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Abstract
Given a graph G, and terminal vertices s and t , the Tracking Paths problem asks
to compute a set of minimum number of vertices to be marked as trackers, such that
the sequence of trackers encountered in each s-t path is unique. Tracking Paths

is NP-hard in both directed and undirected graphs in general. In this paper we give a
collection of polynomial time algorithms for some restricted versions of Tracking
Paths. We prove that Tracking Paths is polynomial time solvable for undirected
chordal graphs and tournament graphs. We also show that Tracking Paths is NP-
hard in graphswith boundedmaximumdegree� ≥ 6, andgive a 2(�+1)-approximate
algorithm for this case. Further, we give a polynomial time algorithm which, given an
undirected graph G, a tracking set T ⊆ V (G), and a sequence of trackers π , returns
the unique s-t path in G that corresponds to π , if one exists. Finally we analyze the
version of tracking s-t paths where paths are tracked using edges instead of vertices,
and we give a polynomial time algorithm for the same.

Keywords Graphs · Paths · Chordal graphs · Tournaments · Approximation ·
Bounded degree graphs · Tracking paths

1 Introduction

Tracking moving objects in networks has been studied extensively due to applications
in surveillance and monitoring. Specific cases include secure system surveillance,
habitat monitoring, vehicle tracking, and other similar scenarios. Object tracking in
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networks also finds applications in analyzing disease spreading patterns, information
dissemination patterns on social media, and data packet flow in large networks like the
world wide web. Tracking has been largely studied in the fields of machine learning,
artificial intelligence, and networking systems.

The problem of tracking paths in a network was first graphically modeled by Banik
et al. in [3]. Let G = (V , E) be an undirected graph without any self loops or parallel
edges and suppose that G has a unique entry vertex (source) s and a unique exit vertex
(destination) t . A simple path from s to t is called an s-t path. The problem requires
finding a set of vertices T ⊆ V , such that for any two distinct s-t paths, say P1 and
P2, in G, the sequence of vertices in T ∩ V (P1) as encountered in P1 is different
from the sequence of vertices in T ∩ V (P2) as encountered in P2. Here T is called a
tracking set for the graph G, and the vertices in T are referred to as trackers. Banik et
al. [3] proved that the problem of finding a minimum-cardinality tracking set to track
shortest s-t paths (Tracking Shortest Paths problem) is NP-hard andAPX-hard.
Later, the problem of tracking all s-t paths (Tracking Paths) in an undirected graph
was studied in [5,11,15]. Tracking Paths is formally defined as follows.

Tracking Paths (G, s, t)
Input: An undirected graph G = (V , E) with terminal vertices s and t .
Question: Find a minimum cardinality tracking set T for G.

Tracking Paths was proven to be NP-complete in [5]. Here, the authors studied
the parameterized version of Tracking Paths, which asks if there exists a tracking
set of size at most k, and proved it fixed-parameter tractable (FPT)when parameterized
by k, by showing that the problem admits a polynomial kernel. Specifically, it was
proven that an instance of Tracking Paths can be reduced to an equivalent instance
of size O(k7) in polynomial time, where k is the desired size of the tracking set. In
[11], the authors improved this kernel to O(k2), and gave an O(k) kernel for planar
graphs. In [15], Eppstein et al. proved that Tracking Paths is NP-complete for
planar graphs and gave a 4-approximation algorithm for this setting. Here, the authors
also proved that Tracking Paths can be solved in linear time for graphs of bounded
clique width, when the clique decomposition is given in advance.

Tracking Shortest Paths was also studied in [4,8]. In [4], Banik et al. studied
Tracking Shortest Paths and proved the problem fixed-parameter tractable. In
[8], Bilò et al. proved that Tracking Shortest Paths is NP-hard for cubic planar
graphs in case of multiple source-destination pairs, and gave an FPT algorithm param-
eterized by the number of vertices equidistant from the source s. A related model of
the problem was studied in [7] where the author focuses on differentiating walks in
directed graphs using arcs.

In this paper we study Tracking Paths for chordal graphs, tournament graphs,
and bounded degree graphs. A chordal graph is a graph in which each cycle of length
greater than three has a chord (an edge between non-adjacent vertices of the cycle). A
tournament is a directed graph in which there exists a unique directed edge between
each pair of vertices. So far all the work done on Tracking Paths has been focused
on tracking s-t paths (or shortest s-t paths) using vertices. In this paper, we also
study tracking s-t paths using edges. We also give a path reconstruction algorithm
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that finds the unique s-t path corresponding to the given sequence of trackers, if one
exists. Chordal graphs find applications in computational biology, computer vision and
artificial intelligence [14,19,22,24]. Tournament graphs are used in voting theory and
social choice theory to graphically depict pairwise relationships between entities in a
community [23,27]. Tournament graphs are particularly used to study the Condorcet
voting model, where a preference is indicated between each pair of contestants [16].
We would like to point out that all the results in the paper hold for undirected graphs,
except for the case when we refer to tracking paths in tournaments.

Our Results and Methods In this paper we give polynomial time results for some
variants of the Tracking Paths problem. We prove that Tracking Paths is poly-
nomial time solvable for chordal graphs and tournaments. The key idea in proofs for
chordal and tournament graphs is that if two s-t paths differ in only one vertex, then
that vertex necessarily needs to be marked as a tracker. Next we show that Track-
ing Paths is NP-hard for graphs with maximum degree � (� ≥ 6). We also give a
2(�+1)-approximation algorithm for graphs with maximum degree�. Here the idea
is to ensure that sufficient vertices are marked as trackers in each cycle. This derives
from the fact that each cycle in a graph necessarily needs a tracker [5]. In order to
give a complete solution for tracking paths in a graph, we also give an algorithm that
reconstructs the required s-t path given a sequence of trackers and a constant size
tracking set for the input graph. This uses the fact that by the definition of a tracking
set, a maximal sequence of trackers in a tracking set should correspond to at most one
s-t path in a graph. The reconstruction algorithm uses the disjoint path algorithms for
undirected graphs [21] and tournaments [12] to construct the required s-t path if one
exists.

Towards the end of the paper we analyze the problem of tracking s-t paths in an
undirected graph using edges rather than vertices. We prove that even while using
edges, each cycle in the graph needs at least one edge to be marked as a tracker.
Further, a minimum feedback edge set (set of edges whose removal makes a graph
acyclic) is also a minimum tracking edge set.

2 Notations and Definitions

Throughout the paper, while analyzing tracking paths using vertices in a graph, we
assume graphs to be simple i.e. there are no self loops and multi-edges. When con-
sidering a tracking set for a graph G = (V , E), we assume that the given graph is
an s-t graph, i.e. the graph contains a unique source s ∈ V and a unique destination
t ∈ V (both s and t are known), and we aim to find a tracking set that can distinguish
between all simple paths between s and t . Here s and t are also referred to as the
terminal vertices. If a, b ∈ V , then unless otherwise stated, {a, b} represents the set
of vertices a and b, and (a, b) represents an edge between a and b in an undirected
graph. In a directed graph, (a, b) represents an edge directed from vertex a towards
vertex b. For a graph G, V (G) represents the vertex set of G and E(G) represents
the edge set of G. A graph G ′ is called a subgraph of G, if V (G ′) ⊆ V (G) and
E(G ′) ⊆ E(G) ∩ {(a, b) | a, b ∈ V (G ′)}. A graph G ′ is called an induced subgraph

123



Algorithmica (2022) 84:1548–1570 1551

of G if V (G ′) ⊆ V (G) and E(G ′) = E(G) ∩ {(a, b) | a, b ∈ V (G ′)}. For a graph
G = (V , E) and a set of vertices V ′ ⊆ V , we use G(V ′) to denote the subgraph
induced by V ′, i.e. G ′ = (V ′, {(a, b) | a, b ∈ V ′} ∩ E). For a graph G, the neighbor-
hood of a vertex v ∈ V (G) is denoted by N (v) = {x | (x, v) ∈ E(G)}. In case of
directed graphs, N+(v) = {x | (x, v) ∈ E} is referred to as the out-neighbourhood
of vertex v, and N−(v) = {x | (v, x) ∈ E} is referred to as the in-neighbourhood of
vertex v. We use deg(v) = |N (v)| to denote the degree of vertex v. For a vertex v ∈ V
and a subgraph G ′, NG ′(v) = N (v) ∩ V (G ′). For a subset of vertices V ′ ⊆ V we use
N (V ′) to denote

⋃
v∈V ′ N (v). With slight abuse of notation we use N (G ′) to denote

N (V (G ′)). For a graphG and a set of vertices S ⊆ V (G),G− S denotes the subgraph
induced by the vertex set V (G)\V (S). If S is a singleton, we may use G− x to denote
G− S, where S = {x}. If (a, b) ∈ E , then G− (a, b) denotes the graph formed by the
vertex set V (G) and the edge set E − (a, b). A chord in a cycle is an edge between
two vertices of the cycle, such that the edge itself is not part of the cycle. In a directed
graph, a monotone cycle is a subgraph C which comprises two distinct directed paths
between a pair of vertices a, b ∈ V . Except for the case of tournaments, by graph we
mean an undirected graph.

In an undirected graph, a feedback vertex set (FVS) is a set of vertices whose
removal makes the graph acyclic and feedback edge set (FES) is the set of edges
whose removal makes the graph acyclic. An edge-weighted graph is a graph with real
valued weights assigned to each of its edges. Let P1 be a path between vertices a and
b, and P2 be a path between vertices b and c, such that V (P1) ∩ V (P2) = {b}. By
P1 · P2, we denote the path between a and c, formed by concatenating paths P1 and
P2 at b. Two paths P1 and P2 are said to be vertex disjoint if their vertex sets do not
intersect except possibly at the endpoints, i.e. V (P1) ∩ V (P2) ⊆ {a, b}, where a and
b are the starting and endpoints of the paths. By distance we mean the length of a
shortest path, i.e. the number of edges in that path. For a sequence of vertices π , by
V (π) we mean the set of vertices in the sequence π . If there exists a path P such that
(a, b) is an edge that lies at one end point of P , then P − (a, b) denotes the subpath
of P obtained after removing the edge (a, b). In a directed graph, by a path we mean
a directed path. Graphs which have maximum degree of vertices as three are known
as cubic graphs. By a bounded degree graph, we mean a graph whose vertices have a
maximum degree of �, where � is some constant.

3 Preliminary Analysis

In this section, we give some basic claims which are used for proving results in
subsequent sections. We start by first recalling a reduction rule from [5] that ensures
that each vertex and edge in the input graph participates in an s-t path.

Reduction Rule 1 [5] In a graph G, if there exists a vertex or an edge that does not
participate in any s-t path in G, then delete it.

It is known that Reduction Rule 1 is safe and can be applied in quadratic time on
undirected graphs [5]. In the rest of the paper, by reduced graph we mean a graph
that is preprocessed using Reduction Rule 1. Let G ′ be a subgraph of graph G, and
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u, v ∈ V (G ′). If there exists a path in G from s to u, say Psu , and another path
from v to t , say Pvt , such that V (Psu) ∩ V (Pvt ) = ∅, V (Psu) ∩ V (G ′) = {u} and
V (Pvt ) ∩ V (G ′) = {v}, then u is a local source for G ′ and v is a local destination
for G ′. Next we recall the following lemma from [5], which is used to define some
commonly used terms in this paper.

Lemma 1 In a reduced graph G, any subgraph G ′ consisting of at least one edge,
contains a local source and local destination.

Nowwe recall the tracking set condition, which is useful for validation of a tracking
set [5]. Specifically, it is known from [5], that for a reduced graph G, a set of vertices
T ⊆ V (G) is a tracking set if and only if T satisfies the tracking set condition:

Tracking Set Condition:
For a graph G = (V , E), with terminal vertices s, t ∈ V , a set of vertices T ⊆ V ,
is said to satisfy the tracking set condition if there does not exist a pair of vertices
u, v ∈ V , such that the following holds:

– there exist two distinct paths, say P1 and P2, between u and v in G((V \(T ∪
{s, t})) ∪ {u, v}), and

– there exists a path from s to u, say Psu , and a path from v to t , say Pvt , in
G((V \(V (P1) ∪ V (P2)) ∪ {u, v}), and V (Psu) ∩ V (Pvt ) = ∅, i.e. Psu and Pvt

are mutually vertex disjoint, and also vertex disjoint from P1 and P2.

Next, we use the tracking set condition to prove the following lemma. Although the
main idea of the lemma has been discussed with a different perspective in [5], we give
the proof here for completeness.

Lemma 2 In a graph G, if T ⊆ V (G) is not a tracking set for G, then there exist two
s-t paths with the same sequence of trackers, and they form a cycle C in G, such that
C has a local source a and a local destination b, and T ∩ (V (C)\{a, b}) = ∅.

Proof Let G be a graph, such that T ⊆ V (G) is not a tracking set for G. Due to the
tracking set condition, it is known that in such a case, there exist two distinct vertices
u, v along with two distinct paths P1, P2 between u and v, such that there are no
trackers on P1 and P2 except possibly at u and v. Further, there exists a path Psu from
s to u and a path Pvt from v to t , and such that these Psu and Pvt are vertex disjoint,
and they intersect with P1 and P2 only at u and v. Let G ′ be the graph induced by
V (P1)∪V (P2). Observe that u and v form a local source-destination pair forG ′. Note
that no vertex, other than possibly u and v, in G ′ is a tracker. Starting from u, let a be
the last vertex in G ′ until which paths P1 and P2 have the same sequence of vertices.
Let b ∈ V (P1) be the first vertex in P1 after a, such that b ∈ V (P1) ∩ V (P2). We use
Pab1 to denote the subpath of P1 lying between vertices a and b, and Pab2 to denote
the subpath of P2 lying between the vertices a and b. Observe that paths Pab1 and Pab2
are vertex disjoint (except for vertices a and b) and thus form a cycle, say C . Further
there exists a subpath of P2 between b and v, that intersects C only at b. Since P1 and
P2 share the same vertex sequence from u to a, a is a local source for C . Also, by
construction, b is a local destination for C . Note that it is possible that u = a and/or
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Fig. 1 Depiction of a chordal graph on n vertices with an optimum tracking set (V (G)\{s, t}) of size n − 2
and an FVS (vertex x) of size 1

b = v. However, V (C)\{a, b} does not contain any trackers. Hence the lemma holds.
	


4 Tracking Paths in Chordal Graphs and Tournaments

In this section, we consider polynomial time algorithms for solving Tracking Paths

for chordal graphs and tournaments.

4.1 Tracking Paths in Chordal Graphs

Recall that chordal graphs are those graphs in which each cycle of length greater than
three has a chord. Many problems that are known to be NP-hard on general graphs are
polynomial time solvable for chordal graphs e.g. chromatic number, feedback vertex
set, independent set [20].

In undirected graphs, a tracking set is also a feedback vertex set [5]. However, a
tracking set can be arbitrarily larger in size compared to a feedback vertex set. This
holds true for chordal graphs as well. See Fig. 1. It can be seen that here an FVS can
consist of a single vertex x , whereas a minimum tracking set consists of all vertices
in V \{s, t}, where V is the vertex set of the graph.

Algorithm 1: Finding a Tracking Set for a Chordal Graph.
Input: Chordal graph G = (V , E) and vertices s, t ∈ V .
Output: Tracking Set T ⊆ V for G.

1 Initialize T = ∅; Apply Reduction Rule 1;

2 foreach e = (a, b) ∈ E do
3 foreach x ∈ (N (a) ∩ N (b))\T do
4 if ∃ an s-t path P in G − x such that e ∈ E(P) then
5 T = T ∪ {x};
6 end
7 end
8 end
9 Return T ;
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Fig. 2 Indistinguishable s-t
paths in a graph form a cycle
(marked in dotted lines)

Algorithm 1 gives a procedure to compute a minimum tracking set for a chordal
graph G. We prove its correctness in the following lemma.

Lemma 3 Algorithm 1 gives an optimum tracking set for a chordal graph.

Proof Algorithm 1 first ensures that each vertex and edge in the input graph G =
(V , E) participates in an s-t path. Next for each edge e = (a, b) ∈ E , if there exists a
vertex x ∈ (N (a)∩ N (b))\T , the algorithm checks if there exists an s-t path in G− x
that contains the edge e. Let P be such a path in G − x . Now consider the path P ′ that
can be obtained by replacing the edge e in P by the path (a, x) · (b, x) along with the
vertex x . Observe that the vertex sets of P and P ′ differ only in vertex x . Hence, x
necessarily needs to belong to a tracking set for G. This proves the optimality of the
algorithm, since the vertices we mark as trackers, necessarily need to be trackers.

Now we prove that Algorithm 1 indeed returns a tracking set T for G. Suppose not.
Then T is not a tracking set for G. Due to Lemma 2, there exist two s-t paths, say
P1, P2, that form a cycleC inG, such thatC has a local source u and a local destination
v, and V (C)\{u, v} does not contain any trackers. See Fig. 2. Path P1 is marked in
solid lines, while path P2 is marked in dashed lines. Since P1 and P2 contain the same
sequence of trackers, no vertex in V (C)\{u, v} can be a tracker. Since we consider
graphs without any parallel edges, there exists at least one vertex in V (C)\{u, v}.

First, consider the case where C is a triangle. Due to Algorithm 1, the vertex in
V (C)\{u, v} would have been marked as a tracker. This contradicts the assumption
that no vertex in V (C)\{u, v} is marked as a tracker.

Next, consider the casewhenC is not a triangle, i.e.C contains four ormore vertices.
Since G is a chordal graph, C contains a chord. Now we show that it is possible to
find a triangle R containing a chord in C , such that at least one of the vertices from
V (R) ∩ (V (C)\{u, v}) has been marked as a tracker, thus distinguishing P1 and P2.

Supposew and x are twovertices such that (u, w), (u, x) ∈ E(C). Nowwe consider
the two cases when (w, x) ∈ E and (w, x) /∈ E .

1. (w, x) ∈ E .
Without loss of generality, let x ∈ V (P1) and w ∈ V (P2). Observe that the edge
(u, x) in path P1 can be replaced by the path formed by concatenation of edges
(u, w)·(w, x), to obtain a new path that differs from P1 only at the vertexw. Hence
w must have been marked as a tracker by Algorithm 1. Further, observe that the
edge (u, w) in path P2 can be replaced by the concatenated path (u, x) · (x, w), to
obtain a new path that differs from P2 only at the vertex x . Hence x must have been
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marked as a tracker by Algorithm 1. Let (x, y) ∈ E(C), i.e. y is the neighbour of
x in the cycle C .

2. (w, x) /∈ E .
Observe that sinceG is a chordal graph, if (w, x) /∈ E , then necessarily (u, y) ∈ E .
Now observe that the edge (u, y) in path P1 can be replaced by the path formed
by the concatenation of edges (u, x) · (x, y) to form a new path, such that these
two paths differ only in vertex x . Thus x must have been marked as a tracker by
Algorithm 1.

The above cases contradict the assumption that no vertex in V (C)\{u, v} is a tracker.
Hence Algorithm 1 gives an optimum tracking set for a chordal graph. 	


Next we prove that Algorithm 1 runs in polynomial time.

Lemma 4 Algorithm 1 runs in time O(m · n4).
Proof Let G = (V , E) be the input graph, |V | = n and |E | = m. Due to [5], it is
known that it takes O(n2) (quadratic) time to apply Reduction Rule 1. Next for each
edge e = (a, b) ∈ E , we consider the set of vertices that are adjacent to both endpoints
a, b of the edge e. This takesO(m · n) time. Now for each vertex x that is adjacent to
both a and b, we check if e participates in some s-t path in the graph G − x . Removal
of vertex x from G takes O(n) time. In order to check if e participates in some s-t
path in G − x , we check if there exists a path between s and a, say P1, and a path
between b and t , say P2, such that V (P1) ∩ V (P2) = ∅. This can be done using the
algorithm for finding vertex disjoint paths shown in [21] inO(n2) time. Thus the total
time taken to run Algorithm 1 is O(n2) + O(m · n2 · n2), i.e. O(m · n4). 	


From Lemma 3 and Lemma 4, we have the following theorem.

Theorem 1 In a chordal graph with n vertices and m edges, Tracking Paths can
be solved in O(m · n4) time.

4.2 Tracking Paths in Tournaments

Recall that tournaments are directed graphs that have a directed edge between each
pair of vertices in the graph. A lot of problems including Feedback Vertex Set

and Feedback Arc Set are known to beNP-hard in tournaments [9,26]. It is known
that Tracking Paths is NP-hard for directed acyclic graphs [6]. This implies that
Tracking Paths is NP-hard for directed graphs as well. However, as we prove now,
Tracking Paths is in P for tournament graphs. We start by first applying a slight
variation of Reduction Rule 1, to ensure that each vertex and edge in the input graph
participates in an s-t path. Note that although deletion of a vertex does not affect the
graph properties, deletion of an edge might result in a graph that is not a tournament
graph anymore. Hence, we give a slightly modified reduction rule for the case of
tournaments.

Reduction Rule 2 In a graph G, if there exists a vertex that does not participate in any
s-t path in G, then delete it. If there exists an edge that does not participate in any s-t
path in G, then mark it useless.

123



1556 Algorithmica (2022) 84:1548–1570

Now we prove that Reduction Rule 2 is safe and can be applied on tournament
graphs in polynomial time.

Lemma 5 Reduction Rule 2 is safe and can be applied in polynomial time in tourna-
ment graphs.

Proof Consider a tournament graph G = (V , E). If a vertex or an edge in G does not
participate in any s-t path, then it can not contribute to tracking any paths, nor does
it need to be considered while ensuring that each s-t path has a unique sequence of
trackers. Hence, Reduction Rule 2 is safe.

In order to apply Reduction Rule 2, for each edge e = (a, b) ∈ E , we check if there
exists a path from s to a, say P1, and a path from b to t , say P2, such that V (P1) ∩
V (P2) = ∅, using the algorithm for finding vertex disjoint paths in tournaments given
in [12] in O(n2) time. If such paths do not exist, then mark edge e as useless. After
repeating the process for all edges in G, we delete the vertices for which all incident
edges have been marked useless. Thus Reduction Rule 2 can be applied in O(m · n2)
time. 	


Algorithm 2: Finding a Tracking Set for a Tournament Graph.
Input: Tournament graph G = (V , E) and vertices s, t ∈ V .
Output: Tracking Set T ⊆ V for G.

1 Initialize T = ∅;
2 Apply Reduction Rule 2;

3 foreach e = (a, b) ∈ E do
4 foreach x ∈ (N+(a) ∩ N−(b))\T do
5 if ∃ an s-t path P in G − x and e ∈ E(P) then
6 T = T ∪ {x};
7 end
8 end
9 end

10 Initialize G′ = G − T ;
11 foreach (u, v) ∈ E(G) do
12 if ∃ a directed path P from u to v in G′ − (u, v) then
13 if ∃ an s-t path P ′ in G − (V (P) − {u, v}) and (u, v) ∈ E(P ′) then
14 Let x be an arbitrary vertex in V (P) − {u, v};
15 T = T ∪ {x};
16 G′ = G − T ;
17 end
18 end
19 end
20 Return T ;

Algorithm 2 gives a procedure to compute a minimum tracking set for a tournament
graphG. In the upcoming lemmas,weprove the correctness, optimality and the running
time of the algorithm. In order to do so, we define a few terms. We use t-monotone
cycle to denote a monotone cycle that needs a tracker, i.e. a monotone cycle that forms
two distinct s-t paths. C is a t-monotone cycle in Fig. 4. The vertex with two outgoing
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edges in a t-monotone cycle is called its entry vertex and the vertex with two incoming
edges in a t-monotone cycle is called its exit vertex.

Lemma 6 Algorithm 2 returns a tracking set for a tournament graph.

Proof We start with a brief summary of the algorithm. Let G = (V , E) be an input
graph. In the first part of the algorithm, for each edge e = (a, b) ∈ E , if there exists
a vertex x ∈ (N+(a) ∩ N−(b))\T , we check if there exists an s-t path in G − x
that contains the edge e. If yes, then we mark x as a tracker. In the second part of the
algorithm, for each edge (u, v) ∈ E , we check if there exists a directed path P from u
to v without any trackers. If yes, we check if there exists a s-t path containing (u, v)

in the graph induced by V \V (P). If such a s-t path is found, then we arbitrarily mark
a vertex in V (P)\{u, v} as a tracker.

We claim that Algorithm 2 indeed returns a tracking T set forG. Suppose not. Then
there exist two s-t paths, say P1 and P2, that contain the same sequence of trackers in
G. Consider the graph G ′ induced by V (P1)∪V (P2). Starting from s, let u be the last
vertex until which P1 and P2 contain the same sequence of vertices. Let v ∈ V (P1)
be the first vertex on P1 after u, such that v ∈ V (P2). Let P1[u,v] be the subpath of P1
lying between the vertices u and v, and P2[u,v] be the subpath of P2 lying between the
vertices u and v. Observe that P1[u,v] and P2[u,v] are vertex disjoint except for their
endpoints u and v, hence they form a monotone cycle, say C . Further, there exists a
subpath of P2 from v to t that intersects with C only at v. Thus C is a t-monotone
cycle. See Fig. 3, where path P1 is marked in dashed lines, while path P2 is marked in
solid lines. Observe that if T is not a tracking set then C is a t-monotone cycle, i.e. it
is a monotone cycle that needs a tracker. In the remaining part of the proof, we show
that such a cycle cannot exist.

We consider the different cases based on the lengths of paths P1[u,v] and P2[u,v].
For simplicity of notation, we denote the two distinct paths between the entry and exit
vertices in C by P ′

1 and P ′′
2 . Since there are no parallel edges in G, the length of at

least one of these paths is greater than one.

1. The length of P ′
1 is 1 and the length of P ′′

2 is 2:
In this case C is a triangle. However, note that the algorithm ensures that each
monotone cycle that is a triangle is marked with a tracker at the vertex that is not
the entry or exit vertex of that triangle. This contradicts the assumption that C is
a t-monotone cycle.

2. The length of P ′
1 is 1 and that P ′′

2 is greater than 2:
In this case C is a monotone cycle with P ′

1 being an edge and P ′′
2 being a directed

path from u to v. However, note that in the second part of the algorithm, such a
cycle is marked with a tracker on a vertex in V (C)\{u, v}. This is a contradiction
to the assumption that C is a t-monotone cycle.

3. Length of both P ′
1 and P ′′

2 is greater than 2:
Let x be the first vertex in P ′

1 after u and y be the first vertex in P
′′
2 after u. SinceG is

a tournament either (x, y) ∈ E or (y, x) ∈ E . See Fig. 4. First we consider the case
when (x, y) ∈ E . Observe that paths P2 and P ′

2 · (u, x) · (x, y) · P ′′
2 − (u, y) · P ′′′

2
are two s-t paths that lead to formation of a t-monotone triangle such that the
paths differ only in vertex x . Hence x must have been marked as a tracker by
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Fig. 3 Indistinguishable s-t paths in a graph form a cycle (marked in dotted lines)

Algorithm 2. The case when (y, x) ∈ E is symmetric since the paths P ′
2 · P ′

1 · P ′′′
2

and P ′
2 · (u, y) · (y, x) · P ′

1 − (u, x) · P ′′′
2 also lead to formation of a t-monotone

triangle such that the paths differ only in vertex y. This contradicts the assumption
that C is a t-monotone cycle.

Hence, it holds that after applying Algorithm 2 there are no t-monotone cycles in
G. Thus Algorithm 2 returns a tracking set for G. 	


Lemma 7 Algorithm 2 returns an optimum tracking set for a tournament graph.

Proof Let G = (V , E) be the input graph. In the first part of the algorithm, for each
edge (a, b) ∈ E , we check if there exists a vertex x ∈ N+(a) ∩ N−(b). If such a
vertex exists, we check if (a, b) participates in an s-t path, say P , in the graph G − x .
If yes, then x is marked as a tracker. Observe that the edge (a, b) in P can be replaced
by the edges (a, x), (x, b) to form a new path, say Px , such that P and Px differ in
exactly the vertex x . Hence, any tracking set for G necessarily requires x to be marked
as a tracker. Thus all vertices marked as trackers in the first part of the algorithm shall
be present in every optimal tracking set for the graph.

In the second part of the algorithm, for each edge (u, v) ∈ E , we check if there
exists a directed path from u to v in the graph G − (u, v). If such a path, say P , exists
then we further check if (u, v) belongs to an s-t path in the graph G − V (P). If yes,
then a vertex is chosen arbitrarily from P\{u, v} and marked as a tracker. Recall that
since we consider graphs without any parallel edges, there exists at least one such
vertex in V (C)\{u, v}. In the rest of the proof, we show that this step is also optimum.

Let P1 and P2 be two s-t paths that are indistinguishable after the first part of the
algorithm i.e. after all the triangles are appropriately marked with trackers. Let C be a
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Fig. 4 Monotone cycle

monotone cycle formed due to paths P1 and P2 with entry vertex u and exit vertex v.
We use P ′

2 to denote the subpath of P2 lying between vertices s and u, P ′′
2 to denote

the subpath of P2 between vertices u and v, and P ′′′
2 to denote the subpath of P2

between vertices v and t . P ′
1 denotes the subpath of P1 between vertices u and v. Thus

V (C) = V (P ′
1) ∪ V (P ′′

2 ). See Fig. 4.
Now we analyze different cases based on the lengths of paths P ′

1 and P ′′
2 .

1. The length of both P ′
1 and P ′′

2 is 1:
Since we do not consider parallel edges, such a case is not possible.

2. The length of one among P ′
1 and P ′′

2 is 1 and the other is 2:
This leads to the formation of a triangle but all t-monotone triangles have already
been marked with trackers. Hence, such a case is not possible.

3. The lengths of both P ′
1 and P ′′

2 are at least 2:
Let x, y be the two out-neighbors of vertex u such that x, y ∈ V (C) and x ∈ V (P1)
and y ∈ V (P2). Since G is a tournament, there exists an edge between the vertices
x and y. First we consider the case when (x, y) ∈ E . Observe that paths P2 and
P ′
2 · (u, x) · (x, y) · (P ′′

2 − (u, y)) · P ′′′
2 are two s-t paths that lead to formation of a

t-monotone triangle such that the paths differ only in vertex x . Hence x must have
been marked as a tracker by Algorithm 2. The case when (y, x) ∈ E is symmetric
since the paths P ′

2 · P ′
1 · P ′′′

2 and P ′
2 · (u, y) · (y, x) · (P ′

1 − (u, x)) · P ′′′
2 also lead to

formation of a t-monotone triangle such that the paths differ only in vertex y. This
contradicts the assumption that P1 and P2 have the same sequence of trackers.

4. The length of one among P ′
1 and P ′′

2 is 1, and the length of the other path is at
least 3: Without loss of generality, let the length of P ′′

2 be one and the length of
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Fig. 5 Two disjoint t-monotone
cycles. The dotted lines denote
paths to s and t , the solid lines
indicate the t-monotone cycles,
and the dashed lines indicate the
formations of t-monotone
triangles

Fig. 6 Two t-monotone cycles
sharing the edge side, circled
vertices are trackers

P ′
1 be at least three. We refer to the edge that forms P ′′

2 as the edge-side and P ′
1

as the long side of cycle C . Also for the rest of the proof, by marking a vertex in
a cycle as a tracker, we mean marking a vertex other than the entry/exit vertex in
the cycle as a tracker. Now we shall prove that once a tracker is marked in each
t-monotone cycle that is a triangle, for the remaining t-monotone cycles, we can
arbitrarily mark a vertex as a tracker. Note that the only exception to this is when
two t-monotone cycles overlap and choosing a tracker arbitrarily is not optimal.
Next we consider the possible ways in which two distinct t-monotone cycles, say
C1 and C2, may overlap.

– C1 and C2 are vertex disjoint: In such a case there shall be a t-monotone triangle
formed between vertices of the two cycles. See Fig. 5. (a, b) is the edge side of
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cycle C1 and (c, d) is the edge side of cycle C2. This implies that at least one
t-monotone triangle is formed by vertices from the long sides (depicted by dashed
lines) of C1 and C2. Since all t-monotone triangles have already been marked as
trackers, such a case is not possible.

– C1 and C2 share only the edge side: A t-monotone triangle is formed in a way that
at least one of the cycles will have a tracker on a vertex other than the entry/exit
vertices. See Fig. 6. Cycles C1 and C2 are two t-monotone cycles that share the
edge-side (u, v). Circled vertices represent trackers. Note that if (b, a), (c, d) /∈ E
and (a, b), (d, c) ∈ E , then b, d would have been marked as trackers. Hence, such
a case is not possible.

– C1 and C2 share all the vertices on the long side: If the sequence of vertices is
different in C1 and C2, then there shall be a t-monotone triangle in the cycle such
that at least one of the cycles among C1 and C2 contains a tracker. Else, if the
sequence of vertices is same for C1 and C2 in the long side, then we can arbitrarily
pick any vertex from V (C1) ∩ V (C2) as a tracker.

– An edge from the long side of C1 is the edge side of C2: In this case at least two
trackers are required, one in the long side of each of the cycles. Since the long
sides of the cycles do not overlap, we can arbitrarily choose one vertex from the
long side of each of C1 and C2.

– C1 and C2 share some (but not all) vertices from the long side: There exists a pair
of vertices x, y ∈ V (C1) ∩ V (C2) such that there is a directed path from x to y
which is also a subgraph of C1 and C2. Since the cycles do not share all vertices
on the long side, there exists a pair of vertices a, b adjacent to either x or y, such
that a ∈ V (C1)\V (C2) and b ∈ V (C2)\V (C1). Without loss of generality, let
a, b ∈ N−(x). Since G is a tournament graph, there exists an edge between a, b,
leading to the formation of a t-monotone triangle. Thus at least one among a or b
must have already been marked as a tracker by the algorithm. Hence, such a case
is not possible.

In the above we have shown that after all the t-triangles are marked with trackers in
the first part of the algorithm, the only vertex disjoint paths that can be left untracked
are the ones in which at least one path in the corresponding t-monotone cycle is an
edge. Further, we show that a tracker can be marked arbitrarily in the long side of such
a cycle. Hence, the algorithm returns an optimum tracking set. 	

Lemma 8 Algorithm 2 runs in O(n6) time.

Proof Let G = (V , E) be the input graph, |V | = n and |E | = m. For each edge
e = (a, b) ∈ E , we consider the set of vertices that are adjacent to both endpoints a, b
of the edge e. This takesO(m · n) time. Now for each vertex x that is adjacent to both
a and b, we check if e participates in some s-t path in the graph G − x . Removal of
vertex x from G takesO(n) time. In order to check if e participates in some s-t path in
G − x , we check if there exists a path between s and a, say P1, and a path between b
and t , say P2, such that V (P1)∩V (P2) = ∅. This can be done using the algorithm for
finding vertex disjoint paths in tournaments shown in [12] in O(n2) time. The steps
in the second part of the algorithm can also be carried out using the disjoint paths
algorithm [12]. Thus Algorithm 2 runs in O(n6) time. 	
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Fig. 7 Depiction of an
undirected graph G with
maximum degree � ≥ 3

From Lemmas 6 and 8, we have the following theorem.

Theorem 2 Tracking Paths can be solved in polynomial time in tournament graphs.

5 Approximation Algorithm and NP-Hardness ofTracking PathsTracking PathsTracking Paths in
Bounded-Degree Graphs

In this section, we give an approximation algorithm for Tracking Paths. We show
that given an undirected graphG, there exists a polynomial time algorithm that returns
a tracking set of the size 2(�+1) ·OPT forG, where OPT is the size of an optimum
tracking set forG and� is themaximumdegree of graphG. Approximation algorithms
have been studied for restricted versions ofTracking Shortest Paths andTrack-
ing Paths. Banik et al. gave a 2-approximate algorithm for Tracking Shortest

Paths in planar graphs in [3]. Eppstein et al. gave a 4-approximate algorithm for
Tracking Paths in planar graphs in [15]. Bilò et al. gave an Õ(

√
n)-approximate

algorithm for Tracking Shortest Paths in case of multiple source-destination
pairs in [8]. Next we show that Tracking Paths for bounded degree graphs is poly-
nomial time reducible from Vertex Cover for bounded degree graphs.

Lemma 9 Given an undirected graph G with maximum degree �, there exists an s-t
graph G ′ with maximum degree 2�, such that G has a vertex cover of size k if and
only if G ′ has a tracking set for all s-t paths, of size k + |E |2 + 3|E | − 2.

Proof Let G be an undirected graph with maximum degree �. For reference, let G be
the graph in Fig. 7. The graph G has vertices labeled from a to f and edges numbered
from 1 to 8.

We create the graph G ′ as follows. For each vertex a ∈ V (G), we introduce a
vertex va in V (G ′), and we refer to this set of newly introduced vertices in G ′ as
Vv . For each edge i ∈ E(G), we introduce two vertices vi , v

′
i in E(G ′), and we call

the set of vertices vi as Ve, and the set of vertices v′
i as V

′
e . The adjacencies between

Vv and Ve, V ′
e are introduced as follows. If an edge i is incident with vertices a, b

in G, then we add edges between the corresponding vertices vi , v
′
i ∈ Ve, V ′

e and the
vertices va, vb ∈ Vv in G ′. Next, we add the source and destination vertices s and
t in G ′. We then create a triangular grid Tg1 between s and the vertices in Ve, and
another triangular grid between the vertices in V ′

e and t . See Fig. 8. The vertices of
Vv are marked with blank boxes, while the ones from Ve ∪ V ′

e are marked with solid
boxes. The circled vertices form a tracking set. Observe that the maximum degree of
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Fig. 8 Depiction of graph G′ mentioned in Lemma 9

vertices in Tg1 and Tg2, including the vertices in Ve ∪ V ′
e , is 6. The maximum degree

of vertices in Vv is at most 2�.
Now we prove that there exists a vertex cover of size k in G if and only if there

exists a tracking set in G ′ of size k + |E |2 + 3|E | − 2. First consider the case when G
has a vertex cover Vc of size k. We now prove that there exists a tracking set of size
k+|E |2 +3|E |−2 in G ′. We mark the vertices in G ′ corresponding to Vc as trackers.
In addition we mark all the vertices in Tg1 and Tg2 (except s and t) as trackers. Now
the size of tracking set T in G ′ is k + |E |2 + 3|E | − 2. We claim that T is a valid
tracking set for G ′. Suppose not. Then there exist two distinct s-t paths, say P1, P2 in
G ′, such that the sequence of trackers in P1 is the same as that in P2. Observe that two
distinct subpaths (subpaths of some s-t paths) contained in Tg1 (Tg2) cannot have the
same sequence of trackers from Tg1 − {s} (Tg2 − {t}). Since all vertices in Tg1, Tg2
are marked as trackers, this implies that P1, P2 contain the same sequence of vertices
from Tg1 and Tg2, and they necessarily differ in vertices from Vv . Let x, y ∈ Vv be
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the vertices that distinguish P1 and P2, and x ∈ V (P1) and y ∈ V (P2). Since P1 and
P2 can not differ in their vertex set from Tg1 and Tg2, the vertex preceding x, y has to
be common in both P1, P2. Without loss of generality, we assume that z is the vertex
preceding x, y, and z ∈ V (Tg1). This implies that z ∈ Ve. Note that z corresponds
to an edge in G. Since we marked the vertices corresponding to Vc as trackers in G ′,
at least one of the neighbors of z in Vv is necessarily a tracker. Thus either x or y is
necessarily a tracker. This contradicts the assumption that P1 and P2 have the same
sequence of trackers.

Now we consider the case when G ′ has a tracking set T of size k+|E |2 +3|E |−2.
We claim that there exists a vertex cover of size k in G. Suppose not. Consider the
triangular grid subgraphs Tg1 and Tg2. Observe that for each edge (a, b) in Tg1,
there exists a vertex c ∈ N (a) ∩ N (b), and there exists an s-t path, say P1, that
passed through (a, b) in G − c, such that we can replace edge (a, b) in P1 by edges
(a, c),(c, b) to form another s-t path, say P2. Observe that P1 and P2 differ in only
one vertex i.e. c. Hence c is necessarily a tracker. The same holds true for each edge in
Tg2. Thus all vertices in V (Tg1) ∪ V (Tg2)\{s, t} are necessarily trackers and hence
belong to T . Since |V (Tg1) ∪ V (Tg2)\{s, t}| = |E |2 + 3|E | − 2, the remaining k
trackers in T are vertices from Vv . Let Vt be the set of vertices in Vv that have been
marked as trackers, i.e. Vt = Vv ∩ T . Note that |Vt | = k. We denote the set of vertices
in G that correspond to vertices in Vt as Vc. We claim that Vc forms a vertex cover for
G. Suppose not. Then there exists an edge, say (a, b) in G, such none of its endpoints
a, b belong to Vc. This implies that the vertices in Vv that correspond to a and b, say
va, vB , are not trackers in G ′. Due to the construction of G ′, there exists a pair of
vertices vi ∈ Ve and v′

i ∈ V ′
e (vi , v

′
i correspond to the edge (a, b) in G) such that va

and vb are adjacent to both vi and v′
i .

Observe that for each pair of vertices vi , v
′
i , where vi ∈ Ve and v′

i ∈ V ′
e , there exist

two vertices in Vv (the vertices in V (G) that correspond to the endpoints of the edge
i in G) that are adjacent to both vi and v′

i . Thus for each pair of vertices vi , v
′
i , there

exist two paths between them passing through two distinct vertices in Vv . Further,
there exists a path from s to vi that is completely contained in Tg1, and there exists a
path from v′

i to t that is completely contained in Tg2. Thus at least one of the vertices
from Vv that are adjacent to vi , v

′
i , must necessarily be a tracker. This contradicts the

fact that neither va nor vb is a tracker in G ′. This completes the proof. 	

Since Vertex Cover is known to be NP-hard for graphs with maximum degree

� (� ≥ 3) [18], due to Lemma 9 we have the following corollary.

Corollary 1 Tracking Paths is NP-hard for graphs with maximum degree � ≥ 6.

Algorithm 3 gives a procedure to find a 2(� + 1)-approximate tracking set for
undirected graphs with maximum degree �. We prove its correctness in the following
lemma.

Lemma 10 Algorithm 3 gives a 2(� + 1)-approximate tracking set for an undirected
graph.

Proof Algorithm 3 starts by ensuring that each vertex and edge in the input graph G
participates in an s-t path of G by applying Reduction Rule 1.
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Algorithm 3: Finding a 2(�+1)-approximate tracking set for undirected graphs
with maximum degree �.
Input: Undirected graph G = (V , E) such that ∀x ∈ V , deg(x) ≤ �, a pair of vertices s, t ∈ V .
Output: Tracking Set T ⊆ V for G.

1 Apply Reduction Rule 1;
2 Find a 2-approximate feedback vertex set S for G;
3 Set T = S;
4 foreach v ∈ S do
5 foreach x ∈ N (v) do
6 T = T ∪ {x};
7 end
8 end
9 Return T ;

Next we claim that Algorithm 3 indeed returns a tracking set T for G. Suppose not.
Then due to Lemma 2, there exists a cycle C in G with a local source u and a local
destination v, such that V (C)\{u, v} does not contain any trackers. See Fig. 2, where
path P1 is marked in solid lines, while path P2 is marked in dashed lines.

Observe the cycle C formed due to paths P1 and P2. Since P1 and P2 contain the
same sequence of trackers, no vertex inV (C)\{u, v} can be a tracker. Sincewe consider
graphs without any parallel edges, there exists at least one vertex in V (C)\{u, v}. Note
that Algorithm 3 includes a 2-approximate feedback vertex set, S, for G in T . Thus
at least one vertex from C belongs to T . Note that it is possible that vertices u ∈ S
and/or v ∈ S, and thus u or v may have been included in T . But the vertices u, v do
not help distinguish between paths P1 and P2. However, observe that Algorithm 3 also
includes all neighbors of the vertices in S into T . Further each vertex in V (C) has
at least two of its neighbors in V (C). Thus at least one vertex in V (C), other than u
and v, will have been necessarily included in T . This violates the claim that no vertex
other than u or v belongs to T , contradicting the assumption that T is not a tracking
set for G.

Next we explain the approximation ratio 2(� + 1). Let G be an input graph and x
be the size of a minimum feedback set for G. Let T be the tracking set computed by
Algorithm 3. When the algorithm includes a 2-approximate feedback vertex set S into
T , the size of T is at most 2 ·x . Further, for each vertex in S, all of its neighbors are also
included into the tracking set T . Since the maximum degree of G is upper bounded by
�, for each vertex in S, additional � vertices are included in T . Thus the final size of
T is at most 2(� + 1) · x . From [5], we know that the size of a tracking set is at least
the size of a minimum tracking set. Hence, the size of T is at most 2(� + 1) · OPT ,
where OPT is the size of an optimum tracking set for G. 	


Next we prove that Algorithm 3 runs in polynomial time.

Lemma 11 Algorithm 3 runs in time O(n2 log n).

Proof Algorithm 3 starts by applying Reduction Rule 1 that can be applied in quadratic
time. Next we find a 2-approximate feedback vertex set S for the input graph, using the
algorithm given in [1] inO(min{|E | log |V |, |V |2}) time. We include S in the tracking
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set T . Next, for each vertex v ∈ S, we add N (v) to T . This step takes O(n2 log n)

time. Thus the overall time taken isO(n2)+O(min{|E | log |V |, |V |2})+O(n2 log n).
Hence the algorithm runs in total O(n2 log n) time. 	


From Lemmas 10 and 11, we have the following theorem.

Theorem 3 For an undirected graph G on n vertices such that the maximum degree of
vertices in G is �, there exists anO(n2) algorithm that finds a 2(�+ 1)-approximate
tracking set for G.

The approximation ratio for our algorithm can be improved slightly by using the
improved approximation bound known for FVS in bounded degree graphs [2] which
has a performance ratio of 2 − 2

3�−2 .

6 Reconstructing Paths Using Trackers

In real-world applications, it might be required to identify the s-t path which cor-
responds to a given sequence of trackers. Banik et al. [3] gave a polynomial time
algorithm to reconstruct the shortest s-t path corresponding to a subset of trackers,
given a tracking set for shortest s-t paths. Here we give an algorithm which, given
a graph G, a constant size tracking set T , and a sequence of trackers π , returns the
unique s-t path in G that corresponds to π , if one exists. Our algorithm works for both
undirected graphs as well as tournaments. More generally, our algorithm works for
any class of graphs for which finding disjoint paths between pairs of vertices can be
done in polynomial time. Finding disjoint paths between pairs of vertices is NP-hard
for directed graphs, even when the number of pairs is only two [17]. However, find-
ing disjoint paths between pairs of vertices is polynomial time solvable in undirected
graphs [21], tournament graphs [12], directed planar graphs [25], and directed acyclic
graphs [28].

Theorem 4 Let C be the class of (di)graphs for which finding disjoint paths between
pairs of vertices can be done in polynomial time. Then given a graph G ∈ C, a tracking
set T of constant size k for G, and a sequence of trackers π , the unique s-t path in G
corresponding to π , if it exists, can be found in polynomial time.

Proof Let V (π) denote the vertices in the sequence π . Without loss of generality, let
|V (π)| = k and π = (v1, v2, . . . , vk). Let P be the unique s-t path in G that corre-
sponds to π . Let S be the set of pairs of vertices formed by consecutive vertices in π ,
preceding and endingwith s and t respectively, i.e. S = {{s, v1}, {v1, v2}, . . . , {vk, t}}.
Since π is the sequence of trackers in P , V (P) does not contain any trackers from
T , other than those in π . In order to find P , we need to find the vertex disjoint paths
between each pair of vertices (vi , vi+1) in S, where v0 = s and vk+1 = t . We create
a copy v′

i for each vertex vi in π , and introduce and edge between v′
i and each vertex

in N (vi ) in the graph G. Let S′ = {{s, v1}, {v′
1, v2}, {v′

2, v3} . . . , {vk−1, vk}, {v′
k, t}}

and V (S′) be the set of all vertices in S′. Consider the graph G ′ = G − (T \V (S′)).
If G is an undirected graph, then using the algorithm for disjoint paths in undirected
graphs from [21], find the vertex disjoint paths between the pairs of vertices in S′, in
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Fig. 9 Cycle without any tracking edges

the graph G ′. If G is a tournament graph, then using the algorithm for disjoint paths in
tournaments from [12], find the vertex disjoint paths between the pairs of vertices in
S′, in the graph G ′. Since the disjoint path problem can be solved in polynomial time
for undirected graphs and tournaments [12,21], we can perform this step in polynomial
time. Observe that the sequence of these vertex disjoint paths will form an s-t path in
G ′, which will also be an s-t path in G. Note that if the paths between pairs of vertices
in S′ are not vertex disjoint, it is a violation of the tracking set condition, as there are
two vertex disjoint paths between a pair of vertices that have disjoint paths to s and t
themselves. Next we prove that the path found will be a unique s-t path. If not, then
there exist two s-t paths in G, containing the sequence of trackers π . This contradicts
the assumption that T is a tracking set for G. Since T is assumed to be a tracking set
for G, if vertex disjoint paths are not found between all pairs of vertices in S′, then
P does not exist. In this case the algorithm returns NO. Since the algorithm relies on
finding disjoint paths, apart from chordal and tournament graphs, it is applicable for
all graphs for which disjoint paths can be found in polynomial time. 	


7 Tracking Edge Set for Undirected Graphs

In this section we study the problem of identifying s-t paths in an undirected edge-
weighted graph using the edges of the graph. For a graph G, we define a tracking
edge set as the set of edges whose intersection with each s-t path results in a unique
sequence of edges. Here we allow parallel edges in the input graph.We formally define
the problem of tracking paths using edges as follows.

Tracking Paths using Edges (G, s, t)
Input: An undirected edge-weighted graph G = (V , E) with terminal vertices s
and t .
Question: Find a minimum weight tracking edge set T ⊆ E for G.

We start by first applying Reduction Rule 1, which ensures that each vertex and
edge in the graph participates in some s-t path. Next we prove that each cycle in the
reduced graph needs an edge as a tracker.

Lemma 12 In a reduced graph G = (V , E), a set of edges T ⊆ E is a tracking edge
set only if T contains an edge from each cycle in G.
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Proof Suppose the claim does not hold. Then there exists a cycle C in graph G, such
that E(C)∩T = ∅, i.e. none of the edges inC belong to T . Consider an edge e ∈ V (C).
Due to Reduction Rule 1, e participates in an s-t path, say P . Let x be the first vertex
of C that appears in path P while traversing from s to t . Similarly, let y be the last
vertex of C that appears in path P while traversing from s to t . See Fig. 9. Observe
that x and y serve as local source and sink respectively for the cycle C , and there exist
exactly two vertex disjoint paths between x and y in C . Since none of the edges in C
are part of the tracking edge set T , this leads to two s-t paths in G with exactly same
sequence of edges. This contradicts the fact that T is a tracking edge set for G. 	


Further, by using the arguments similar to those in Lemma 2, the following lemma
for tracking using edges (instead of vertices) can be derived. Details are skipped to
avoid repetition.

Lemma 13 In a graph G, if T ⊆ E(G) is not a tracking set for G, then there exist two
s-t paths with the same sequence of trackers, and they form a cycle C in G, such that
C has a local source a and a local destination b, and T ∩ (E(C)\{a, b}) = ∅.

From Lemmas 12 and 13 we have the following corollary.

Corollary 2 In a reduced graph G, a set of edges T ⊆ E(G) is a tracking edge set for
G if and only if T is a feedback edge set F for G.

Although finding a minimum FVS is an NP-hard problem, an FES can be found in
polynomial time. Hence, we have the following theorem.

Theorem 5 For an undirected edge-weighted graph G on n vertices, Tracking
Paths using Edges can be solved in O(n2) time.

Proof Let G be an undirected edge-weighted graph on n vertices. We start with the
application of Reduction Rule 1. From Corollary 2 we have that a set of edges is a
tracking edge set for G if and only if it is an FES for G. In order to find a minimum
weighted tracking edge set for G, we first find a maximum weight spanning tree T for
G using Prim’s algorithm or Kruskal’s algorithm in O(n2) time [13]. Now the edges
in G−T comprise a minimum weight FES, which is also a minimum weight tracking
edge set for G. 	


A path reconstruction algorithm similar to the one mentioned in Sect. 6 can be
obtained by considering a sequence of tracking edges, and finding vertex disjoint paths
between their endpoints in the graph obtained after removal of remaining tracking
edges from the tracking edge set for that graph.

8 Conclusion

In this paper, we give polynomial time results for some variants of the Tracking

Paths problem. Specifically, we solve Tracking Paths for chordal graphs and tour-
naments, along with giving an approximation algorithm for degree bounded graphs.
A constructive algorithm has also been given that helps identify an s-t path, given

123



Algorithmica (2022) 84:1548–1570 1569

the unique sequence of trackers it contains. We also analyze the problem Tracking

Paths using Edges, and prove it to be polynomial time solvable. Future scope of
this work lies in improving the running times of these algorithms and identifying more
graph classes where Tracking Pathsmay be easily solvable. It would be interesting
to explore whether the algorithms for chordal graphs and tournaments can be extended
to work for oriented chordal graphs. Open problems also include exploring constant
factor approximation algorithms for bounded degree graphs and other NP-hard vari-
ants of the problem for both undirected and directed graphs.
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