b+1)-universal set. Then there is an (n, k, b)-
universal set T ′ ⊂ {0, 1, . . . , b − 1}n of at most the same size.

(ii) Let m ∈ N and T ⊂ {0, 1}mn be an (mn,mk)-universal set. Then there is an
(n, k, 2m)-universal set of the same size.

Proof The proof is quite straightforward. To show (i), just replace all occurrences of
b among the coordinates of T by zero. For the proof of the second part it is enough to
interpret each x ∈ T ⊂ {0, 1}mn as a digital representation of x̃ ∈ {0, 1, . . . , 2m −1}n .

�
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The direct random construction yields the existence of an (n, k, b)-universal set of
the size 	kbk log(ebn/k)
. Using Theorem 2.2, we can easily obtain a deterministic
construction of an (n, k, b)-universal set of only a slightly larger size.

Theorem 2.5 There is a deterministic construction of an (n, k, 2m − 1)-universal set
of size 2mk+O(log2(mk)) log(n), which can be listed in linear time of the length of the
output.

Proof By Theorem 2.2, there is a construction of an (mn,mk)-universal set with at
most 2mk+O(log2(mk)) log(mn) elements. The result then follows from Lemma 2.4. �

2.2 k-Restriction Problems

For the derandomization of the analysis of [45] we need a more flexible notion of
the so-called k-restriction problems, see [30,Section 2.2]. Solutions to these problems
will be one of the building blocks of our deterministic construction of sets with small
dispersion whose size is polynomial in 1/ε and, still, logarithmic in d.

Definition 2.6 (k-restriction problems) Let b, k, n, M be positive integers and let C =
{C1, . . . ,CM : Ci ⊂ {0, 1, . . . , b − 1}k} be invariant under the permutations of
the index set {1, . . . , k}, i.e., for every i ∈ {1, . . . , M} and every permutation π on
{1, . . . , k}, there is j ∈ {1, . . . , M}, such that C j = {x ◦ π : x ∈ Ci }. We say that
T = {x1, . . . , xN } ⊂ {0, 1, . . . , b−1}n satisfies the k-restriction problemwith respect
to C, if for every S ⊂ {1, . . . , n} with #S = k and for every j ∈ {1, . . . , M}, there
exists x� ∈ T with x�|S ∈ C j .

Definitions 2.1 and 2.3 are indeed special cases of Definition 2.6. To show this,
let us choose M = bk and let C1, . . . ,CM be all the different singleton subsets of
{0, . . . , b − 1}k . Then, T satisfies the k-restriction problem with respect to C if for
every index set S ⊂ {1, . . . , n} and every possible v ∈ {0, . . . , b − 1}k there exists an
x ∈ T with x |S = v, i.e. if the restriction of T to every index set S with k elements
attains all bk possible values.

An important parameter of the k-restriction problems is the minimal size of each
of the restriction sets C j , i.e.

c = c(C) := min
1≤ j≤M

#C j . (2.1)

Random constructions of sets satisfying the k-restriction problem with parameters
(b, k, n, M) and C = {C1, . . . ,CM } are based on a simple union bound. Indeed, let
1 ≤ j ≤ M and S ⊂ {1, . . . , n}with #S = k be fixed. The probability, that a randomly
chosen vector v ∈ {0, 1, . . . , b − 1}n satisfies C j on S is at least

P(v satisfies C j at S) = #C j

bk
≥ c

bk
.
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If we choose N random vectors v1, . . . , vN independently, the probability that none
of them satisfies C j at S is at most

P(no v1, . . . , vN satisfies C j at S) =
(
1 − #C j

bk

)N ≤
(
1 − c

bk

)N
.

Finally, the probability that there is a set S ⊂ {1, . . . , n}with #S = k and 1 ≤ j ≤ M ,
such that no v1, . . . , vN satisfies C j at S is, by the union bound, at most

(
n

k

)
· M ·

(
1 − c

bk

)N
.

This expression is smaller than one if

N >
log(nkM)

log
( bk

bk−c

) .

This means that there exist solutions to a k-restriction problem with parameters
(b, k, n, M) of size N whenever

N ≥
⌈
bk

c
log(nkM)

⌉
,

where c is from (2.1). Theorem 1 of [30] states that there is a deterministic algorithm
that outputs such a solution of size equaling the union bound. Themain idea of its proof
is that the random sampling can be replaced by an extensive search through a k-wise
independent probability space with n random variables with values in {1, . . . , b}.
Theorem 2.7 [30,Theorem 1] For any k-restriction problem with parameters
(b, k, n, M) with b ≤ n, there is a deterministic algorithm that outputs a collection
obeying the k-restrictions, with the size of the collection equaling

⌈
bk

c
log(nkM)

⌉
,

where c is from (2.1). The time taken to output the collection is

O
(
bk

c

(
en2

k

)k

M T
)

,

where T is the time complexity of the membership oracle, i.e., a procedure which, for
given v ∈ {1, . . . , b}n, S ⊂ {1, . . . , n} with #S = k and j ∈ {1, . . . , M}, outputs if
the restriction of v on S belongs to C j .

In what follows it can be executed in T = O(k) time. Also note that the formulation
of Theorem 2.7 follows from Theorem 1 in [30] by using the bound on the size
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of k-wise independent probability space with n random variables as described in
[30,Section 2.1].

2.3 Splitters

The last ingredient of our derandomization procedure are splitters. They played a
central role in [30] as the basic building blocks of all deterministic constructions given
there. Essentially, they allow to split a large problem into smaller problems which can
then be treated by the extensive search of Theorem 2.7.

Definition 2.8 ((n, k, �)-splitter) Let n, k, � be positive integers. An (n, k, �)-splitter
H is a family of functions from {1, . . . , n} to {1, . . . , �}, such that for every S ⊂
{1, . . . , n} with #S = k there is h ∈ H , which splits S perfectly. It means that the sets
h−1({ j}) ∩ S are of the same size for all j ∈ {1, . . . , �} (or as similar as possible if
� � k).

Similarly to [4, 30], we will rely on (n, k, k2)-splitters. By Definition 2.8, A(n, k)
is an (n, k, k2)-splitter, if it is a collection of mappings a : {1, . . . , n} → {1, . . . , k2}
such that for every S ⊂ {1, . . . , n} with #S = k, there is an a ∈ A(n, k), which is
injective on S. Moreover, note that every (n, k, �)-splitter with k ≤ � ≤ k2 is also a
(n, k, k2)-splitter.

Small (n, k, �)-splitters with � ≥ ηk2 for η > 1
2 can be obtained from asymp-

totically good error correcting codes, see [4,Lemma 3]. Indeed, let c1, . . . , cn ∈
{1, . . . , �}L denote the codewords of an error correcting code of size n over the alphabet
{1, . . . , �} and normalized Hamming distance at least 1− 2η

�
. This is, ci and c j (i �= j)

can be equal on at most 2ηL/� coordinates. If now S ⊂ {1, . . . , n} with #S = k, then
there are k(k − 1)/2 pairs (i, j) with i �= j ∈ S. As 2ηL

�
· k(k−1)

2 < L , there must be a
coordinate j , where all the c1( j), . . . , cL( j) are different. Finally, if we consider the
mappings h j : i → ci ( j), i = 1, . . . , n, we observe that H = {h j : j = 1, . . . , L} is
an (n, k, �)-splitter, and hence an (n, k, k2)-splitter, of size L .

The existence of such explicit codes for k = 1 is trivial and they exist by [36] with
L = O(k2 log n) for k ≥ 2. For this, let q be a prime with 3k2

4 ≤ q ≤ k2. Such a
q exists by classical estimates on the prime counting function (cf. [37]) for k ≥ 23
and for 2 ≤ k ≤ 22 its existence can be checked directly. From Theorem 2 of [36]
we obtain that one can construct a (linear) error correcting code over the alphabet
{1, . . . , q} of size n, length L and normalized Hamming distance at least δ ∈ [0, 1],
whenever

L ≥ (
1 − Hq (δ)

)−1 logq(n),

where Hq(δ) := −δ logq(δ)− (1− δ) logq(1− δ)+ δ logq(q−1) is the q-ary entropy
function. (Such a code is called an [L, logq(n), δL]q -LC in [36].) The running-time
of the proposed algorithm is O(L · n).
Setting δ = 1 − 3

2q , we obtain by simple computations that 1 − Hq (δ) ≥ 1
10q log(q)

,

and hence that we can choose L = O(q log n) = O(k2 log n).
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The following lemma summarizes the discussion above and shows that (n, k, k2)-
splitters of relatively small size can be constructed explicitly in polynomial time.

Lemma 2.9 (cf. [4, 36]) There is an explicit (n, k, k2)-splitter of size

O
(
k2 log(n)

)

that can be constructed in time O(k2n log n).

The (n, k, k2)-splitters can be used whenever n is “very large” compared to k.
Roughly speaking, and in the context of the present paper, we will transform a k-
restriction problem of size n to a k-restriction problem of size k2, which can then be
solved using the results of Sect. 2.2. This will lead to construction algorithms with an
apparently optimal dependence of their running time on the original problem size n.
This approach was already used to prove [30,Theorem 6], see Theorem 2.5.

Remark 2.10 In a previous version of this manuscript we used the explicit construction
of [3], which leads to the bound L = O(k4 log n). As above, we obtained (n, k, k2)-
splitters that can be constructed in polynomial time, see also [30,Thm. 3(iv)]. The
used code is a two-fold concatenation code that combines the Wozencraft ensem-
ble, Justesen codes and expander codes, which in turn rely on famous deterministic
constructions of expander graphs [27]. For the details we refer to Sects. 3 and 4 of [3].

3 Derandomization of Sosnovec’s Proof

First, we consider the construction of Sosnovec [41], which gives logarithmic depen-
dence of N (ε, d) on d but involves no special control of its dependence on ε−1. His
main theorem was the following.

Theorem 3.1 [41,Theorem 2] For every ε ∈ (0, 1
4 ], there exists a constant cε > 0,

such that for every d ≥ 2 there is a point set P ⊂ [0, 1]d with disp(P) ≤ ε and

#P ≤ cε log(d).

We will see that this result can be essentially derandomized using results from
coding theory, while losing only a negligible factor. The drawback of this approach
is the extremely bad dependence of cε on ε. We sketch the main ideas of Sosnovec’s
proof.

3.1 Sosnovec’s Proof: The Setting

For an integer m ≥ 2 with 2−m ≤ ε < 2−m+1, we define

Mm =
{ 1

2m
, . . . ,

2m − 1

2m

}
.
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The point set constructed will be a subset of M
d
m . Furthermore, we define

�m :=
{
B = I1 × · · · × Id ⊂ [0, 1]d : vol(B) >

1

2m

}
(3.1)

to be the set of all boxes with sides parallel to the coordinate axes and volume larger
than 2−m .

Let B = I1 × · · · × Id ∈ �m . The key observation of [41] is that the number of
indices j ∈ {1, . . . , d} with Mm �⊂ I j is bounded from above by m2m , a quantity
independent on d. To be more specific, if we denote

A(B) = { j ∈ {1, . . . , d} : Mm �⊂ I j },

Then #A(B) ≤ Am := min(m2m, d) for every B ∈ �m . We will refer to A(B) as
the set of “active indices” of B. If A(B) is not of the full possible size, we enlarge
it by adding any of the other indices to obtain a set with cardinality equal to Am .
Therefore, we can associate to each B ∈ �m (possibly in a non-unique way) a set A
with #A = Am and a vector z ∈ M

Am
m such that any x ∈ M

d
m with x |A = z lies in B.

Vice versa, if we have a point set P = {x1, . . . , xN } ⊂ M
d
m , such that for every

A ⊂ {1, . . . , d} with #A = Am and to every z ∈ M
Am
m , there is some x j ∈ P

with x j |A = z, then, by what we just said, P intersects every B ∈ �m . Therefore,
the dispersion of P can not be larger than 2−m , i.e., disp(P) ≤ 2−m and hence
N (2−m, d) ≤ N .

To simplify the combinatorial part later on,wemultiply all coordinates by 2m , which
results to vectors with integer components. This motivates the following definition.

Definition 3.2 Let m ≥ 2. We say that T = {x1, . . . , xN } ⊂ {1, 2, . . . , 2m − 1}d
satisfies the condition (S) of the order m if for every A ⊂ {1, . . . , d} with #A =
Am := min(m2m, d), the set of restrictions x1|A, . . . , xN |A contains all (2m − 1)Am

possible values.

By what we said above, anytime m ≥ 2 and T = {x1, . . . , xN } satisfies the
condition (S) of the order m, then P ⊂ M

d
m with P = 2−m · T satisfies disp(P) ≤

2−m . The proof of Theorem 3.1 is therefore finished, once we find a set T with
#T ≤ cm log(d) satisfying the condition (S) of order m.

3.2 Sosnovec’s Proof: Randomized Construction

The rest of the proof in [41] can now be understood as a randomized construction of
a small set satisfying the condition (S). Indeed, there are

( d
Am

)
subsets S of {1, . . . , d}

with Am elements. We now fix one such set S and one vector z ∈ {1, . . . , 2m − 1}Am .
The probability that a point x ∈ {1, . . . , 2m −1}d chosen at random (from the uniform
distribution) fulfills x |S = z is (2m−1)−Am . Therefore, the probability that none of the
N randomly chosen points x1, . . . , xN fulfills this restriction is [1− (2m − 1)−Am ]N .
Finally, the probability that there is a set S ⊂ {1, . . . , d} with #S = Am and a vector
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z ∈ {1, . . . , 2m − 1}Am such that no {x1, . . . , xN } satisfies x j |S = z is, by the union
bound, at most

(
d

Am

)
(2m − 1)Am [1 − (2m − 1)−Am ]N .

By simple calculus, if N is of the order cm log2(d) for cm large enough, this expression
is smaller than one. Hence, with positive probability, the randomly chosen point set
{x1, . . . , xN } satisfies the condition (S).

3.3 Derandomization Using Universal Sets

Definition 3.2 resembles very much the concept of (n, k)-universal sets, see Sect. 2.1.
In particular, it is easy to see that every (d, Am, 2m − 1)-universal set -after adding 1
to each coordinate- satisfies condition (S) of the order m.

Therefore, we can use Theorem 2.5 to replace the random arguments of the last
section by a deterministic algorithm. We glue all the components together in the form
of an algorithm.

Algorithm 1

1. For ε ∈ (0, 1
4 ] and d ≥ 2, choose a positive integer m

with 2−m ≤ ε < 2−m+1 and set Am := min(m2m, d);
2. Generate an (md,mAm)-universal set as in [30,Theorem 6];
3. Interpret these vectors as digital decompositions to obtain

an (d, Am, 2m)-universal set;
4. Replace 2m − 1 by 0 in all coordinates, increase all the coordinates

by one (this set satisfies (S)), divide all the coordinates by 2m and
output the point set.

It remains to consider the running-time of this algorithm.

Theorem 3.3 Let ε ∈ (0, 1
4 ] and d ≥ 2. Then there is a positive constant cε > 0, such

that Algorithm 1 constructs a set P ⊂ [0, 1]d with disp(P) ≤ ε and

#P ≤ cε log2(d).

The running time of Algorithm 1 is linear in the length of the output.

Proof The first part of the theorem is proven by what we said above. Concerning the
running-time, we obtain from Theorem 2.5, that the (d, Am, 2m − 1)-universal set,
which we generate in steps (2)–(4) of Algorithm 1, can be constructed in linear time
and with size

N = 2mAm+O(log2(mAm )) log(d) ≤ 2m
22m+O(m2) log2(d).
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The remaining operations can be done in a linear time, without enlarging the point set.
�

As expected, the dependence of the size of P on 2m ≈ ε−1 is rather bad (as it was
in [41]), but there is indeed only a logarithmic dependence on d.

4 Improving the Dependence in "−1

The main aim of [45] was to refine the analysis of [41] and to achieve a better depen-
dence of N (ε, d) on ε, without sacrificing the logarithmic dependence on d. The main
theorem of [45] was the following.

Theorem 4.1 Let d ≥ 2 be a natural number and let ε ∈ (0, 1/2). Then there exists a
point set P ⊂ [0, 1]d with disp(P) ≤ ε and

#P ≤ 27 log2(d)
(1 + log2(ε

−1))2

ε2
.

Also this result can be derandomized using results from coding theory. By doing
this, we will lose some power of 1/ε in the size of the point set. However, it will still
be of order log(d).

4.1 Enhanced Analysis of the Random Construction

The main novelty of [45] was a more careful splitting of �m (see (3.1)) into sub-
groups. To be more specific (and using the notation of [21]), for s = (s1, . . . , sd) ∈
{1, . . . , 2m−1}d and p = (p1, . . . , pd) ∈ M

d
m , we denoted�m(s, p) to be those cubes

from �m , which have I� approximately of the length s�
2m and its left point around p�

for all � = 1, . . . , d, i.e.

�m(s, p) :=
{

B = I1 × · · · × Id ∈ �m : ∀� ∈ {1, . . . , d} : s�
2m

< vol(I�) ≤ s� + 1

2m

and inf I� ∈
[
p� − 1

2m
, p�

)}
.

We denote by Im the pairs (s, p), for which �m(s, p) is non-empty. It is easy to
see that their number is bounded from above by

#Im ≤ exp
(
m2m log(2m+3d)

)
, (4.1)

see [21,Eq. (2.1)]. If (s, p) ∈ Im , we further set

Bm(s, p) :=
⋂

B∈�m(s,p)

B =
d∏

�=1

[
p�, p� + s� − 1

2m

]
. (4.2)
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The advantage of dividing of �m into the groups �m(s, p) is the surprisingly good
control of the probability that a randomly chosen point z ∈ M

d
m lies in the intersection

of all the cubes from �m(s, p). It is actually, up to a constant, of the same order as
the volume of each of the cubes in �m , i.e. of 2−m .

Lemma 4.2 ([45,Lemma 3] and [21,Lemma 2.1]) Let m ∈ N, s ∈ {0, 1, . . . , 2m − 1}d
and p ∈ {1/2m, . . . , 1−1/2m}d be such that (s, p) ∈ Im. Let z be uniformly distributed
in M

d
m. Then

P
(
z ∈ Bm(s, p)

) ≥ 1

2m+4 .

The aim of [45] was to combine (4.1) with Lemma 4.2 and the union bound.
Indeed, the probability that a randomly chosen point z ∈ M

d
m avoids Bm(s, p) is at

most 1− 2−m−4. Therefore, the probability that a set P = {x1, . . . , xN } ⊂ M
d
m of N

randomly and independently generated points does not intersect Bm(s, p) is at most
(1 − 2−m−4)N , i.e.

P
(∀� ∈ {1, . . . , N } : x� /∈ Bm(s, p)

) ≤ (1 − 2−m−4)N .

By the union bound over all (s, p) ∈ Im , we get further

P
(∃(s, p) ∈ Im : ∀� ∈ {1, . . . , N } : x� /∈ Bm(s, p)

) ≤ #Im · (1 − 2−m−4)N .

As Bm(s, p) was defined in (4.2) as the intersection of all cubes from �m(s, p),
finding a point x� ∈ Bm(s, p) means that the same point may be found in all cubes in
�m(s, p). We conclude that if N is large enough to ensure that

exp
(
m2m log(2m+3d)

)
(1 − 2−m−4)N < 1,

i.e., N > m22m+4 log(2m+3d), then the randomly generated P = {x1, . . . , xN } ⊂
M

d
m intersects every B ∈ �m with positive probability. Hence, there exists P with

#P ≤ N such that disp(P) ≤ 2−m . This is essentially the result of [45].

4.2 Connection to k-Restriction Problems

Bywhatwe said above, if a point set P ⊂ [0, 1]d intersectsBm(s, p) for all (s, p) ∈ Im ,
then disp(P) ≤ 2−m . The randomized construction in [45], which we now want to
replace by a deterministic one, was restricted in its choice of points to M

d
m . Therefore

we define

Cm(s, p) = 2m[Bm(s, p) ∩ M
d
m], (s, p) ∈ Im .

Definition 4.3 Letm ≥ 2. We say that T ⊂ {1, 2, . . . , 2m −1}d satisfies the condition
(S’) of the order m if, for every (s, p) ∈ Im it intersects Cm(s, p).
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The rest of [45] then provides a randomized construction of a small set T , which
satisfies the condition (S′) of order m. This task has two things in common with k-
restriction problems. First, the system {Cm(s, p) : (s, p) ∈ Im} is invariant under
permutations of {1, . . . , d}. Indeed, if π is a permutation on {1, . . . , d}, then {x ◦ π :
x ∈ Cm(s, p)} = Cm(s ◦ π, p ◦ π). And second, the number of active coordinates is,
for every (s, p) ∈ Im , bounded from above by Am := min(m2m, d).

To build the connection between the condition (S′) and the k-restriction problems,
we choose the quadruplet of parameters (b, k, n,m), see Definition 2.6, as (2m −
1, Am, d, M), where m is an arbitrary positive integer. The system C collects the sets
Cm(s, p) for those (s, p) ∈ Im which have the corresponding active coordinates in
{1, . . . , Am}. Finally, M is the cardinality of C.

More formally, let (s, p) ∈ Im with s j = 2m − 1 for j > Am . Then, we set

Cm(s, p) = Cm(s, p) − 1

and define

C =
{
Cm(s, p) : (s, p) ∈ Im with s j = 2m − 1 for j > Am

}
. (4.3)

It follows directly from the definition of Im that if (s, p) ∈ Im and s j = 2m − 1 for

some j ∈ {1, . . . , d}, then p j = 2−m and Mm ⊂ [p j , p j + s j−1
2m ]. Therefore, every

Cm(s, p) ∈ C is fully determined by its restriction to {1, . . . , Am} and (with slight
abuse of notation) we shall denote by C also the collection of Cm(s, p) restricted to
{1, . . . , Am}.

With this in mind, we observe that a set T satisfies the condition (S′) of order m if,
and only if, the set T − 1 satisfies the k-restriction problem with respect to C.

The parameter M , which is just the cardinality of C, can be estimated from above
in a way similar to (4.1), but note that we do not have to choose the subset of active
indices anymore. Each Cm(s, p) ∈ C is characterized by s ∈ {0, 1, . . . , 2m − 1}Am

and p ∈ {1/2m, . . . , (2m − 1)/2m}Am . Therefore,

M ≤ 22mAm . (4.4)

The second important parameter of a k-restriction problem is the minimal size
c := c(C) of each of the restriction sets Cm(s, p), see (2.1). A lower bound on c
follows directly from Lemma 4.2 and we obtain

c ≥ P(z ∈ Bm(s, p)) · #M
Am
m ≥ 2−m−4(2m − 1)Am . (4.5)

With the choice of parameters as given above, we have c/bk ≥ 2−m−4.

4.3 A First Attempt for Derandomization

Using the arguments of the last section, one could use the construction from The-
orem 2.7 directly to solve the corresponding k-restriction problem with parameters
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(2m − 1, Am, d, 22mAm ), whenever d > 2m . This leads to a point set P ⊂ M
d
m with

disp(P) ≤ 2−m and

#P ≤
⌈
2m+4 log

(
d Am22mAm

)⌉ = O(m222m log(d)).

Note that this bound matches the union bound from Sect. 4.1. However, the running-
time of the algorithm, as given by Theorem 2.7, is

O
(
2md2Am22mAmT

)
= O

(
2m(1+m2m+1)d2m

22mT
)

,

where T is the time complexity of the membership oracle, which can be assumed of
the order O(Am) = O(m2m) in this case.

4.4 Derandomization Using Splitters

We now describe how we can improve the construction of an explicit solution
to the desired k-restriction problem with parameters (b, k, n,m) equal to (2m −
1, Am, d, 22mAm ) and the set system C defined by (4.3). We use the approach of [30]
to obtain solutions of the k-restriction problem which are “small” in size and running-
time of the corresponding algorithm. “Small” means here, that the dependence on the
original problem dimension d is as small as possible.

In the heart of the constructions are splitters, see Sect. 2.3. As already indicated
in Sect. 2.3, we use a (d, Am, A2

m)-splitter, say A(m, d), to map the original d-
dimensional problem to a k-restriction problem in dimension A2

m , which can then
be solved with cost independent of d.

Recall that, by Definition 2.8, A(m, d) is an (d, Am, A2
m)-splitter, if it is a collection

of mappings a : {1, . . . , d} → {1, . . . , A2
m} such that for every S ⊂ {1, . . . , d} with

#S = Am , there is an a ∈ A(m, d), which is injective on S, i.e., a(S) ⊂ {1, . . . , A2
m}

has Am elements.
Further, let T (m) ⊂ {1, 2, . . . , 2m − 1}A2

m be the solution of the k-restriction prob-
lem with parameters (2m − 1, Am, A2

m, 22mAm ) with respect to the original system of
restrictions C, see (4.3). This means, that T (m) = {τ1, . . . , τK } ⊂ {0, 1, . . . , 2m −
2}A2

m such that for every S′ ⊂ {1, . . . , A2
m} with #S′ = Am and any C ∈ C there is

τ ∈ T (m) with τ |S′ ∈ C .
Now we are in the position to define the solution to the restriction problem with

parameters (2m − 1, Am, d, 22mAm ) and the system C. Indeed, we define

T ∗ = T (m) ◦ A(m, d)

:= {τ ◦ a : {1, . . . , d} → {0, 1, . . . , 2m − 2} : τ ∈ T (m), a ∈ A(m, d)}

to be the set of concatenations of any splitter with any element of the solution to the
restriction problem. Here, we switch between the notion of vectors of length d (resp.
A2
m) and mappings from {1, . . . , d} (resp. {1, . . . , A2

m}) to {0, 1, . . . , 2m − 2}. This
should not lead to any confusion.
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To show that T ∗ is indeed a solution to our k-restriction problem, let S ⊂ {1, . . . , d}
with #S = Am . Then, there exists a ∈ A(m, d), such that S′ = a(S) ⊂ {1, 2, . . . , A2

m}
has Am mutually different elements, i.e., #S′ = Am . Now, for every C ∈ C, there
is some τ ∈ T (m), such that C � τ |S′ = (τ ◦ a)|S . Hence, T ∗, which satisfies
#T ∗ = #T (m) · #A(m, d), is a solution to the restriction problem with parameters
(2m − 1, Am, d, 22mAm ).

We merge all the components together in a form of an algorithm.

Algorithm 2

1. For ε ∈ (0, 1
4 ] and d ≥ 2, choose a positive integer m with 2−m ≤ ε

< 2−m+1 and set Am := min(m2m, d);
2. Generate a (d, Am, A2

m)-splitter A(m, d) as in Lemma 2.9;
3. Generate a solution T (m) to the k-restriction problem with

parameters (2m − 1, Am, A2
m, 22mAm ) and restrictions C from (4.3)

as in Theorem 2.7;
4. Set T ∗ = T (m) ◦ A(m, d) ⊂ {0, . . . , 2m − 2}d ;
5. Increase all the coordinates by one, then divide them by 2m ;
6. Output the resulting point set P .

Theorem 4.4 There is an absolute constant C < ∞ such that, for all ε ∈ (0, 1
4 ] and

d ≥ 2, Algorithm 2 constructs a set P ⊂ [0, 1]d with disp(P) ≤ ε and

#P ≤ C

(
1 + log2(ε

−1)

ε

)4

log(d∗),

where d∗ := max(d, 2/ε).
The running-time of Algorithm 2 is Oε

(
d log(d)

)
.

Proof In case that d < �2/ε�, replace d by �2/ε� in all what follows and delete at the
end the last �2/ε� − d coordinates of the constructed point set.

By Lemma 2.9, there is an explicit, deterministic construction of a (d, Am, A2
m)-

splitter A(m, d) of size O(A2
m log(d)) = O(m222m log(d)). Furthermore, by

Theorem 2.7 and since d ≥ �2/ε� > 2m − 1, there is a deterministic solution T (m) to
the k-restriction problem with parameters (2m − 1, Am, A2

m, 22mAm ) and restrictions
C from (4.3) of size

#T (m) = O
(
2m log(A2Am

m 22mAm )
)

= O
(
m222m

)
.

Here, we also used (4.5). Altogether, we get

#T ∗ = #T (m) · #A(m, d) = O
(
m424m log(d)

)
,

which implies the result since m ≤ 1 + log2(1/ε).
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For the running-time, we needO(A2
md log(d)) for the construction of A(m, d), see

Lemma 2.9, and

O(2m(eAm)Am22mAmT ) = O(24m
22mT )

for the construction of T (m), see Theorem 2.7, where, again, the cost T of the mem-
bership oracle can be assumed to be O(Am). Finally, we need O(#T ∗) time to build
up T ∗. The remaining steps are less expensive, which implies the result. �
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