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Abstract
Online routing in a planar embedded graph is central to a number of fields and has
been studied extensively in the literature. For most planar graphs no O(1)-competitive
online routing algorithm exists. A notable exception is the Delaunay triangulation for
which Bose and Morin (SIAM J Comput 33(4):937–951, 2004) showed that there
exists an online routing algorithm that is O(1)-competitive. However, a Delaunay
triangulation can have Ω(n) vertex degree and a total weight that is a linear factor
greater than the weight of a minimum spanning tree. We show a simple construction,
given a set V of n points in the Euclidean plane, of a planar geometric graph on V
that has small weight (within a constant factor of the weight of a minimum spanning
tree on V ), constant degree, and that admits a local routing strategy that is O(1)-
competitive. Moreover, the technique used to bound the weight works generally for
any planar geometric graph whilst preserving the admission of an O(1)-competitive
routing strategy.
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1 Introduction

The aim of this paper is to design a graph on V (a finite set of points in the Euclidean
plane) that is cheap to build and easy to route on. Consider the problem of finding
a route in a geometric graph from a given source vertex s to a given target vertex t .
Routing in a geometric graph is a fundamental problem that has received considerable
attention in the literature. In the offline setting, when we have full knowledge of the
graph, the problem is well-studied and numerous algorithms exist for finding shortest
paths (for example, the classic Dijkstra’s Algorithm [17]). In an online setting the
problem becomes much more complex. The route is constructed incrementally and
at each vertex a local decision has to be taken to decide which vertex to forward
the message to. Without knowledge of the full graph, an online routing algorithm
cannot identify a shortest path in general; the goal is to follow a path whose length
approximates that of the shortest path.

Given a source vertex s, a target vertex t , and a message m, the aim is for an online
routing algorithm to sendm together with a header h from s to t in a graph G. Initially
the algorithm only has knowledge of s, t and the neighbors of s, denoted N (s). Note
that it is commonly assumed that for a vertex v, the setN (v) also includes information
about the coordinates of the vertices in N (v). Upon receiving a message m and its
header h, a vertex v must select one of its neighbours to forward the message to as
a function of h, N (v), s, and t . This procedure is repeated until the message reaches
the target vertex t . Different routing algorithms are possible depending on the size of
h and the part of G that is known to each vertex. Usually, there is a trade-off between
the amount of information that is stored in the header and the amount of information
that is stored in the vertices.

Bose and Morin [12] showed that greedy routing always reaches the intended des-
tination on Delaunay triangulations. Dhandapani [16] proved that every triangulation
can be embedded in such a way that it allows greedy routing and Angelini et al. [2]
provided a constructive proof.

However, the above papers only prove that a greedy routing algorithm will succeed
on the specific graphs therein. No attention is paid to the quality or competitiveness
of the resulting path relative to the shortest path. Bose and Morin [12] showed that
many local routing strategies are not competitive but also show how to route com-
petitively in a Delaunay triangulation. Bonichon et al. [7,8] provided different local
routing algorithms for the Delaunay triangulation, decreasing the competitive ratio,
and Bonichon et al. [6] designed a competitive routing algorithm for Gabriel triangu-
lations.

To the best of our knowledge most of the existing routing algorithms consider well-
known graph classes such as triangulations and Θ-graphs. However, these graphs are
generally very expensive to build. Typically, they have high degree (Ω(n)) and the
total length of their edges can be as bad as Ω(n) times that of the minimum spanning
tree of V .
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On the other hand, there is a large amount of research on constructing geometric
planar graphs with ‘good’ properties. However, none of these have been shown to
have all of bounded degree, weight, planarity, and the admission of competitive local
routing. Bose et al. [11] come tantalisingly close by providing a local routing algorithm
for a plane bounded-degree spanner.

In terms of bounded degree, the best bound for plane spanners is 4 by Bonichon et
al. [9]. This spanner has a spanning ratio of 156.82. Another construction that also
achieves a maximum degree of 4 was given by Kanj et al. [22], who reduced the
spanning ratio to 20. In two special cases, Bose et al. [5] showed that reducing the
degree to 3 is possible. In terms of lower bounds, Dumitrescu and Ghosh [19] showed
that there exist point sets that require a spanning ratio of at least 1.4308. They also
strengthened this bound to 2.1755 for spanners of degree 4 and 2.7321 for spanners
of degree 3.

The search for lowweight spanners started in 1993whenAlthöfer et al. [1] presented
the greedy spanner. Das et al. [14,15] showed that the weight of a greedy spanner for
a set V of points in Rd is within a constant factor times the weight of a minimum
spanning tree, for any constant d. For a complete proof see the book by Narasimhan
and Smid [25]. In more recent work these results have been generalised to a wider
family of doubling metrics [10,20,21].

In this paper we consider the problem of constructing a geometric graph of
small weight and small degree that guarantees a local routing strategy that is O(1)-
competitive. More specifically we show:

Given a set V of n points in the plane, together with two parameters 0 < θ < π/2
and r > 0, we showhow to construct in O(n log n) time a planar ((1+1/r)·τ)-spanner
with degree at most 5�2π/θ�, and weight at most ((2r + 1) · τ) times the weight of
a minimum spanning tree of V , where τ = 1.998 · max(π/2, π sin(θ/2) + 1). This
construction admits an O(1)-memory deterministic 1-local routing algorithm with a
routing ratio of no more than 5.90 · (1 + 1/r) · max(π/2, π sin(θ/2) + 1).

While we focus on our construction, we note that the techniques used to bound
the weight of the graph apply generally to any planar geometric graph. In particular,
using techniques similar to the ones we use, it may be possible to extend the results by
Bose et al. [11] to obtain other routing algorithms for bounded-degree light spanners.

2 Building the Network

Given a Delaunay triangulation DT (V ) of a point set V we will show that one can
remove edges fromDT (V ) such that the resulting graphBDG(V ) has constant degree
and constant stretch-factor. We will also show that the resulting graph has the useful
property that for every Delaunay edge (u, v) in DT (V ) there exists a spanning path
along the boundary of the face in BDG(V ) containing u and v. This property will be
critical to develop the routing algorithm in Sect. 3. In Sect. 4 we will show how to
prune BDG(V ) further to guarantee the lightness property while still being able to
route in it.
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(a) (b)

Fig. 1 a An example of the vertices in some cone C with apex u. b Extreme, penultimate, and middle are
mutually exclusive properties taking precedence in that order

2.1 Building a Bounded Degree Spanner

The idea behind the construction is slightly reminiscent to that of the Θ-graph: For
a given parameter 0 < θ < π/2, let κ = �2π/θ� and let Cu,κ be a set of κ disjoint
cones partitioning the plane, with each cone having angle measure at most θ at apex
u. Let v0, . . . , vm be the clockwise-ordered Delaunay neighbours of u within some
cone C ∈ Cu,κ (see Fig. 1a).

If there is at least one edge at u induced by C , call edges uv0 and uvm extreme at u.
Call edges uv1 and uvm−1 penultimate at u if there are two distinct extreme edges at
u induced by C and at least one other edge at u induced by C . If there are two distinct
edges that are extreme at u induced by C , and two distinct edges that are penultimate
at u induced byC , and at least one other edge at u induced byC , then, of the remaining
edges incident to u and contained in C , the shortest one is called a middle edge at u
(see Fig. 1b).

The construction removes every edge except the extreme, penultimate, and middle
ones in every C ∈ Cu,κ , for every point u, in any order. The edges present in the final
construction are thus the ones which are either extreme, penultimate, or middle at both
of their endpoints (not necessarily the same at each endpoint).

The resulting graph is denoted by BDG(V ). The construction time of this graph
is dominated by constructing the Delaunay triangulation, which requires O(n log n)

time. Given the Delaunay triangulation, determining which edges to remove takes
linear time (see Sect. 2.3). The degree of BDG(V ) is bounded by 5κ , since each of
the κ cones C ∈ Cu,κ can induce at most five edges. It remains to bound the spanning
ratio.

2.2 Spanning Ratio

Before proving that the network is a spanner (Corollary 1) we will need to prove some
basic properties regarding the edges in BDG(V ). We start with a simple but crucial
observation about consecutive Delaunay neighbours of a vertex u.

Lemma 1 LetC be a conewith apex u andanglemeasure0 < θ < π/2. Let vl , v, vr be
consecutive clockwise-ordered Delaunay neighbours of u contained in C. The interior
angle ∠(vl , v, vr ) must be at least π − θ .
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(a) (b)

Fig. 2 a Example placement of u, vl , vr and v in the circle ◦(vl , u, vr ) b The path from v1 to vm along the
Delaunay neighbours of u must be in BDG(V ). Furthermore, uv0 and uvm+1 are extreme, uv1 and uvm
are penultimate, and uv j is a middle edge

Proof In the case when∠(vl , v, vr ) is reflex in the quadrilateral u, vl , v, vr the lemma
trivially holds. Let us thus examine the case when∠(vl , v, vr ) is not, in which case the
quadrilateral u, vl , v, vr is convex and, as u, vl , v and u, vr , v are Delaunay triangles,
∠(vl , u, vr ) + ∠(vl , v, vr ) must be at least π (see Fig. 2a). Since vl and vr lie in a
cone with apex u of angle measure θ , ∠(vl , u, vr ) is at most θ . Hence, ∠(vl , v, vr ) is
at least π − θ . ��

This essentially means that ∠(vl , v, vr ) is wide, and will help us to argue when vlv

and vvr must be in BDG(V ) (Lemma 3). Next, we define protected, fully protected,
and semi-protected edges.

Definition 1 An edge uv is protected at u (with respect to some fixed Cu,κ ) if it is
extreme, penultimate, or middle at u. An edge uv is fully protected if it is protected at
both u and v. An edge uv is semi-protected at u if it is protected at u but not protected
at v.

Hence, an edge is contained in BDG(V ) if and only if it is fully protected. We
continue with an observation that allows us to argue which edges are fully protected.

Observation 1 If an edge uvi is not extreme at u, then u must have consecutive
clockwise-ordered Delaunay neighbours vi−1, vi , vi+1, all in the same coneC ∈ Cu,κ .
Similarly, if uvi is neither extreme nor penultimate at u, then u must have consecu-
tive clockwise-ordered Delaunay neighbours vi−2, vi−1, vi , vi+1, vi+2, all in the same
cone C ∈ Cu,κ .

Lemma 2 Every edge that is penultimate or middle at one of its endpoints is fully
protected.

Proof Consider an edge uv that is penultimate or middle at u. Since it is protected
at u, we need to show that it is protected at v. Since uv is not extreme at u, u must
have consecutive clockwise-ordered Delaunay neighbours vl , v, vr in the same cone
by Observation 1.

We show that uv must be extreme at v. Suppose for a contradiction that uv is not
extreme at v. Then, by Observation 1, vlv and vvr are contained in the same cone with
apex v and angle at most θ < π/2. However, by Lemma 1, ∠(vl , v, vr ) ≥ π − θ > θ ,
which is impossible. Thus, uv is extreme at v and protected at v. Hence, the edge is
fully protected. ��
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Now we can argue about the Delaunay neighbours of a vertex (see Fig. 2b for an
illustration of the lemma).

Lemma 3 Let v0, . . . , vm+1 be the clockwise-ordered Delaunay neighbours of u con-
tained in some cone C ∈ Cu,κ . The edges in the path v1, . . . , vm are all fully protected.

Proof Let vivi+1 be an edge along this path for some 1 ≤ i < m. Suppose for a
contradiction that vivi+1 is not protected at vi . It is thus, in particular, neither extreme
nor penultimate at vi . Then, by Observation 1, vi u and vivi−1 must be contained in
the same cone with apex vi as vivi+1. By Lemma 1, ∠(vi−1, vi , vi+1) ≥ π − θ > θ ,
contradicting that vivi−1 and vivi+1 lie in the same cone with apex vi . The edge vivi+1
must therefore be either extreme or penultimate, and thus protected, at vi for i ≥ 1.
An analogous argument shows that vivi+1 is either extreme or penultimate at vi+1 for
1 < i + 1 ≤ m. It is thus fully protected. ��

Since these paths v1, . . . , vm are included in BDG(V ), we can modify the proof of
Theorem 3 by Li and Wang [24] to suit our construction to prove that BDG(V ) is a
spanner.

Theorem 2 BDG(V ) is a max(π/2, π sin(θ/2) + 1)-spanner of the Delaunay trian-
gulation DT (V ) for an adjustable parameter 0 < θ < π/2.

Proof The proof of this theorem is illustrated in Fig. 3. We show that for any edge uv

in DT (V ) that is not present in BDG(V ), there is a spanning path in BDG(V ) from
u to v.

The edges in BDG(V ) are exactly the edges in DT (V ) that are fully protected.
Without loss of generality, let uv be an edge in DT (V ) that is not protected at u.
Then, uv is not extreme and must be a chord of the face u, v0, . . . , vi = v, . . . , vm
where uv0 is a middle edge and uvm is a penultimate edge. According to Lemma 2
uv0 and uvm are edges in BDG(V ), and according to Lemma 3 all the edges in the
path v0, . . . , vm are included in BDG(V ). Moreover, ∠(v0, u, vi ) < ∠(v0, u, vm) <

θ < π/2. Consider S(v0, vi ), the shortest curve with endpoints v0 and vi contained
in the polygon u, v0, . . . , vi = v. Label |uv0| with x , |uvi | with y, and let w be the
point on the segment uvi with length x so that |wvi | = y − x .

We will show that S(v0, vi ) is contained in the triangle v0, w, vi . If none of
v1, . . . , vi−1 are contained in the triangle v0, w, vi , the claim must hold since all
such vertices must be additionally outside the circle with centre u and radius x (uv0 is
the middle edge) and thus the line segment joining v0 and vi is unobstructed. If any of
v1, . . . , vi−1 are in the triangle v0, w, vi , then v0 must connect directly to one of them
along S(v0, vi ), say p, and vi must connect directly to one of them, say q possibly
the same as p. Since S(v0, vi ) can be seen as the lower convex hull of v0, . . . , vi , and
since p and q are in the triangle v0, w, vi , the subpath of S(v0, vi ) with endpoints p
and q must be in the triangle v0, w, vi too.

Since S(v0, vi ) is convex with base v0vi and contained in the triangle v0, w, vi ; it
must thus have a length not more than |v0w| + |wvi | = 2x sin(ϕ/2) + y − x where
ϕ < θ < π/2 is the angle ∠(v0, u, vi ). Now consider an edge of S(v0, vi ), say vkvl .
The edge vkvl shortcuts the subpath vk, . . . , vl of v0, . . . , vi in BDG(V ).

123



1322 Algorithmica (2022) 84:1316–1340

Fig. 3 Illustrating Theorem 2. The spanning path from u to v is u, v0, v1, . . . , v9 = v. Note that the path
v0, v7, v is indeed contained in triangle v0, w, vi

Dobkin et al. [18] (see also Lemma 3.3 in [12]) showed that the length |vk, . . . , vl |
is at most π/2 · |vkvl |, provided that

1. the straight-line segment between vk and vl lies outside the Voronoi region induced
by u, and

2. the path vk, . . . , vl lies on one side of the line through vk and vl .

The first property follows from the fact that θ < π/2 and the second property
follows from the construction. Since both conditions hold, |v0, . . . , vi | ≤ |S(v0, vi )| ·
π/2 ≤ (|v0w|+ |wvi |)π/2 = (2x sin(ϕ/2)+ y− x)π/2. Putting everything together,
we have that the path u, v0, . . . , vm has length at most

x + (2x sin(ϕ/2) + y − x)π/2

= y(π/2 + (π sin(ϕ/2) + 1 − π/2)x/y)

≤ y(π/2 + (π sin(θ/2) + 1 − π/2)x/y)

≤ y · max(π/2, π sin(θ/2) + 1)

= |uv| · max(π/2, π sin(θ/2) + 1).

Since x/y ∈ (0, 1), the last inequality immediately follows.
The right-hand-most side of the inequality shows that for any edge uv in DT (V ),

there is a max(π/2, π sin(θ/2) + 1)-spanning path in BDG(V ) between u and v.
BDG(V ) is thus a max(π/2, π sin(θ/2) + 1)-spanner of the Delaunay triangulation
DT (V ) for an adjustable parameter 0 < θ < π/2. ��

Note that from the proof of Theorem 2 it follows that for every Delaunay edge uv

that is not inBDG(V ), there is a path from u to v along the face ofBDG(V ) containing
uv realising a path of length at most max(π/2, π sin(θ/2) + 1) · |uv|. This is a key
observation that will be used in Sect. 3.

2.3 Algorithmic Construction ofBDG(V)

For completeness we state the algorithm in Sect. 2 as pseudocode and analyse its time
complexity.

123



Algorithmica (2022) 84:1316–1340 1323

Algorithm 1 BDG(V )

Require: V
Require: 0 < θ < π/2
1: E ← {}
2: DT ← DT (V )

3: for u ∈ V do
4: Compute Cu,κ , where κ = �2π/θ�.
5: for u ∈ V do
6: for uv ∈ E(DT ) do
7: Bucket uv into C ∈ Cu,κ .

8: for u ∈ V do
9: for C ∈ Cu,κ do
10: Reset values of e1, e2, p1, p2,m.
11: for e bucketed into C do
12: e1 ← argminangle(e1, e)
13: e2 ← argmaxangle(e2, e)

14: for e bucketed into C\{e1, e2} do
15: p1 ← argminangle(p1, e)
16: p2 ← argmaxangle(p2, e)

17: for e bucketed into C\{e1, e2, p1, p2} do
18: m ← argminlength(m, e)

19: Mark e1, e2, p1, p2,m, if their values are set, as protected by u.

20: for uv ∈ E(DT ) do
21: if uv marked as protected by both endpoints then
22: E = E ∪ {uv}.

return (V , E).

Theorem 3 BDG(V ) takes O(n log n) time to construct. BDG(V ) takes O(n) time to
construct if the input is a Delaunay triangulation DT (V ) on V .

Proof The construction of the Delaunay triangulation DT (V ) at line 2 takes
O(n log n) time.

The loops at lines 3,5,8,20 are independent of each other. The one starting at
line 3 takes O(n) time and the one on line 5 takes O(n) time since there are a linear
number of edges in E(DT ), which we look at twice (once for each endpoint), and the
bucketing of each edge takes κ time at most. The loop starting at line 8 takes O(n)

time since there are a linear number of edges in E(DT ), which we look at six times
at most (thrice for each endpoint). Finally, the loop at line 20 takes O(n) time since
there are a linear number of edges in E(DT ).

The result follows that BDG(V ) takes O(n log n) time to construct and BDG(V )

takes O(n) time to construct if the input is a Delaunay triangulation DT (V ) on V .
��

Putting the results from this section together, using that the Delaunay triangulation
is a 1.998-spanner [26], and observing that BDG(V ) is trivially planar since it is a
subgraph of the Delaunay triangulation, we obtain:

Corollary 1 Given a set V of n points in the plane and a parameter 0 < θ < π/2, one
can in O(n log n) time compute a graph BDG(V ) that is a planar τ -spanner having
degree at most 5�2π/θ�, where τ = 1.998 · max(π/2, π sin(θ/2) + 1).
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(a) (b)

Fig. 4 The routing choice: a At vi we follow the edge to p. b At vi we follow the edge to q

3 Routing

In order to route efficiently onBDG(V ), wemodifyBonichon et al.’s routing algorithm
[8] on theDelaunayTriangulation.Given a source s and a destination t on theDelaunay
triangulation DT (V ), we assume without loss of generality that the line segment [st]
is horizontal with s to the left of t . Bonichon et al.’s routing algorithm [8] then works
as follows: When we are at a vertex vi (v0 = s), set vi+1 to t and terminate if vi t is an
edge in DT (V ). Otherwise, consider the rightmost Delaunay triangle Ti = vi , p, q
at vi that has a non-empty intersection with [st]. Denote the circumcircle ◦(vi , p, q)

with Ci , denote the leftmost point of Ci with wi , and the rightmost intersection of Ci

and [st] with ri .
– If vi is encountered in the clockwise walk alongCi fromwi to ri , set vi+1 to p, the
first vertex among {p, q} encountered on this walk starting from vi (see Fig. 4a).

– Otherwise, set vi+1 to q, the first vertex among {p, q} to be encountered in the
counterclockwise walk along Ci starting from vi (see Fig. 4b).

We relax Bonichon et al.’s routing algorithm [8] in such a way that it no longer
necessarily uses the rightmost intersected triangle: At v0, we set A0 = T0; at vi for
i > 0, we will find a Delaunay triangle Ai based on the Delaunay triangle Ai−1 =
vi−1, x, y used in the routing decision at vi−1, where one of x or y is vi .

Let Ai = vi , p, q be any Delaunay triangle with a non-empty intersection with
[st] to the right of the intersection of Ai−1 with [st] and which, moreover, satisfies
the condition that if vi is above [st], then, when making a counterclockwise sweep
centred at vi starting from vivi−1, we encounter vi q before vi p, with vi q intersecting
[st] and vi p not intersecting [st]. Figure 5 illustrates two concrete examples of Ai

given Ai−1. An analogous statement for choosing Ai holds when vi lies below [st],
sweeping in clockwise direction.

We note that these triangles Ai always exist, since the rightmost Delaunay triangle
intersecting [st] is a candidate. Furthermore, the triangles occur in order along [st] by
definition. This implies that the relaxation of Bonichon et al.’s routing algorithm [8]
terminates.
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(a) (b)

Fig. 5 Candidate triangles Ai given Ai−1: a when [st] is not crossed when moving from vi−1 to vi , b
when [st] is crossed when moving from vi−1 to vi

Theorem 4 The relaxation of Bonichon et al.’s routing algorithm [8] on the Delaunay
triangulation is 1-local and has a routing ratio of at most (1.185043874 + 3π/2) ≈
5.90.

Proof The 1-locality follows by construction. The proof for the routing ratio of Boni-
chon et al.’s routing algorithm [8] holds for its relaxed version, since the only parts of
their proof using the property that Ti is rightmost are:

1. The termination of the algorithm (which we argued above).
2. The categorisation of the Worst Case Circles of Delaunay triangles Ti into three

mutually exclusive cases (which we discuss next).

Thus, the relaxation of Bonichon et al.’s routing algorithm [8] on the Delaunay trian-
gulation has a routing ratio of at most (1.185043874 + 3π/2) ≈ 5.90. ��

3.1 Worst Case Circles

In the analysis of the routing ratio of Bonichon et al.’s routing algorithm [8], the
notion of Worst Case Circles is introduced whereby the length of the path yielded by
the algorithm is bounded above by some path consisting of arcs along these Worst
Case Circles; this arc-path is then shown to have a routing ratio of 5.90.

Suppose we have a candidate path, and are given a Delaunay triangle vi , vi+1, u
intersecting [st]; we denote its circumcircle by Ci with centre Oi . The Worst Case
Circle C ′

i is a circle that goes through vi and vi+1, whose centre O ′
i is obtained by

starting at Oi and moving it along the perpendicular bisector of [vivi+1] until either st
is tangent to C ′

i or vi is the leftmost point of C ′
i , whichever occurs first. The direction

O ′
i is moved towards depends on the routing decision at vi : if vi is encountered on the

clockwise walk from wi to ri , then O ′
i is moved towards this arc, and otherwise, O ′

i is
moved towards the opposite direction. Letting w′

i be the leftmost point of C ′
i , we can

categorise the Worst Case Circles into the following three mutually exclusive types
(see Fig. 6):

1. Type X1 : vi �= w′
i , and [vivi+1] does not cross [st], and st is tangent to C ′

i .
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1326 Algorithmica (2022) 84:1316–1340

Fig. 6 The three types of Worst Case Circles

2. Type X2 : vi = w′
i and [vivi+1] does not cross [st].

3. Type Y : vi = w′
i and [vivi+1] crosses [st].

Next, we show that the Worst Case Circles of Delaunay triangles Ai fall into the
same categories. Let Ci be the circumcircle of Ai centred at Oi , let wi be the leftmost
point of Ci , and let ri be the right intersection of Ci with [st]. We begin with the
following observation which follows from how the criteria forces Ai to intersect [st]:
Observation 5 Let Ai = vi , p, q. Taking a clockwise walk along Ci from vi to ri ,
exactly one of p or q is encountered. An analogous statement holds for the counter-
clockwise walk.

This observation captures the necessary property that allows the categorisation to
go through. We denote the Worst Case Circle of Ai by C ′

i with centre O
′
i , and leftmost

point w′
i .

Lemma 4 C ′
i can be categorised into the following three mutually exclusive types:

1. Type X1 : vi �= w′
i , and [vivi+1] does not cross [st], and st is tangent to C ′

i .
2. Type X2 : vi = w′

i and [vivi+1] does not cross [st].
3. Type Y : vi = w′

i and [vivi+1] crosses [st].
Proof If [vivi+1] does not cross [st], C ′

i is clearly of type X1 or X2.
Consider when [vivi+1] crosses [st]. Without loss of generality, let vi be above [st]

and vi+1 be below [st]. By Observation 5, vi occurs on the counterclockwise walk
around Ci from wi to ri , for if not, neither vertex of Ai occurs on the clockwise walk
around Ci from vi to ri . Since vi is above [st], it lies above the leftmost intersection
of Ci with [st] and below wi .

Since O ′
i is moved along the perpendicular bisector of [vivi+1] towards the coun-

terclockwise arc of vi to vi+1, it must be that w′
i (which starts at wi when O ′

i starts at
Oi ) moves onto vi eventually. Thus, C ′

i is Type Y . ��

3.2 Routing onBDG(V)

In order to route on BDG(V ), we simulate the relaxation of Bonichon et al.’s routing
algorithm [8] described in the previous section. We first prove a property that allows
us to distribute information about edges over their endpoints.
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Lemma 5 Every edge uv ∈ DT (V ) is protected by at least one of its endpoints u or v.

Proof Suppose that uv is not protected at u. Then uv is not extreme at u and thus
by Observation 1, u must have consecutive clockwise-ordered Delaunay neighbours
vl , v, vr . By Lemma 1, ∠(vl , v, vr ) ≥ π − θ > θ since 0 < θ < π/2, and thus vl and
vr cannot both belong to the same cone with apex v and angle at most θ . Since vr , u, vl
are consecutive clockwise-ordered Delaunay neighbours of v, and vvl and vvr cannot
be in the same cone, it follows that vu is extreme at v. Hence, uv is protected at v

when it is not protected at u. ��

This lemma allows us to store all edges of theDelaunay triangulation by distributing
them over their endpoints. At each vertex u, we store:

1. Fully protected edges uv, with two additional bits to denote whether it is extreme,
penultimate, or middle at u.

2. Semi-protected edges uv (only protected at u), with one additional bit denoting
whether the clockwise or counterclockwise face path is a spanning path to v.

We can label the vertices of BDG(V ) in this way, denoting this augmented graph
as a Marked Bounded Degree Graph or MBDG(V ) for short. Pseudocode and its
running time analysis can be found in Appendix A.

Theorem 6 MBDG(V ) stores O(1) words of information at each of its vertices.

Proof According toCorollary 1, each vertex inBDG(V ) is incident to atmost 5κ (fully
and semi) protected edges, where κ is a fixed constant. From the above discussion
a vertex may store 2 bits for each incident protected edge in MBDG(V ), which
immediately proves the theorem. ��

In the remaining part of Sect. 3.2 we will focus our attention on routing in
MBDG(V ). When we write “an edge is followed" or “walking along a face" or any
statement of that sort, this is always done in MBDG(V ) using only the information
stored in each vertex unless otherwise stated. At a high level, the routing algorithm on
MBDG(V )works as follows: the simulation searches for a suitable candidate triangle
Ai at vi , possibly taking a walk from vi along a face to be defined later in order to do
so. Once Ai has been found, we will know the locations of vi , p, q, where p and q
are candidate vertices for vi+1, and we can thus use the routing criteria of Bonichon et
al.’s routing algorithm [8] to determine whether to route to p or to route to q. Next, we
describe how to route on the non-triangular faces of MBDG(V ); the vertices of any
such face can always be labelled with v, u1, . . . , um where vu1 and vum are a middle
edge and a penultimate edge at v (see Fig. 7).

There are two different situations wherein we must route on such faces. The first
situation is when we want to move from v to any other vertex (the destination vertex
along such a face is undetermined until it is reached); we shall use Unguided Face
Walks to ensure a face-route with constant stretch in such a situation. The second
situation is when we want to move from any other vertex on this face to v; we shall
use Guided FaceWalks to ensure a face-route with constant stretch in such a situation.
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Fig. 7 A non-triangular face of
MBDG(V ). Dotted edges here
are unprotected at v

Fig. 8 An Unguided Face Walk
from v to p. vu1 and vum are
not labeled with “middle” or
“penultimate” to emphasize that
we can take the shorter of the
two

3.2.1 Unguided Face Walks

Suppose vu1 and vum are a middle edge and a penultimate edge and suppose that vu1
is the shorter of the two. We want to route from v to any other vertex p on this face.
For any such vertex p on this face, we refer to the spanning face path from v to p
starting with vu1 as an Unguided Face Walk from v to p.

In the simulation, we use Unguided Face Walks in a way that p is undetermined
until it is reached; we will take an Unguided Face Walk from v and test at each vertex
along this walk if it satisfies some property, ending the walk if it does. Routing in this
manner from v to p can easily be done locally: Suppose vu1 was counterclockwise to
vum (see Fig. 8). Then, at any intermediate vertex ui , we take the edge immediately
counterclockwise to uiui−1 (v = u0). The procedure when vu1 is clockwise to vum
is analogous.

Observation 7 An Unguided Face Walk needs O(1) memory since at ui , the previous
vertex along the walk ui−1 must be stored in order to determine ui+1.
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Fig. 9 A guided face walk from
p to v. Vertices at which an edge
is semi-protected are labeled
with the edge and a bit-direction

Observation 8 An Unguided Face Walk from v to p has a stretch factor of at most
max(π/2, π sin(θ/2) + 1) as shown in the proof of Theorem 2.

3.2.2 Guided Face Walks

Suppose we want to route from p to v where pv is extreme at p but not protected
at v (i.e., it is a semi-protected edge stored at p). Then, pv is a chord of some face
determined by vu1 and vum where the former is a middle edge and the latter a penul-
timate edge. Moreover, recall that we stored a bit with the semi-protected edge pv at
p indicating whether to take the edge clockwise or counterclockwise to reach v. We
refer to the face path from p to v following the direction pointed to by these bits as
the Guided Face Walk from p to v (see Fig. 9). Routing from p to v can now be done
as follows:

1. At p, store v in memory.
2. Until v is reached, if there is an edge to v, take it. Otherwise, take the edge pointed

to by the bit of the semi-protected edge to v.

Observation 9 A Guided Face Walk needs O(1) memory since v needs to be stored
in memory for the duration of the walk.

Observation 10 A Guided Face Walk from p to v has a stretch factor of at most
max(π/2, π sin(θ/2) + 1) as shown in the proof of Theorem 2.

3.2.3 Simulating the Relaxation of Bonichon et al.’s Routing Algorithm [8]

We are now ready to describe the routing algorithm on MBDG(V ) in more detail.
First, we consider finding the first vertex after s. If st is an edge, take it and terminate.
Otherwise, at s = v0, we consider all edges protected at s, and let su1 and sum be the
first such edge encountered in a counterclockwise and clockwise sweep starting from
[st] centred at s. There are two subcases.
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(a) (b)

Fig. 10 Simulating a step of the relaxation of Bonichon et al.’s routing algorithm [8]: a Case I.I, b case I.II.

(I) If both su1 and sum are not middle edges at s, then s, u1, um is a Delaunay
triangle A0. Determine whether to route to u1 or um , using the same criteria used
in Bonichon et al.’s routing algorithm [8] (see the beginning of Sect. 3). If the
picked edge is fully protected, we follow it. Otherwise, we take the Guided Face
Walk from s to this vertex.

(II) If one of su1 and sum is amiddle edge at s, the other edgemust thenbe a penultimate
edge. Then, A0 = s, p, q must be contained in the cone with apex s sweeping
clockwise from su1 to sum . We assume that su1 is shorter than sum . Take the
Unguided Face Walk from s until some ui such that ui = p is above [st] and
ui+1 = q is below [st]. We have now found A0 = s, p, q and we determine
whether to route to p or q, using the same criteria used in Bonichon et al.’s routing
algorithm [8] (see the beginning of Sect. 3).

In both cases, the memory used for the Face Walks is cleared and A0 = s, u1, um or
A0 = s, p, q is stored as the last triangle used.

Next, we focus on how to simulate a routing step from an arbitrary vertex vi .
Suppose vi is above [st], and that Ai−1 is stored in memory. If vi t is an edge, take it
and terminate. Otherwise, let vi f be the rightmost edge of Ai−1 that intersects [st],
and vi f be its extension to a line. Make a counterclockwise sweep, centred at vi and
starting at vi f , through all edges that are protected at vi that lie in the halfplane defined

by vi f that contains t . Note that this region must have at least one such edge, since
otherwise vi f is a convex hull edge, which cannot be the case since s and t are on
opposite sides.

(I) If there is some edge that does not intersect [st] in this sweep, let vi u1 be the first
such edge encountered in the sweep and let vi um be the protected edge immediately
clockwise to vi u1 at vi . There are two cases to consider.

(I.I) If Ai−1 is not contained in the cone with apex vi sweeping clockwise from vi u1 to
vi um (see Fig. 10a), simulating a step of the relaxation of Bonichon et al.’s Routing
Algorithm [8] is analogous to the method used for the first step: determine if vi u1
or vi um is a middle edge and use a Guided or Unguided Face Walk to reach the
proper vertex of Ai .

(I.II) If Ai−1 is contained in the cone with apex vi sweeping clockwise from vi u1 to
vi um (see Fig. 10b), then one of vi u1 and vi um must be a middle edge and the
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Fig. 11 Simulating a step of the relaxation of Bonichon et al.’s routing algorithm [8] (case II).

other a penultimate edge. This must be the case since the edge vi f is contained in
the interior of the cone with apex vi sweeping clockwise from vi u1 to vi um and
is thus not protected at vi ; unprotected edges at vi are always between a middle
and a penultimate edge. Then, Ai = vi , p, q must be contained in the cone with
apex vi sweeping clockwise from vi u1 to vi f .
We take the Unguided Face Walk, starting from the shorter of vi u1 and vi um . If
we start from vi u1, we stop when we have found some ui such that ui = p is
above [st] and ui+1 = q is below [st], and make the decision to complete the
Unguided Face Walk to q or not. If, on the other hand, we start from vi um , we
stop when we have both passed f in the Unguided Face Walk (to ensure that Ai

lies to the right of Ai−1) and found some ui+1 such that ui+1 = q is below [st]
and ui = p is above [st], and make the decision to complete the Unguided Face
Walk to p or not.

(II) If all of the edges in the sweep intersect [st] (see Fig. 11), let vi um be the last
edge encountered in the sweep, and vi u1 be the protected edge immediately
counterclockwise to it, which must be in the halfplane defined by vi f that does
not contain t . Note that Ai−1 cannot be contained in this cone, as that would
imply that ∠(u1, vi , um) ≥ π , making vi um a convex hull edge. Simulating the
Delaunay routing algorithm is analogous to the method used for the first step:
determine if vi u1 or vi um is a middle edge and use a Guided or Unguided Face
Walk to reach the proper vertex of Ai .

In all cases, we clear the memory and store Ai = vi , p, q as the previous triangle.
The case where vi lies below [st] is analogous. We obtain the following theorem.

Theorem 11 The simulation of the relaxation ofBonichon et al.’s routing algorithm [8]
onMBDG(V ) is 1-local, has a routing ratio of atmost 5.90·max(π/2, π sin(θ/2)+1)
and uses O(1) memory.

4 Lightness

In the previous sections we have presented a bounded degree network MBDG(V )

with small spanning ratio that allows for local routing. It remains to show how we can
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prune this graph even further to guarantee that the resulting network LMBDG(V )

also has low weight.
We will describe a pruning algorithm that takes MBDG(V ) and returns a graph

(Light Marked Bounded Degree Graph) LMBDG(V ) ⊆ MBDG(V ), allowing a
trade-off between the weight (within a constant times that of the minimum spanning
tree of V ) and the (still constant) stretch factor. Then, we show how to route on
LMBDG(V ) with a constant routing ratio and constant memory.

4.1 The Levcopoulos and Lingas Protocol

To bound the weight ofMBDG(V ), we use the algorithm by Levcopoulos and Lingas
[23] with two slight modifications: (1) allow any planar graph as input instead of only
Delaunay triangulations, and (2) marking the endpoints of pruned edges to facilitate
routing.

At a high level, the algorithm works as follows: Given MBDG(V ), we compute
its minimum spanning tree and add these edges to LMBDG(V ). We then take an
Euler Tour around the minimum spanning tree, treating it as a degenerate polygon
P enclosing V . Finally, we start expanding P towards the convex hull CH(V ). As
edges of MBDG(V ) enter the interior of P , we determine whether to add them to
LMBDG(V ). This decision depends on a given parameter r > 0. If an edge is
excluded from LMBDG(V ), we augment its endpoints with information to facilitate
routing should that edge be used in the path found on MBDG(V ). Once P has
expanded into CH(V ), we return LMBDG(V ).

To explicate further upon this, let us first acknowledge and differentiate between a
few kinds of edges which will play a part in the following discussion:

1. Convex hull edges of CH(V ).
2. Boundary edges of the polygon P that encloses V .
3. Included settled edges, which are edges of MBDG(V ) in P and included in

LMBDG(V ).
4. Excluded settled edges, which are edges of MBDG(V ) in P and excluded from

LMBDG(V ).
5. Unsettled edges, which are edges ofMBDG(V ) outside of P and whose inclusion

in LMBDG(V ) have not yet been determined.

Note that while the last three kinds are mutually exclusive, there may be edges which
are of more than one kind. For example, a boundary edge of P can coincide with a
convex hull edge of CH(V ).

4.1.1 How the Polygon Grows

For each iteration of the Levcopoulos and Lingas Protocol, P , a polygon without
holes, grows, consuming more area and more edges ofMBDG(V ), until it coincides
completely with the convex hull CH(V ). Let us consider a single iteration of the
algorithm.

Consider any edge uv on the convex hull CH(V ). If part of the boundary of P
coincides with uv, there is nothing to consider. However, if that is not the case, then,
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(a) (b)

Fig. 12 a ∂P(u, v) has a part visible to uv. The dotted edge is a convex hull edge of V . b ∂P(u, v) ∪ uv is
subdivided into k cells. Each gray edge is an edge inMBDG(V )

(a) (b)

Fig. 13 a c1 coincides with part of ∂P(u, v) except its one unsettled edge. c2 and c3 are not candidates for
expansion. b Expansion of P into c1

among the two paths from u to v along the boundary of P , consider the path ∂P(u, v)

which has a part visible to uv (see Fig. 12a); that is, there exists a line segment
connecting the interior of ∂P(u, v) to the interior of uv that does not intersect the
interior of P .

∂P(u, v) concatenated with uv then forms a closed curve C on the plane that does
not intersect the interior of P .C is further subdivided by unsettled edges (non-crossing
by planarity), with endpoints between vertices of ∂P(u, v), into cells c1, . . . , ck (see
Fig. 12b).

If there are no unsettled edges, we expand ∂P(u, v) into uv by removing ∂P(u, v)

from P and adding uv to P . If, on the other hand, there is at least one unsettled
edge, there must be some cell ci whose entire boundary, minus one unsettled edge pq,
coincides with a part of ∂P(u, v) (see Fig. 13a).

Then, we consider the addition of pq into LMBDG(V ), make it a settled edge,
and expand P into ci by removing the subpath from p to q along ∂P(u, v) from P ,
and adding the edge pq to P (see Fig. 13b). Since the area of P is increasing, this
process must eventually terminate.
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4.1.2 Condition for Including an Edge

The decision whether to include an edge in LMBDG(V ) depends on an adjustable
parameter r > 0, which causes an increase in the stretch factor by a factor of at most
1 + 1/r and ensures a weight of at most (2r + 1) times that of MST (MBDG(V )).

All settled edges are assigned a weight ≥ 0, which is the length of a short (but not
necessarily shortest) path between their endpoints that uses only the currently included
settled edges, which are by definition edges ofLMBDG(V ). Initially,weight(pq) =
|pq| for all edges pq in the minimum spanning tree of MBDG(V ). Now, when
considering whether to include the unsettled edge uv into LMBDG(V ), we take the
sum S of the weight of edges in ∂P(u, v). These edges have been settled and thus
have weight assigned. If S is greater than (1 + 1/r) · |uv|, add uv to LMBDG(V )

and assign it a weight of |uv| now that is has been settled. Otherwise, settle uv but
exclude it, and assign it aweight of S. We can see that S is the length of the path from
u to v; that is, the concatenation of paths between the endpoints of edges in ∂P(u, v).

4.2 Bounds on the Levcopoulos and Lingas Protocol

Given an unsettled edge uv, let ∂P(u, v) be the path along P from u to v such that
∂P(u, v) concatenated with uv forms a closed curve that does not intersect the interior
of P . When processing an edge uv, it is added to LMBDG(V ) when the summed
weight of the edges of ∂P(u, v) is greater than (1 + 1/r) · |uv|. This implies that
LMBDG(V ) is a spanner.

Theorem 12 LMBDG(V ) is a (1 + 1/r)-spanner of MBDG(V ) for an adjustable
parameter r > 0.

Theorem 13 LMBDG(V )hasweight atmost (2r+1) times theweight of theminimum
spanning tree of MBDG(V ) for an adjustable parameter r > 0.

Proof Let P be the polygon that encloses V in the above algorithm. Initially P is the
degenerate polygon described by the Euler tour of the minimum spanning tree of V
in LMBDG(V ). Give each edge e of P , a starting credit of r |e|. Denote the sum
of credits of edges in P with credit(P). The sum of credit(P) and the weight of
the initially included settled edges is then (2r + 1) times the weight of the minimum
spanning tree of MBDG(V ).

As P is expanded and edges are settled, we adjust the credits in the following
manner:

– If an edge uv is added into LMBDG(V ) when settled, we set the credit of the
newly added edge uv of P to credit(∂P(u, v))−|uv|, and the credit of the edges
along ∂P(u, v) to 0.

– If an edge is excluded from LMBDG(V ) when settled, we set the credit of the
newly excluded edge uv of P to credit(∂P(u, v)), and the credit of edges along
∂P(u, v) to 0.

We can see that the sum of credit(P) and the weights of included settled edges, at any
time, is at most 2r + 1 times the weight of the minimum spanning tree ofMBDG(V )

123



Algorithmica (2022) 84:1316–1340 1335

since it strictly drops when adding an edge when it is settled and stays the same when
excluding an edge when it is settled.

It now suffices to show that credit(P) is never negative, which we do by showing
that for every edge uv of P , at any time, credit(uv) ≥ r · weight(uv) ≥ 0. We do
this by induction over the edges in the order they are settled. For the base case, when
P is the Euler Tour around the minimum spanning tree of MBDG(V ), we have that
credit(uv) = r · weight(uv). For the induction step, let uv be a settled edge. There
are two cases:

(I) If uv is added to LMBDG(V ), then credit(uv) equals

credit(∂P(u, v)) − |uv| ≥ r · weight(∂P(u, v)) − |uv|
≥ r(1 + 1/r) |uv| − |uv|
= r · weight(uv).

The first inequality holds from the induction hypothesis, and the second inequality
and last equality hold since uv is added to LMBDG(V ).

(II) If uv is not added to LMBDG(V ), then credit(uv) equals

credit(∂P(u, v)) ≥ r · weight(∂P(u, v)) = r · weight(uv).

The first inequality holds from the induction hypothesis, and the equality holds
since uv was not added.

Since credit(P) is never negative, and the sum of credit(P) and the weights of
included settled edges is at most 2r + 1 times the weight of the minimum spanning
tree of MBDG(V ), the theorem follows. ��
Putting together all the results so far, we get:

Theorem 14 Given a set V of n points in the plane together with two parameters
0 < θ < π/2 and r > 0, one can compute in O(n log n) time a planar graph
LMBDG(V ) that has degree at most 5 �2π/θ�, weight of at most ((2r + 1) · τ) times
that of a minimum spanning tree of V , and is a ((1 + 1/r) · τ)-spanner of V , where
τ = 1.998 · max(π/2, π sin(θ/2) + 1).

Proof Let us start with the running time. The algorithm by Levcopoulos and Lingas
(Lemma 3.3 in [23]) can be implemented in linear time and, according to Corollary 1,
BDG(V ) can be constructed in O(n log n) time, hence, O(n log n) in total.

The degree bound and planarity follow immediately from the fact thatLMBDG(V )

is a subgraph ofMBDG(V ), and the bound on the stretch factor follows from Theo-
rem 12 and Corollary 1.

It only remains to bound the weight. Callahan and Kosaraju [13] showed that the
weight of a minimum spanning tree of a Euclidean graph G(V ) is at most t times that
of the weight of MST (V ) whenever G is a t-spanner on V . Since MBDG(V ) is a
τ -spanner on V by Corollary 1, LMBDG(V ) has weight of at most ((2r + 1) · τ)

times that of the minimum spanning tree of V by Theorem 13. This concludes the
proof of the theorem. ��
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Finally, we prove thatLMBDG(V ) has short paths between the ends of pruned edges.

Theorem 15 Let uv be an excluded settled edge. There is a face path in LMBDG(V )

from u to v of length at most (1 + 1/r) · |uv|.
Proof If uv is the first excluded settled edge processed by the Levcopoulos-Lingas
algorithm, then all edges of ∂P(u, v)must be included inLMBDG(V ). By planarity,
no edge will be added into the interior of the cycle consisting of uv and ∂P(u, v) once
uv is settled, and thus uv will be a chord on the face in LMBDG(V ) that coincides
with ∂P(u, v). Thus, ∂P(u, v) is a face path inLMBDG(V ) from u to v with a length
of at most weight(uv) ≤ (1 + 1/r) · |uv|.

Otherwise, if uv is an arbitrary excluded edge, then some edges of ∂P(u, v)may be
excluded settled edges. If none are excluded, then ∂P(u, v) is again a face path with
length at most weight(uv). However, if some edges are excluded, then, by induction,
for each excluded edge pq along ∂P(u, v), there is a face path in LMBDG(V ) from
p to q with a length of weight(pq) ≤ (1 + 1/r) · |pq|. Replacing all such pq in
∂P(u, v) by their face paths, and since no edge will be added into the interior of the
cycle consisting of uv and ∂P(u, v) once uv is settled, ∂P(u, v) with its excluded
edges replaced by their face paths is a face path in LMBDG(V ) from u to v with a
length of weight(uv) ≤ (1 + 1/r) · |uv|. ��
Remark The remainder of this section is not required to proceed, but it is worth men-
tioning this curious phenomenon.Wecan say something even stronger about theweight
if θ is small. When θ ≤ π/3, the weight of LMBDG(V ) can be bounded to be no
more than (2r + 1) times that of a minimum spanning tree on V .

Lemma 6 If uv1 and uv2 are edges in a minimum spanning tree of V then
∠(v1, u, v2) ≥ π/3.

Proof Refer to Fig. 14a. Let uv1 and uv2 be edges in a minimum spanning tree of V .
Suppose for a contradiction that ∠(v1, u, v2) < π/3. Then, without loss of generality,
we can say that ∠(u, v1, v2) > π/3. Since ∠(v1, u, v2) < π/3 and ∠(u, v1, v2) >

π/3, we deduce that |v1v2| < |uv2|. We can therefore replace uv2 with v1v2 to get a
lighter spanning tree, contradicting the minimality of the tree. Therefore, it must be
that ∠(v1, u, v2) ≥ π/3. ��
Lemma 7 Fix a minimum spanning tree on V . Let C be a cone with apex u and angle
measure less than π/3. If uv is a minimum spanning tree edge contained in C, and if
there is a w ∈ V ∩ C such that |uw| ≤ |uv|, then we can replace uv with uw to get
another minimum spanning tree.

Proof Fix a minimum spanning tree on V . Let C be a cone with apex u and angle
measure less than π/3, and let uv be a minimum spanning tree edge contained in C .
Suppose there is aw ∈ V ∩C such that |uw| ≤ |uv|.We consider two cases separately.
In the first case, when the path in the minimum spanning tree from v to w does not go
through u (see Fig. 14b), we can replace uv with uw to get a spanning tree no heavier.
In the second case, when the path in the minimum spanning tree from v to w goes
through u (see Fig. 14c), we can replace uv with vw to get a lighter spanning tree.
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(a) (b) (c)

Fig. 14 a We can replace uv2 with v1v2 to get a lighter tree. bWe can replace uv with uw to get a tree no
heavier. c We can replace uv with vw to get a lighter tree

This is a contradiction to the minimality of the spanning tree and is thus an impossible
case. Since we can fix up the first case, and the second is impossible, we have shown
how that we can replace uv with uw to get another minimum spanning tree. ��

Theorem 16 If θ < π/3, a minimum spanning tree of V is contained inMBDG(V ).

Proof It is a known fact that the Delaunay triangulation DT (V ) contains a minimum
spanning tree of V (see [4]). Fix a minimum spanning tree of DT (V ). Suppose uv

is a minimum spanning tree edge that is not in MBDG(V ). It is therefore not fully
protected. Without loss of generality, say it is not protected at u. Look at the cone
C ∈ Cu,κ that contains uv. Let um be the middle edge in C . Since the angle measure
ofC is less than π/3, and by the definition of the middle edge which says |um| ≤ |uv|,
we can replace uv with um by Lemma 7 to get another minimum spanning tree. Since
the angle measure of C is less than π/3, there can only be one such edge uv in C that
needs replacement, by Lemma 6. This says that we are replacing at most oneminimum
spanning tree edge with um, to get another minimum spanning tree. Repeating this
process for all minimum spanning tree edges that are not fully protected, we will trade
a set of k ≥ 0 distinct minimum spanning tree edges that are not fully protected with
k distinct middle edges to get another minimum spanning tree; one that is contained
inMBDG(V ). ��
Corollary 2 If θ < π/3, LMBDG(V ) has a weight no more than 2r + 1 times that of
a minimum spanning tree of V .

Proof This follows immediately from Theorem 16. ��

5 Routing on the Light Graph

In order to route on LMBDG(V ), we store edge-data at each of its endpoints when
it is excluded. Specifically, let uv be some excluded edge; at u (and v) we store uv,
along with one bit to indicate whether the starting edge of the (1 + 1/r)-path is the
edge clockwise or counterclockwise to uv.
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Observation 17 LMBDG(V ) stores O(1) words of information at each vertex.

To route onLMBDG(V ), we simulate the routing algorithmonMBDG(V ).When
this algorithm would follow an excluded edge uv at u, we store v and the orientation
of the face path from uv at u in memory. Then, until v is reached, take the edge that
is clockwise or counterclockwise to the edge arrived from, in accordance with the
orientation stored. Once v is reached, we proceed with the next step of the routing
algorithm onMBDG(V ).

Note that bounding the weight in this manner only requires the input graph to be
planar. It transforms the pruned edges into O(d) information at each vertex, where d
is the degree of the input graph; in our case d is a constant. The scheme of simulating
a particular routing algorithm and switching to a face routing mode when needed can
then be applied to the resulting graph.

Theorem 18 The routing algorithm on LMBDG(V ) is 1-local, has a routing ratio of
5.90(1 + 1/r)max(π/2, π sin(θ/2) + 1) and uses O(1) memory.

Proof The 1-locality follows by construction. The routing ratio follows from Theo-
rem 11. Finally, the memory bound follows from the fact that while routing along a
face path to get across a pruned edge, no such subpaths can be encountered. Thus, the
only additional memory needed at any point in time is a constant amount to navigate
a single face path. ��

6 Conclusion

We showed how to construct and route locally on a bounded-degree lightweight span-
ner. In order to do this, we simulate a relaxation of Bonichon et al.’s routing algorithm
[8] on Delaunay triangulations. A natural question is whether our routing algorithm
can be improved by using the improved Delaunay routing algorithm by Bonichon et
al. [7]. Unfortunately, this is not obvious: when applying the improved algorithm on
our graph, we noticed that the algorithm can revisit vertices. While this may not be
a problem, it implies that the routing ratio proof from [7] needs to be modified in a
non-trivial way and thus we leave this as future work.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Algorithmic Construction ofMBDG(V )

We state amodification to the construction ofBDG(V ) to construction ofMBDG(V ).
Added lines to the former construction have been inserted at lines 20,21,22 and
coloured red.
123

http://creativecommons.org/licenses/by/4.0/


Algorithmica (2022) 84:1316–1340 1339

Algorithm 2MBDG(V )

Require: V
Require: 0 < θ < π/2
1: E ← {}
2: DT ← DT (V )

3: for u ∈ V do
4: Compute Cu,κ , where κ = �2π/θ�.
5: for u ∈ V do
6: for uv ∈ E(DT ) do
7: Bucket uv into C ∈ Cu,κ .

8: for u ∈ V do
9: for C ∈ Cu,κ do
10: Reset values of e1, e2, p1, p2,m.
11: for e bucketed into C do
12: e1 ← argminangle(e1, e)
13: e2 ← argmaxangle(e2, e)

14: for e bucketed into C\{e1, e2} do
15: p1 ← argminangle(p1, e)
16: p2 ← argmaxangle(p2, e)

17: for e bucketed into C\{e1, e2, p1, p2} do
18: m ← argminlength(m, e)

19: Mark e1, e2, p1, p2,m, if their values are set, as protected by u.
20: for uv bucketed into C\{e1, e2, p1, p2,m} do
21: Store uv at v as a semi-protected edge, marked with 1 if it’s to the right of m, and 0 otherwise.

22: Mark e1, e2, p1, p2,m as extreme, penultimate, or middle at u, if their values are set.

23: for uv ∈ E(DT ) do
24: if uv marked as protected by both endpoints then
25: E = E ∪ {uv}.

return (V , E).

Theorem 19 MBDG(V ) takes O(n log n) time to construct.MBDG(V ) takes O(n)

time to construct if the input is a Delaunay triangulation DT (V ) on V .

Proof The running time of the loop at line 8 remains unchanged; it is O(n) since
there are a linear number of edges, each looked at at most eight times (four times per
endpoint). For the same reasons that justify the construction time of BDG(V ), we can
then conclude that MBDG(V ) takes O(n log n) time to construct and MBDG(V )

takes O(n) time to construct if the input is a Delaunay triangulation DT (V ) on V . ��
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