
Algorithmica (2022) 84:1526–1547
https://doi.org/10.1007/s00453-022-00937-9

On 3-Coloring of (2P4, C5)-Free Graphs

Vít Jelínek1 · Tereza Klimošová1 · Tomáš Masařík1,2,3 ·
Jana Novotná1,2 · Aneta Pokorná1

Received: 11 May 2021 / Accepted: 12 January 2022 / Published online: 15 February 2022
© The Author(s) 2022

Abstract
The 3-coloring of hereditary graph classes has been a deeply-researched problem in
the last decade. A hereditary graph class is characterized by a (possibly infinite) list of
minimal forbidden induced subgraphs H1, H2, . . .; the graphs in the class are called
(H1, H2, . . .)-free. The complexity of 3-coloring is far from being understood, even
for classes defined by a few small forbidden induced subgraphs. For H -free graphs, the
complexity is settled for any H on up to seven vertices. There are only two unsolved
cases on eight vertices, namely 2P4 and P8. For P8-free graphs, some partial results
are known, but to the best of our knowledge, 2P4-free graphs have not been explored
yet. In this paper, we show that the 3-coloring problem is polynomial-time solvable
on (2P4,C5)-free graphs.

Keywords 3-Coloring · Hereditary classes · 2P4-Free graphs · Cographs

An extended abstract of this paper has been accepted to the proceedings of International Workshop on
Graph-Theoretic Concepts in Computer Science (WG) 2021 [1].

B Tomáš Masařík
masarik@mimuw.edu.pl

Vít Jelínek
jelinek@iuuk.mff.cuni.cz

Tereza Klimošová
tereza@kam.mff.cuni.cz

Jana Novotná
janca@kam.mff.cuni.cz

Aneta Pokorná
pokorna@iuuk.mff.cuni.cz

1 Faculty of Mathematics and Physics, Charles University, Malostranské Náměstí 25, 11800
Prague, Czech Republic

2 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097
Warsaw, Poland

3 Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00937-9&domain=pdf
http://orcid.org/0000-0003-4831-4079
http://orcid.org/0000-0002-7766-7298
http://orcid.org/0000-0001-8524-4036
http://orcid.org/0000-0002-7955-4692
http://orcid.org/0000-0002-7104-8664

Algorithmica (2022) 84:1526–1547 1527

Mathematics Subject Classification 05C75

1 Introduction

Graph coloring is a notoriously known and well-studied concept in both graph theory
and theoretical computer science. A k-coloring of a graph G = (V , E) is defined
as a mapping c : V → {1, . . . , k} which is proper, i.e., it assigns distinct colors to
u, v ∈ V if uv ∈ E . The k- coloring problem asks whether a given graph admits a
k-coloring. For any k ≥ 3, the k-coloring is a well-known NP-complete problem [2].
We also define a more general list-k-coloring where each vertex v has a list P(v) of
allowed colors such that P(v) ⊆ {1, . . . , k}. In that case, the coloring function c, in
addition to being proper, has to respect the lists, that is, c(v) ∈ P(v) for every vertex v.

A graph class is hereditary if it is closed under vertex deletion. It follows that a
graph class G is hereditary if and only if G can be characterized by a unique (not
necessarily finite) set HG of minimal forbidden induced subgraphs. Special attention
was given to hereditary graph classes whereHG contains only one or only a very few
elements. In such cases, when {H} = HG , or {H1, H2, . . .} = HG , we say that G ∈ G
is H -free, or (H1, H2, . . .)-free, respectively. We let Pt denote the path on t vertices,
and C� the cycle on � vertices. We let H denote the complement of a graph H . For
two graphs H1 and H2, we let H1 + H2 denote their disjoint union, and we write kH
for the disjoint union of k copies of a graph H .

In recent years, a lot of attention has been paid to determining the complexity of
k-coloring of H -free graphs. Classical results imply that for every k ≥ 3, k-coloring
of H -free graphs is NP-complete if H contains a cycle [3] or an induced claw [4, 5].
Hence, it remains to consider the cases where H is a linear forest, i.e., a disjoint union
of paths. The situation around complexity of (list) k-coloring on Pt -free graphs where
k ≥ 4 has been resolved completely. The cases k = 4, t ≥ 7 and k ≥ 5, t ≥ 6 are
NP-complete [6] while cases for k ≥ 1, t = 5 are polynomial-time solvable [7]. In
fact, k-coloring is polynomial-time solvable on sP1+P5-free graphs for any s ≥ 0 [8].
The borderline case where k = 4, t = 6 has been settled recently. There the 4-coloring
problem (even the precoloring extension problem with 4 colors) is polynomial-time
solvable [9] while the list 4-coloring problem is NP-complete [10]. Hajebi et al. show
that 5-coloring on 2P4-free graphs is NP-complete [11].

Now, we move our focus towards the complexity of the 3-coloring problem, which
was less well understood, in spite of the amount of research interest it received in
the past years. However, a considerable progress has been made in 2020; a quasi-
polynomial algorithm running in time nO(log2(n)) on n-vertex Pt -free graphs (t is a
constant) was shown by Pilipczuk et al. [12], extending a breakthrough of Gartland
and Lokshtanov [13]. In the realms of polynomiality, Bonomo et al. [14] found a
polynomial-time algorithm for P7-free graphs. Klimošová et al. [15] completed the
classification of 3-coloring of H -free graphs, for any H on up to 7 vertices. These
results were subsequently extended to P6+r P3-free graphs, for any r ≥ 0 [16]. There
are only two remaining graphs on at most 8 vertices, namely P8 and 2P4, for which
the complexity of 3-coloring is still unknown.

123

1528 Algorithmica (2022) 84:1526–1547

Algorithms for subclasses of Pt -free graphs, which avoid one or more additional
induced subgraphs, usually cycles, have been studied. They might be a first step in
the attempt to settle the case of Pt -free graphs. This turned out to be the case for
3-coloring of P7-free graphs (as can be seen from preprints [17–19] leading to [14])
and 4-coloring of P6-free graphs [20].

Note that the problem of 4-coloring is NP-complete even when some (Pt ,C�)-
free graphs are considered when t ≥ 7. Hell and Huang [21] and Huang et al. [22]
settled many NP-complete cases of this type. These results, in combination with the
polynomiality of P6-free case, leave open only the following cases: (P7,C7)-free,
(P8,C7)-free, and (Pt ,C3)-free graphs, for 7 ≤ t ≤ 21.

Chudnovsky and Stacho [23] studied the problem of 3-coloring of P8-free graphs
which additionally avoid induced cycles of two distinct lengths; specifically, they
consider graphs that are (P8,C3,C4)-free, (P8,C3,C5)-free, and (P8,C4,C5)-free.
For the first two cases, they show that all such graphs are 3-colorable. For the last one,
they provide a complete list of 3-critical graphs, i.e., the graphs with no 3-coloring
such that all their proper induced subgraphs are 3-colorable. Independently, using a
computer search, Goedgebeur and Schaudt [24] showed that there are only finitely
many 3-critical (P8,C4)-free graphs. In fact, 3-coloring is polynomial-time solvable
on (Pt ,C4)-free graphs for any t ≥ 1 [25].

The situation concerning 2P4 or P8 is still far from being determined when two
forbidden induced subgraphs are considered; in particular, it is not known whether
(P8,C3)-free, (P8,C5)-free, (2P4,C3)-free, or (2P4,C5)-free graphs can be 3-colored
in polynomial time.1 This is in contrast with the algorithm for (P7,C3)-free graphs
[28] which is considerably simpler than the one for P7-free graphs [14]. Recently,
Rojas and Stein [27] approached the problem by showing that for any odd t ≥ 9,
there exists a polynomial-time algorithm that solves the 3-coloring problem in Pt -free
graphs of odd girth at least t − 2. In particular, their result implies that 3-coloring is
polynomial-time solvable for (P9,C3,C5)-free graphs.

Freshly, a similar question was resolved in the case where, instead of a cycle,
a 1-subdivision of K1,s (a star with s leaves), denoted as SDK1,s , is considered.
Chudnovsky, Spirkl, and Zhong have shown that the class of (SDK1,s, Pt)-free graphs
is list-3-colorable in polynomial time for any s, t ≥ 1 [29]. For other related results
and history of the problem, please consult a recent survey [26].

In this paper, we resolve one of the remaining open problems mentioned above,
which considers 2P4-free graphs, as we will describe a polynomial-time algorithm
for 3-coloring of (2P4,C5)-free graphs. To the best of our knowledge, this is a first
attempt to attack the 3-coloring of 2P4-free graphs.

Theorem 1 The 3-coloring problem is polynomial-time solvable on (2P4,C5)-free
graphs.

To prove our result, we will make use of some relatively standard techniques. Let
ω(G) be the size of the largest clique of graph G. We use a seminal result of Grötschel
et al. [30] that shows the k-coloring problem on perfect graphs, i.e., graphs where each

1 First two cases were explicitly mentioned as open in [26, 27], the latter two cases are open to the best of
our knowledge.

123

Algorithmica (2022) 84:1526–1547 1529

induced subgraph G ′ is ω(G ′)-colorable, can be solved in polynomial time. Perfect
graphs are characterized by the strong perfect graph theorem [31] as the graphs that
have neither odd-length induced cycles nor complement of odd-length induced cycles
on at least five vertices.

As K4 and C7 graphs are not 3-colorable, we can assume that our graph is
(2P4,C5,C7, K4)-free. As K4 ⊆ C� whenever � ≥ 8 and 2P4 ⊆ C� whenever
� ≥ 10, it follows that either the graph is perfect, or it contains C7 or C9. In the first
case, we are done by the aforementioned polynomial-time algorithm. For the latter
cases, we divide the analysis into two further subcases. First, we suppose that the graph
is (2P4,C5,C7,C7, K4)-free and therefore it must contain C9. We analyze this case
in Sect. 2.1. Second, we suppose that graph contains C7 and we analyze this case in
Sect. 2.3.

We will exploit the fact that once we find an induced P4, the vertices that are not
adjacent to it must induce a P4-free graph (also known as cograph). Such graphs were
among the first H -free graphs studied and have many nice properties, e.g., any greedy
coloring gives a proper coloring using the least number of colors [32]. We will make
use of a slightly stronger statement that handles the list-3-coloring problem.

Theorem 2 [26] The list-3-coloring problem on P4-free graphs can be solved in poly-
nomial time.

The 3-coloring algorithm that we develop to prove Theorem 1 cannot be directly
extended to solve the more general list-3-coloring problem since it uses the 3-coloring
algorithm for perfect graphs to deal with graphs avoiding C7 and C9. However, apart
from this one case, the algorithmworkswith themore general setting of list-3-coloring.
In fact, we use reductions of lists as one of our base techniques. After several branching
steps with polynomially many branches and suitable structural reductions of the orig-
inal graph G, the algorithm will transform a 3-coloring instance of a (2P4,C5)-free
graph G to a set of polynomially many heavily structured list-3-coloring instances.
These structured instances can then be encoded by a 2-SAT formula, whose satisfia-
bility is solvable in linear time [33].

2 Proof of Theorem 1

We are given a (2P4,C5)-free graph G = (V , E), and our goal is to determine
whether it is 3-colorable. We will present an algorithm that solves this problem in
polynomial time. The algorithm begins by checking that the graph is C7-free, and that
the neighborhood of each vertex induces a bipartite graph, rejecting the instance if the
check fails. Note that this check ensures, in particular, that G is K4-free.

The algorithm then partitions the graph into connected components, solving the
3-coloring problem for each component separately. From now on, we assume that
the graph G = (V , E) is connected, C7-free, and each of its vertices has a bipartite
neighborhood.

The basic idea of the algorithm is to choose an initial subgraph N0 of bounded
size, try all possible proper 3-colorings of N0, and analyze how the precoloring of N0
affects the possible colorings of the remaining vertices.

123

1530 Algorithmica (2022) 84:1526–1547

We let N1 denote the vertices in V \N0 which are adjacent to at least one vertex of
N0, and we let N2 be the set V \(N0 ∪ N1). We will use the notation N (x) for the set
of neighbors of x in G, and Ni (x) for Ni ∩ N (x).

Our algorithm will iteratively color the vertices of G. We will assume that through-
out the algorithm, each vertex v has a list P(v) ⊆ {1, 2, 3} of available colors. We
call P(v) the palette of v. The goal is then to find a proper coloring of G in which each
vertex is colored by one of its available colors. The problem of deciding the existence
of such coloring is known as the list-3-coloring problem, and is a generalization of
the 3-coloring problem.

Whenever a vertex x of G is colored by a color c in the course of the algorithm, we
immediately remove c from the palette of x’s neighbors. Additionally, if the vertex x is
not in N0, it is then deleted. The vertices in N0 are kept inG even after they are colored.
We then update the list-3-coloring instance using the following basic reductions:

• If a vertex y has only one color c′ left in P(y), we color it by the color c′ and
remove c′ from the palettes of its neighbors. If y /∈ N0, we then delete y.

• If P(y) is empty for a vertex y, the instance of list-3-coloring is rejected.
• If, for a vertex y /∈ N0, the size of P(y) is greater than the degree of y, we delete y.
• Diamond consistency rule: If y and y′ are a pair of nonadjacent vertices such that

P(y)
= P(y′), and if N (y) ∩ N (y′) is not an independent set, then any valid
3-coloring of G must assign the same color to y and y′; we therefore replace both
P(y) and P(y′) with P(y) ∩ P(y′).

• Neighborhood domination rule: If y and y′ are a pair of nonadjacent vertices such
that N (y) ⊆ N (y′) and P(y′) ⊆ P(y), and if y is not in N0, we delete y.

• If G has a connected component in which every vertex has at most two available
colors, we determine whether the component is colorable by reducing the problem
to an instance of 2-SAT. If the component can be colored, we remove it from G
and continue. Otherwise, we reject the whole instance.

• If a connected component of G is P4-free, we solve the list-3-coloring problem
for this component by Theorem 2. If the component is colorable, we remove it.
Otherwise, we reject the whole instance G.

It is clear that the rules are correct in the sense that the instance of list-3-coloring
produced by a basic reduction is list-3-colorable if and only if the original instance was
list-3-colorable. It is also clear that we may determine in polynomial time whether an
instance of list-3-coloring (with fixed N0) permits an application of a basic reduction,
and perform the basic reduction, if available. Throughout the algorithm, we apply the
basic reductions greedily as long as possible until we reach a situation where none of
them is applicable.

Thebasic reductions by themselves are not sufficient to solve the 3-coloringproblem
for G. Our algorithm will sometimes also need to perform branching, i.e., explore
several alternative ways to color a vertex or a set of vertices. Formally, this means
that the algorithm reduces a given instance G of list-3-coloring to an equivalent set of
instances {G1, . . . ,Gk}; here saying that a list-3-coloring instance G is equivalent to
a set {G1, . . . ,Gk} of instances means that G has a solution if and only if at least one
of G1, . . . ,Gk has a solution.

123

Algorithmica (2022) 84:1526–1547 1531

At the beginning of the algorithm, we attach to each vertex v of G the list P(v) =
{1, 2, 3} of available colors, thereby formally transforming it to an instance of list-3-
coloring. The algorithmwill then try all possible proper 3-colorings of N0, and for each
such coloring, apply basic reductions as long as any basic reduction is applicable. If this
fails to color all the vertices, more complicated reduction steps and further branching
will be performed, to be described later.

Overall, the algorithmwill ensure that the initial instanceG is eventually reduced to
a set of atmost polynomiallymany smaller instances, each ofwhich can be transformed
to an equivalent instance of 2-SAT, which then can be solved efficiently.

2.1 The C7-Free Case

Our choice of N0 will depend on the structure of G. More precisely, if G contains
an induced copy of C7, we will choose one such copy as N0. This is by far the most
challenging case, and we return to it later.

The case when G is C7-free can be handled in a simple way, as we now show.

Proposition 3 The 3-coloring problem for a (2P4,C5,C7)-free graph G can be solved
in polynomial time.

Proof Recall that we assume thatG is K4-free andC7-free; otherwiseG would clearly
not be 3-colorable. Note that K4-freeness implies that G is Ck-free for every k ≥ 8,
and 2P4-freeness implies that G is Ck-free for every k ≥ 10.

If G is alsoC9-free, then it is perfect by the strong perfect graph theorem, and since
it is K4-free, it is 3-colorable. Assume then that G contains an induced copy of C9.
Fix N0 to be an induced copy of C9 in G, and define N1 and N2 accordingly. We will
show that for any proper coloring of N0, the basic reductions can solve the resulting
list-3-coloring problem.

Fix a 3-coloring of N0, and apply the basic reductions until none of them is appli-
cable. We claim that this solves the instance completely, i.e., we either color the whole
graph, or determine that no coloring exists. For contradiction, suppose that we reached
a situation when G still contains uncolored vertices, but no basic reduction is appli-
cable.

It follows that G contains a vertex v with three available colors, and this vertex
necessarily belongs to N2. As N2 is also P4-free the connected component containing
v is not an isolated component within N2. Therefore, we may find in G two adjacent
vertices x, y with x ∈ N1 and y ∈ N2. Recall that N0(x) is the set of vertices of N0
adjacent to x . The vertices of N0(x) partition the cycle N0 into edge-disjoint arcs, and
at least one of these arcs has an odd number of edges. Let A be such an arc of odd length.

If A has length 1, then x is adjacent to two adjacent vertices of N0, hence the color
of x is uniquely determined by the coloring of N0 and x should have been deleted. If
A has length 3 or 5, then A ∪ {x} induces a copy of C5 or C7, respectively, which is
impossible. Thus, A has length 7 or 9. In such case, we find a copy of 2P4 in G, where
one P4 consists of y, x , a vertex z ∈ N0(x), and a vertexw ∈ A adjacent to z, while the
other P4 is formed by taking four consecutive internal vertices of A, each of which is
at distance at least two from z and w; see Fig. 1. In all cases we get a contradiction. ��

123

1532 Algorithmica (2022) 84:1526–1547

Fig. 1 Picture showing the
induced 2P4 in the case of G
being C7-free. If the
dash-and-dotted edge is present,
A has length 7, otherwise A has
length 9

From now on, we assume that the graph G contains an induced C7. We choose one
such C7 as N0, and define N1 and N2 accordingly.

2.2 More Complicated Reductions

We apply the basic reductions described previously whenever an opportunity arises.
Now, we outline more complicated reductions which will be applied only in specific
situations.

2.2.1 Cut Reduction

SupposeG = (V , E) is a connected instance of list-3-coloring. Let X ⊆ V be a vertex
cut of G, let C be a union of one or more connected components of G− X , and let CX

be the subgraph of G induced byC ∪ X . Suppose further that the following conditions
hold.

• C has at least two vertices.
• X is an independent set in G.
• All the vertices in X have the same palette, which has size 2.
• For any two vertices x, x ′ in X , we have N (x) ∩ C = N (x ′) ∩ C .
• The graph CX is P4-free.

Assume without loss of generality that all the vertices of X have the palette equal to
{1, 2}. Let us say that a coloring c : X → {1, 2} of X is feasible for C , if it can be
extended into a proper 3-coloring of the list-3-coloring instance CX . Note that the
feasibility of a given coloring can be determined in polynomial time by Theorem 2,
because CX is a cograph.

We distinguish three types of possible colorings of X : the all-1 coloring colors all
the vertices of X by the color 1, the all-2 coloring colors all the vertices of X by color
2, and a mixed coloring is a coloring that uses both available colors on X . Observe
that if X admits at least one mixed coloring feasible for C , then every (not necessarily
mixed) coloring of X by colors 1 and 2 is feasible for C . This is because when we
extend a mixed coloring of X to a coloring of CX , all the vertices y ∈ C must receive

123

Algorithmica (2022) 84:1526–1547 1533

the color 3. If such a coloring of C exists, we can combine it with any coloring of X
by colors 1 and 2.

The cut reduction of X andC is an operation that reducesG to a smaller, equivalent
list-3-coloring instance, determined as follows.We choose an arbitrarymixed coloring
c of X , and check whether it is feasible forC . If it is feasible, we reduce the instanceG
to G −C , leaving the palettes of the remaining vertices unchanged. The new instance
is equivalent to the original one since any proper list-3-coloring of G − C can be
extended to a coloring of G because all the colorings of X are feasible for C .

If the mixed coloring c is not feasible for C , we know that no mixed coloring
is feasible. We then test the all-1 and the all-2 coloring for feasibility. If both are
feasible, we reduce the instance G by replacing C with a single new vertex v, with
palette P(v) = {1, 2}, and connecting v to all the vertices of X . Note that the reduced
instance is an induced subgraph of the original one. It is easy to see that the reduced
instance is equivalent to the original one.

If only one coloring of X is feasible forC , we deleteC , color the vertices of X using
the unique feasible coloring, and delete the corresponding color from the palettes of
the neighbors of X in G − C . If no coloring of X is feasible for C , we declare that G
is not list-3-colorable.

2.2.2 Neighborhood Collapse

Let G be an instance of list-3-coloring, and let v be a vertex of G. Suppose that N (v)

induces in G a connected bipartite graph with nonempty partite classes X and Y .
Suppose furthermore that all the vertices of X have the same palette PX , and all the
vertices in Y have the same palette PY . The neighborhood collapse of the vertex v

is the operation that replaces X and Y by a pair of new vertices x and y, adjacent to
each other and to v, with the property that any vertex of G − Y adjacent to at least
one vertex in X will be made adjacent to x , and similarly every vertex adjacent to Y
in G − X will be adjacent to y. We then set P(x) = PX and P(y) = PY . Informally
speaking, we have collapsed the vertices in X to a single vertex x , and similarly for Y
and y.

It is clear that the collapsed instance is equivalent to the original one. However,
since the new instance is not necessarily an induced subgraph of the original one, it
might happen, e.g., that a collapse performed in a C5-free graph will introduce a copy
of C5 in the collapsed instance. In our algorithm, we will only perform collapses at a
stage when C5-freeness is no longer needed.

On the other hand, 2P4-freeness is preserved by collapses, as we now show.

Lemma 4 Let G be a 2P4-free instance of list-3-coloring in which a neighborhood
collapse of a vertex v may be performed, and let G∗ be the graph obtained by the
collapse. Then G∗ is 2P4-free.

Proof Suppose G∗ contains an induced 2P4, and let P and Q be the two nonadjacent
copies of P4. Let x and y be the two vertices obtained by collapsing sets X and Y , as
in the definition of neighborhood collapse. Without loss of generality, P contains the
vertex x . It follows that Q contains none of x , y or v, and in particular, Q is also a P4
in G.

123

1534 Algorithmica (2022) 84:1526–1547

If the path P contains the edge xy, we may ‘lift’ P into the graph G by replacing
the vertices x and y by appropriate vertices x ′ ∈ X and y′ ∈ Y , and by replacing the
edge xy by a shortest path from x ′ to y′ in N (v). This transforms P into an induced
path P ′ in G on at least four vertices which is nonadjacent to Q. Thus, G also contains
a 2P4.

Suppose now that P does not contain the edge xy, and therefore y is not in P . If
x is the end-vertex of P , say P = xw1w2w3, we easily obtain a 2P4 in G by simply
replacing x by a vertex x ′ ∈ X adjacent to w1 in G. Suppose then that x is an internal
vertex of P , say P = w1xw2w3. Since we know that P does not contain y, we may
replace the vertex w1 with v in P , knowing that vxw2w3 is also an induced P4 in G∗
nonadjacent to Q. By replacing the vertex x by a vertex x ′ ∈ X adjacent to w2, we
obtain the induced path vx ′w2w3 in G which forms a 2P4 together with Q. ��

2.3 Graphs Containing C7

We now turn to the most complicated part of our coloring algorithm, which solves the
3-coloring problem for a (2P4,C5)-free graph G that contains an induced C7. We let
N0 be an induced copy of C7 in this graph, and define N1 and N2 accordingly.

We let v1, v2, . . . , v7 denote the vertices of N0, in the order in which they appear
on the cycle N0. We evaluate their indices modulo 7, so that, e.g., v8 = v1.

Fix a proper coloring of N0, and apply the basic reductions to G until no basic
reduction is applicable.Wenowanalyze the structure ofG at this stage of the algorithm.
We again let N0(x) denote the set of neighbors of x in N0.

Lemma 5 After fixing the coloring of N0 and applying all available basic reductions,
the graph G has the following properties.

• Each vertex x of N1 satisfies either N0(x) = {vi } for some i , or N0(x) = {vi , vi+2}
for some i .

• Each induced copy of P4 in G has at most two vertices in N2.
• G is connected.

Proof To prove the first part, use the vertices of N0(x) to partition the cycle N0 into
edge-disjoint arcs. Note that none of these arcs has length 1. Since then, x would be
adjacent to two vertices of distinct colors, and it would have been colored and deleted.
Also, none of these arcs can have length 3, since such an arc together with the vertex
x would induce a C5 in G, contradicting C5-freeness.

On the other hand, at least one of the arcs formed by N0(x) must have an odd
length. Thus, there is either an arc of length 7, implying N0(x) = {vi }, or there is an
arc of length 5, implying N0(x) = {vi , vi+2} for some i . This proves the first part of
the lemma.

To prove the second part, assume that P is an induced copy of P4 in G with at
least three vertices in N2. If P is fully contained in N2, then P forms a 2P4 together
with any P4 contained in N0. Suppose that P\N2 consists of a single vertex x , as in
Fig. 2. Necessarily x is in N1, and by the first part of the lemma, N0\N0(x) contains
an induced P4 which forms an induced 2P4 with P .

123

Algorithmica (2022) 84:1526–1547 1535

Fig. 2 Finding an induced 2P4,
assuming P is an induced P4
with exactly three vertices in N2.
Note that P can look differently,
but always contains x

Toprove the last part of the lemma, note that N0 is connected and therefore contained
in a single component of G, and if G contained another connected component, then
this other component would necessarily be P4-free and would be colored by a basic
reduction. ��

Lemma 5 is the last part of the proof that makes use of the C5-freeness of G. From
now on, we will not need to use the fact that G is C5-free. In particular, we will
allow ourselves reduction operations, such as the neighborhood collapse, which do
not preserve C5-freeness.

We will assume, without mentioning explicitly, that after performing any modifica-
tion of the list-3-coloring instance G, we always apply basic reductions until no more
basic reductions are available.

In the rest of the proof, we use the term top component to refer to a connected
component of N2. Observe that every top component is P4-free and therefore has a
dominating set of size at most 2 [34]. We say that a top component is relevant, if it
contains a vertex z with |P(z)| = 3. Note that if G has no relevant top component,
then all its vertices have at most two available colors, and the coloring problem can
be solved by a single basic reduction.

We will say that a vertex x of N1 is relevant if x is adjacent to a vertex belonging
to a relevant top component.

Let x ∈ N1 be a vertex, and let C be a top component. We say that x is a partial
neighbor of C , if x is adjacent to at least one but not all the vertices of C . We say that
x is a full neighbor of C , if it is adjacent to every vertex of C .

Lemma 6 Suppose x ∈ N1 is a partial neighbor of a top component C. Then x is not
a neighbor of any other top component. Moreover, |N0(x)| = 2.

Proof Let y and z be two adjacent vertices belonging to C , such that x is adjacent to y
but not to z. Suppose for contradiction that there is a vertex w ∈ N2 adjacent to x but
not belonging to C . Then wxyz is a copy of P4 with three vertices in N2, as shown
in Fig. 3, which contradicts Lemma 5. This shows that x is not adjacent to any top
component other than C .

Suppose now that N0(x) contains a single vertex vi . Then vi xyz together with
vi+2vi+3vi+4vi+5 induce a 2P4. ��

123

1536 Algorithmica (2022) 84:1526–1547

Fig. 3 Vertex x ∈ N1 being a
partial neighbor of a top
component C and neighboring
another top component C ′ leads
to an induced 2P4

Fig. 4 The situation obtained
from the assumption that N2(x)
and N2(y) for x, y ∈ Ri are not
comparable by inclusion. The
dash-and-dot line represents an
edge which is present in one
case (red induced 2P4) and
absent in the other (blue induced
2P4) (Color figure online)

We will now reduce G to a set of polynomially many instances in which the set of
relevant vertices has a special form. We first eliminate the relevant vertices that have
only one neighbor in N0. Let Ri be the set of relevant vertices that are adjacent to vi
and not adjacent to any other vertex of N0.

Lemma 7 For any i ∈ {1, . . . , 7}, we can reduce G to an equivalent set of at most two
instances, both of which satisfy Ri = ∅.
Proof By Lemma 6, we know that any vertex x ∈ Ri is a full neighbor of each of its
adjacent top components.

Let x, y be two distinct vertices of Ri . We claim that the two sets N2(x) and N2(y)
are comparable by inclusion. To see this, suppose for contradiction that there are
vertices x ′ ∈ N2(x)\N2(y) and y′ ∈ N2(y)\N2(x). Then we can find in G a copy of
2P4 in which the first P4 is vi+2vi+3vi+4vi+5, and the second P4 is either x ′xyy′ (if
xy ∈ E(G)), or x ′xvi y (if xy /∈ E(G)); see Fig. 4.

Choose z ∈ Ri so that N2(z) is as large as possible. In particular, for every x ∈ Ri ,
we have N2(x) ⊆ N2(z). We then obtain two instances equivalent to G by coloring
z by its two available colors. Note that by coloring z, we ensure that all the vertices
N2(z) have at most two available colors, and since z is a full neighbor of all its adjacent

123

Algorithmica (2022) 84:1526–1547 1537

Fig. 5 The situation obtained
when the neighborhoods of
vertices in Ri in N2 are
comparable by inclusion with
N2(z) being the largest
neighborhood. Note that these
vertices are full neighbors of
their top components

top components, this ensures that the vertices of Ri will no longer be relevant after z
has been colored; see Fig. 5 for illustration. ��

From now on, we deal with instances of G where every relevant vertex has exactly
two neighbors in N0. Let Si be the set of relevant vertices adjacent to vi .

Lemma 8 For any i ∈ {1, . . . , 7}, we can reduceG to an equivalent set of polynomially
many instances, each of which satisfies Si = ∅ or Si+3 = ∅.
Proof Suppose that the vertices in Si have available colors 1 and 2, while the vertices
in Si+3 have available colors 2 and 3 (the case when the vertices in Si+3 have the same
available colors as the vertices in Si is similar and we omit it).

For a pair of vertices x ∈ Si and y ∈ Si+3, we distinguish the following three
possibilities:

(α) N2(x) and N2(y) are comparable by inclusion,
(β) x is adjacent to y, or
(γ) neither of the previous two conditions holds.

We say that the pair (x, y) is of type α if it satisfies the condition (α) above, and
similarly for the other two types. Observe that if the pair (x, y) is of type γ , then there
exist x ′ ∈ N2(x)\N2(y) and y′ ∈ N2(y)\N2(x). Moreover, for any choice of such
x ′ and y′, the pair x ′y′ must be an edge of G, otherwise x ′xvivi−1 and y′yvi+3vi+4
would form a copy of 2P4. In particular, x ′ and y′ belong to the same top component
C , and both x and y are partial neighbors of C , as is depicted in Fig. 6.

Let Z = Si ∪ Si+3. Let m be the size of Z , and let us order the vertices of Z into a
sequence z1, z2, . . . , zm satisfying |N2(z1)| ≥ |N2(z2)| ≥ · · · ≥ |N2(zm)|.

We will reduce G to the set of all the instances that can be constructed by one of
the following two rules:

(a) All the vertices in Z are colored by their available color different from 2 (i.e., the
vertices of Si are colored by 1, the vertices of Si+3 by 3).

(b) Fix a j ∈ {1, . . . ,m} and proceed as follows: color the vertices z1, . . . , z j−1 by
their available color different from 2, and color z j by 2. Moreover, if z j is a partial

123

1538 Algorithmica (2022) 84:1526–1547

Fig. 6 Considering a pair of
vertices (x, y) of type γ for
x ∈ Si , y ∈ Si+3, the edge x

′y′
must be present, otherwise we
obtain an induced 2P4. The
other dash-and-dotted edges are
not necessarily present, and the
vertex vi+5 is adjacent to at
most one vertex from {x, y}

Fig. 7 Coloring (b) from the
proof of Lemma 8 for k < j

neighbor of a top component C (note that by Lemma 6, z j is not adjacent to any
other top component), color a dominating set of size two in C , in all the possible
ways.

We now verify that in all the colorings described above, after all possible basic reduc-
tions are applied, either Si or Si+3 becomes empty. This is clearly the case for the
coloring described in (a), in which all the vertices in Si ∪ Si+3 will be removed from
G, so both sets will be empty.

Consider now a coloring described in (b), and assume without loss of generality
that z j is in Si . We claim that after the coloring is performed, there will be no relevant
vertex left in Si+3. To see this, consider a vertex zk ∈ Si+3. If k < j , then zk has been
colored by the color 3, see Fig. 7.

If k > j , we distinguish three possibilities depending on the type of the pair
(z j , zk). If the pair (z j , zk) is of type α, then N2(zk) ⊆ N2(z j) (recall that k > j
implies |N2(z j)| ≥ |N2(zk)|). In particular, all the vertices in any top component
adjacent to zk will only have two available colors (recall that if z j is a partial neighbor
of a top component, we also color a dominating set of this top component, ensuring all
its vertices have at most two available colors). Thus, zk will no longer be relevant. If

123

Algorithmica (2022) 84:1526–1547 1539

Fig. 8 The situation considered
in the remaining part of the main
proof starting with Lemma 9

the pair (z j , zk) is of type β, i.e. z j zk is an edge, then zk has only the color 3 available
and can be colored. Finally, suppose (z j , zk) is of type γ . As discussed before, this
means both z j and zk are partial neighbors of a top component C and have no other
neighbors in N2. After the coloring is performed, all the vertices in C will have only
two available colors, because we have colored its dominating set of size two. Hence
zk is no longer relevant. We conclude that Si+3 becomes empty, as claimed.

It is clear that the coloring rules (a) and (b) admit only polynomially many possible
colorings, and that any valid list coloring of G extends one of the partial colorings
described in (a) or in (b). Thus, we reduced G to an equivalent set of polynomially
many instances. ��

From now on, assume that we deal with an instance G in which for every i , one of
the two sets Si and Si+3 is empty. Unless the instance is already completely solved,
there must be at least one relevant vertex. Assume without loss of generality that G
has a relevant vertex adjacent to v1 and v3. It follows that S1 and S3 are nonempty,
and hence S4, S5, S6 and S7 are empty. Moreover, as any relevant vertex is adjacent
to a pair of vertices of the form {vi , vi+2}, it follows that S2 is empty as well. In
particular, every relevant vertex x satisfies N0(x) = {v1, v3}. It follows that all the
relevant vertices have the same palette of size 2; assume without loss of generality
that this palette is {1, 2}.

We will now focus on describing the structure of the subgraph of G induced by
the relevant vertices and the relevant top components adjacent to them. Let R denote
the set of relevant vertices. Note that the subgraph of G induced by R ∪ N2 does not
contain P4, otherwise we could use the path v4v5v6v7 to get a 2P4 in G; see Fig. 8.

Note also that if two relevant vertices x and y are adjacent, then any common
neighbor of x and ymust be colored by color 3, thanks to the diamond consistency rule.
We thus know that adjacent relevant vertices have no common neighbors outside N0.
We may also assume that the graph induced by the relevant vertices is bipartite, which
we checked as a second step at the beginning of our algorithm. Otherwise, we rejected
such an instance as G was clearly not 3-colorable.

Lemma 9 Suppose that x and y are two adjacent relevant vertices. Let us write X ′ =
N2(x) and Y ′ = N2(y). Then there are disjoint sets X ,Y ⊆ R, with x ∈ X and y ∈ Y ,
satisfying these properties:

1. Every vertex in X ∪ Y ′ is adjacent to every vertex in Y ∪ X ′.

123

1540 Algorithmica (2022) 84:1526–1547

2. X and Y are independent sets of G.
3. The vertices in X ′∪Y ′ are only adjacent to vertices in X∪Y∪X ′∪Y ′; in particular,

X ′ ∪ Y ′ induce a top component.

Proof Consider the subgraph G[R] of G induced by the relevant vertices, and let C be
the connected component of G[R] containing x and y. Recall thatC must be bipartite.
We let X and Y be its partite classes containing x and y, respectively. Note that C is
complete bipartite. Otherwise, it would contain a P4.

We will now show that all the vertices in X have the same neighbors in N2. Indeed,
if we could find a pair of vertices x1, x2 ∈ X and a vertex x ′ ∈ N2(x1) not adjacent
to x2, then x ′x1yx2 would induce a P4. It follows that for every x1 ∈ X we have
N2(x1) = X ′, and similarly for every y1 ∈ Y we have N2(y1) = Y ′.

We saw that adjacent relevant vertices have no common neighbors in N2, so X ′ and
Y ′ are disjoint. Every vertex in X ′ must be adjacent to every vertex in Y ′, for if there
were nonadjacent vertices x ′ ∈ X ′ and y′ ∈ Y ′, then x ′xyy′ would induce a P4. This
proves the first claim of the lemma.

To prove the second claim, observe that X and Y are independent by construction.
To prove the third claim, proceed by contradiction and assume that a vertex

x ′ ∈ X ′ ∪ Y ′ is adjacent to a vertex z not belonging to X ∪ Y ∪ X ′ ∪ Y ′. We may
assume that x ′ belongs to X ′. Necessarily, z belongs to R ∪ N2, and zx ′xy induces a
forbidden P4. ��

Suppose G[R] contains at least one edge xy, and let X ,Y , X ′,Y ′ be as in the
previous lemma. Note that there are only two possible ways to colorG[X ∪Y] – either
X is colored 1 and Y is colored 2, or vice versa. We can check in polynomial time
which of these two colorings can be extended to a valid coloring ofG[X∪Y ∪X ′∪Y ′].
If neither of the two colorings extends, we reject the list 3-coloring instance, if only
one of the two colorings extends, we color X ∪ Y accordingly, and if both colorings
extend, we remove the vertices X ′ ∪ Y ′ from G, resulting in a smaller equivalent
instance, in which X ∪Y is no longer relevant. Repeating this for every component of
G[R] that contains at least one edge, we eventually reduce the problem to an instance
in which the relevant vertices form an independent set.

From now on, we assume R is independent in G. For a vertex x ∈ R, let C2(x)
denote the set of top components that contain at least one neighbor of x .

Lemma 10 For any two relevant vertices x and y, we either have C2(x) = C2(y), or
C2(x) and C2(y) are disjoint.

Proof Suppose the lemma fails for some x and y. We may then assume that there
is a top component C ∈ C2(x) ∩ C2(y) and a component C ′ ∈ C2(x)\C2(y). Since
|C2(x)| ≥ 2, we know fromLemma 6 that x is a full neighbor of all the top components
in C2(x). Choose a vertex u ∈ C ′ and a vertex v ∈ C ∩ N2(y). Then uxvy is a copy
of P4 in R ∪ N2, which is impossible. ��

Let us say that two relevant vertices x and y are equivalent if C2(x) = C2(y). As
the next step in our algorithm, we will process the equivalence classes one by one,
with the aim to reduce the instance G to an equivalent instance in which each relevant
vertex is adjacent to a single top component.

123

Algorithmica (2022) 84:1526–1547 1541

Fig. 9 Illustrations to the proof of Lemma 11. The left part shows a situation when y is not adjacent to any
vertex in N2(x), the right part shows a situation when y has a neighbor in N2(x) which is disconnected.
Each part depicts two different possibilities. The blue P4 shows the case y ∈ Rx , while the red P4 shows
the case when y ∈ C (Color figure online)

Let x ∈ R be a vertex such that |C2(x)| ≥ 2, and let Rx be the equivalence class
containing x . By Lemma 6, each vertex in Rx is a full neighbor of any component in
C2(x), and by Lemma 10, no vertex outside of Rx may be adjacent to a relevant top
component in C2(x). Thus, Rx is a vertex cut separating the relevant top components
in C2(x) from the rest of G. We may therefore apply the cut reduction through the
vertex cut Rx to reduce G to a smaller instance in which the vertices of Rx are no
longer relevant.

We repeat the cut reductions until there is no relevant vertex adjacent to more than
one top component. From now on, we deal with instances inwhich each relevant vertex
is adjacent to a unique top component; note that this top component is necessarily
relevant.

Lemma 11 Let x be a relevant vertex, let C be the top component adjacent to x, let Rx

be the equivalence class of x, and let y ∈ Rx ∪C be a vertex not adjacent to x. Then y
is adjacent to at least one vertex in N2(x). Moreover, if N2(x) induces a disconnected
subgraph of G, then y is adjacent to all the vertices of N2(x).

Proof Refer to Fig. 9. If y is not adjacent to any vertex of N2(x), then we can find an
induced path with at least four vertices by considering the shortest path from x to y
in the graph induced by C ∪ {x, y}. Therefore y has at least one neighbor in N2(x).
Suppose now that N2(x) is disconnected. If y is not adjacent to all the vertices of
N2(x), then we can find a vertex u ∈ N2(x) adjacent to y, and a vertex v ∈ N2(x)
nonadjacent to y, in such a way that u and v are in distinct components of N2(x). Then
yuxv is an induced P4. ��

Fix now a relevant top component C and let R be set of relevant vertices in N1
adjacent to C . Fix a vertex x ∈ R so that N2(x) is as large as possible. Let Rx be
the equivalence class containing x . We distinguish several possibilities, based on the
structure of N2(x).

2.3.1 N2(x) is Disconnected

Suppose first that N2(x) induces in G a disconnected subgraph. By Lemma 11, any
vertex in Rx is adjacent to all vertices in N2(x). By our choice of x , this implies that

123

1542 Algorithmica (2022) 84:1526–1547

Fig. 10 There is an induced P4
in N2 if N2(x) is connected with
≥ 3 vertices and for y, y′ ∈ Y
there exists a u neighboring only
one of them

for any x ′ ∈ Rx we have N2(x ′) = N2(x). We may therefore apply the cut reduction
for the cut Rx that separatesC from the rest ofG, to obtain a smaller instance in which
the vertices of Rx are no longer relevant.

2.3.2 N2(x) is Connected, with≥ 3 Vertices

Now suppose that N2(x) induces a connected graph, and that N2(x) has at least three
vertices. We now verify that N2(x) induces a complete bipartite graph, otherwise C
contains P4 or G is not 3-colorable. Let Y and Z be the two partite classes of N2(x).
Note that any two vertices y, y′ in Y have the same neighbors in G: indeed if u were a
vertex adjacent to y but not to y′, then uyxy′ would induce a copy of P4, as depicted
in Fig. 10. By the same argument, all the vertices in Z have the same neighbors in G
as well. Diamond consistency enforces that all the vertices in Y have the same palette,
and similarly for Z . We may then invoke neighborhood domination to delete from
Y all vertices except a single vertex y, and do the same with Z , reducing G to an
equivalent instance in which N2(x) consists of a single edge.

2.3.3 N2(x) is a Single Vertex

Suppose that N2(x) consists of a single vertex y. If y is the only vertex of C , then y
must have the palette {1, 2, 3}, otherwise C would not be a relevant component. In
such case, we may simply color y with color 3 and delete it, as this does not restrict
the possible colorings of G − y in any way. If, on the other hand, C has more than one
vertex, it follows from Lemma 11 that all the vertices of Rx are adjacent to y, and by
the choice of x , every vertex in Rx is adjacent to y as its only neighbor in C . We may
then apply cut reduction for the cut Rx . In all cases, we obtain a smaller equivalent
instance, in which the vertices in Rx are no longer relevant.

2.3.4 N2(x) is a Single Edge

The last case to consider deals with the situation when N2(x) contains exactly two
adjacent vertices u and v. Assume that degG(u) ≥ degG(v). Recall that the set R of
relevant vertices is independent. Note that for any vertex x ′ ∈ Rx , N2(x ′) is connected,
otherwise Lemma 11 implies that N2(x ′) is contained in N2(x), contradicting N2(x)
being a single edge.

123

Algorithmica (2022) 84:1526–1547 1543

Fig. 11 Illustrations of the situation when N2(x) is a single edge uv. Again, case y ∈ Rx is shown as blue
y and blue P4, while y ∈ (C − u) is shown as red y and red P4. There are two subcases corresponding to
yz being an edge or not (Color figure online)

Fig. 12 Recall that u is adjacent
to all vertices of C . If there is a
y ∈ C adjacent to both u and v,
there is no other neighbor z of y.
Otherwise, either zv is an edge,
causing a K4, or zv is not an
edge, causing an induced P4

We first claim that any vertex y ∈ Rx ∪ (C − u) adjacent to v is also adjacent to u.
Suppose this is not the case. Then, since degG(u) ≥ degG(v), there must also be a
vertex z ∈ Rx ∪ (C −v) adjacent to u but not to v. If yz is an edge, then zyvx is a copy
of P4, and if yz is not an edge, then zuvy is a copy of P4, as shown in Fig. 11. In both
cases we have a contradiction, establishing the claim. Note that the claim, together
with Lemma 11, implies that u is adjacent to all the other vertices of Rx ∪ C .

Next, we show that if C contains a vertex adjacent to both u and v, then we may
reduce G to a smaller equivalent instance. Suppose y ∈ C is adjacent to u and v. Then
P(y) = P(x) = {1, 2} by diamond consistency. We now claim that y has no other
neighbors in G beyond u and v. Suppose that z /∈ {u, v} is a neighbor of y. Then z
cannot be adjacent to v, since uvyz would form a K4. Therefore zyvx is a copy of P4,
a contradiction illustrated by Fig. 12. We conclude that N (y) = {u, v} ⊆ N (x), and
since P(y) = P(x), we may delete y due to neighborhood domination.

From now on, we assume that u and v have no common neighbor in C . Recall that
u is adjacent to all the other vertices in C ∪ Rx . We now reduce G to an instance
where C − u is an independent set. We already know that v is isolated in C − u by
the previous paragraph. Suppose that C − u has a component D with more than one
vertex. Suppose D has a vertex v′ adjacent to a vertex x ′ ∈ Rx . Let y′ be any vertex

123

1544 Algorithmica (2022) 84:1526–1547

Fig. 13 Situation in which we
can apply a neighborhood
collapse

in N (v′) ∩ D. Observe that x ′y′ is not an edge as otherwise x ′y′v′u is a K4. Hence,
x ′y′v′u form a diamond. Then P(y′) = P(x ′) by diamond consistency. We claim that
y′ has no other neighbors inG beyond u and v′. Suppose that z′ /∈ {u, v′} is a neighbor
of y′. Then z′ cannot be adjacent to v′, since uv′y′z′ would form a K4. If z′x ′ is not
an edge z′y′v′x ′ is a copy of P4, a contradiction. If z′x ′ is an edge then all z′v′u are in
N2(x) contradicting the choice of x so that N2(x) is the largest possible.

We can repeat the reasoning of the previous paragraph with x ′ and v′ in the place of
x and v, showing that u and v′ cannot have any common neighbor in C , contradicting
the assumption that D has more than one vertex. We can thus conclude that D is not
adjacent to any vertex in Rx . Then u is a cut-vertex separating D from the rest of G.
We may test which colorings of u can be extended into D (since D is P4-free, this can
be done efficiently), then restrict the palette of u to only the feasible colors, and then
delete D.

We are now left with a situation when C is a star with center u, and every vertex of
Rx is adjacent to u and to at most one vertex of C − u. If there is a vertex w ∈ C − u
adjacent to more than one vertex in Rx , it means that the neighborhood of w is a
connected bipartite graph (a star with center u) to which we may apply neighborhood
collapse; see Fig. 13.

Suppose now that every vertex w ∈ C − u has only one neighbor in Rx (if w had
no neighbor in Rx , it would have degree 1 and we could remove it). If w’s palette has
3 colors, we can remove it, so we may assume that every vertex in C − u has a palette
of size 2. Then u’s palette must have 3 colors. Otherwise, C would not be a relevant
component. If a vertex in C − u has palette {1, 2}, then u must be colored 3 and then
Rx is no longer relevant.

It remains to consider the case when each vertex of C − u has the palette {1, 3}
or {2, 3}. Let W1 and W2 be the sets of vertices of C − u having palette {1, 3} and
{2, 3}, respectively. Let X1 and X2 be the sets of vertices of Rx that are adjacent to
a vertex in W1 and W2, respectively. Let X0 be the set of vertices in Rx that have no
neighbor in C − u. The situation is shown in Fig. 14. Let us consider the possible
colorings of C ∪ Rx . If u is colored by 3, then the whole set W1 is colored by 1, W2
is colored by 2, hence X1 is colored by 2 and X2 by 1, while the vertices in X0 can
be colored arbitrarily by 1 or 2. On the other hand, if u receives a color α
= 3, then
all the vertices in Rx receive the color β ∈ {1, 2}\{α}, and the vertices in C − u can
be colored by 3. The set Rx therefore admits three types of feasible colorings: the
all-1 coloring, the all-2 coloring, and any coloring where the set X1 is colored by 2
and X2 by 1. This set of colorings can be equivalently characterized by the following
properties:

123

Algorithmica (2022) 84:1526–1547 1545

Fig. 14 The last case in which
each vertex of C − u has palette
{1, 3} or {2, 3}. The blue text
represents the three possibilities
to color u and what colors that
implies for other parts of the
graph

• If a vertex in X1 is colored by 1, then the whole Rx receives 1.
• If a vertex in X2 is colored by 2, then the whole Rx is colored by 2.
• All the colors in X1 are equal and all the colors in X2 are equal.

The above properties can be encoded by a 2-SAT formula whose variables correspond
to vertices of Rx .

To summarize, we have shown that a 3-coloring instance G can be reduced to an
equivalent set of polynomially many simpler list-3-coloring instances. The structure
of these simpler instances guarantees that for any relevant top component C , we can
form a 2-SAT formula describing the colorings of the relevant vertices adjacent to C
that can be extended to a proper coloring ofC . Moreover, in the subgraph ofG induced
by the vertices not belonging to any relevant top component, each vertex has a palette
of size at most two. The colorings of this subgraph can again be encoded by a 2-SAT
formula. Such an instance of list-3-coloring then admits a solution if and only if there
is a satisfying assignment for the conjunction of the 2-SAT formulas described above.
The existence of such an assignment can be found in polynomial time. This completes
the proof of Theorem 1.

3 Conclusions

We have shown that 3-coloring on (2P4,C5)-free graphs is solvable in polynomial
time. As we discussed in the introduction, this approach might serve as a step towards
resolving 3-coloring on 2P4-free graphs because it remains to consider 2P4-free graphs
containing C5.

Apart from the main question above, under more refined scale, the complexity of 3-
coloring on (2P4,C3)-free, (P8,C3)-free, or (P8,C5)-free graphs remains unknown.
In another direction, it would be interesting to extend our result to the list 3-coloring
setting.

Acknowledgements We acknowledge the comfortable and inspiring atmosphere of theworkshopKAMAK
2019 organized by Charles University where part of this work was done.

Funding V. Jelínek was supported by project 18-19158S of the Czech Science Foundation. T. Klimošová
is supported by the grant no. 19-04113Y of the Czech Science Foundation (GAČR) and the Center for
Foundations of Modern Computer Science (Charles Univ. project UNCE/SCI/004). T. Masařík received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research

123

1546 Algorithmica (2022) 84:1526–1547

and innovation programme Grant Agreement 714704. He completed a part of this work while he was a
postdoc at Simon Fraser University in Canada. J. Novotná and A. Pokorná were supported by SVV-2017-
260452 and GAUK 1277018.

Declarations
Editorial Policies for Springer journals and proceedings: https://www.springer.com/gp/editorial-policies

Nature Portfolio journals: https://www.nature.com/nature-research/editorial-policies

Scientific Reports https://www.nature.com/srep/journal-policies/editorial-policies

BMC journals: https://www.biomedcentral.com/getpublished/editorial-policies

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Jelínek, V., Klimošová, T., Masařík, T., Novotná, J., Pokorná, A.: On 3-coloring of (2P4,C5)-free
graphs. In: Graph-Theoretic Concepts in Computer Science (WG), pp. 388–401. Springer, Berlin
(2021). https://doi.org/10.1007/978-3-030-86838-3_30

2. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger,
J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972). https://doi.
org/10.1007/978-1-4684-2001-2_9

3. Emden-Weinert, T., Hougardy, S., Kreuter, B.: Uniquely colourable graphs and the hardness of colour-
ing graphs of large girth. Comb. Probab. Comput. 7(4), 375–386 (1998). https://doi.org/10.1017/
S0963548398003678

4. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981). https://
doi.org/10.1137/0210055

5. Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular graphs. J. Algorithms
4(1), 35–44 (1983). https://doi.org/10.1016/0196-6774(83)90032-9

6. Huang, S.: Improved complexity results on k-coloring Pt -free graphs. Eur. J. Comb. 51, 336–346
(2016). https://doi.org/10.1016/j.ejc.2015.06.005

7. Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability of P5-free graphs
in polynomial time. Algorithmica 57(1), 74–81 (2008). https://doi.org/10.1007/s00453-008-9197-8

8. Couturier, J.-F., Golovach, P.A., Kratsch, D., Paulusma, D.: List coloring in the absence of a linear
forest. Algorithmica 71(1), 21–35 (2013). https://doi.org/10.1007/s00453-013-9777-0

9. Spirkl, S., Chudnovsky, M., Zhong, M.: Four-coloring P6-free graphs. In: Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1239–1256. Society for Industrial and
Applied Mathematics (2019). https://doi.org/10.1137/1.9781611975482.76

10. Golovach, P.A., Paulusma, D., Song, J.: Closing complexity gaps for coloring problems on H-free
graphs. Inf. Comput. 237, 204–214 (2014). https://doi.org/10.1016/j.ic.2014.02.004

11. Hajebi, S., Li, Y., Spirkl, S.: List-5-coloring graphs with forbidden induced subgraphs. CoRR (2021).
arXiv:2105.01787 [math.CO]

123

https://www.springer.com/gp/editorial-policies
https://www.nature.com/nature-research/editorial-policies
https://www.nature.com/srep/journal-policies/editorial-policies
https://www.biomedcentral.com/getpublished/editorial-policies
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-86838-3_30
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1017/S0963548398003678
https://doi.org/10.1017/S0963548398003678
https://doi.org/10.1137/0210055
https://doi.org/10.1137/0210055
https://doi.org/10.1016/0196-6774(83)90032-9
https://doi.org/10.1016/j.ejc.2015.06.005
https://doi.org/10.1007/s00453-008-9197-8
https://doi.org/10.1007/s00453-013-9777-0
https://doi.org/10.1137/1.9781611975482.76
https://doi.org/10.1016/j.ic.2014.02.004
http://arxiv.org/abs/2105.01787

Algorithmica (2022) 84:1526–1547 1547

12. Pilipczuk, M., Pilipczuk, M., Rzążewski, P.: Quasi-polynomial-time algorithm for independent set in
Pt -free graphs via shrinking the space of induced paths. In: Symposium on Simplicity in Algorithms
(SOSA), pp. 204–209. Society for Industrial andAppliedMathematics (2021). https://doi.org/10.1137/
1.9781611976496.23

13. Gartland, P., Lokshtanov, D.: Independent set on Pk -free graphs in quasi-polynomial time. In: 61st
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16–19, 2020, pp. 613–624. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00063

14. Bonomo, F., Chudnovsky, M., Maceli, P., Schaudt, O., Stein, M., Zhong, M.: Three-coloring and
list three-coloring of graphs without induced paths on seven vertices. Combinatorica 38(4), 779–801
(2017). https://doi.org/10.1007/s00493-017-3553-8

15. Klimošová, T., Malík, J., Masařík, T., Novotná, J., Paulusma, D., Slívová, V.: Colouring (Pr + Ps)-free
graphs. Algorithmica 82(7), 1833–1858 (2020). https://doi.org/10.1007/s00453-020-00675-w

16. Chudnovsky, M., Huang, S., Spirkl, S., Zhong, M.: List 3-coloring graphs with no induced P6 + r P3.
Algorithmica (2020). https://doi.org/10.1007/s00453-020-00754-y

17. Bonomo, F., Schaudt, O., Stein, M.: 3-colouring graphs without triangles or induced paths on seven
vertices. CoRR (2014). arXiv:1410.0040v1 [math.CO]

18. Chudnovsky, M., Maceli, P., Zhong, M.: Three-coloring graphs with no induced seven-vertex path I:
the triangle-free case. CoRR (2014). arXiv:1409.5164 [math.CO]

19. Chudnovsky, M., Maceli, P., Zhong, M.: Three-coloring graphs with no induced seven-vertex path II :
using a triangle. CoRR (2015). arXiv:1503.03573 [cs.DM]

20. Chudnovsky,M.,Maceli, P., Stacho, J., Zhong,M.: 4-Coloring P6-free graphswith no induced 5-cycles.
J. Graph Theory 84(3), 262–285 (2017). https://doi.org/10.1002/jgt.22025

21. Hell, P., Huang, S.: Complexity of coloring graphs without paths and cycles. Discrete Appl. Math. 216,
211–232 (2017). https://doi.org/10.1016/j.dam.2015.10.024

22. Huang, S., Johnson, M., Paulusma, D.: Narrowing the complexity gap for colouring (Cs , Pt)-free
graphs. Comput. J. 58(11), 3074–3088 (2015). https://doi.org/10.1093/comjnl/bxv039

23. Chudnovsky, M., Stacho, J.: 3-Colorable subclasses of P8-free graphs. SIAM J. Discrete Math. 32(2),
1111–1138 (2018). https://doi.org/10.1137/16m1104858

24. Goedgebeur, J., Schaudt, O.: Exhaustive generation of k-critical H-free graphs. J. Graph Theory 87(2),
188–207 (2017). https://doi.org/10.1002/jgt.22151

25. Golovach, P.A., Paulusma, D., Song, J.: Coloring graphs without short cycles and long induced paths.
Discrete Appl. Math. 167, 107–120 (2014). https://doi.org/10.1016/j.dam.2013.12.008

26. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of
coloring graphs with forbidden subgraphs. J. Graph Theory 84(4), 331–363 (2016). https://doi.org/10.
1002/jgt.22028

27. Rojas, A., Stein, M.: 3-Colouring Pt -free graphs without short odd cycles (2020). arXiv:2008.04845
[math.CO]

28. Bonomo-Braberman, F., Chudnovsky, M., Goedgebeur, J., Maceli, P., Schaudt, O., Stein, M., Zhong,
M.: Better 3-coloring algorithms: excluding a triangle and a seven vertex path. Theor. Comput. Sci.
(2020). https://doi.org/10.1016/j.tcs.2020.10.032

29. Chudnovsky, M., Spirkl, S., Zhong, M.: List-three-coloring Pt -free graphs with no induced 1-
subdivision of K1,s . Discrete Math. 343(11), 112086 (2020). https://doi.org/10.1016/j.disc.2020.
112086

30. Grötschel,M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. In: Topics on Perfect
Graphs, pp. 325–356. Elsevier (1984). https://doi.org/10.1016/s0304-0208(08)72943-8

31. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann.
Math. 164(1), 51–229 (2006). https://doi.org/10.4007/annals.2006.164.51

32. Christen, C.A., Selkow, S.M.: Some perfect coloring properties of graphs. J. Comb. Theory Ser. B
27(1), 49–59 (1979). https://doi.org/10.1016/0095-8956(79)90067-4

33. Krom,M.R.: Thedecision problem for a class of first-order formulas inwhich all disjunctions are binary.
Z. Math. Logik Grundl. Math. 13(1–2), 15–20 (1967). https://doi.org/10.1002/malq.19670130104

34. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Appl. Math. 9(1), 27–39
(1984). https://doi.org/10.1016/0166-218x(84)90088-x

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1137/1.9781611976496.23
https://doi.org/10.1137/1.9781611976496.23
https://doi.org/10.1109/FOCS46700.2020.00063
https://doi.org/10.1007/s00493-017-3553-8
https://doi.org/10.1007/s00453-020-00675-w
https://doi.org/10.1007/s00453-020-00754-y
http://arxiv.org/abs/1410.0040v1
http://arxiv.org/abs/1409.5164
http://arxiv.org/abs/1503.03573
https://doi.org/10.1002/jgt.22025
https://doi.org/10.1016/j.dam.2015.10.024
https://doi.org/10.1093/comjnl/bxv039
https://doi.org/10.1137/16m1104858
https://doi.org/10.1002/jgt.22151
https://doi.org/10.1016/j.dam.2013.12.008
https://doi.org/10.1002/jgt.22028
https://doi.org/10.1002/jgt.22028
http://arxiv.org/abs/2008.04845
https://doi.org/10.1016/j.tcs.2020.10.032
https://doi.org/10.1016/j.disc.2020.112086
https://doi.org/10.1016/j.disc.2020.112086
https://doi.org/10.1016/s0304-0208(08)72943-8
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.1016/0095-8956(79)90067-4
https://doi.org/10.1002/malq.19670130104
https://doi.org/10.1016/0166-218x(84)90088-x

	On 3-Coloring of (2P4,C5)-Free Graphs
	Abstract
	1 Introduction
	2 Proof of Theorem 1
	2.1 The C_7-Free Case
	2.2 More Complicated Reductions
	2.2.1 Cut Reduction
	2.2.2 Neighborhood Collapse

	2.3 Graphs Containing C_7
	2.3.1 N2(x) is Disconnected
	2.3.2 N2(x) is Connected, with ge3 Vertices
	2.3.3 N2(x) is a Single Vertex
	2.3.4 N2(x) is a Single Edge

	3 Conclusions
	Acknowledgements
	References

