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Abstract
For k ≥ 3, a k-rollercoaster is a sequence of numberswhose everymaximal contiguous
subsequence, that is increasing or decreasing, has length at least k; 3-rollercoasters are
called simply rollercoasters. Given a sequence of distinct real numbers, we are inter-
ested in computing its maximum-length (not necessarily contiguous) subsequence
that is a k-rollercoaster. Biedl et al. (in: ICALP, volume 107 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, pp 18:1–18:15, 2018) have shown that
each sequence of n distinct real numbers contains a rollercoaster of length at least
�n/2� for n > 7, and that a longest rollercoaster contained in such a sequence can
be computed in O(n log n)-time (or faster, in O(n log log n) time, when the input
sequence is a permutation of {1, . . . , n}). They have also shown that every sequence
of n ≥ (k − 1)2 + 1 distinct real numbers contains a k-rollercoaster of length at
least n

2(k−1) − 3k
2 , and gave an O(nk log n)-time (respectively, O(nk log log n)-time)

algorithm computing a longest k-rollercoaster in a sequence of length n (respectively,
a permutation of {1, . . . , n}). In this paper, we give an O(nk2)-time algorithm com-
puting the length of a longest k-rollercoaster contained in a sequence of n distinct
real numbers; hence, for constant k, our algorithm computes the length of a longest
k-rollercoaster in optimal linear time. The algorithm can be easily adapted to output
the respective k-rollercoaster. In particular, this improves the results of Biedl et al.
(2018), by showing that a longest rollercoaster can be computed in optimal linear
time. We also present an algorithm computing the length of a longest k-rollercoaster
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in O(n log2 n)-time, that is, subquadratic even for large values of k ≤ n. Again, the
rollercoaster can be easily retrieved. Finally, we show an �(n log k) lower bound for
the number of comparisons in any comparison-based algorithm computing the length
of a longest k-rollercoaster.

Keywords Sequences · Alternating runs · Patterns in permutations · Rollercoasters ·
Efficient algorithms

1 Introduction

The mathematical study of patterns occurring in sequences of numbers is a rather old
and well developed topic in combinatorics and algorithms on sequences. Within this
topic, of a particularly high interest is the study of long increasing and decreasing (not
necessarily contiguous) subsequences occurring in a sequence. For example, already in
1749, Euler defined theEulerian polynomials, which are the generating function for the
number of descents in permutations. Almost 200 years later, Erdős and Szekeres [11]
proved the existence of an increasing or a decreasing subsequence of length at least
a + 1 in a sequence of at least n = a2 + 1 distinct reals. More precisely, they have
shown the following theorem.

Theorem 1 (Erdős and Szekeres [11]) Every sequence of ab + 1 distinct real num-
bers contains an increasing subsequence of length at least a + 1 or a decreasing
subsequence of length at least b + 1.

The theorem of Erdős–Szekeres is strongly related to, and in fact also follows from,
the well-known decomposition of Dilworth (see [19]) regarding chains and antichains
in a finite partially ordered set. Dilworth’s result can be restated in the context of the
combinatorics of patterns in sequences of numbers as follows.

Theorem 2 (Dilworth [10]) Any finite sequence S of distinct real numbers can be
partitioned into k ascending sequences, where k is themaximum length of a descending
sequence in S.

Recent surveys on the combinatorics of patterns occurring in sequences are [15,16].
The study of patterns in sequences of numbers also has a well developed algorith-

mic side (see, e.g., [4,9,12,14]). For instance, finding a longest increasing subsequence
(not necessarily contiguous) contained in the input sequence is a basic problem in the-
oretical computer science, studied already from the 1960s [3,17,18], with applications
in areas such as bioinfomatics and physics (see [20] and the references therein). In
particular, Fredman [12] presented an algorithm (which he attributed to Knuth, now
considered folklore) computing the length of a longest increasing subsequence (LIS)
in an array of n numbers in O(n log n) time, and proved that this is optimal for
comparison-based algorithms. If required, the algorithm can be extended to retrieve
such a subsequence. If the input sequence can be sorted in linear time (in particular,
when the input sequence is a permutation of {1, . . . , n}) and we do not require the
algorithm to be comparison-based, the solution given by Fredman can be implemented
in O(n log log n) time, see [9] and the references therein. Fredman’s algorithm is often
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Fig. 1 Left: a 4-rollercoaster (3, 6, 8, 10, 9, 5, 1, 2, 4, 7, 11) with runs (3, 6, 8, 10), (10, 9, 5, 1),
(1, 2, 4, 7, 11). Right: two 4-rollercoasters, represented with a solid and, respectively, a dashed line, in
(3, 6, 1, 8, 7, 17, 13, 10, 11, 12, 9, 5, 14, 4, 2, 15, 16)

called Patience Sorting, and has some connections to constructing the so-called
Young Tableaux [3,17].

We consider a notion that is strongly related to longest increasing subsequences
(and longest decreasing subsequences). A run in a sequence of numbers is a maximal
contiguous subsequence that is either increasing or decreasing. A k-rollercoaster,
where k ≥ 3, is a sequence of numberswhose every runhas length at least k (i.e., the run
contains at least k elements); 3-rollercoasters are called, for short, rollercoasters. For
example, the sequence A = (3, 6, 8, 10, 9, 5, 1, 2, 4, 7, 11) has the runs (3, 6, 8, 10),
(10, 9, 5, 1), (1, 2, 4, 7, 11); as all these runs have at least 4 elements, so the length of
each of them is at least 4, and, consequently, A is a 4-rollercoaster. It is important to
note that two consecutive runs in a sequence share an element: the ending element of
one is the starting element of the next one; this element counts when computing the
length of both runs which contain it.

Given a sequence S[1 : n] = (S[1], S[2], . . . , S[n]) of n distinct numbers, the
k-rollercoaster problem is to find a maximum-size set of indices {i1, i2, . . . , im} such
that 1 ≤ i1 < i2 < · · · < im ≤ n and (S[i1], S[i2], . . . , S[im]) is a k-rollercoaster.
In other words, this problem asks for a longest k-rollercoaster contained in the input
sequence S.

There is a simple, but useful, geometrical interpretation of k-rollercoasters. The
input sequence S[1 : n] can be depicted as a set P of points in the plane by trans-
lating, for i from 1 to n, the number S[i] to a point pi = (i, S[i]). In this setting,
a k-rollercoaster in S translates to a polygonal path in the plane, whose vertices
are points of P , and such that every maximal sub-path, with positive- or negative-
sloped edges, has at least k points. The rollercoaster (3, 6, 8, 10, 9, 5, 1, 2, 4, 7, 11)
is depicted in the left half of Fig. 1. Two 4-rollercoasters occurring in the sequence
(3, 6, 1, 8, 7, 17, 13, 10, 11, 12, 9, 5, 14, 4, 2, 15, 16) are depicted in the right half of
the same figure.
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While rollercoasters seem interesting on their own as a combinatorial structure,
the original motivation for their study was a connection to computational geometry
and graph drawing, namely to point-set embeddings of caterpillars (see [5–7] and the
references therein). More precisely, constructing a long rollercoaster in a sequence of
numbers was used as an intermediate step towards obtaining a method of drawing a
n-vertex top-view caterpillar, with L-shaped edges, on a set of 25

3 n general orthogonal
position points in the plane. This is currently the best known bound on the number of
points required to draw such a graph.

In [5], and its extended version [6], the following results regarding k-rollercoasters
were shown. First, from a combinatorial point of view, for k = 3, it was shown that the
length of a longest rollercoaster contained in a sequence of n ≥ 7 distinct numbers is
at least � n

2 �; this is also a tight bound. As far as k-rollercoasters are concerned, it was
shown that for k ≥ 4 every sequence of n ≥ (k − 1)2 + 1 distinct numbers contains a
k-rollercoaster of length at least n

2(k−1) − 3k
2 . From an algorithmic point of view, both

previously mentioned results were constructive, leading to an O(n)-time (respectively
O(n log k)) algorithm computing a long (but not necessarily a longest) rollercoaster
(respectively, k-rollercoaster) contained in a sequence of n distinct numbers. A longest
rollercoaster contained in such a sequencewas computed by an extension of Fredman’s
algorithm in O(n log n)-time, and if the input sequence is a permutation of {1, . . . , n}
(or,more generally, sortable in linear time) inO(n log log n) time.By further generalis-
ing this approach, an O(nk log n)-time (respectively, O(nk log log n)-time) algorithm
computing a longest k-rollercoaster in a sequence of n distinct numbers (respectively,
a permutation of {1, . . . , n}) can be obtained. Note that, by the theorem of Erdös and
Szekeres, a sequence of n distinct numbers always contains a �√n�-rollercoaster.
Our ContributionsWe consider the problem of computing a longest k-rollercoaster in
an input sequence S[1 : n] and provide three results.

Firstly, we design a comparison-based algorithm computing the length of a longest
k-rollercoaster in a sequence of n distinct numbers in O(nk2) time. Thus, we obtain
an optimal linear-time algorithm for constant values of k, in particular for k = 3.
This significantly improves the results of [5,6] and shows that, even though longest
rollercoasters are related to longest increasing subsequences, the rich combinatorial
structure of the former makes them provably easier to find. The starting point of our
algorithm is the following natural dynamic programming formulation. For each i ≤ k,
and for each position j of our input sequence S, we compute a longest (not necessarily
contiguous) subsequence of S ending with S[ j] and with every run of length at least
k, except for the last run, which has only i elements if i < k and at least k elements if
i = k. Now the difficulty is to find the predecessor S[ j ′] of S[ j] in such a subsequence
in time proportional to k, in particular avoiding any kind of binary search. We greedily
decompose the input sequence into blocks with a certain property related to Dilworth’s
theorem and prove, by a careful case analysis, that j ′ must belong to the previous few
such blocks. This, together with the special structure of the blocks and appropriate
data structures, allows us to find j ′ in O(k) amortised time.

Secondly, we focus on the case of large k. Given that both the previous and the new
algorithm have at least linear dependency on k, we are interested in seeing whether
we can design an algorithm whose running time is independent on k. We design a
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subquadratic algorithm that computes a longest k-rollercoaster in a sequence of n
distinct numbers, for any k, in O(n log2 n) time. To obtain this result, we exploit
the fact that if an increasing (respectively, decreasing) run in a longest k-rollercoaster
extends from S[i] to S[ j], then that run should be LIS (respectively, longest decreasing
sequence, LDS for short) in S[i : j]. If one arranges the length of LIS (respectively,
LDS) in S[i : j] in an n × n matrix then the matrix has the anti-Monge property. It
is known that all row maxima of an anti-Monge matrix can be found in O(n) time
[2], that is, in sublinear time w.r.t. the size of the matrix (given an oracle access to
the elements of the matrix). Such properties have been successfully exploited to speed
up certain dynamic programming algorithms [21,22]. We also follow this route, and
construct a longest k-rollercoaster using dynamic programming, essentially by gluing
together LISs and LDSs of consecutive contiguous subsequences of S.

Thirdly, we show that any comparison-based algorithm computing a longest k-
rollercoaster needs �(n log k) comparisons. Our reasoning is similar to the one used
by Fredman [12] to show that any comparison-based algorithm computing a LIS needs
�(n log n) comparisons. We leave as an open problem to close the gap between the
lower and upper bounds shown here.

The paper is organised as follows. After a series of preliminaries, we describe
the O(nk2)-time algorithm for computing the length of a longest k-rollercoaster, fol-
lowed by the O(n log2 n)-time algorithm. Then we show how the respective longest
k-rollercoasters can be effectively constructed. We conclude with the lower bound for
the number of comparisons needed to compute the length of a longest k-rollercoaster
in a sequence of length n.

2 Preliminaries

We consider sequences of distinct real numbers and work in the comparison-based
model. If S is a sequence of n numbers, then |S| = n is the length of the sequence, and
S[i]denotes its i th element.A subsequenceof S is a sequence (S[i1], S[i2], . . . , S[im]),
defined by specifying the indices i1, i2, . . . , im with 1 ≤ i1 < i2 < · · · < im ≤ n.
For 1 ≤ i ≤ j ≤ n, S[i : j] denotes the contiguous subsequence (S[i], S[i +
1], . . . , S[ j]); in particular, S[1 : n] denotes the entire S. Note that unless explic-
itly stated, a subsequence is not necessarily contiguous. An increasing subsequence
(respectively, decreasing subsequence) of S is a subsequence (S[i1], S[i2], . . . , S[im])
such that S[i j ] < S[i j+1], for all 1 ≤ j ≤ m − 1 (respectively, S[i j ] > S[i j+1], for
all 1 ≤ j ≤ m − 1). A longest increasing (respectively, decreasing) sequence, for
short LIS (respectively, LDS), is an increasing (respectively, decreasing) sequence
with the largest possible length. Fredman [12] gave an O(n log n)-time algorithm for
computing the length of LIS, denoted res in Algorithm 1. Clearly, this algorithm can
be modified to compute the LDS instead of the LIS.

We recall how Algorithm 1 works. While going through the positions i of S, from
1 to n, we maintain, for each k ≤ n, the value R[k] which is the smallest ending value
of increasing subsequence of length k contained in S[1 : i] ends. To maintain these
values we exploit the fact that R is increasing. Thus, when considering S[i], we can
update the array R as follows. Firstly, we binary search for the maximum k such that
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Algorithm 1 Finding the length of LIS of S
1: R[0] ← −∞
2: res ← 0
3: for i ← 1 to n do
4: k ← max{ j : R[ j] < S[i]} � binary search over R[0] < R[1] < R[2] < · · · < R[res]
5: R[k + 1] ← S[i]
6: res ← max{res, k + 1}
7: return res

R[k] < S[i]. In this way, we obtain that the smallest ending value of an increasing
subsequence of length k + 1 contained in S[1 : i − 1] is larger than S[i], and, for
all k′ ≤ k, there is an increasing subsequence of length k′, contained in S[1 : i − 1],
which endswith a value smaller than S[i]. Consequently, we conclude that the smallest
ending value of an increasing subsequence of length k+1 contained in S[1 : i] should
be S[i] (so we set R[k + 1] ← S[i]). Also, all the values R[k′], with k′ ≤ k, should
be left unchanged. Finally, all the values R[k′], with k′ > k + 1, should also be left
unchanged: otherwise, we would have had a an increasing subsequence of length k+1
contained in S[1 : i − 1] ending with a value smaller than S[i]. After considering all
the positions i of S, we just return res, which is the largest index k for which R[k]was
set during this algorithm.

A byproduct of this algorithm is a partition of S[1 : n] into res non-increasing
subsequences that can be obtained by creating, for every 1 ≤ j ≤ res, a list of
elements that has been stored in R[ j].

A run in a sequence of numbers is a maximal contiguous subsequence that is
increasing or decreasing. A k-rollercoaster is a sequence of numbers such that every
run has length at least k; 3-rollercoasters are called, for short, rollercoasters. Given
a sequence S[1 : n] we are interested in finding its longest subsequence that is a
k-rollercoaster. To make the exposition easier to follow, we focus first on finding
the length of such a subsequence. Recovering the subsequence itself is, in all our
algorithms, rather straightforward, and explained in Sect. 5.

3 Computing a Longest k-Rollercoaster inO(nk2)-Time

In this section we show how to find a longest k-rollercoaster in a given array S[1 : n]
in O(nk2) time. The algorithm we design has two parts, a preprocessing phase and
a main phase, and requires some combinatorial observations. Our presentation of the
algorithm is, accordingly, structured in three subsections. In the first subsection, we
present our preprocessing phase. In the second subsection, we present two combina-
torial lemmas which enable us to use the structures obtained in the preprocessing in
a clever way in the main phase. In the third subsection, we finally describe the main
phase of the algorithm.

3.1 Preprocessing Phase

As said, we begin our algorithm with a preprocessing phase.
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An alternating k-decomposition of S[1 : n] is a partition of S[1 : n] into contiguous
subsequences (called parts) S1, S2, . . . , Sm such that the length of LIS in the odd parts
(S1, S3, S5, and so on) is k while the length of LDS in the even parts is k, possibly
smaller for the very last part, and additionally by removing the last element of any odd
(even) part we obtain a sequence with LIS (LDS) of length less than k. In other words,
for � ≥ 1, S� is either the shortest contiguous subsequence of S that follows directly
after S1 . . . S�−1 and has for � odd (even) a LIS (respectively, LDS) of length k, if such a
subsequence exists, or the whole remaining part of S otherwise. For example, an alter-
nating 3-decomposition of S = (1, 4, 2, 5, 8, 7, 6, 3, 11, 9, 10, 14, 16, 13, 15, 12) is
(1, 4, 2, 5), (8, 7, 6), (3, 11, 9, 10), and (14, 16, 13, 15, 12).

Lemma 1 An alternating k-decomposition of S[1 : n] can be found in O(n log k) time.

Proof By terminating Algorithm 1 as soon as res = k we can find the shortest prefix
of S with LIS equal to k in O(d log k) time, where d is the length of the prefix. Then
we find the shortest prefix of the remaining suffix of S with LDS equal to k, and repeat.
Overall, this takes O(n log k) time because all parts are disjoint. �

By Dilworth’s Theorem [10], a part with LIS of length k can be decomposed into
k decreasing subsequences, and such a decomposition can be obtained as a byproduct
of Algorithm 1. Thus, we can decompose each part into up to k monotone (increasing
or decreasing, depending on whether the part is odd or even) subsequences. These
subsequences can be then merged to obtain a sorted list P� of all elements in the
corresponding part S� in O(n log k) overall time, for example by first merging pairs
of subsequences, then quadruples (i.e., pairs of sequences which were obtained by
merging pairs of original subsequences), and so on.Note that P� is increasingly ordered
if � is even, respectively decreasingly ordered if � is odd.

3.2 Combinatorial Lemmas

Before moving on to the description of our algorithm, we state two important com-
binatorial observations, which relate an alternating k-decomposition to (longest)
k-rollercoasters.

Proposition 1 Let A be a k-rollercoaster in S[1 : n]. Any part S� contains elements
of at most four consecutive runs of A.

Proof By contradiction. Let S′
� be S� without the last element. If S� contains elements

of five consecutive runs of A then S′
� contains elements of four consecutive runs of

A, and hence all elements of two such consecutive runs. Thus, if S� is an odd (even)
part then S′

� contains LIS (LDS) of length k, which contradicts the definition of an
alternating k-decomposition. �
Lemma 2 Let A be a longest k-rollercoaster in S[1 : n], and assume x = S[ j] is a non-
first element occurring in an increasing run of A. Let y = S[ j ′] be the predecessor of
x in the respective increasing run of A, and consider an alternating k-decomposition
of S[1 : n]. Then, there exists i such that x is in Si and y is in one of the parts
Si−4, Si−3, Si−2, Si−1, Si .
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Fig. 2 The increasing run r from
Lemma 2, with the points x and
y highlighted

y

x

︸ ︷︷ ︸

r

r[1] r[� + 1]r[�] r[d]

Proof By contradiction. Suppose that there are at least four parts between x and y, i.e.,
x is in Si and y is in some Sk with k < i −4. Let r denote the run in the k-rollercoaster
that contains x and y, let d ≥ k be the length of r , and let � be such that r [�] = y and
r [� + 1] = x . By hypothesis, r is an increasing run (see Fig. 2).

Consider the following four cases:

1. � ≤ k−1 (i.e., there are at most k−2 elements in r before y) and k−2 ≥ d−�−1
(there are at most k − 2 elements in r after x).

2. � ≤ k − 1 and k − 1 ≤ d − � − 1 (there at least k − 1 elements in r after x).
3. � ≥ k (there are at least k − 1 elements in r before y) and k − 2 ≥ d − � − 1.
4. � ≥ k and k − 1 ≤ d − � − 1.

Recall that there are at least four whole parts between x and y. Therefore, in
particular there are three consecutive parts Si ′ , Si ′+1, and Si ′+2 such that the first has
LIS of length k, the second has LDS of length k, and the third has LIS of length k.

In the first case, we replace r [2 : d − 1] with LIS of Si ′ , the LDS of Si ′+1, and LIS
of Si ′+2. In this way, we clearly obtain a valid k-rollercoaster, and because we remove
at most 2k − 4 elements and add at least 3k, this creates a longer k-rollercoaster,
which is a contradiction. In the second case, we replace r [2 : �] with LIS of Si ′ and
LDS of Si ′+1. Again, we obtain a valid longer k-rollercoaster, because we remove
at most k − 2 elements and add at least 2k. Similarly, in the third case, we replace
r [� + 1 : d − 1] with LDS of Si ′+1 and LIS of Si ′+2 to obtain a longer k-rollercoaster.
Finally, in the fourth case we simply insert LDS of Si ′+1 between x and y to obtain a
longer k-rollercoaster. �

In the above proof, we assumed that r , the run containing x , is an increasing run
(as depicted in Fig. 2); the case when r is decreasing can be treated in the same way
and a similar conclusion is obtained.

3.3 TheMain Phase

The description of this phase has, at its turn, several parts. First we give a general
description of the idea behind our algorithm. Thenwe describe, at a high level, how this
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idea is implemented using dynamic programming. Finally, we give the full technical
details.

The General ApproachAfter the initial preprocessing phase wewill compute a longest
k-rollercoaster by dynamic programming.

For 1 ≤ i ≤ k, we say that a subsequence of S (not necessarily contiguous)
is a (k, i)+-rollercoaster if it ends with an increasing run of length exactly i when
i < k and at least k when i = k, while every other run is of length at least
k. A (k, i)−-rollercoaster is defined similarly, except that the last run should be
decreasing. (k, 1)+-rollercoasters can be seen as (k, k)−-rollercoasters, while (k, 1)−-
rollercoasters can be seen as (k, k)+-rollercoasters. Thus, we can concentrate on
(k, i)+− and (k, i)−−rollercoasters with i ≥ 2.

The main idea in our approach is to construct, for every 2 ≤ i ≤ k and 1 ≤ j ≤ n, a
longest (k, i)+-rollercoaster (respectively, (k, i)−rollercoaster) ending with S[ j]. To
achieve this, we will calculate:

• M+[ j, i] (respectively, M−[ j, i]), the position in S of the predecessor of S[ j] in
such a (k, i)+-rollercoaster (respectively, (k, i)−-rollercoaster), and

• L+[ j, i] (respectively, L−[ j, i]), the length of the respective (k, i)+-rollercoaster
(respectively, (k, i)−-rollercoaster).

We only describe in detail how to compute M+[ j, i] and L+[ j, i], as M−[ j, i] and
L−[ j, i] are computed analogously. Themain idea is that, by Lemma 2, we can restrict
the search for M+[ j, i] by using the alternating k-decomposition. If S[ j] is in the part
S�, then M+[ j, i] should be in one of the parts S�−4, S�−3, S�−2, S�−1 or S�. In each
case, we compute a candidate for M+[ j, i] , as well as the length of the corresponding
(k, i)+-rollercoaster ending with S[ j]. Finally, we store the predecessor of S[ j] on
the longest such rollercoaster (from the possible candidates) and its length.

Consequently, in our computation, we will iterate, left to right, over the parts
S1, S2, . . . of an alternating k-decomposition, and compute for each element S[ j]
of the current part S� the values M+[ j, i] and L+[ j, i], for every 2 ≤ i ≤ k. The
following strategy covers all possibilities for the predecessor of S[ j] in a longest
(k, i)+-rollercoaster, so we can use the computed candidates to fill in the correct
values of M+[ j, i] of L+[ j, i].

• For each d ∈ {1, 2, 3, 4} we will consider the elements S[ j] of S� in the order
in which they appear in the ordered list P� and compute for each S[ j] in this list
a respective candidate Md+[ j, i] for M+[ j, i]: the position of the predecessor of
S[ j] in a longest (k, i)+-rollercoaster, assuming that the respective predecessor
comes from S�−d ; the corresponding length Ld+[ j, i] is also computed.

• Then, we compute another candidate M ′+[ j, i] (and the corresponding length
L ′+[ j, i]) by considering the casewhen the predecessor of S[ j] in a longest (k, i)+-
rollercoaster comes from S�. The order in which the elements of S� are considered
in this case depends onwhether S� has been decomposed into increasing or decreas-
ing subsequences.
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The technical details of this approach are described gradually in the following
paragraphs.

Dynamic Programming In this paragraph, we will describe in the main ideas of our
dynamic programming approach, still without going into technicalities.

Let S� be a part of the alternating k-decomposition of S, as computed in the pre-
processing phase. Assume that we want to compute the values stored in the arrays
M+[·, i], L+[·, i], M−[·, i] and L−[·, i], for 2 ≤ i ≤ k, corresponding to all elements
S[ j] of the part S�.

We assume that when we start computing these arrays for the part S�, we have
already computedM+[ j ′, 1],M+[ j ′, 2], . . . , M+[ j ′, k] and L+[ j ′, 1], L+[ j ′, 2], . . . ,
L+[ j ′, k], as well as M−[ j ′, 1], M−[ j ′, 2], . . . , M−[ j ′, k] and L−[ j ′, 1], L−[ j ′, 2],
. . ., L−[ j ′, k], for every element S[ j ′] of every part S�′ with �′ < �. The computation
is split in several parts, which are first introduced at a high level, and then described
precisely later.

Part 1We will start with computing the candidates Md+[ j, i], Ld+[ j, i], Md−[ j, i] and
Ld−[ j, i], but first for 2 ≤ i < k only. The case i = k will be handled separately, in Part
3. These values correspond to the assumption that the predecessor S[ j ′] of S[ j] in the
corresponding rollercoaster belongs to S�−d , for some d ∈ {1, 2, 3, 4}. Note that these
candidates will be later used to set the correct values M+[ j, i], L+[ j, i], M−[ j, i] and
L−[ j, i], for 1 ≤ i ≤ k and S[ j] an element of the part S�. The main observation (and
advantage) is that, in this case, the longest rollercoasters ending at S[ j ′] have been
already correctly determined in our algorithm: it ends in a part S�−d and � − d < �.
This makes the computation of the aforementioned candidates relatively simple.

Part 2 Then, we will consider the case that the predecessor S[ j ′] of S[ j] in the
corresponding rollercoaster belongs to S�, just like S[ j]. We compute the candi-
dates M ′+[ j, i], L ′+[ j, i], M ′−[ j, i] and L ′−[ j, i] for M+[ j, i], L+[ j, i], M−[ j, i]
and L−[ j, i], respectively, again only for 2 ≤ i < k. Now, we need to be more careful
in order to be able to guarantee that the longest rollercoaster ending at S[ j ′] is already
known when S[ j] is considered. For this, we will proceed in several iterations. In the
t th iteration, we will guarantee to compute the desired values under the restriction that
only the last t runs of the longest rollercoaster may contain elements from S� other
than S[ j]. It is worth noting that, as both S[ j] and its predecessor are assumed to be
from S�, the last run of the rollercoaster we search contains at least two elements from
S�. By Proposition 1, four iterations are enough in the above computation, as at most
four runs of the longest k-rollercoaster can be in one part.

In each iteration, we start with setting, for all elements S[g] of S�, the initial
candidates M ′+[g, 1], L ′+[g, 1], M ′−[g, 1] and L ′−[g, 1] corresponding to longest
rollercoasters ending with S[g], such that at most t − 1 runs of these rollercoast-
ers contain elements from S� other than S[g]. We handle the case of S[g] being the
only element in the rollercoaster by initially setting L ′+[g, 1] and L ′−[g, 1] to 1. Oth-
erwise, either t = 1 and we need to extend longest rollercoasters ending with S[g],
such that the predecessor of S[g] is not in S�, or t > 1 and we need to additionally
consider longest rollercoasters ending with S[g] computed in the previous iteration.
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Thus, we either copy the already known Ld+[g, k], Md+[g, k], Ld−[g, k] and Md−[g, k],
with d ∈ {1, 2, 3, 4}, or L ′+[g, k], M ′+[g, k], L ′−[g, k] and M ′−[g, k] calculated in the
previous iteration.

In the t th iteration, after the initialization we calculate (respectively, recalculate,
if t > 1) the candidates M ′+[ j, i], L ′+[ j, i], M ′−[ j, i] and L ′−[ j, i], for 2 ≤ i < k,
corresponding to the predecessor S[ j ′] of S[ j] in the last run of a longest (k, i)+- or
(k, i)−-rollercoaster ending with S[ j], whose last t runs only contain elements of S�,
belongs to the same part S�. By performing the calculation for i = 2, 3, . . . , k − 1,
in this order, we guarantee that the longest rollercoaster ending at the predecessor
S[ j ′] ∈ S�, whose last t runs only contain elements of S�, and which ends with a run
of length i − 1, is already known. However, the computation is still not completely
trivial and, as announced already, requires a different approach depending on whether
S� was decomposed into at most k increasing, respectively decreasing, subsequences.

Part 3 As announced, we need to handle the situation i = k separately, as this also
covers the case of the last run having more than k elements. This, however, can be
integrated in a rather straightforward way in our dynamic programming.

Finalizing the Computation Once we have identified for each i and S[ j] of S� the
candidates Md+[ j, i], for d ∈ {1, 2, 3, 4}, and M ′+[ j, i] for M+[ j, i], and the corre-
sponding lengths Ld+[ j, i], for d ∈ {1, 2, 3, 4}, and L ′+[ j, i], which are candidates
for L+[ j, i], we will set M+[ j, i] as the position j which gives the maximum of the
lengths Ld+[ j, i], for d ∈ {1, 2, 3, 4}, and L ′+[ j, i], and set L[ j, i] accordingly.
Efficient Implementation We can now analyse in detail each part of our algorithm as
cases introduced above, and discuss how they can be implemented efficiently. For
the sake of easing the presentation, for each part, we first discuss how it is imple-
mented (i.e., how the computation is conducted and which data structures are used
and how) and then we compute the time complexity needed to perform the respective
computation.

Part 1: Searching the Predecessor of S[ j] on a (k, i)+-Rollercoaster in S�−d for
Some 1 ≤ d ≤ 4 We process S�−d to identify the candidates Md+[ j, i] and Ld+[ j, i]
for M+[ j, i] and L+[ j, i], respectively, for every S[ j] ∈ S�. The idea is to compute
these candidates in the order in which the elements S[ j] occur in the sorted list P�.

So, let us consider P� and P�−d . For each element S[ j] in the current part (that
is, in P�) we want to identify a longest (k, i − 1)+-rollercoaster ending in S�−d with
an element smaller or equal to S[ j]. Thus, as P�−d is increasing, for every element
S[ j] of the current part, from the list P�, we need to consider only the elements in a
prefix of P�−d . Also, if S[ j ′] is to the right of S[ j] in P�, that is, S[ j ′] ≥ S[ j], then
the prefix of P�−d that we need to consider to compute Md+[ j ′, i] is at least as long
as the prefix that we need to consider in order to compute Md+[ j, i]. Therefore, we
can use two pointers to sweep through P� and P�−d from left to right, and obtain the
information needed to compute Md+[ j, i] and Ld+[ j, i], for every S[ j] ∈ S�. At the
beginning the pointers are positioned on the first element of P� and P�−d , respectively.
Say now, for a description of the general case, that the element currently pointed in
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P� and P�−d is S[ j] and S[h], respectively (we update indices j and h along with the
pointers). We keep moving forward the pointer corresponding to S[h] until we find
an element S[h] > S[ j]. Then we set Md+[ j, i] = h′ and Ld+[ j, i] = L+[h′, i] + 1,
where S[h′] is an element occurring earlier than S[h] in P�−d with the largest value of
L+[h′, i − 1]. The element S[h′] is maintained as we move from left to right in P�−d .
Then we proceed to the next element in P�, i.e., advance the corresponding pointer
one position in P�.

Part 1: Complexity Using the implementation described above, computing candidates
Md+[ j, i] and Ld+[ j, i] for every S[ j] ∈ S� takes, overall, O(|S�−d | + |S�|) time.

Part 2, Initialization: Searching the Predecessor of S[ j] on a (k, i)+-Rollercoaster
in S� Recall that our process, in this case, works in four iterations. In the t th iteration,
we will guarantee to compute the desired values under the restriction that only the
last t runs of the longest corresponding (k, i)+− or (k, i)−-rollercoaster may contain
elements from S�.

Let us consider the first iteration. We have already computed the values stored in
the arrays M+[·, i ′],M−[·, i ′], L+[·, i ′], L−[·, i ′] for all elements occurring in parts S′

�

with �′ < �. So, we can set the initial values L ′+[ j, 1] (respectively, L ′−[ j, 1]) corre-
sponding to S[ j] being the first element of its increasing (respectively, decreasing) run.
These were calculated in Case 1, when we identified longest (k, k)−−rollercoasters
(respectively, (k, k)+−rollercoasters), whose last run ends with S[ j] preceded by an
element of S�−d , with d ∈ {1, . . . , 4}. If no longest (k, k)−−rollercoaster (respec-
tively, (k, k)+−rollercoaster) ending in S[ j] was identified in Case 1, we simply start
a new rollercoaster of length 1 with j being its single element. Then we can proceed
with the calculation for i = 2, 3, . . . , k − 1, as in the case of later iterations.

For later iterations t = 2, 3, 4, the initial values L ′+[ j, 1] (respectively, L ′−[ j, 1])
corresponding to S[ j] being the first element of its increasing (respectively, decreas-
ing) run were calculated already, when longest (k, k)−−rollercoasters (respectively,
(k, k)+−rollercoasters) with t − 1 runs containing elements of S� were identified.

We now proceed to describing how to compute the candidate in the t th iteration.
The goal is to identify candidates, denoted M ′+[ j, i] and L ′+[ j, i] (for M+[ j, i] and
L+[ j, i], respectively) for every S[ j] ∈ S� and i = 2, 3, . . . , k − 1. By appropriately
ordering the computation, when considering S[ j] and i we can assume that we have
already computed the predecessor of each S[g] in (as well as the length of) a longest
(k, i ′)+-rollercoaster with at most t runs containing elements from S� other than S[g],
for every i ′ < i and every S[g] ∈ S�. Computing M ′−[ j, i] and L ′−[ j, i] is symmetric.

Part 2, Case 1: Searching the Predecessor of S[ j] on a (k, i)+-Rollercoaster in S�,
Which was Decomposed Into k Increasing Subsequences Consider the decomposition
of S� into k increasing subsequences I1, I2, . . . , Ik . The elements of every sequence
are increasing w.r.t. their values and w.r.t their positions in S. Consider an element
S[ j] ∈ Ia and 1 ≤ b ≤ k (possibly a = b). The elements of Ib that can be the
predecessor of S[ j] in a (k, i)+-rollercoaster (that is, possible choices for M ′+[ j, i])
are both less than S[ j] w.r.t. value and w.r.t. position in S. Thus, these elements form
a prefix of Ib. Moreover, for every S[ j] ∈ Ia and 1 ≤ b ≤ k we want to maximise
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L ′+[h′, i] over all elements S[h′] in such a prefix. Also, just as in the previous case, if
we process the elements of Ia in the order in which they occur in Ia , we will have that
the prefix that corresponds to S[ j ′] is longer than the prefix that corresponds to S[ j],
if S[ j ′] occurs after S[ j] in Ia . Therefore, we can again use two pointers to sweep
through Ia and Ib and compute, for every S[ j] ∈ Ia , the element S[h′] ∈ Ib that
could precede S[ j] in a (k, i)+-rollercoaster with the largest value of L ′+[h′, i − 1].
Finally, we setM ′+[ j, i] and L ′+[ j, i] to be the position h′, and, respectively, the length
L ′[h′, i − 1] + 1, which correspond to the largest such value L ′+[h′, i − 1] among all
S[h′] in the runs Ib with 1 ≤ b ≤ k.

Part 2, Case 1: Complexity For a fixed a, the procedure described in the paragraph
above takes O(k|Ia | + ∑

1≤b≤k |Ib|) = O(k|Ia | + |S�|) time. Adding everything up,
computing the candidates M ′+[ j, i] and L ′+[ j, i] for every S[ j] ∈ S� takes O(k|S�|)
time.

Part 2, Case 2: Searching the Predecessor of S[ j] on a (k, i)+-Rollercoaster in S�,
Which wasDecomposed into k Decreasing SubsequencesThis is themost complicated
case. Recall that the decomposition into k decreasing subsequences D1, D2, . . . , Dk

was obtained with Algorithm 1. In more detail, Da consists of elements assigned
to R[a] throughout the execution of the algorithm. Thus, if S[ j] ∈ Da then the
predecessor of S[ j] in a sought longest (k, i)+-rollercoaster, denoted S[ j ′], must
belong to Db for some 1 ≤ b < a. Indeed, Algorithm 1 first processes S[ j ′] and then
S[ j], so if S[ j ′] ∈ Db then R[b] ≤ S[ j ′] when processing S[ j] and consequently
S[ j ′] < S[ j] implies that S[ j] is assigned to R[a] with a > b. So, we first compute
the candidates M ′+[ j, i] and L ′+[ j, i] for every S[ j] ∈ D1, then for every S[ j] ∈ D2,
and so on.

Consider a decreasing subsequence Da and suppose that we have already processed
all elements in D1, D2, . . . , Da−1. Note that at this point we have already computed,
for every S[ j ′] ∈ D1∪· · ·∪Da−1, the values ofMd+[ j ′, i] and Ld+[ j ′, i], for 1 ≤ d ≤ 4,
as well as the values M ′+[ j ′, i] and L ′+[ j ′, i] corresponding to the current iteration.
Thus, we have already correctly updated M+[ j ′, i] and L+[ j ′, i] by choosing the
option that maximises the length of the corresponding (k, i)+-rollercoaster, which is
important for the case of i = k.

Consider now an element S[ j] ∈ Da and 1 ≤ b < a. The elements of Db that
can be the predecessor of S[ j] in a (k, i)+-rollercoaster (that is, possible candidates
for M ′+[ j, i]) are both less w.r.t. value and w.r.t. position in S, similarly to the pre-
vious case. The difference is that now these elements form contiguous subsequence
X of Db that is not necessarily a prefix. The first element of X can be found by
searching for the first element with sufficiently small value, while its last element can
be found by searching the last element with sufficiently small position (note that X
might be empty). Let S[h] be the next element after S[ j] in Da , and Y be its cor-
responding contiguous subsequence of Db consisting of possible predecessors in a
(k, i)+-rollercoaster. Clearly, S[ j] > S[h] while j < h. Thus, the first element of Y
is either the same as the first element of X or occurs after the first element of X in
Da , while the last element of Y is either the same as the last element of X or occurs
after the last element of X in Da (assuming that both X and Y are non-empty). Thus,
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we sweep through Da while maintaining the current contiguous subsequence X of Db

corresponding to the possible predecessors of the current S[ j] ∈ Da . This requires
the following tool.

Lemma 3 ([13]) There is a data structure that maintains a list of elements under the
following operations: pop an element from the front, push an element in the back, and
return the maximum element in the current list, each in O(1) time.

When processing the current element S[ j] ∈ Da we maintain the first element
S[ f ] ∈ Db such that S[ f ] < S[ j] and the last element S[�] ∈ Db such that � < j .
Then X consists of all elements between S[ f ] and S[�] in Db (inclusive), and is
maintained in a structure from Lemma 3 storing the lengths of their corresponding
(k, i)+-rollercoaster, that is, the already known value of L+[·, i − 1]. This allows
us to extract the element S[ j ′] ∈ X with the largest value of L+[ j ′, i − 1], and set
M ′+[ j, i] = j ′ and L ′+[ j, i] = L+[ j ′, i − 1] + 1 in constant time, while updating f
and � takes amortised constant time.

Part 2, Case 2: Complexity We can now conclude that, based on Lemma 3 and the
explanation following it, that, as in the previous case, for a fixed a, this procedure
takes O(k|Da | + ∑

1≤b≤k |Da |) = O(k|Da | + |S�|) time, so O(k|S�|) overall.
Part 3: Choosing the Best Candidate for M+[i, j] and L+[i, j] Once we have com-
puted, for some i < k, all the candidates Md+[ j, i], with d ∈ {1, 2, 3, 4}, and M ′+[ j, i]
for M+[ j, i] and Ld+[ j .i], with d ∈ {1, 2, 3, 4}, and L ′+[ j, i] for L+[ j, i], we can see
which pair of candidates corresponds to the longest (k, i)+-rollercoaster ending with
S[ j], and set M+[ j, i] and L+[ j, i] accordingly. The case of (k, i)−−rollercoasters
is treated identically.

Part 3: How to Deal With i = k To compute candidates for M+[ j, k] and L+[ j, k], we
first use exactly the same dynamic programming approach as before (in each respective
case) for i = k. This means that we use the values computed for M+[·, k − 1] and
L+[·, k − 1]. But this only allows us to compute the length of a longest (k, k)+-
rollercoaster with the last run of length exactly k. To extend this to arbitrary (k, k)+-
rollercoasters with the last run of length greater than k we additionally run the same
algorithm but, instead of looking at M+[·, k − 1] and L+[·, k − 1], we use in our
dynamic programming also the already computed values/candidates for M+[·, k] and
L+[·, k]. More precisely, the values we already computed from these arrays are treated
in this extra step exactly as in the cases described above. The reason why this works
is that, due to the order in which we consider the elements of S�, at the moment when
we compute the length of a longest (k, k)+-rollercoaster ending with S[ j], and which
may have more than k elements in the final run, we have already computed (in each
respective case) the length of a longest (k, k)+-rollercoaster ending with any element
S[ j ′] which may be a predecessor of S[ j] on the respective (k, k)+-rollercoaster.

Conclusion and Overall Complexity With these final remarks, our algorithm
is completely described. It only remains to find the element S[ j] for which
max{L−[ j, k], L+[ j, k]} is maximum. The correctness follows from the comments
made throughout its description. To compute the complexity, it is enough to note that

123



Algorithmica (2022) 84:1081–1106 1095

0 1 2 2 2

-1 0 1 1 2

-2 -1 0 1 2

-3 -2 -1 0 1

-4 -3 -2 -1 0

4

3 2

2 1

4 4 2 6

1 2 2 2

1 2

1 2

1

Fig. 3 Anti-Monge matrix, reverse falling staircase anti-Monge matrix, and falling staircase anti-Monge
matrix

each part S� of the partition of S is processed in O(k|S�|) time, for each 1 ≤ i ≤ k.
Adding this up, the total complexity of our algorithm is O(nk2), and we have shown
the following.

Theorem 3 For every sequence S[1 : n] and k ≥ 3, the length of a longest k-
rollercoaster in S can be found in O(nk2)-time.

4 Computing a Longest k-Rollercoaster inO(n log2 n)-Time

Before we describe our algorithm, we introduce two preliminary procedures. Firstly,
we introduce the definition of an anti-Monge matrix and the algorithm for finding the
maximum in every column of such a matrix. Secondly, we describe the algorithm for
finding LIS in contiguous subsequences of the input sequence. Finally, we describe the
algorithm computing a longest k-rollercoaster in this sequence, using the previously
developed tools as black boxes.

Monge Matrices Let A be an n × n matrix, and A[i, j] denote its element in the i th

row from the top and the j th column from the left. A is Monge (respectively, anti-
Monge) if, for every 1 ≤ i < j ≤ n and 1 ≤ k < � ≤ n, the Monge equality
holds, namely A[i, k]+ A[ j, �] ≤ A[i, �]+ A[ j, k] (respectively, A[i, k]+ A[ j, �] ≥
A[i, �] + A[ j, k]). An n × n falling staircase anti-Monge matrix is a matrix with
blanks such that for every blank all elements below and to the left are blanks, and the
anti-Monge inequality holds whenever the four concerned elements are non-blank.
Similarly, an n×n reverse falling staircase anti-Monge matrix is a matrix with blanks
such that for every blank all elements above and to the right are blanks, and the anti-
Monge inequality holds whenever the four concerned elements are non-blank. Finally,
an n×n matrix A is totally monotone if, for every 1 ≤ i < j ≤ n and 1 ≤ k < � ≤ n,
A[i, k] ≤ A[i, �] implies A[ j, k] ≤ A[ j, �].

Let us now recall some basic facts regarding Monge matrices.

Observation 1 Adding the same value to every element in a row (or a column) of an
anti-Monge matrix results in another anti-Monge matrix.

Observation 2 To check if a matrix is anti-Monge it is sufficient to check if every
contiguous 2 × 2 submatrix is anti-Monge.

Looking at the first matrix in Fig. 3, we can see that it is anti-Monge because in
every contiguous 2 × 2 submatrix the sum of the elements on the main-diagonal is
greater or equal to the sum of the elements on the anti-diagonal.
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Fig. 4 A permutation matrix A
and its distribution matrix A�
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The following lemma follows from the well-known SMAWK algorithm [2].

Lemma 4 (Lemma 3.3 in Aggarwal et al. [1]) The maximal elements in all rows (i.e.,
all row maxima) of a reverse falling staircase totally monotone matrix can be found
in O(n) time.

By transposing thematrix andobserving that being anti-Monge implies being totally
monotone we obtain the following.

Corollary 1 The maximal elements in all columns (i.e., all columnmaxima) of a falling
staircase anti-Monge matrix can be found in O(n) time.

LIS-in-Range Queries Let S[1 : n] be the input sequence. Define M as an (n + 1) ×
(n + 1) matrix with 0-indexed rows and columns, such that M[i, j] is the length of
LIS in S[i + 1 : j] for i < j and M[i, j] = j − i otherwise (the anti-Monge matrix
in Fig. 3 is such a matrix for the sequence (3, 4, 1, 2)). As hinted by our example,
this matrix turns out to have a rather special structure as observed by Tiskin [21]. We
describe this structure in the following.

Let S′ be the sequence obtained by sorting S (recall that S consists of distinct
elements), and observe that LIS of S is the same as a longest common subsequence
(LCS, for short) of S and S′. Thus, we can think that M[i, j] is LCS of S′ and
S[i + 1 : j]. As such, the following result can be shown (see [21] and the references
therein).

Lemma 5 M is anti-Monge.

Our algorithm needs to access the elements ofM . Since thematrix contains (n+1)2

elements, it is too large to be explicitly stored in memory. Fortunately, Tiskin also
showed how to create in O(n log2 n) time an O(n)-space implicit representation of M
that allows us to obtain any of its elements in O(log n) time [21]. Before we present
the internals of this representation, we need to introduce some additional definitions
illustrated in Fig. 4.

Definition 1 Let A be any n×nmatrix. Its distributionmatrix A� is an (n+1)×(n+1)
matrix defined by A�[x, y] = ∑

i≥x, j<y A[i, j], for every 1 ≤ x ≤ n + 1, 1 ≤ y ≤
n + 1.

Definition 2 A permutation matrix is a square matrix that has exactly one 1 in every
row and column, and the remaining elements are equal to 0.

Now, we can provide the final ingredients of the construction. For two strings w1
andw2 of length d, Tiskin defines in [21] a (2d+1)×(2d+1)matrix L in the following
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way. Letw′
2 be the string equal to ?

dw2?d , whose positions are indexed from−(d−1)
to 2d. The rows of L are indexed from −d to d, while the columns of L are indexed
from 0 to 2d. The elements of L are defined by L[i, j] = LCS(w1, w

′
2[i + 1 : j]) if

j > i , and L[i, j] = j − i otherwise. In this definition, it is assumed that ? matches
any character. Ifw2 is the input sequence S andw1 is S′ then, for 0 ≤ i, j ≤ n we have
L[i, j] = M[i+1, j+1]. Tiskin proved (Theorem4.10 in [21]) that there exists 2d×2d
permutation matrix P such that L[i, j] = j − i − P�[i, j]. Furthermore, he provided
an O(n log2 n)-time algorithm that finds all the non-zero entries of P (Algorithm 8.2
in [21]). Having all the non-zero entries of P we can apply a dominance counting
structure of Chazelle [8] that can be constructed in O(n log n) time, uses O(n) space,
and calculates P�[i, j] and hence alsoM[i+1, j+1] in O(log n) time. Summarising,
in O(n log2 n) time we obtain a structure that returns any element of M in O(log n)

time. We similarly obtain a matrix storing the length of LDS of every S[i + 1 : j].
Description of the Algorithm

Let S[1 : n] be the input sequence. For every 1 ≤ x ≤ n, let res[x] be the
length of a longest k-rollercoaster in S[1 : x], and inc[x] (respectively, dec[x]) be
the length of a longest k-rollercoaster in S[1 : x] with the last run increasing (respec-
tively, decreasing). Note that we do not require that these k-rollercoasters contain S[x].
Then, res[x] = max{dec[x], inc[x]}, for 1 ≤ x ≤ n. Firstly, we introduce two struc-
tural lemmas.

Lemma 6 Let A be a k-rollercoaster in S[1 : i] with the last run decreasing, and
r be an increasing subsequence in S[i : n] such that |r | ≥ k. Then there exists a
k-rollercoaster in S[1 : n] of length at least |A| + |r | − 1 with the last run increasing.

Proof Let A′ be the sequence consisting of all elements from both A and r . Recall
that a sequence is a k-rollercoaster if every run has length at least k. In order to show
that A′ is a k-rollercoaster with last run increasing we need to consider three cases:
the first element of r is the last element of A, the first element of r is greater than the
last element of A, and the first element of r is less than the last element of A.

In the first case, all runs in A′ but the last are the same as in A, and the last run is equal
to r . Since A is a k-rollercoaster and |r | ≥ k we conclude that A′ is a k-rollercoaster.
A and r have one common element, so |A′| = |A| + |r | − 1.

In the second case, all runs in A′ but the last are also the same as in A, and the last run
consists of the last element of A and r . Again we conclude that A′ is a k-rollercoaster.
Since A and r have no common elements, |A′| = |A| + |r |.

In the third case, all runs in A′ but the last two are the same as in A. The second-
to-last run in A′ consists of the last run of A and the first element of r , and the last run
in A′ is r . Hence, A′ is a k-rollercoaster. Since A and r have no common elements,
|A′| = |A| + |r |. �

Lemma 7 Consider a longest k-rollercoaster in S[1 : n] with the last run increasing
(respectively, decreasing), and let r be its last run with the first element S[i]. Then r
is a longest increasing (respectively, decreasing) subsequence in S[i : n].
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Proof The case when the longest k-rollercoaster in S[1 : n], with the last run increas-
ing, consists of a single run is immediate: we can replace that run by a longer one,
e.g., the LIS of S[i : n], and obtain a longer k-rollercoaster.

So, let us assume that the longest k-rollercoaster in S[1 : n], with the last run
increasing, has at least 2 runs. The proof follows by contradiction. Let A be a longest
k-rollercoaster from the statement of the lemma, and suppose that there exists a longer
increasing sequence r ′ in S[i : n]. That is, |r ′| > |r |. Let A′ be the prefix of A ending
at S[i] (clearly, |A′| ≤ k). Observe that |A′| = |A| − |r | + 1. Then by Lemma 6 there
exists a k-rollercoaster in S of length at least |A′| + |r ′| − 1 = |A| − |r | + |r ′| > |A|.

�
The above lemmas allow us to obtain the formula for calculating the arrays inc and

dec. Recall that M[i, j] is the length of LIS in S[i + 1 : j]. Let M ′ be the matrix
obtained from M by replacing all elements less than k by −∞, and let Z( j, j ′) be the
set of indices j ≤ i ≤ j ′ such that length of LIS in S[i : j ′] is at least k (or, in other
words, M ′[i − 1, j ′] �= −∞).

Proposition 2 For every 1 ≤ x ≤ n, the following holds:

inc′[x] = max{dec[i] + M ′[i − 1, x] − 1 : i ∈ Z(1, x)},
inc[x] = max{inc′[x], M ′[0, x]}.

If Z(1, x) is empty then we set inc′[x] = 0.

Proof By Lemma 6 we obtain that for every i ∈ Z(1, x) there exists a k-rollercoaster
in S[1 : x] with the last run increasing of length at least dec[i] + M ′[i − 1, x] − 1.
We conclude that inc′[x] is less or equal to the length of a longest k-rollercoaster with
the last run increasing in S[1 : x]. Observe that M ′[0, x] corresponds to an increasing
run of length at least k or is equal to −∞. We obtain that inc[x] is less or equal than
the length of a longest k-rollercoaster with the last run increasing in S[1 : x].

For the converse, consider a k-rollercoaster Awith the last run increasing in S[1 : x].
If A consists of just a single run then its length is M ′[0, x]. Otherwise, let S[i] be the
first element in the last run of A. Then by Lemma 7 the length of the last run is equal
to M ′[i − 1, x] and the length of A is dec[i] + M ′[i − 1, x] − 1. Overall, the length
of A is at most inc[x]. �

Proposition 2 cannot be applied directly if we aim to achieve the announced
O(n log2 n) time complexity, and we need to introduce some auxiliary definitions.
For every 1 ≤ d ≤ x we define incd [x] as follows:

inc′
d [x] = max{dec[i] + M ′[i − 1, x] − 1 : i ∈ Z(1, d − 1)},

incd [x] = max{inc′
d [x], M ′[0, x]}.

If Z(1, d−1) is empty then we set inc′
d [x] = 0. In other words, incd [x] is equal to the

length of a longest k-rollercoaster in S[1 : x] with the last run increasing and starting
at an element S[i] with i < d or LIS of S[1 : x] of length at least k. Thus, inc1[x] is
equal to either 0 or the length of a LIS in S[1 : x]. We similarly define decd [x].
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Observation 3 For every j > i − k + 1, inc j [i] = inc[i].
We describe a function Compute that receives a contiguous subsequence S[i : j]

together with the previously calculated arrays inci [i : j] and deci [i : j], and returns
the arrays inc[i : j] and dec[i : j]. To calculate the length of a longest k-rollercoaster
in S[1 : n] we invoke the function with the whole S[1 : n] and the arrays inc1[1 : n],
dec1[1 : n] as arguments, and return the maximum over the two resulting arrays.
Note that inc1[1 : n] and dec1[1 : n] can be calculated in O(n log n) time using
Algorithm 1.

Let m =
⌈
i+ j
2

⌉
. The main idea of Compute is to call the function recursively for

the left half to calculate inc[i : m−1] and dec[i : m−1]. The next step is to calculate
incm[m : j] and decm[m : j] using tools from the previous paragraphs (as described
below). Finally, we recursively calculate inc[m : j] and dec[m : j]. Concatenating
the results from both recursive calls gives us the desired result. This is summarised in
Algorithm 2.

Algorithm 2 Computing the length of a longest k-rollercoaster
1: procedure Compute(k, S[i : j], inci [i : j], deci [i : j])
2: if j − i + 2 ≤ k then
3: {inc[i : j],dec[i : j]} ← {inci [i : j],deci [i : j]}
4: return {inc[i : j],dec[i : j]}
5: m ←

⌈
i+ j
2

⌉

6: {inc[i : m − 1],dec[i : m − 1]} ← Compute(k, S[i : m − 1], inci [i : m − 1],deci [i : m − 1])
7: Compute incm [m : j] and decm [m : j]
8: {inc[m : j],dec[m : j]} ← Compute(k, S[m : j], incm [m : j],decm [m : j])
9: return {inc[i : j],dec[i : j]}

Computing incm[m : j] and decm[m : j] We only describe how to calculate incm[m :
j], as decm[m : j] can be computed by a similar approach. Recall the previously
introduced matrix M ′, obtained by replacing values less than k by −∞ in M . Let Ainc
be the (m − i) × ( j + 1−m) matrix with rows indexed from i to m − 1 and columns
indexed from m to j satisfying:

Ainc[x, y] =
{
dec[x] + M ′[x − 1, y] − 1 when M ′[x − 1, y] �= −∞,

blank otherwise.

Since we are able to retrieve any element of M ′ in O(log n) time using LIS-in-range
queries, and the value of dec[x], for every i ≤ x ≤ m − 1, is already available,
each element of Ainc can be calculated in O(log n) time. Furthermore, we have the
following property.

Proposition 3 A is a falling staircase anti-Monge matrix.

Proof By Lemma 5 M is an anti-Monge matrix. By Observation 1 this is still the case
if we add the same value to all elements in the same row.
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To prove that A is a falling staircase matrix consider a non-blank element A[i, j].
Then M[i, j] ≥ k. But this implies M[i − 1, j] ≥ k and M[i, j + 1] ≥ k (as long
as i > 1 and j < n), so all elements above and to the right are also non-blank as
required. �
Proposition 4 For every m ≤ � ≤ j , incm[�] is equal to either inci [�] or the maximum
in the �th column of A.

Proof For everym ≤ � ≤ j , incm[�] is equal to either inci [�] or max{dec[ j]+M ′[ j−
1, �] − 1 : j ∈ Z(i,m − 1)}. However, the latter is exactly the maximum in the �th

column of A. �
Lemma 8 We can compute incm[m : j] and decm[m : j] in O(( j − i + 1) log n) time.

Proof By Proposition 4 computing incm[m : j] reduces to finding all the column
maxima in A. Since A is a falling staircase anti-Mongematrix,we can use the algorithm
from Corollary 1. Access to any element of A requires O(log n) time, so in total we
obtain O(( j − i + 1) log n) time complexity. �

We can now state with the main result of this section.

Theorem 4 For every sequence S[1 : n] and k ≥ 3, the length of a longest k-
rollercoaster in S can be found in O(n log2 n) time.

Proof The algorithm needs O(n log2 n) preprocessing time to construct the LIS-in-
range (and LDS-in-range) structure. We compute inc1[1 : n] and dec1[1 : n] in
O(n log n) time using Algorithm 1. Then, we call the recursive function Compute.
By Lemma 8 a call of the function on S[i : j] takes O(( j − i + 1) log n) time, so its
running time is described by the recurrence T (n) = 2T (n/2)+O(n log n) that solves
to O(n log2 n). Thus, the overall time complexity is O(n log2 n). �

5 Constructing a Longest k-Rollercoaster

In this section we briefly discuss how to construct a longest rollercoaster for both
algorithms.

For the O(nk2) Algorithm In the respective algorithm, for each 2 ≤ i ≤ k, and for
each element S[ j], we compute the predecessor of S[ j] on a longest (not necessarily
contiguous) subsequence of S ending with S[ j] and with every run of length at least
k, except for the last run, which has only i elements if i < k and at least k elements
if i = k. If, together with this predecessor, we store also the length of the last run in
the respective subsequence of S, we can trace the whole sequence back. Indeed, the
predecessor gives us the information what element should we list before S[ j] in the
subsequence. The length of the run gives us information on the length of the run ending
with the predecessor of S[ j], so we know where we should look in our data structures
for the predecessor of S[ j]. For some i and j , tracing back a longest (not necessarily
contiguous) subsequence of S ending with S[ j] and with every run of length at least
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k, except for the last run, which has only i elements if i < k and at least k elements
if i = k, takes, clearly, O(n) time, provided that we have the information described
above.

In the end, we will only need to trace back a longest (not necessarily contiguous)
subsequence of S ending with some element S[ j] and with every run of length at least
k. Given that we also compute the length of a longest (not necessarily contiguous)
subsequence of S ending with each S[ j] and with every run of length at least k, we
can select in O(n) time the ending element of the subsequence we need to trace back.

In conclusion, once the O(nk2) time algorithm for computing the length of a longest
k-rollercoaster is executed, we can actually compute the respective k-rollercoaster in
O(n) additional time.

For the O(n log2 n) Algorithm In order to retrieve the elements of a longest k-
rollercoaster we need to extend our algorithm to maintain global arrays
Predinc[1, . . . , n] and Preddec[1, . . . , n]. Elements of these arrays are computed dur-
ing the calculations of incm[m : j] and decm[m : j] as follows. Initially they are equal
to−1. After execution of the algorithmwe demand that Predinc satisfies the following:
for every 1 ≤ i ≤ nwe have that inc[i] = dec[Predinc[i]]+M ′[Predinc[i]−1, i]−1 if
Predinc[i] �= −1 and inc[i] = max{0, M ′[0, i]} otherwise, and similarly for Preddec.
It is straightforward to augment the algorithm from Corollary 1 to obtain such infor-
mation.

We retrieve the elements of a longest k-rollercoaster from the last one to the first
one. Recall that a longest k-rollercoaster has the length equal to max{inc[n],dec[n]}.
We focus on how to obtain a longest k-rollercoaster R of length inc[n] with last run
increasing (so, assume, w.l.o.g., that inc[n] > dec[n]); the procedure is similar for
dec[n] and the last run decreasing.

Observe that if inc[n] is equal to the length of LIS in the input sequence, we can
obtain the elements of R by Algorithm 1 in O(n log n) time. Otherwise, there exists
i < n such that inc[n] = dec[i]+ M[i −1, n]−1. The value i is stored in Predinc[n].
In this case, we construct R by finding recursively a longest k-rollercoaster associated
with dec[i] and concatenating it with LIS in S[i : n]. This holds because, by Lemma 7
the last run of R is a LIS in S[i : n]. Obtaining LIS in S[i : n] can be done in
O((n − i) log n) time.

Thus, in general, we will need to compute a series of LISs and LDSs on the ranges
S[ni−1 : ni ], for 1 ≤ i ≤ m, wherem is the number of runs in a longest k-rollercoaster,
nm = n and n0 = 1. Moreover, ni−1 = Predinc[ni ], if the i th run of the rollercoaster
is increasing and ni−1 = Preddec[ni ], if the i th run of the rollercoaster is decreasing.
Obtaining the LIS in S[ni−1 : ni ] can be done in O((ni − ni−1 + 1) log n) time.

Adding up the time needed to compute LIS or LDS for each of these ranges we get
O(n log n) total time needed to obtain elements of a longest k-rollercoaster.

6 Lower Bound

In the final section of our paper, we prove that any comparison-based algorithm com-
puting the length of a longest k-rollercoaster in a permutation S of {1, . . . , n}, for
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4 ≤ k ≤ n
3 , performs at least �(n log k) comparisons. Let T be a binary comparison

tree associated with an algorithm that computes the result. The number of comparisons
made in the algorithm in the worst case is equal to the height of T , and this is a lower
bound on the execution time of the algorithm.

Let A be a partial ordering associated with a path from the root to some leaf of T .
Since the algorithm cannot distinguish between permutations following the same path,
every permutation consistent with A has to give the same result. Our approach is to first
identify a setU of permutations of {1, . . . , n} such that log |U | = �(n log k), and any
ordering associated with a leaf of T can be consistent with at most one permutation
from U . Hence, the number of leaves in T is at least |U |. Since the height of a binary
tree is at least logarithm of the number of leaves, this will show that the height of
T , and hence also the number of comparison performed by the algorithm, is at least
�(log |U |) = �(n log k).

We first recall the set � of �n−2� permutations of {1, . . . , n} proposed by Fred-
man [12], where � is a parameter. These permutations are essentially different inputs
S for an algorithm computing the length of LIS, each leading to a different leaf in the
comparison tree.

The idea behind the definition of � is to construct input sequences (x1, . . . , xn),
with their elements x1, . . . , xn chosen so that certain linear orderings of the xi s are
induced. To create a permutation from� we partition (x1, . . . , xn) into � subsequences
P1, P2, . . . , P�. To simplify the exposure, let the �prefix of a sequence be its prefix of
length �, while the �suffix is its suffix of length �; the remaining n − 2� elements are
called �middle of the sequence. We partition (x1, . . . , xn) in the following way: the
i th element of �prefix (that is, xi ) and the i th element of �suffix (xn−�+i ) belong to Pi .
Each element from �middle of the sequence belongs to an arbitrary chosen part Pj .
This gives us �n−2� different partitions. For a partition P1, . . . , P�, we assign values
from {1, . . . , n} to the input sequence in such a way, that the elements of each part
Pi form a decreasing sequence and, for 1 ≤ i ≤ � − 1, each element of Pi is less
than any element of Pi+1 (see Fig. 5). So, each such possible assignment gives us a
permutation from �. LIS of any permutation from � is of length � because it contains
one element from each Pi . LDS of any permutation of � is no longer than n − 2� + 2
because it contains at most one element from �prefix and at most one from �suffix.

Proposition 5 Each permutation from � can be split into � descending subsequences
in only one way. For two different permutations from � these ways of splitting are
different.

Proof Let P be a permutation from � and P1, . . . , P� be its corresponding partition
as described above. Observe that elements of �prefix (respectively, �suffix) of P form an
increasing subsequence, so no two of them can be in the same decreasing subsequence.
Now let D1, . . . , D� be a partition of P into � decreasing subsequences, such that
Di contains the i th element from �prefix. Since elements of �suffix form an increasing
subsequence, each Di has to contain exactly one of them.Because only thefirst element
in �suffix is smaller than the first element in the �prefix, D1 actually has to contain the
first element of �suffix. Repeating this reasoning, we obtain that Di contains the i th

element from �prefix and also the i th element from �suffix. Then, we obtain that D1 is
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P2

P1

P3

�prefix �middle �suffix

Fig. 5 Example permutation P ∈ � for � = 3 in a plane. In this figure, we have P =
(6, 13, 20, 5, 19, 12, 4, 11, 18, 17, 16, 15, 10, 3, 9, 8, 2, 1, 7, 14)

actually equal to P1, and by repeating this reasoning, that Di = Pi for all i = 1, . . . , �.
�

We now consider the algorithm computing the length of a longest k-rollercoaster.

Using the permutations from� we create a setU of kn
k−3
3k−3 permutations of {1, . . . , n},

again with the same principle behind: they should be input sequences which lead to
different paths in the comparison tree associated to an algorithm computing the length

of a longest k-rollercoaster. Observe that log (kn
k−3
3k−3 ) = �(n log k), so this would

imply the desired lower bound of �(n log k) on the number of comparisons done by
an algorithm to compute the length of a longest k-rollercoaster.

A permutation from U is obtained as follows. Suppose that (3k − 3) divides
n. Split the sequence (x1, . . . , xn) into n

3k−3 blocks (contiguous subsequences)
of size 3k − 3. We will assign to the elements of the i th contiguous block
(xi(3k−3)+1, . . . , x(i+1)(3k−3)) distinct values from the set {i(3k − 3) + 1, . . . , (i + 1)
(3k − 3)}, as follows. In every block, use one of the permutations from � (with the
parameter � set to k) to values to the elements xi(3k−3)+1, . . . , x(i+1)(3k−3) of that
block, and then assign values to those elements according to that ordering. In this
way, we can create |�| n

3k−3 = (kk−3)
n

3k−3 permutations of {1, . . . , n}. Observe that in
every block the length of a longest decreasing subsequence is less than k. Since every
block consists of strictly greater values than the previous ones, a longest decreasing
subsequence of every permutation from U is less than k. A longest increasing sub-
sequence of every element of � is equal to k, so a longest k-rollercoaster for every
element of U is equal to kn

3k−3 and consists only of longest increasing subsequences
corresponding to all the blocks glued one after the other. We can now show a result
similar to Proposition 5.

Proposition 6 Each permutation from U can be split into kn
3k−3 descending subse-

quence in only one way. For two different permutations from U these ways of splitting
are different.
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Proof Let S be a permutation from U . Recall that we can partition S into n
3k−3 con-

tiguous blocks of length 3k − 3. All values in a block are strictly greater than the
values in all previous blocks, so in a decreasing subsequence of S we can have only
elements from one block. Since every block corresponds to a permutation from �,
by Proposition 5 it can be split into exactly k decreasing subsequences in only one
way. For each two different permutations of U , there exists at least one block (i.e.,
permutation from �) that differentiates them. By Proposition 5, this block is split in a
different way than all the other blocks of �, so the conclusion follows: each particular
permutation fromU will also be split in a different way than all other permutations of
U . �

Having constructed the set U , we can proceed with the lower bound. Let A be a
partial ordering associatedwith a path to some leaf of T (the comparison tree associated
to the algorithm computing the length of a longest k-rollercoaster). Since the algorithm
cannot distinguish between permutations following the same path, every permutation
consistent with A has to give the same result. We recall the following lemma.

Lemma 9 (Lemma 3.6 in [12]) Let≤ be a partial ordering defined on S. Themaximum
length of LIS in S associated with any linear embedding of this ordering, is equal to
the minimum number of decreasing subsequences relative to ≤ into which S can be
partitioned.

Now we can prove the following.

Lemma 10 Let A be partial ordering associated with the path from the root to a leaf
of T . Only one permutation from U can be consistent with A.

Proof Consider S ∈ U that is consistent with A, and let D = kn
3k−3 be the length of

its LIS. Now let m be the minimum number of decreasing subsequences relative to
the results of the comparisons made on the path A into which S can be partitioned.
If m < d then S is consistent with A, so we can partition S into the same decreasing
subsequences, but S cannot be divided into less than than d decreasing subsequences,
a contradiction. If m > d then by Lemma 9 there exists a permutation S′ consistent
with A with the length of LIS greater than d. S′ follows the same path as S in the
comparison tree, but has a longer k-rollercoaster (consisting only of LIS of S′) than
S, a contradiction. Thus, m = d for any such S.

Consider two S1, S2 ∈ U consistent with A. By Proposition 6, the only partition
of S1 into d decreasing sequences is different from the only such partition of S2
(into d decreasing sequences), so A can be consistent with only one permutation, a
contradiction. �

Thus, each permutation fromU corresponds to a distinct leaf of T , making the depth
of T at least log |U | = �(n log k) as required and proving the following theorem.

Theorem 5 For every k satisfying 4 ≤ k ≤ n
3 , any comparison-based algorithm

that computes the length of a longest k-rollercoaster in a permutation of {1, . . . , n}
performs at least �(n log k) comparisons.
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7 Conclusions

In this paper, we presented a comparison-based algorithm computing the length of
a longest k-rollercoaster in a sequence of n distinct numbers in O(nk2) time. This
solves in optimal linear-time the problem of computing a longest k-rollercoaster in
an array for constant values of k. In particular, the problem of computing a longest
rollercoaster in an array (i.e., the case k = 3) is solved optimally, which solves an
open problem from [6]. We also present a subquadratic algorithm that computes a
longest k-rollercoaster in a sequence of n distinct numbers in O(n log2 n) time, i.e.,
outperforms the algorithm above, as well as other algorithms from the literature [5–
7], for values k = ω(log n). In the last section of the paper, we showed that any
comparison-based algorithm computing a longest k-rollercoaster needs to perform
�(n log k) comparisons. We leave as an open problem to close the gap between the
lower and upper bounds shown here.
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