
Algorithmica (2022) 84:273–303
https://doi.org/10.1007/s00453-021-00890-z

Structural Parameterizations of Clique Coloring

Lars Jaffke1 · Paloma T. Lima1 · Geevarghese Philip2,3

Received: 25 September 2020 / Accepted: 25 October 2021 / Published online: 29 November 2021
© The Author(s) 2021

Abstract
A clique coloring of a graph is an assignment of colors to its vertices such that no
maximal clique ismonochromatic.We initiate the study of structural parameterizations
of the Clique Coloring problem which asks whether a given graph has a clique
coloring with q colors. For fixed q ≥ 2, we give an O�(qtw)-time algorithm when
the input graph is given together with one of its tree decompositions of width tw. We
complement this result with a matching lower bound under the Strong Exponential
TimeHypothesis.We furthermore show that (when the number of colors is unbounded)
Clique Coloring is XP parameterized by clique-width.

Keywords Clique coloring · Parameterized algorithms · Clique-width · Treewidth

1 Introduction

Vertex coloring problems are central in algorithmic graph theory, and appear in many
variants. One of these is Clique Coloring, which given a graph G and an integer k
asks whether G has a clique coloring with k colors, i.e. whether each vertex of G can
be assigned one of k colors such that there is no monochromatic maximal clique. The
notion of a clique coloring of a graph was introduced in 1991 by Duffus et al. [17],

An extended abstract of this work appeared in the proceedings of MFCS 2020 [24]. L. J. is supported by
the Trond Mohn Foundation (TMS). The work was partially done while L. J. and P. T. L. were visiting
Chennai Mathematical Institute.

B Paloma T. Lima
paloma.lima@uib.no

Lars Jaffke
lars.jaffke@uib.no

Geevarghese Philip
gphilip@cmi.ac.in

1 University of Bergen, Bergen, Norway

2 Chennai Mathematical Institute, Chennai, India

3 UMI ReLaX, Chennai, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00890-z&domain=pdf

274 Algorithmica (2022) 84:273–303

and it behaves quite differently from the classical notion of a proper coloring, which
forbids monochromatic edges. Any proper coloring is a clique coloring, but not vice
versa. For instance, a complete graph on n vertices only has a proper coloring with n
colors, while it has a clique coloring with two colors. Moreover, proper colorings are
closed under taking subgraphs. On the other hand, removing vertices or edges from a
graph may introduce new maximal cliques, therefore a clique coloring of a graph is
not always a clique coloring of its subgraphs, not even of its induced subgraphs.

Also from a complexity-theoretic perspective, Clique Coloring behaves very
differently from Graph Coloring. Most notably, while it is easy to decide whether
a graph has a proper coloring with two colors, Bacsó et al. [2] showed that it is already
coNP-hard to decide if a given coloring with two colors is a clique coloring. Marx
[30] later proved Clique Coloring to be Σ

p
2 -complete for every fixed number of

(at least two) colors.
On the positive side, Cochefert and Kratsch [10] showed that the Clique Col-

oring problem can be solved in O�(2n) time,1 and the problem has been shown to
be polynomial-time solvable on several graph classes. Mohar and Škrekovski [31]
showed that all planar graphs are 3-clique colorable, and Kratochvíl and Tuza gave an
algorithm that decides whether a given planar graph is 2-clique colorable [27]. For sev-
eral graph classes it has been shown that all their members except odd cycles on at least
five vertices (which require three colors) are 2-clique colorable [2,3,6,7,15,25,32,35].
Therefore, on these classes Clique Coloring is polynomial-time solvable. Duffus
et al. [17] even conjectured in 1991 that perfect graphs are 3-clique colorable, which
was supported by many subclasses of perfect graphs being shown to be 2- or 3-clique
colorable [1,2,9,15,17,31,32]. However, in 2016, Charbit et al. [8] showed that there
are perfect graphs whose clique colorings require an unbounded number of colors.

In this work, we consider Clique Coloring from the viewpoint of parameterized
algorithms and complexity [14,16]. In particular, we consider structural parameteriza-
tions of Clique Coloring by two of the most commonly used decomposition-based
width measures of graphs, namely treewidth and clique-width. Informally speaking,
the treewidth of a graph G measures how close G is to being a forest. On dense
graphs, the treewidth is unbounded, and clique-width can be viewed as an extension
of treewidth that remains bounded on several simply structured classes of dense graphs.

Our first main result is that q- Clique Coloring parameterized by treewidth is
fixed-parameter tractable. More precisely: we show that for any fixed q ≥ 2, q-
Clique Coloring (asking for a clique coloring with q colors) can be solved in time
O�(qtw), where tw denotes the width of a given tree decomposition of the input graph.
We also show that this running time is likely the best possible in this parameterization;
we prove that under the Strong Exponential Time Hypothesis (SETH), for any q ≥ 2,
there is no ε > 0 such that q- Clique Coloring can be solved in timeO�((q−ε)tw).
In fact, we rule out O�((q − ε)t)-time algorithms for a much smaller class of graphs
than those of treewidth t , namely: graphs that have both pathwidth and feedback vertex
set number simultaneously bounded by t .

1 The O�-notation suppresses polynomial factors in the input size, i.e. for inputs of size n, we have that
O�(f (n)) = O(f (n) · nO (1)).

123

Algorithmica (2022) 84:273–303 275

Our second main result is an XP algorithm for Clique Coloring with clique-
width as the parameter. The algorithm runs in time n f (w), when the input n-vertex
graph is given with a clique-width w-expression and f (w) = 22

O (w)
. The double-

exponential dependence onw in the degree of the polynomial stems from the notorious
property of clique colorings which we mentioned above; namely, that taking induced
subgraphs does not necessarily preserve clique colorings. This results in a large amount
of information that needs to be carried along as the algorithm progresses.

This algorithm raises two questions. First, if Clique Coloring is FPT parameter-
ized by clique-width even if k is a priori unbounded. Second, if the triple exponential
dependence on w can be avoided under for instance the Exponential Time Hypothesis
(ETH), also in the casewhen k is fixed. Intuitively, a positive answer to the first question
only seems feasible via a proof that all graphs of clique-width w can be clique colored
with at most some g(w) colors, for some function g. However, the current literature
appears to be far from providing such a result. On the other hand, hardness proofs for
Graph Coloring parameterized by clique-width [18,19] rely on the fact that cliques
require many colors while keeping the clique-width small; since cliques can be clique
colored with two colors, these tricks are of no use in the setting of Clique Coloring.
For the second (possibly more tangible) question, one could search for an algorithm

for 2- Clique Coloring running in time 22
2o(w) · nO(1), or rule out the existence of

such an algorithm under ETH.
The paper is organized as follows. In Sect. 2, we give an introduction to the basic

concepts that are important in this work; in Sect. 3 we give the results on q- Clique
Coloring parameterized by treewidth, and in Sect. 4we give the algorithm forClique
Coloring parameterized by clique-width.

2 Preliminaries

Graphs. All graphs considered here are simple and finite. For a graph G we denote by
V (G) and E(G) the vertex set and edge set of G, respectively. For an edge e = uv ∈
E(G), we call u and v the endpoints of e and we write u ∈ e and v ∈ e.

For two graphs G and H , we say that G is a subgraph of H , written G ⊆ H , if
V (G) ⊆ V (H) and E(G) ⊆ E(H). For a set of vertices S ⊆ V (G), the subgraph
of G induced by S is G[S] ..= (S, {uv ∈ E(G) | u, v ∈ S}); and we let G − S ..=
G[V (G)\S].

For a graph H , we say that a graph G is H -free if G does not contain H as an
induced subgraph. For a set of graphsH , we say that G isH -free if G is H -free for
all H ∈ H .

For a graph G and a vertex v ∈ V (G), the set of its neighbors is NG(v) ..= {u ∈
V (G) | uv ∈ E(G)}. Two vertices u, v ∈ V (G) are called false twins if NG(u) =
NG(v).We say that a vertex v is complete to a set X ⊆ V (G) if X ⊆ NG(v). Thedegree
of v is degG(v) ..= |NG(v)|. The closed neighborhood of v is NG [v] ..= {v} ∪ NG(v).
For a set X ⊆ V (G), we let NG(X) ..= ⋃

v∈X NG(v)\X and NG [X] ..= X ∪ NG(X).
In all these cases, we may drop G as a subscript if it is clear from the context. A graph
is called subcubic if all its vertices have degree at most three.

123

276 Algorithmica (2022) 84:273–303

A graph G is connected if for all 2-partitions (X ,Y) of V (G) with X �= ∅ and
Y �= ∅, there is a pair x ∈ X , y ∈ Y such that xy ∈ E(G). A connected component
of a graph is a maximal connected subgraph. A connected graph is called a cycle if
all its vertices have degree two. A graph that does not contain a cycle as a subgraph
is called a forest and a connected forest is a tree. In a tree T , the vertices of degree
one are called the leaves of T , denoted by L(T), and the vertices in V (T) \ L(T) are
the internal vertices of T . A tree of maximum degree two is a path and the leaves of
a path are called its endpoints. A tree T is called a caterpillar if it contains a path
P ⊆ T such that all vertices in V (T)\V (P) are adjacent to a vertex in P . A forest is
called a linear forest if all its components are paths and a caterpillar forest if all its
components are caterpillars.

A tree T is called rooted, if there is a distinguished vertex r ∈ V (T), called the
root of T , inducing an ancestral relation on V (T): for a vertex v ∈ V (T), if v �= r , the
neighbor of v on the path from v to r is called the parent of v, and all other neighbors
of v are called its children. For a vertex v ∈ V (T)\{r} with parent p, the subtree
rooted at v, denoted by Tv , is the subgraph of T induced by all vertices that are in the
same connected component of (V (T), E(T)\{vp}) as v. We define Tr ..= T .

A set of vertices S ⊆ V (G) of a graph G is called an independent set if E(G[S]) =
∅. A set of vertices S ⊆ V (G) is a vertex cover in G if V (G)\S is an independent set
in G. A graph G is called complete if E(G) = {uv | u, v ∈ V (G)}. A set of vertices
S ⊆ V (G) is a clique inG[S] is complete. A complete graph on three vertices is called
a triangle.

A graph G is called bipartite if its vertex set can be partitioned into two nonempty
independent sets, which we will refer to as a bipartition of G.

Notation for Equivalence Relations. Let Ω be a set and ∼ an equivalence relation
over Ω . For an element x ∈ Ω the equivalence class of x , denoted by [x], is the set
{y ∈ Ω | x ∼ y}. We denote the set of all equivalence classes of ∼ by Ω/ ∼.

ParameterizedComplexity.Wegive the basic definitions of parameterized complex-
ity that are relevant to this work and refer to [14,16] for details. Let Σ be an alphabet.
A parameterized problem is a set Π ⊆ Σ∗ × N, the second component being the
parameter which usually expresses a structural measure of the input. A parameterized
problem Π is said to be fixed-parameter tractable, or in the complexity class FPT, if
there is an algorithm that for any (x, k) ∈ Σ∗ × N correctly decides whether or not
(x, k) ∈ Π , and runs in time f (k) · |x |c for some computable function f : N → N

and constant c. We say that a parameterized problem is in the complexity class XP, if
there is an algorithm that for each (x, k) ∈ Σ∗ × N correctly decides whether or not
(x, k) ∈ Π , and runs in time f (k) · |x |g(k), for some computable functions f and g.

The concept analogous toNP-hardness in parameterized complexity is that ofW[1]-
hardness, whose formal definition we omit. The basic assumption is that FPT �= W[1],
under which no W[1]-hard problem admits an FPT-algorithm. For more details, see
[14,16].

StrongExponential TimeHypothesis. In 2001, Impagliazzo et al. [20,21] conjectured
that a brute force algorithm to solve the q- SAT problem for every fixed q which
given a CNF-formula with clauses of size at most q, asks whether it has a satisfying

123

Algorithmica (2022) 84:273–303 277

assignment, is ‘essentially optimal.’ This conjecture is called the Strong Exponential
Time Hypothesis, and can be formally stated as follows. (For a survey of conditional
lower bounds based on SETH and related conjectures, see [36].)

Conjecture (SETH, Impagliazzo et al. [20,21]) For every ε > 0, there is a q ∈ N such
that q- SAT on n variables cannot be solved in time O�((2 − ε)n).

2.1 Treewidth

We now define the treewidth and pathwidth of a graph, and later the notion of a nice
tree decomposition that we will use later in this work.

Definition 1 (Treewidth, pathwidth) Let G be a graph. A tree decomposition of G
is a pair (T ,B) of a tree T and an indexed family of vertex subsets B = {Bt ⊆
V (G)}t∈V (T), called bags, satisfying the following properties.

1.
⋃

t∈V (T) Bt = V (G).
2. For each uv ∈ E(G) there exists some t ∈ V (T) such that {u, v} ⊆ Bt .
3. For each v ∈ V (G), let Uv

..= {t ∈ V (T) | v ∈ Bt } be the nodes in T whose bags
contain v. Then, T [Uv] is connected.

Thewidth of (T ,B) is maxt∈V (T)|Bt |−1, and the treewidth of a graph is theminimum
width over all its tree decompositions. If T is a path, then (T ,B) is called a path
decomposition, and the pathwidth of a graph is the minimum width over all its path
decompositions.

Let G be a graph with tree decomposition (T ,B), and assume that T is rooted in
some node r ∈ V (T). Then, for each node t ∈ V (T), we let Vt be the set of vertices of
G appearing in bags of the subtree of T rooted at t , i.e. Vt ..= ⋃

s∈V (Tt) Bs .We letGt
..=

G[Vt]. The following notion of a nice tree decomposition allows for streamlining the
description of dynamic programming algorithms over tree decompositions.

Definition 2 (Nice tree decomposition) Let G be a graph and (T ,B) a tree decompo-
sition of G. Then, (T ,B) is called a nice tree decomposition, if T is rooted and each
node is of one of the following types.

Leaf. A node t ∈ V (T) is a leaf node, if t is a leaf of T and Bt = ∅.
Introduce. A node t ∈ V (T) is an introduce node if it has precisely one child s, and
there is a unique vertex v ∈ V (G)\Bs such that Bt = Bs ∪ {v}. In this case we say
that v is introduced at t .

Forget. A node t ∈ V (T) is a forget node, if it has precisely one child s, and there is
a unique vertex v ∈ Bs such that Bt = Bs\{v}. In this case we say that v is forgotten
at t .

Join. A node t ∈ V (T) is a join node, if it has precisely two children s1 and s2, and
Bt = Bs1 = Bs2 .

123

278 Algorithmica (2022) 84:273–303

It is known that any tree decomposition of a graph can be transformed in linear
time into a nice tree decomposition of the same width, with a relatively small number
of bags.

Lemma 1 (Kloks [26]) Let G be a graph on n vertices, and let k be a positive integer.
Any width-k tree decomposition (T ,B) of G can be transformed in timeO(k · |V (T)|)
into a nice tree decomposition (T ′,B′) of width k such that |V (T ′)| = O(k · n).

2.2 Clique-Width, Branch Decompositions, andModule-Width

Wefirst define clique-width, introduced byCourcelle et al. [11], and then the equivalent
measure of module-width that we will use in our algorithm. We keep the definition of
clique-width slightly informal and refer to [11,12] for more details.

Let G be a graph. The clique-width of G, denoted by cw(G), is the minimum
number of labels {1, . . . , k} needed to obtain G using the following four operations:

1. Create a new graph consisting of a single vertex labeled i .
2. Take the disjoint union of two labeled graphs G1 and G2.
3. Add all edges between pairs of vertices of label i and label j .
4. Relabel every vertex labeled i to label j .

We now turn to the definition of module-width which is based on the notion of a
rooted branch decomposition.

Definition 3 (Branch decomposition) Let G be a graph. A branch decomposition of
G is a pair (T ,L) of a subcubic tree T and a bijection L : V (G) → L(T). If T is a
caterpillar, then (T ,L) is called a linear branch decomposition. If T is rooted, then
we call (T ,L) a rooted branch decomposition. In this case, for t ∈ V (T), we define
Vt ..= {v ∈ V (G) | L (v) ∈ L(Tt)}, Vt ..= V (G)\Vt , and Gt

..= G[Vt].
Module-width is attributed to Rao [33,34]. On a high level, the module-width of

a rooted branch decomposition bounds, at each of its nodes t , the maximum number
of subsets of Vt that make up the intersection of Vt with the neighborhood of some
vertex in Vt .

Definition 4 (Module-width) LetG be a graph, and (T ,L) be a rooted branch decom-
position of G. For each t ∈ V (T), let ∼t be the equivalence relation on Vt defined as
follows:

∀u, v ∈ Vt : u ∼t v ⇔ NG(u) ∩ Vt = NG(v) ∩ Vt

The module-width of (T ,L) is mw(T ,L) ..= maxt∈V (T)|Vt/∼t |. The module-
width of G, denoted bymw(G), is the minimum module width over all rooted branch
decompositions of G.

We introduce some notation. For a node t ∈ V (T) and a set S ⊆ V (Gt), we let
eqct (S) be the set of all equivalence classes of∼t which have a nonempty intersection
with S, and eqct (S) be the remaining equivalence classes of∼t . Formally, eqct (S) ..=

123

Algorithmica (2022) 84:273–303 279

{Q ∈ Vt/∼t | Q ∩ S �= ∅} and eqct (S) ..= Vt/∼t\eqct (S). Moreover, for a set of
equivalence classes Q ⊆ Vt/∼t , we let V (Q) ..= ⋃

Q∈Q Q.
Let (T ,L) be a rooted branch decomposition of a graph G and let t ∈ V (T) be a

node with children r and s. We now describe an operator associated with t that tells us
how the graph Gt is formed from its subgraphs Gr and Gs , and how the equivalence
classes of ∼t are formed from the equivalence classes of ∼r and ∼s . Concretely, we
associate with t a bipartite graph Ht on bipartition (Vr/∼r , Vs/∼s) such that:

1. E(Gt) = E(Gr) ∪ E(Gs) ∪ F , where F = {uv | u ∈ Vr , v ∈ Vs, {[u], [v]} ∈
E(Ht)}, and

2. there is a partitionP = {P1, . . . , Ph} of V (Ht) such that Vt/∼t = {Q1, . . . , Qh},
where for 1 ≤ i ≤ h, Qi = ⋃

Q∈Pi Q. For each 1 ≤ i ≤ h, we call Pi the bubble
of the resulting equivalence class

⋃
Q∈Pi Q of ∼t .

As auxiliary structures, for p ∈ {r , s}, we let ηp : Vp/∼p → Vt/∼t be the map
such that for all Qp ∈ Vp/∼p, Qp ⊆ ηp(Qp), i.e. ηp(Qp) is the equivalence class
of ∼t whose bubble contains Qp. We call (Ht , ηr , ηs) the operator of t .

Theorem 1 (Rao, Thm. 6.6 in [33]) For any graph G,mw(G) ≤ cw(G) ≤ 2 ·mw(G),
and given a decomposition of bounded clique-width, a decomposition of bounded
module-width, and vice versa, can be constructed in time O(n2), where n = |V (G)|.

2.3 Colorings

LetG be a graph. An ordered partitionC = (C1, . . . ,Ck) of V (G) is called a coloring
of G with k colors, or a k-coloring of G. (Observe that for i ∈ {1, . . . , k}, Ci may be
empty.) For i ∈ {1, . . . , k}, we call Ci the color class i , and say that the vertices in Ci

have color i . C is called proper if for all i ∈ {1, . . . , k}, Ci is an independent set in
G.

A coloring C = (C1, . . . ,Ck) of a graph G is called a clique coloring (with k
colors) if there is no monochromatic maximal clique, i.e. no maximal clique X in G
such that X ⊆ Ci for some i . In this work, we study the following computational
problems.

Input: Graph G, integer k
Question: Does G have a clique coloring with k colors?

Clique Coloring

Input: Graph G
Question: Does G have a clique coloring with q colors?

q- Clique Coloring for q ≥ 2

The q- Coloring and q- List Coloring problems also make an appearance. In
the former, we are given a graphG and the question is whetherG has a proper coloring
with q colors. In the latter, we are additionally given a list L(v) ⊆ {1, . . . , q} for each
vertex v ∈ V (G), and additionally require the color of each vertex to be from its list.

123

280 Algorithmica (2022) 84:273–303

Whenever convenient, we alternatively denote a coloring of a graph with k colors
as a map φ : V (G) → {1, . . . , k}. In this case, a restriction of φ to S is the map
φ|S : S → {1, . . . , k} with φ|S(v) = φ(v) for all v ∈ S. For any T ⊆ V (G) with
S ⊆ T , we say that φ|T extends φ|S .

3 Parameterized by Treewidth

In this section, we consider the q- Clique Coloring problem, for fixed q ≥ 2,
parameterized by treewidth. First, in Sect. 3.1, we show that if we are given a tree
decomposition of width tw of the input graph, then q- Clique Coloring can be
solved in time O�(qtw). After that, in Sect. 3.2, we show that this is tight according
to SETH, by providing one reduction ruling out O�((2 − ε)tw)-time algorithms for
2- Clique Coloring and another one ruling out O�((q − ε)tw)-time algorithms for
q- Clique Coloring when q ≥ 3.

3.1 Algorithm

The algorithm is bottom-up dynamic programming along a nice tree decomposition
(T ,B) of the input graph G. At each bag Bt , we enumerate all colorings of G[Bt]
and verify for each such coloring if it can be extended to Gt such that there are no
monochromatic maximal cliques that use a vertex from Vt\Bt . Necessarily, we have to
allowmonochromatic maximal cliques S that are contained insideG[Bt], since further
up in the tree decomposition, there may be a vertex v that is complete to S. Therefore,
all vertices in S may receive the same color, as long as v (or another such vertex)
receives a different color. If on the other hand a monochromatic maximal clique has
a vertex that has already been ‘forgotten’ at or below t , i.e. it is contained in Vt\Bt ,
then this vertex has no neighbors in V (G)\Vt ; therefore, no vertex from V (G)\Vt can
‘fix’ this monochromatic maximal clique, and we can disregard the coloring at hand.

As a subroutine, we will have to be able to check at each bag Bt , if some subset
S ⊆ Bt contains a maximal clique in Gt . Doing this by brute force would add a
multiplicative factor of roughly 2tw · n to the runtime which we cannot afford. To
avoid this increase in the runtime, we use fast subset convolution2 to build an oracle
Ot that, once constructed, can tell us in constant timewhether or not any subset S ⊆ Bt

contains a maximal clique in Gt , for each node t . We give a dynamic programming
algorithm that constructs such oracles for all nodes in the tree decomposition, to ensure
that we can maintain a runtime that is linear in n. Since it suffices to construct this
oracle once per node, this will infer only an additive factor of 2tw · twO(1) · n to the
runtime, which does not increase the worst-case complexity for any q ≥ 2.

Proposition 1 Let G be a graph and (T ,B) a nice tree decomposition of G of width
tw. There is an algorithm that constructs a family of oracles {Ot }t∈V (T) in time 2tw ·
twO(1) · |V (T)| that, once constructed, has the following property. For every t ∈ V (T)

2 Similar ideas have been used by Cochefert and Kratsch [10] to give anO�(2n)-time algorithm for Clique
Coloring.

123

Algorithmica (2022) 84:273–303 281

and S ⊆ Bt , Ot answers in constant time whether or not S contains a maximal clique
in Gt .

Proof For each t ∈ V (T), Let ft : 2Bt → {0, 1} be the function defined as follows.
For all S ⊆ Bt , we let

ft (S) ..=
{
1, if S contains a maximal clique in Gt ,
0, otherwise.

To prove the statement, we have to show how to compute all values of ft , for all
t ∈ V (T), within the claimed time bound.

As a first step, we show how to compute a family of functions {gt : 2Bt →
{0, 1}}t∈V (T) such that for all t ∈ V (T) and all S ⊆ Bt , gt (S) = 1 if and only
if S is a maximal clique in Gt . We do this by bottom-up dynamic programming,
and now describe how to compute the function gt assuming that the functions at the
children of t , if any, have been computed.

Leaf Node. If t ∈ V (T) is a leaf node, then Bt = ∅, and there is nothing to compute.

Introduce Node. Suppose t ∈ V (T) is an introduce node with child s and let v be
the vertex introduced at t . Let S ⊆ Bt . There are two cases we have to consider, first
when v /∈ S and second when v ∈ S. If v /∈ S, then S is a maximal clique in Gt if
and only if S is a maximal clique in Gs and v is not complete to S. If v ∈ S, then any
clique containing S must be fully contained in Bt , since v has no neighbors in Vt\Bt .
To summarize, we set:

gt (S) ..=
⎧
⎨

⎩

1, if either v /∈ S, gs(S) = 1, and S � N (v)

or v ∈ S and S is a maximal clique in G[Bt]
0, otherwise

Forget Node. If t ∈ V (T) is a forget node with child s, then we have that Gt = Gs .
Therefore, for each S ⊆ Bt , it suffices to set gt (S) ..= gs(S).
Join Node. Suppose t ∈ V (T) is a join node with children s1 and s2. Then, for each
S ⊆ Bt , we have that S is a maximal clique in Gt if and only if it is both a maximal
clique in Gs1 and in Gs2 . Therefore, we let gt (S) ..= gs1(S) · gs2(S).

Computing an entry of a function at an introduce node takes time atmost twO(1), and
for a forget or join node it can be done in time O(1). Therefore, the family {gt }t∈V (T)

can be computed in time 2tw · twO(1) · |V (T)|.
For the remainder of the proof, recall that for a set Ω , and two functions α and β

defined on 2Ω , their subset convolution � is defined as: for all S ∈ 2Ω , (α � β)(S) =∑
T⊆S α(T)β(S\T). Fix some t ∈ V (T). We define a constant function ct : 2Bt →

{1}, meaning that ct (S) = 1 for all S ⊆ Bt , and construct a function ht ..= gt � ct .
Using the algorithm of Björklund et al. [4], all values of ht can be computed in time
2tw · twO(1). By construction, each set S ⊆ Bt contains ht (S) maximal cliques in Gt .

123

282 Algorithmica (2022) 84:273–303

We therefore obtain ft as:

∀S ⊆ Bt : ft (S) ..=
{
1, if ht (S) ≥ 1,
0, otherwise,

Computing the family of functions { ft }t∈V (T) and therefore the family of oracles
{Ot }t∈V (T) this way can be done within an additional runtime of 2tw · twO(1) · |V (T)|.

��
We are now ready to give the algorithm. We assume that we are given a width-tw

tree decomposition of the input graphwhose tree hasO(tw·n) nodes. This requirement
on the number of nodes is standard, see e.g. [14].

Theorem 2 For any fixed q ≥ 2, there is an algorithm that given an n-vertex graph G
and a tree decomposition of G of width twwhich hasO(tw ·n) nodes, decides whether
G has a clique coloring with q colors in time O(q tw · twO(1) · n), and constructs one
such coloring, if it exists.

Proof First, we transform the given tree decomposition of G into a nice tree deocm-
position (T ,B). This can be done in O(tw2 · n) time by Lemma 1. We may assume
that the bags at leaf nodes are empty, and that T is rooted in some node r ∈ V (T),
and Br = ∅.

We do standard bottom-up dynamic programming along T . Let t ∈ V (T). A partial
solution is a q-coloring of Gt that satisfies one additional property. Suppose that in
some coloring of Gt , there is a monochromatic maximal clique X in Gt that has some
vertex v ∈ Vt\Bt . Then, v has no neighbors in V (G)\Vt , therefore X is also amaximal
clique in G. This means that the present coloring cannot be extended to a coloring in
which X becomes non-maximal, and therefore we can disregard it.

In light of this, we define the table entries as follows. For each t ∈ V (T) and
function γt : Bt → {1, . . . , q}, we let tab[t, γt] = 1 if and only if there is a q-coloring
γ of Gt such that

– γ |Bt = γt , and
– for each maximal clique X in Gt that is monochromatic under γ , X ⊆ Bt .

Since Br = ∅, we can immediately observe that the solution to the instance can be
read off the table entries at the root node, once computed. Throughout the following
we denote by γ∅ the q-coloring defined on an empty domain.

Observation 1 G has a clique coloring with q colors if and only if tab[r, γ∅] = 1.

As a preprocessing step, we compute the family of oracles {Ot }t∈V (T) from Propo-
sition 1 which will be used at forget nodes. We now show how to compute the table
entries for the different types of nodes, assuming that the table entries at the children,
if any, have previously been computed.

Leaf Node. If t is a leaf node, then Bt = ∅ and we only have to consider the empty
coloring. We set tab[t, γ∅] = 1.

123

Algorithmica (2022) 84:273–303 283

IntroduceNode. Let t ∈ V (T) be an introduce nodewith child s, and let v be the vertex
introduced at t , i.e. we have that Bt = Bs ∪ {v}. Since Vt\Bt = (Vt\{v})\(Bt\{v}) =
Vs\Bs , and since v has no neighbors in Vt\Bt by the properties of a tree decomposition,
it is clear that a coloring of Gt has a monochromatic maximal clique with a vertex in
Vt\Bt if and only if its restriction to Vs is a coloring of Gs that has a monochromatic
maximal clique with a vertex in Vs\Bs . Therefore, for each γt : Bt → {1, . . . , q}, we
simply let tab[t, γt] = 1 if and only if tab[s, γt |Bs] = 1.

Join Node. Let t ∈ V (T) be a join node with children s1 and s2 and recall that
Bt = Bs1 = Bs2 . In this case, for any γt : Bt → {1, . . . , q}, Gt has a q-coloring γ

with γ |Bt = γt without a monochromatic maximal clique in Vt\Bt if and only if the
analogous condition holds for both Gs1 and Gs2 . Therefore, for all such γt , we let
tab[t, γt] = 1 if and only if tab[s1, γt] = tab[s2, γt] = 1.

Forget Node. Let t ∈ V (T) be a forget node with child s and let v be the vertex
forgotten at t , i.e. Bs = Bt ∪ {v}. A partial solution at node s, i.e., a coloring γs of
Gs , may have a monochromatic maximal clique using the vertex v, provided that the
clique is fully contained in Bs , while partial solutions at the node t may not. On the
other hand, a clique that is maximal inside Bs may not be maximal in Gs . Moreover,
as soon as a maximal clique uses a vertex from Vs\Bs it is not monochromatic in
any partial solution at the node s, as asserted by the definition of the table entries;
provided that tab[s, γs] = 1. We can therefore consult with the oracle Os to verify if
the intersection of any color class with the neighborhood of v, together with the vertex
v, contains a maximal clique in Gs (and not just in G[Bs]). Therefore, for a given
coloring γt : Bt → {1, . . . , q}, we can check whether or not there is a partial solution
in Gt whose restriction to Bt is equal to γt as follows. For each color c ∈ {1, . . . , q},
extend γt to a coloring γs of Bs by assigning vertex v color c. If tab[s, γs] = 1, then
we check if the set consisting of v and its neighbors colored c does not contain a
maximal clique in Gs , in which case we can set tab[t, γt] to 1. If there is no color c
passing these checks then we know that we can set tab[t, γt] to 0. We summarize this
in Algorithm 1.

Input: G, (T ,B) as above, forget node t ∈ V (T)

1 Let v ∈ Bs \ Bt be the vertex forgotten at t ;
2 Let Ot be the clique oracle of t from Proposition 1;
3 foreach γt : Bt → {1, . . . , q} do
4 tab[t, γt] ← 0;
5 foreach c ∈ {1, . . . , q} do
6 Let γs : Bs → {1, . . . , q} be such that for all u ∈ Bt , γs (u) = γt (u), and γs (v) = c;
7 if tab[s, γs] = 1 then
8 Let S ← (N (v) ∩ γ −1

t (c)) ∪ {v};
9 if Os (S) = 0 then tab[t, γt] ← 1

Algorithm 1: Algorithm to compute all table entries at a forget node t with child
s, assuming all table entries at s have been computed. (Notation: For a set S ⊆ Bt ,
Ot (S) = 0 if and only S contains no maximal clique in Gt .)

123

284 Algorithmica (2022) 84:273–303

This completes the description of the algorithm. Correctness follows from the
description of the computation of the table entries, by induction on the height of each
node. For the runtime, we first take 2tw · twO(1) ·n time to construct the clique oracles.
At each node, there are at most qtw+1 table entries to consider, and it is clear that the
computation of a table entry at a leaf, introduce, or join node takes constant time.With
the clique oracle at hand, computing an entry at a forget node takes timeO(q) = O(1).
Therefore, at each node all table entries can be computed in time O(qtw) and since
there are O(tw · n) nodes in the tree decomposition, all table entries are computed in
time qtw · twO(1) · n, which, since q ≥ 2, bounds the total runtime of the algorithm.
Using standard memoization techniques, the algorithm can also construct a coloring,
if one exists. ��

3.2 Lower Bound

In this section we show that the previously presented algorithm is optimal under SETH.
In fact, we give lower bounds for much larger parameters than treewidth, which we
now define briefly. The feedback vertex set number of a graph G is the size of a
smallest set of vertices S ⊆ V (G) such that G − S is a forest. The distance to a
linear/caterpillar forest of a graph G is the size of a smallest set S ⊆ V (G) such that
G − S is a linear/caterpillar forest.

Our proofs give lower bounds under SETH for the parameters distance to a linear
forest (for q = 2), and distance to a caterpillar forest (for q ≥ 3). Note that both
paths and caterpillars have pathwidth 1, and clearly, they do not contain any cycles.
Therefore, a lower bound parameterized by the distance to a linear/caterpillar forest
implies a lower bound for the parameter pathwidth plus feedback vertex set number.
For q = 2, we give a reduction from s- Not- All- Equal SAT (s-NAE- SAT) on
n variables. Cygan et al. [13] showed that under SETH, for any ε > 0, there is some
constant s such that s-NAE- SAT cannot be solved in timeO�((2−ε)n). For all q ≥ 3,
we reduce from q- List Coloring, where we are given a graph G and a list for each
of its vertices which is a subset of {1, 2, . . . , q}, and the question is whether G has
a proper coloring such that each vertex receives a color from its list. Parameterized
by the size t of a deletion set to a linear forest, this problem is known to have no
O�((q − ε)t)-time algorithms under SETH [22]. Our construction uses the fact that
on triangle-free graphs, the proper colorings and the clique colorings coincide, and
exploits properties of Mycielski graphs.

We first give the lower bound for the case q = 2. We would like to remark that
Kratochvíl and Tuza [27] gave a reduction from s- Not- All- Equal SAT to 2-
Clique Coloring as well, but their reduction does not imply the fine-grained lower
bound we aim for here: the resulting graph is at distance 2n to a disjoint union of
cliques of constant size (at most s). This only rules outO�((

√
2−ε)t)-time algorithms

parameterized by pathwidth, and does not give any lower bound if the feedback vertex
set number is another component of the parameter.

Theorem 3 For any ε > 0, 2- Clique Coloring parameterized by the distance t to
a linear forest cannot be solved in time O�((2 − ε)t), unless SETH fails.

123

Algorithmica (2022) 84:273–303 285

Proof We give a reduction from the well-known s-NAE- SAT problem, in which we
are given a boolean CNF formula φ whose clauses are of size at most s, and the
question is whether there is a truth assignment to the variables of φ, such that in each
clause, at least one literal evaluates to true and at least one literal evaluates to false.

Let φ be a boolean CNF formula on n variables x1, . . . , xn with maximum clause
size s. We denote by clauses(φ) the set of clauses of φ and by vars(C) the set
of variables that appear in the clause C of φ. A clause is called monotone if either all
literals are positive or all literals are negated.

Given φ, we construct an instance Gφ for 2- Clique Coloring as follows. For
each variable xi , we create a vertex vi in Gφ . Let V ′ = {v1, . . . , vn}. For each set S of
variables, let VS = {vi | xi ∈ S}. For each clause Ci of φ, we add the following clause
gadget to Gφ . If Ci is monotone, add a path on four vertices to Gφ , the end vertices
of which are ai and bi . Make N (ai) ∩ V ′ = N (bi) ∩ V ′ = Vvars(Ci), and make
Vvars(Ci) ⊂ V ′ a clique. If Ci is not monotone, let pos(Ci) (resp. neg(Ci)) denote
the set of variables with positive (resp. negative) literals in Ci . Add a path on three
vertices to Gφ , the end vertices of which are ai and bi , make N (ai) ∩ V ′ = Vpos(Ci)

and make Vpos(Ci) a clique. Analogously, make N (bi) ∩ V ′ = Vneg(Ci) and make
Vneg(Ci) a clique. Finally, add two adjacent vertices u, v to Gφ and make N [u] =
N [v] = {u, v} ∪ V ′. See Fig. 1.

We will show that Gφ is a yes-instance to 2- Clique Coloring if and only if φ

is a yes-instance to s-NAE- SAT. We first make the following observation about the
maximal cliques of Gφ , which follows directly from the fact that the vertices u and v

are complete to V ′.

Observation 2 The vertices u and v belong to every maximal clique of Gφ[V ′∪{u, v}].
Claim 1 Let f : V (Gφ) → {0, 1} be a 2-clique coloring of Gφ and Ci be a clause of
φ. If Ci is monotone, then f (ai) �= f (bi). Otherwise, f (ai) = f (bi).

Proof If Ci is monotone, ai and bi are the end vertices of a path on four vertices,
each edge of which is a maximal clique of Gφ . Thus, f (ai) �= f (bi) in any 2-clique

a2 b2a1 b1

V ′

u v

v1 v2 v3 v4 v5 v6 v7

Fig. 1 Depiction of Gφ with two clauses, namely a monotone clause C1 = ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 and
a non-monotone clause C2 = x4 ∨ x5 ∨ ¬x6 ∨ ¬x7. Note that Gφ − V ′ is a linear forest

123

286 Algorithmica (2022) 84:273–303

coloring f of Gφ . Similarly, if Ci is not monotone, ai and bi are the end vertices
of a path on three vertices, each edge of which is a maximal clique of Gφ . Hence
f (ai) = f (bi). ��

Now, suppose Gφ has a 2-clique coloring f : V (Gφ) → {0, 1}. We construct a
truth assignment for {x1, . . . , xn} according to the colors assigned to the vertices of V ′
by f . That is, if f (vi) = 0, we set xi to false, and if f (vi) = 1, we set xi to true. We
will now show that this assignment satisfies all clauses of φ. Let Ci be a clause of φ.
First, assume that Ci is monotone. By Claim 1, f (ai) �= f (bi). Since Vvars(Ci) ∪{ai }
is a maximal clique of Gφ , the vertices of Vvars(Ci) cannot all be colored with f (ai).
Similarly, Vvars(Ci) ∪{bi } is a maximal clique of Gφ , the vertices of Vvars(Ci) cannot
all be colored with f (bi). Thus, there exist two vertices v j , vk ∈ Vvars(Ci) such that
f (v j) �= f (vk). SinceCi ismonotone, this implies that x j and xk are not both evaluated
to the same value and therefore Ci is satisfied. Now assume Ci is not monotone. By
Claim 1, f (ai) = f (bi). Hence, since Vpos(Ci) ∪{ai } and Vneg(Ci) ∪{bi } are maximal
cliques of G, there exists v j ∈ Vpos(Ci) and vk ∈ Vneg(Ci) such that f (v j) = f (vk).
This implies that x j and xk are not evaluated to the same value under the proposed
assignment and thus Ci is satisfied.

For the other direction, assume φ admits an assignment ξ satisfying all clauses. We
construct a clique coloring f : V (Gφ) → {0, 1} forGφ in the followingway. Color the
vertices of V ′ according to the assignment of the variables of φ. That is, if ξ(xi) = true
(resp. ξ(xi) = false), define f (vi) = 1 (resp. f (vi) = 0). If Ci is monotone, let
aia′

i b
′
i bi be the path on four vertices connecting ai and bi in the clause gadget of

Ci . Define f (ai) = f (b′
i) = 1 and f (a′

i) = f (bi) = 0. If Ci is not monotone, let
aia′

i bi be the three vertex path connecting ai and bi in the clause gadget of Ci . If
all the vertices of either Vpos(Ci) or Vneg(Ci) are colored 1, set f (ai) = f (bi) = 0
and f (a′

i) = 1. Otherwise set f (ai) = f (bi) = 1 and f (a′
i) = 0. Finally, define

f (u) = 0 and f (v) = 1. To see that this is indeed a 2-clique coloring of Gφ ,
first note that by Observation 2, no maximal clique contained in Gφ[V ′ ∪ {u, v}]
is monochromatic. Furthermore, since all paths of the clause gadgets are properly
colored, no maximal clique contained in Gφ − (V ′ ∪ {u, v}) is monochromatic. It
remains to show that for each clauseCi , the maximal cliques Ai = {ai }∪(N (ai)∩V ′)
and Bi = {bi } ∩ (N (bi) ∩ V ′) are not monochromatic. Let Ci be a monotone clause.
Since Ci is satisfied, there exist x j , xk ∈ vars(Ci) such that ξ(x j) �= ξ(xk). Hence,
f (v j) �= f (vk), which shows that Ai and Bi are each not monochromatic. If Ci is not
monotone, by definition the vertices of Ai and Bi are not all colored 1. Suppose all the
vertices of Ai are colored 0. In particular, we have f (ai) = f (bi) = 0. This implies
that, by construction, all the vertices of N (bi) = Vneg(Ci) are colored 1. However,
this is a contradiction with the fact that the clause Ci is satisfied, since all its literals
are evaluated to false. Hence, f is indeed a 2-clique coloring of Gφ .

Finally, note thatG−V ′ is a disjoint union of paths of length at most four. Hence,G
is at distance n to a linear forest. Therefore, if for some ε > 0, 2- Clique Coloring
parameterized by the distance t to a linear forest can be solved in time O�((2 − ε)t),
then s-NAE- SAT can be solved in time O�((2 − ε)n), which would contradict SETH
[13]. This concludes the proof. ��

123

Algorithmica (2022) 84:273–303 287

We now turn to the case q ≥ 3. Our reduction is from q- List- Coloring parame-
terized by the distance t to a linear forest, which is known to have noO�((q−ε)t)-time
algorithms under SETH.

Theorem 4 (Jaffke and Jansen [22]) For any ε > 0 and any fixed q ≥ 3, q-List
Coloring on triangle-free graphs parameterized by the distance t to a linear forest
cannot be solved in time O�((q − ε)t), unless SETH fails.

We crucially use the fact that in triangle-free graphs, the proper colorings and
the clique colorings coincide, which is both the key and the challenging part of the
reduction. In [22], it is not explicitly mentioned that the lower bound from the previous
theorem holds on triangle-free graphs, so let us briefly justify this. The reduction
presented in [22] is from s-SAT on n variables, and given a formula φ, the graph Gφ

of the resulting q- List Coloring instance has the following structure. The truth
assignments of the variables of φ are encoded as colorings of a set of vertices V ′
that are independent in Gφ , and for each clause C in φ and each coloring of some
subset VC ⊆ V ′ that corresponds to a truth assignment μ that does not satisfy C , there
is a path Pμ in G that cannot be properly list colored if and only if the coloring μ

appears on VC . This is ensured by connecting Pμ to VC via a matching, which does
not introduce triangles. Since each edge of Gφ is either on such a path or part of one
of such matching, there are no triangles in Gφ .

Now, Theorem 4 already gives a lower bound, under SETH, for the list-version of
q- Clique Coloring parameterized by the distance to a linear forest. To obtain the
desired lower bound (without lists), we need to simulate the lists without introducing
triangles. For proper colorings, there is a standardway to simulate lists that is frequently
used in such reductions (e.g., [22,28]): We add a clique on vertex set [q] to the input
graph G, and for each i ∈ [q] and v ∈ V (G), we add an edge between i and v if color
i does not appear on the list of v. Then, G has a coloring respecting the given lists
if and only if the resulting graph has a proper coloring with q colors. In our setting,
however, this clearly does not work, since the previous step introduces triangles of
two kinds:

1. Between any triple of vertices in the q-clique.
2. Between vertices of G and the q-clique.

To avoid triangles of type 1, we replace the q-clique by a gadget Hq consisting
of several Mycielski graphs that are connected to each other in such a way that we
can identify a set of q vertices that receive pairwise distinct colors in any proper
coloring.3 These q vertices can then be used in the same way as the vertices of the
q-clique mentioned above. Since Mycielski graphs are triangle-free, and by the way
we connect them, Hq is a triangle-free graph. To avoid triangles of type 2, we do not
connect the remaining vertices to Hq directly, but instead we add a middle layer of
vertices that we connect to Hq in such a way that only one given color can appear on
each vertex in any proper coloring. This way we propagate the forcing of colors while
avoiding triangles of type 2. The latter step is also the reason why our lower bound

3 We would like to remark that also Marx [30] used Mycielski graphs and their properties in hardness
proofs for the Clique Coloring problem.

123

288 Algorithmica (2022) 84:273–303

only holds when parameterized by the distance to a caterpillar forest and not by the
distance to a linear forest: after removing the modulator of the q- List- Coloring
instance and the gadget Hq , the remaining graph consists of the linear forest from the
q- List- Coloring instance and the vertices of the middle layer; together they form
a caterpillar forest.

Theorem 5 For any ε > 0 and any fixed q ≥ 3, q-Clique Coloring parameterized
by the distance t to a caterpillar forest cannot be solved in time O�((q − ε)t), unless
SETH fails.

Proof We give a reduction from q-List Coloring on triangle-free graphs parame-
terized by distance to linear forest. In this proof we use the phrases “q-colorable” as
short for “can be properly colored with at most q colors”, and “q-coloring” as short
for “a proper coloring with at most q colors”. To construct our instance of q- Clique
Coloring, we will first describe the construction of a color selection gadget, and
then describe how this gadget is attached to the rest of the graph. The description of
the color selection gadget makes use of the famous Mycielski graphs. For complete-
ness, we briefly describe how Mycielski graphs are recursively constructed and some
of their useful properties. For every p ≥ 2, the Mycielski graph Mp is a triangle-
free graph with chromatic number p. For p = 2, we define M2 = K2. For p ≥ 3,
the graph Mp is obtained from Mp−1 as follows. Let V (Mp−1) = {v1, . . . , vn}.
Then V (Mp) = V (Mp−1) ∪ {u1, . . . , un, w}. The vertices of V (Mp−1) induce a
copy of Mp−1 in Mp, each ui is adjacent to all the neighbors of vi in Mp−1 and
N (w) = {u1, ..., un}. Hence, |V (Mp)| = 3 · 2p−2 − 1. Moreover, it is known that Mp

is edge-critical, that is, the deletion of any edge ofMp leads to a (p−1)-colorable graph
(see for instance [5,29]). For our construction, we will use the graph M ′

p, obtained
from Mp by the deletion of an arbitrary edge xy. The following observation follows
directly from the fact that Mp is edge-critical.

Observation 3 Let M ′
p be the graph obtained from Mp by the deletion of an edge xy.

Then, M ′
p is (p− 1)-colorable, and in any (p− 1)-coloring of M ′

p, the vertices x and
y receive the same color.

Color selection gadget. We construct a gadget Hq in the following way. Consider q
disjoint copies of M ′

q+1. For 1 ≤ i ≤ q, let xi yi be the edge removed from Mq+1

in order to obtain the i th copy of M ′
q+1. For each i , add q − 1 false twins to yi . We

denote these vertices by yi j , with 1 ≤ j ≤ q, j �= i . Then delete the vertex yi , for
every i . Note that this graph is still q-colorable and, by Observation 3, in every such
q-coloring, for each i , the vertices xi and yi j , for all j �= i , receive the same color.
Nowwe add

(q
2

)
edges to connect the copies of M ′

q+1: for 1 ≤ i < j ≤ q, add the edge
yi j y ji to Hq . Note that Hq remains triangle-free after the addition of these edges, since
for all 1 ≤ i < j ≤ q, N (yi j) ∩ N (y ji) = ∅. We will need the following property of
the q-colorings of Hq .

Claim 2 The graph Hq is q-colorable. Moreover, in any q-coloring φ of Hq, φ(xi) �=
φ(x j) for all 1 ≤ i < j ≤ q.

123

Algorithmica (2022) 84:273–303 289

Proof Suppose for a contradiction that there exists a q-coloring of Hq such that
φ(xi) = φ(x j), for some i �= j . By Observation 3, we know that φ(xi) = φ(yi j).
Similarly, φ(x j) = φ(y ji). This implies that φ(yi j) = φ(y ji), which is a contradic-
tion, since yi j and y ji are adjacent by construction. To see that a q-coloring indeed
exists for Hq , first note that, by Observation 3, each copy of M ′

q+1 has a q-coloring in
which xi and yi are assigned the same color. We can then permute the colors within
a copy to obtain a proper coloring of that copy in which xi and yi receive color i . To
complete the coloring, assign color i to every yi j that is a false twin of yi . This yields
a proper q-coloring of Hq . ��

We are now ready to describe the construction of our instance G ′ to q-Clique
Coloring. Let (G, L) be an instance of q-List Coloring on triangle-free graphs
that is at distance t from a linear forest. We construct G ′ as follows. Add a copy of G
and a copy of Hq to G ′. We denote by V ′ the set of vertices corresponding to V (G) in
G ′. For each v ∈ V ′, add q − |L(v)| vertices adjacent to v. We denote these vertices
by {v j | j /∈ L(v)}. Finally, make v j adjacent to all the vertices of {x
 |
 �= j}. See
Fig. 2.

Note thatG ′ is triangle-free since Hq andG are triangle-free, and N (v j)∩V ′ = {v}
and N (v j) ∩ V (Hq) is an independent set. Furthermore, let S ⊆ V (G) be a set such
that G − S is a linear forest and |S| = t . Then S ∪ V (Hq) is such that each connected
component of G ′ − (S ∪ V (Hq)) is a caterpillar and |S ∪ V (Hq)| = t + q(3 · 2q−1 +
q − 3) = t + O(1), since q is a constant.

We will show that (G, L) is a yes-instance to q-List Coloring if and only if G ′
is a yes-instance to q-Clique Coloring. Note that since G ′ is a triangle-free graph,
every clique coloring of G ′ is a proper coloring of it as well. First, suppose (G, L) is
a yes-instance to q-List Coloring and let φ be a q-list coloring for G. We give a
q-coloring φ′ for G ′ in the following way. If v ∈ V ′, make φ′(v) = φ(v). For each

x1

y12

y13

v

v3v2

S
V ′

x2

y21

y23
x3

y31

y32

Fig. 2 In this instance, q = 3 and L(v) = {1}. Note that G′ − (S ∪ V (Hq)) is a caterpillar forest

123

290 Algorithmica (2022) 84:273–303

v j ∈ N (v), make φ′(v j) = j . Note that since j /∈ L(v), we have that φ′(v) �= φ(v j).
Finally, consider a proper q-coloring of Hq . By Claim 2, the vertices x1, . . . , xq were
assigned pairwise distinct colors.Without loss of generality, we can assume xi received
color i . Extend φ to the remaining vertices of G ′ according to this coloring of Hq .
This leads to a proper q-coloring of G ′, since φ(v j) = j and v j is not adjacent to x j .

Now assume G ′ admits a q-clique coloring φ. We will show that φ|V ′ is a q-list
coloring for (G, L). SinceG ′ is triangle-free, it is clear that φ|V ′ is a proper coloring of
G. It remains to show it satisfies the constraints imposedby the lists. ByClaim2,we can
again assume thatφ(xi) = i , for every i . For every v ∈ V ′, since {x
 |
 �= j} ⊂ N (v j),
we necessarily have φ(v j) = j . Finally, since for every c /∈ L(v) there is a neighbor
of v that is colored c (namely vc), we conclude that φ(v) ∈ L(v).

Now, suppose that q- Clique Coloring admits an algorithm running in time
O�((q − ε)t

′
), for some ε > 0, where t ′ is the distance of the input graph to a

caterpillar forest. Then, we can solve q- List- Coloring paramterized by the distance
t to a linear forest by applying the above reduction, giving a q- Clique Coloring
instance at distance t+O(1) to a caterpillar forest, and solving the resulting q- Clique
Coloring instance. Correctness is argued in the previous paragraphs, and the runtime
of the resulting algorithm is O�((q − ε)t+O(1)) = O�((q − ε)t), contradicting SETH
by Theorem 4. ��

Since the instance of q- Clique Coloring constructed in the proof of Theorem 5
is a triangle-free graph, we obtain the following corollary.

Corollary 1 For any ε > 0 and any fixed q ≥ 3, q-Coloring on triangle-free graphs
parameterized by the distance t to a caterpillar forest cannot be solved in timeO�((q−
ε)t), unless SETH fails.

4 Parameterized by Clique-Width

In this section, we give an XP-time algorithm for Clique Coloring parameterized by
clique-width, more precisely, parameterized by the equivalent measure module-width.
We provide an algorithm that given an n-vertex graph G with one of its rooted branch
decompositions of module-width w and an integer k, decides whether G has a clique
coloring with k colors in time k f (w) · n, where f (w) = 22

O (w)
. Before we describe

the algorithm, we give a high level outline of its main ideas, and where the double
exponential dependence on w in the degree of the polynomial comes from.

The algorithm is bottom-up dynamic programming along the given branch decom-
position of the input graph. Let t be some node in the branch decomposition. To keep
the number of table entries bounded by something that is XP in the module-width, we
have to find a way to group color classes into types whose number is upper bounded
by a function of w alone. The intention is that two color classes of the same type
are interchangeable with respect to the underlying coloring being completable to a
valid clique coloring of the whole graph. Partial solutions (colorings of the subgraph
Gt) can then be described by remembering, for each type, how many color classes
of that type there are. If the number of types is f (w) for some function f , this gives

123

Algorithmica (2022) 84:273–303 291

an upper bound of k f (w) on the number of table entries at each node of the branch
decomposition.

Let us discuss what kind of information goes into the definition of a type. Since
the final coloring of G has to avoid monochromatic maximal cliques, we maintain
information about cliques in Gt that are or may become monochromatic maximal
cliques in some extension of the coloring at hand. A natural attempt would be to
consider and describe maximal cliques in Gt by their intersection patterns with the
equivalence classes of ∼t . However, it is not sufficient to consider only maximal
cliques in Gt ; given a maximal clique X in Gt , it may happen that in Vt there is a
vertex v that is adjacent to a strict subset Y ⊂ X of that clique, forming a maximal
clique with Y – which does not fully contain X – in a supergraph of Gt . Considering
the equivalence classes of ∼t , this implies that the equivalence classes containing Y
and the ones containing X\Y are disjoint. We therefore consider cliques X that are
maximal in the subgraph induced by the equivalence classes containing vertices of X .
We call such cliques X eqc-maximal, and observe that with a little extra information,
we can keep track of the forming and disintegrating of eqc-maximal cliques along
the branch decomposition. If an eqc-maximal clique is fully contained in some set
of vertices (/color class) C , then we call it potentially bad for C . A potentially bad
clique is described via its profile, which consists of the intersection pattern with the
equivalence classes of∼t , and some extra information. At each node, there are at most
2O(w) profiles.

Equipped with this definition, we can define the notion of a t-type of a color class
C , which is simply the subset of profiles at t , such that Gt contains a potentially bad
clique with that C-profile. It immediately follows that the number of t-types is 22

O (w)
.

Now, colorings Ct of Gt are described by their t-signature, which records how many
color classes of each type Ct has. There are at most k f (w) many t-signatures, where
f (w) = 22

O (w)
, and this essentially bounds the runtime of the resulting algorithm to

n · k f (w) = nO(f (w)).
At the root node r ∈ V (T), there is only one equivalence class, namely Vr = V (G),

and if in a coloring, there is a clique that is potentially bad for some color class, then it
is indeed a monochromatic maximal clique. Therefore, at the root node, we only have
to check whether there is a coloring all of whose color classes have no potentially bad
cliques.

4.1 Potentially Bad Cliques

We now introduce the main concept used to describe color classes in partial solu-
tions of our algorithms, namely potentially bad cliques. These are cliques that are
monochromatic in some subgraph induced by a set of equivalence classes.

Definition 5 (Potentially bad clique) Let G be a graph with rooted branch decompo-
sition (T ,L) and let t ∈ V (T). A clique X in Gt is called eqc-maximal (in Gt) if it
is maximal in Gt [V (eqct (X))]. Let C ⊆ Vt and let X be a clique in Gt . Then, X is
called potentially bad for C (in Gt), if X is eqc-maximal in Gt and X ⊆ C .

123

292 Algorithmica (2022) 84:273–303

X

Q1 Q2 Q3 Q4 Q5

Fig. 3 Illustration of the C-profile of a clique X that is potentially bad for a color class C , depicted as the
shaded areas within the equivalence classes. In this case, we have that π(X | C) = ({Q1, Q2}, {Q3, Q4})
(Color figure online)

Naturally, it is not feasible to keep track of all potentially bad cliques. We therefore
capture themost vital information about potentially bad cliques in the following notion
of a profile. For our algorithm, it is only important to know for a color class whether
or not it has some potentially bad clique with a given profile, rather than how many,
or what its vertices are. This is key to reduce the amount of information we need to
store about partial solutions.

There are two components of a profile of a potentially bad clique X ; the first one is
the set of equivalence classes Q containing its vertices, and the second one consists
of the equivalence classes P /∈ Q that have a vertex that is complete to X . This
is because, at a later stage, P may be merged with an equivalence class containing
vertices of X (via the bubbles), in which case X is no longer potentially bad. We
illustrate the following definition in Fig. 3.

Definition 6 (Profile) LetG be a graph with rooted branch decomposition (T ,L) and
let t ∈ V (T). Let C ⊆ Vt and let X be a clique in Gt that is potentially bad for C .
The C-profile of X is a pair of subsets of Vt/∼t , π(X | C) ..= (Q,P), where

Q = eqct (X) and P = {P ∈ eqct (X) | ∃v ∈ P : X ⊆ N (v)}.

We call the set of all pairs of disjoint subsets of Vt/∼t , where the first coordinate
is nonempty, the profiles at t , formally, Πt

..= {(Q,P) | Q,P ⊆ Vt/ ∼t : Q �=
∅ ∧ Q ∩ P = ∅}.
Observation 4 Let (T ,L) be a rooted branch decomposition. For each t ∈ V (T),
there are at most 2O(w) profiles at t , where w = mw(T ,L).

Let t ∈ V (T)\L(T) be an internal node with children r and s and operator
(Ht , ηr , ηs), and let πr ∈ Πr and πs ∈ Πs be a pair of profiles. We are now working
towards a notion that precisely captures when and how a potentially bad clique in Gr

for some Cr ⊆ Vr with Cr -profile πr can be merged with a potentially bad clique in
Gs for some Cs ⊆ Vs with Cs-profile πs to obtain a potentially bad clique for Cr ∪Cs

in Gt . As it turns out, if this is possible, then the profile of the resulting clique only
depends on πr , πs , and the operator of t . Note that for now, we focus on the case when
the cliques in Gr and Gs are both nonempty, and we discuss the case when one of
them is empty below.

Before we proceed with this description, we need to introduce somemore concepts.
We illustrate all of the following concepts in Fig. 4. For a set of equivalence classes
S ⊆ Vr/∼r ∪Vs/∼s , its bubble buddies at t , denoted by bbt (S), are the equivalence

123

Algorithmica (2022) 84:273–303 293

Q1

Q2

Q3

P1

P2

P3

P4

X

Y

Vr Vs

Fig. 4 Merging a potentially bad clique X inGr with a potentially bad clique Y inGs to obtain a potentially
bad clique in Gt . The color class at hand is depicted in blue and the gray and yellow areas show the (three)
bubbles.Note that the equivalence classes P1 and Q2 are bubble buddies ofeqcr (X) andeqcs (Y).Moreover,
the types of X and Y are compatible, since {Q1, P2, P3} is a maximal biclique in Ht [{Q1, P1, P2, P3}].
The dotted line between the vertex in P1 and Q1 shows that there is no edge between the vertices in P1 and
Q1. Observe that if these edges were present, then X and Y would not be compatible, since {Q1, P2, P3}
would no longer be a maximal biclique in Ht [{Q1, P1, P2, P3}]. Finally, note that the equivalence class
of ∼t corresponding to the bubble containing Q3 will have a vertex that is complete to the potentially bad
clique X ∪ Y (Color figure online)

classes of Vr/∼r ∪Vs/∼s that are in the same bubble as some equivalence class inS :

bbt (S) ..=
⋃

p∈{r ,s}
{
Qp ∈ Vp/∼p | ηp(Qp) ∈ ηp(S ∩ Vp/∼p)

}

We say that πr = (Qr ,Pr) and πs = (Qs,Ps) are compatible, if Qr ∪ Qs is a
maximal biclique in

H ′
t (πr , πs)

..= Ht [(Qr ∪ Qs) ∪ ((Pr ∪ Ps) ∩ bbt (Qr ∪ Qs))]. (1)

As we show below, the notion of compatibility precisely captures the ‘merging
behavior’ of potentially bad cliques. Moreover, for πr and πs compatible, we can
immediately construct the profile of the resulting potentially bad clique: the merge
profile of πr and πs is the profile μ(πr , πs) = (Qt ,Pt) such that

– Qt = ηr (Qr) ∪ ηs(Qs) and
– Pt = ⋃

{o,p}={r ,s}{ηp(Qp) | Qp ∈ Pp\bbt (Qr ∪ Qs) : Qo ⊆ NHt (Qp)}.
Lemma 2 Let t ∈ V (T)\L(T) be an internal node with children r and s and operator
(Ht , ηr , ηs). For all p ∈ {r , s}, let Cp ⊆ Vp, let X p be a clique in G p that is

123

294 Algorithmica (2022) 84:273–303

potentially bad for Cp, and let πp
..= π(X p | Cp) = (Qp,Pp). If πr and πs are

compatible, then Xt
..= Xr ∪ Xs is a clique that is potentially bad for Ct

..= Cr ∪Cs,
and π(Xt | Ct) = μ(πr , πs).

Proof We first argue that Xt is a clique. Since Xr and Xs are cliques, we only have to
show that for each vr ∈ Xr and vs ∈ Xs , vrvs ∈ E(Gt). In other words, if Qr is the
equivalence class of∼r containing vr , and Qs is the equivalence class of∼s containing
vs , then Qr Qs ∈ E(Ht). Now, Qr ∈ eqcr (Xr) = Qr and Qs ∈ eqcs(Xs) = Qs , and
since πr and πs are compatible, we have that Qr ∪ Qs is a biclique in Ht , therefore
Qr Qs ∈ E(Ht).

Next, we show that Xt is potentially bad for Ct . Since Xr and Xs are potentially
bad for Cr and Cs , respectively, we have that Xr ⊆ Cr and Xs ⊆ Cs , and therefore
Xt = Xr ∪ Xs ⊆ Cr ∪Cs = Ct . It remains to show that Xt is eqc-maximal. Suppose
not, and let y ∈ V (eqct (Xt)) be a vertex that is complete to Xt . First, we know
that y /∈ V (eqcr (Xr) ∪ eqcs(Xs)), for if y ∈ V (eqcp(X p)) for some p ∈ {r , s},
then X p is not eqc-maximal, contradicting X p being potentially bad for Cp. On the
other hand, we have that eqct (Xt) = bbt (eqcr (Xr) ∪ eqcs(Xs)) = bbt (Qr ∪ Qs).
We may assume that for some p ∈ {r , s}, the vertex y is contained in some Qp ∈
bbt (Qr ∪ Qs)\(Qr ∪ Qs). Assume up to renaming that p = r . Since y is complete
to Xt , we have that y is complete to Xr , and therefore Qr ∈ Pr . In other words,
Qr is contained in the graph H ′

t (πr , πs) as described in Eq. (1). Moreover, since y is
complete to Xs , we have that Qr is complete to eqcs(Xs) = Qs . This implies that
{Qr }∪Qr ∪Qs is a biclique in H ′

t (πr , πs), contradicting πr and πs being compatible.
To conclude the proof, we need to show that π(Xt | Ct) = μ(πr , πs). Let

μ(πr , πs) = (Qt ,Pt). We first show that eqct (Xt) = Qt .
To see thatQt = ηr (Qr) ∪ ηs(Qs) ⊆ eqct (Xt), we observe that for all Qp ∈ Qp,

there is an x ∈ X p ∩ Qp. This means that x ∈ ηp(Qp), therefore Xt ∩ ηp(Qp) �= ∅
and ηp(Qp) ∈ eqct (Xt). The other inclusion can be argued similarly.

Now suppose that Qt ∈ Pt . Then, for some {o, p} = {r , s}, Qt = ηp(Qp) for
some Qp ∈ Pp\bbt (Qr ∪Qs)withQo ⊆ NHt (Qp). In other words, there is a vertex
v ∈ Qp that is complete to Xt , and ηp(Qp) /∈ eqct (Xt). According to the definition
of a profile, Qt = ηp(Qp) is contained in the second coordinate of πt . The other
inclusion can be shown similarly. ��

Now we show the other direction, i.e. that if we have a potentially bad clique
for some Ct ⊆ Vt in Gt , then its restrictions to Vr and Vs necessarily also form
potentially bad cliques for the restriction ofCt to Vr and Vs inGr andGs , respectively.
Furthermore, in that case, the profiles of the resulting cliques are compatible.

Lemma 3 Let t ∈ V (T)\L(T) be an internal node with children r and s and operator
(Ht , ηr , ηs). Let Ct ⊆ Vt , and let Xt be a clique in Gt that is potentially bad for
Ct . For all p ∈ {r , s}, let X p

..= Xt ∩ Vp and Cp
..= Ct ∩ Vp. Suppose that for all

p ∈ {r , s}, X p �= ∅. Then, for all p ∈ {r , s}, X p is a potentially bad clique for Cp,
and πr

..= π(Xr | Cr) and πs
..= π(Xs | Cs) are compatible.

Proof Since Xt is a potentially bad clique for Ct , we have that Xt ⊆ Ct , and so for
p ∈ {r , s}, X p ⊆ Cp. It remains to show that X p is eqc-maximal for all p ∈ {r , s}.

123

Algorithmica (2022) 84:273–303 295

Up to renaming, it suffices to show that Xr is eqc-maximal. Suppose not and let
y ∈ eqcr (Xr) be a vertex that is complete to Xr . Since Xt is a clique in Gt , we have
that eqcr (Xr) ∪ eqcs(Xs) is a biclique in Ht . Therefore, y is also complete to Xs and
therefore to Xt . Clearly, y ∈ eqct (Xt), and we have a contradiction with Xt being
eqc-maximal.

What remains to be shown is that πr = (Qr ,Pr) and πs = (Qs,Ps) are compati-
ble. We have already argued thatQr ∪Qs = eqcr (Xr)∪eqcs(Xs) is a biclique in Ht ;
we have to show thatQr ∪Qs is a maximal biclique in H ′

t
..= H ′

t (πr , πs) as defined in
Eq. (1). Clearly,Qr ∪Qs ⊆ V (H ′

t), so suppose thatQr ∪Qs is not a maximal biclique
in H ′

t . This means that for some p ∈ {r , s}, there is some Qp ∈ Pp ∩ bbt (Qr ∪Qs)

such that {Qp} ∪ Qr ∪ Qs is a biclique in H ′
t . In that case, there is a vertex y ∈ Qp

that is complete to Xt (since Qp ∈ Pp and {Qp} ∪ Qr ∪ Qs is a biclique), and
y ∈ V (eqct (Xt)) (since Qp ∈ bbt (Qr ∪ Qs)); we obtained a contradiction with Xt

being eqc-maximal. ��

As mentioned above, we treat the case when a clique X p in one of the children
p ∈ {r , s} remains potentially bad in Gt separately. This is because in that case, the
notion of a maximal biclique in H ′

t as defined in Equation (1) does not hold up very
naturally. We formulate the analogous requirements for this case here, and we skip
some of the details.

Let t ∈ V (T)\L(T) be an internal node with children r and s and operator
(Ht , ηr , ηs). Let πr ∈ Πr . We say that πr = (Qr ,Pr) is liftable if

– There is no Qs ∈ bbt (Qr) that is complete to Qr in Ht , and
– bbt (Qr) ∩ Pr = ∅.

The lift profile of πr , denoted by λ(πr), is constructed as the merge profile of πr with
the empty set; i.e. we take (Qs,Ps) = (∅, Vs/∼s) and apply the definition given
above, meaning λ(πr) = μ(πr , (∅, Vs/∼s)).

Lemma 4 Let t ∈ V (T)\L(T) be an internal node with children r and s. Let Cr ⊆ Vr ,
Cs ⊆ Vs, let Xr be a clique in Gr , and let πr

..= π(Xr | Cr). Then, Xr is a potentially
bad clique for Cr ∪Cs in Gt if and only if Xr is a potentially bad clique for Cr in Gr

and πr is liftable, in which case πt (Xr | Cr ∪ Cs) = λ(πr).

Proof The proof can be done with very similar arguments to those given above and is
therefore omitted. One only needs to observe that the notion of ‘liftable’ modulates
the notion of a profile being compatible with the profile of an empty set. ��

4.2 The Type of a Color Class

We now describe the t-type of a color class C , which is the subset of profiles at t such
that there is a clique in Gt that is potentially bad for C , with that C-profile. For our
algorithm, two color classes with the same type will be interchangeable, therefore we
only have to remember the number of color classes of each type.

123

296 Algorithmica (2022) 84:273–303

Definition 7 (t-T ype) Let G be a graph with rooted branch decomposition (T ,L),
and let t ∈ V (T). For a set C ⊆ Vt , the t-type of C , denoted by γt (C) is

γt (C) ..= {πt ∈ Πt | ∃ clique X in Gt which is potentially bad for C

and π(X | C) = πt }.

With slight abuse of notation, we call the set Γt = 2Πt of all subsets of profiles at t
the t-types.

Since for each t ∈ V (T), |Πt | ≤ 2O(w) by Observation 4, the number of t-types
can be upper bounded as follows.

Observation 5 Let (T ,L) be a rooted branch decomposition, and let t ∈ V (T). There
are at most 22

O (w)
many t-types, where w ..= mw(T ,L).

In our algorithm we want to be able to determine the t-type of the union of a color
class in Gr and a color class in Gs . This is done via the following notion of a merge
type, which is based on the notion of merge and lift profiles given in the previous
section.

Definition 8 (Merge type) LetG be a graphwith rooted branch decomposition (T ,L),
let t ∈ V (T)\L(T)with children r and s. For a pair of an r -type γr ∈ Γr and an s-type
γs ∈ Γs , the merge type of γr and γs , denoted by μ(γr , γs), is the t-type obtained as
follows.

μ(γr , γs)
..= {μ(πr , πs) | πr ∈ γr , πs ∈ γs,where πr and πs are compatible}

⋃

p∈{r ,s}
{
λ(πp) | πp ∈ γp,where πp is liftable

}

Lemma 5 Let G be a graph with rooted branch decomposition (T ,L), let t ∈
V (T)\L(T) with children r and s. Let Cr ⊆ Vr and Cs ⊆ Vs. Then, γt (Cr ∪ Cs) =
μ(γr (Cr), γs(Cs)).

Proof Let Ct
..= Cr ∪ Cs . For one inclusion, let πt ∈ γt (Ct). Then, there is a clique

Xt in Gt that is potentially bad for Ct whose Ct -profile is πt . If for all p ∈ {r , s},
X p

..= Xt ∩ Vp �= ∅, then by Lemma 3, we know that for all p ∈ {r , s}, X p is a
potentially bad clique for Cp

..= Ct ∩ Vp, therefore πp
..= π(X p | Cp) ∈ γp(Cp).

Moreover, the lemma asserts that πr and πs are compatible, so by construction, we
can conclude that πt = μ(πr , πs) ∈ μ(γr (Cr), γs(Cs)). On the other hand, if for
some p ∈ {r , s}, Xt ⊆ Vp, then by Lemma 4, Xt is a potentially bad clique for Cp,
so πp

..= πp(Xt | Cp) ∈ γ (Cp). The lemma also asserts that πp is liftable and that
λ(πr) = πt , in which case we also have that πt ∈ μ(γr (Cr), γs(Cs)). We have argued
that γt (Ct) ⊆ μ(γr (Cr), γs(Cs)).

For the other inclusion, suppose that πt ∈ μ(γr (Cr), γs(Cs)). Then, either there
is a pair of profiles πr ∈ γr (Cr), πs ∈ γs(Cs) such that πr and πs are compatible
and πt = μ(πr , πs) or for some p ∈ {r , s}, there is a profile πp ∈ γp(Cp) that is
liftable and πt = λ(πp). In the former case, we can use Lemma 2 to conclude that
πt ∈ γt (Ct), and in the latter case, we have that πt ∈ γt (Ct) by Lemma 4. This shows
that μ(γr (Cr), γs(Cs)) ⊆ γt (Ct) which concludes the proof. ��

123

Algorithmica (2022) 84:273–303 297

4.3 The Algorithm

We are now ready to describe the algorithm. As alluded to above, partial solutions
at a node t , i.e. colorings of Gt , are described via the notion of a t-signature which
records the number of color classes of each type in a coloring. If two colorings have the
same t-signature, then they are interchangeable as far as our algorithm is concerned.
We show that this information suffices to solve the problem in a bottom-up dynamic
programming fashion.

Definition 9 (t-Signature) Let k be a positive integer. Let G be a graph with rooted
branchdecomposition (T ,L), let t ∈ V (T), and letC = (C1, . . . ,Ck)be a k-coloring
of Gt . Then, σC : Γt → {0, 1, . . . , k} where

∀γt ∈ Γt : σC (γt)
..= |{i ∈ {1, . . . , k} | γt (Ci) = γt }|,

is called the t-signature of C . The set of t-signatures is defined as:

sigt
..=

{

σt : Γt → {0, 1, . . . , k}
∣
∣
∣
∣

∑

γt∈Γt
σt (γt) = k

}

The following bound on the number of t-signatures immediately follows from
Observation 5, stating that the number of t-types is upper bounded by 22

O (w)
.

Observation 6 Let (T ,L) be a rooted branch decomposition of an n-vertex graph, and

let t ∈ V (T). There are at most k2
2O (w)

many t-signatures, where w ..= mw(T ,L)

and k is the number of colors.

Definition of the Table Entries For each t ∈ V (T) and σt ∈ sigt , we let tab[t, σt] = 1
if and only if there is a k-coloring C of Gt such that σC = σt .

We now show that the information stored at the table entries suffices to determine
whether or not our input is a Yes-instance; that is, after filling all the table entries, we
can read off the solution to the problem at the root node.

Lemma 6 Let G be a graph with rooted branch decomposition (T ,L), and let r be
the root of T . G has a clique coloring with k colors if and only if tab[r, σ �] = 1,
where σ� is the r-signature for which σ�(∅) = k.

Proof The lemma immediately follows from two facts. First, since σ�(∅) = k, we have
thatσ�(γr) = 0 for anyother r-typeγr �= ∅. Second, that for each setC ⊆ Vr = V (G),
the set of potentially bad cliques for C is precisely the set of maximal cliques that
are fully contained in C , i.e. it is the set of monochromatic maximal cliques in the
corresponding coloring that are contained in C . ��

We first describe how to compute the table entries at the leaves, by brute-force.

Leaves of T Let t ∈ L(T) be a leaf node in T and let v ∈ V (G) be the vertex such that
L (v) = t .We showhow to compute the table entries tab[t, ·].Note thatGt = ({v},∅),

123

298 Algorithmica (2022) 84:273–303

1 foreach σt ∈ sigt do set tab[t, σt] ← 0 Let (J,m) be the merge skeleton of t ;
2 foreach σr ∈ sigr , σs ∈ sigs such that tab[r , σr] = 1 and tab[s, σs] = 1 do
3 foreach n : E(J) → {0, 1, . . . , k} such that

1.
∑

e∈E(J) n(e) = k, and
2. for all p ∈ {r , s} and all γp ∈ Γp, it holds that

∑
γpγo∈E(J) n(γpγo) = σp(γp)

4 do
5 Let σt : Γt → {0, 1, . . . , k} be such that for all γt ∈ Γt , σt (γt) = ∑

e∈E(J),m(e)=γt
n(e);

6 update tab[t, σt] ← 1;

Algorithm2:Algorithm to set the table entries at an internal node t ∈ V (T)\L(T)

with children r and s, assuming the table entries at r and s have been computed.

and that {v} is the only equivalence class of∼t . To describe the types of color classes of
Gt , observe that the only eqc-maximal clique in Gt is {v} =.. Xv , which is potentially
bad for Cv

..= {v} = Xv . In that case, we have that πv
..= π(Xv | Cv) = ({v},∅), and

the type of color class Cv is {πv}. The type of the remaining k − 1 color classes is ∅,
since they are all empty. Therefore, for each t-signature σt , we set tab[t, σt] ..= 1 if
and only if σt ({πv}) = 1 and σt (∅) = k − 1.

Next, we move on to the computation of the table entries at internal nodes of the
branch decomposition. To describe this part of the algorithm, we borrow the following
notion of a merge skeleton from [23].4

Definition 10 (Merge skeleton) Let G be a graph and (T ,L) one of its rooted branch
decompositions. Let t ∈ V (T)\L(T) with children r and s. The merge skeleton of r
and s is a pair (J,m), where J is a complete bipartite graph and m : E(J) → Γt is an
edge-labeling of J with

– V (J) = Γr ∪ Γs , and
– for all γr ∈ Γr , γs ∈ Γs , m(γrγs) = μ(γr , γs).

Internal nodes of T Let t ∈ V (T)\L(T) be an internal node with children r and
s. We discuss how to compute the table entries at t , assuming the table entries at r
and s have been computed. Each coloring of Gt can be obtained from a coloring of
Gr and a coloring of Gs , by merging pairs of color classes. Therefore, for each pair
σr ∈ sigr , σs ∈ sigs such that tab[r , σr] = 1 and tab[s, σs] = 1, we do the following.
We enumerate all labelings of the edge set of the merge skeleton with numbers from
{0, 1, . . . , k}, with the following interpretation. If an edge γrγs has label j , then it
means that j color classes of r -type γr will be merged with j color classes of s-type
γs ; this gives j color classes of t-type μ(γr , γs) = m(γrγs). Each such labeling that
respects the number of color classes available of each type will produce a coloring of
Gt with some signature σt , which can then be read off the edge labeling. For all such
σt , we set tab[t, σt] = 1. We give the formal details in Algorithm 2.

We now prove the correctness of the algorithm.

Lemma 7 Let G be a graph and (T ,L) one of its rooted branch decompositions, and
let t ∈ V (T). The above algorithm computes the table entries tab[t, ·] correctly, i.e.
4 Note that in [23], the graph structure of the bipartite graph plays a role, in that there is only edges between
compatible types. In the present setting, there is no notion of compatibility of color class types which is
why the bipartite graph of the merge skeleton is always complete.

123

Algorithmica (2022) 84:273–303 299

for each σt ∈ sigt , it sets tab[t, σt] = 1 if and only if Gt has a k-coloring C with
σC = σt .

Proof The proof is by induction on the height of t . In the base case, when t is a leaf,
it is straightforward to verify correctness.

Now suppose that t ∈ V (T)\L(T) is an internal node with children r and s, and let
(J,m) be themerge skeleton at t . Suppose for some t-signatureσt ∈ sigt , the algorithm
set tab[t, σt] = 1. Then, there is some r -signature σr and some s-signature σs such that
tab[r , σr] = 1, tab[s, σs] = 1, and there is a map n : E(J) → {0, 1, . . . , k} satisfying
the conditions of lines 3 and 5 in Algorithm 2. By induction, there is a k-coloring Cr

of Gr whose r -signature is σr , and a k-coloring of Cs of Gs whose s-signature is σs .
We construct the desired coloring Ct of Gt whose t-signature is σt as follows: For
each pair of an r -type γr and an s-type γs , we take n(γrγs) pairs of a color class Cr of
r -type σr and a color class Cs of s-type Cs , and for each such pair, we add Cr ∪Cs as
a color class to Ct . By Lemma 5, the t-type of Cr ∪ Cs is μ(γr , γs) = m(γrγs). The
condition in line 3 ensures that each color class of Cr and each color class of Cs is
used precisely once to create a color class ofCt (which also implies thatCt has k color
classes), and the condition in line 5 ensures that the t-signature of Ct is indeed σt .

For the other direction, suppose that there is a k-coloring Ct of Gt with t-signature
σt . We construct a pair of a coloringCr ofGr and a coloring ofCs ofGs , together with
their signatures σr and σs , respectively, and a map n : E(J) → {0, 1, . . . , k}. Initially,
for all p ∈ {r , s}, we let Cp = ∅, and for all γp ∈ Γp, σp(γp)

..= 0. Moreover, we let
n(e) ..= 0 for all e ∈ E(J).

For each color class Ct ∈ Ct , we add Cr
..= Ct ∩ Vr to Cr and Cs

..= Ct ∩ Vs to
Cs . Let γt be the t-type of Ct . By Lemma 5, Cr has some r -type γr and Cs has some
s-type γs such that γt is the merge type μ(γr , γs) of γr and γs . We increase the values
of σr (γr) and σs(γs) by 1, since we added one more color class of r -type γr to Cr , and
one more color class of s-type γs to Cs . Additionally, we add 1 to the value of n(γrγs),
since Ct is a color class of t-type μ(γr , γs) = m(γrγs) obtained from merging Cr (a
color class of r -type γr) with Cs (a color class of s-type γs).

After doing this for all color classes of Ct , we have that Cr is a k-coloring with r -
signature σr , and thatCs is a k-coloringwith s-signature σs . By induction, tab[r , σr] =
1 and tab[s, σs] = 1. It remains to argue that n satisfies the conditions expressed in
lines 3 and 5 in Algorithm 2. The first item of line 3 is clearly satisfied, since we
increased |Ct | = k values of n by 1 in the above process. The second item holds
since we increased the value of some σp(γp) by 1 if and only if we increased the
value of an edge e incident with γp in J by 1. To see that for each γt , σt (γt) =∑

e∈E(J),m(e)=γt
n(e), observe that we identified for each color class of type γt , the

occurrence of γt as a merge type of a pair of an r -type and an s-type, and therefore a
label of some edge e ∈ E(J), and increased n(e) by 1 in such a case. We can conclude
that σt can be obtained as shown in line 5 of Algorithm 2, and so the algorithm set
tab[t, σt] = 1. ��

To wrap up, it remains to argue the runtime of the algorithm. Suppose we are given
a graph G with rooted branch decomposition (T ,L) and let w ..= mw(T ,L). By

Observation 6, there are at most k2
2O (w)

table entries at each node of T . The entries

123

300 Algorithmica (2022) 84:273–303

of leaf nodes can clearly be computed in constant time. Now let t ∈ V (T)\L(T) be
an internal node with children r and s. To compute all table entries at t , we execute
Algorithm 2. In the worst case, it loops over each pair of an r -signature and an s-
signature, and given such a pair, it enumerates all labelings of the edges of the merge
skeleton J with numbers from {0, 1, . . . , k} (such that all entries sum up to k). We

have that |E(J)| = |Γr | · |Γs | =
(
22

O (w)
)2 = 22

O (w)
(see Observation 5), therefore

the number of labelings to consider is upper bounded by k2
2O (w)

. The runtime of
Algorithm 2 can therefore be upper bounded by

(

k2
2O (w)

)2

· k22O (w) = k2
2O (w)

,

and since |V (T)| = O(n), the runtimeof thewhole procedure is k2
2O (w) ·n. Correctness

is proved in Lemmas 7, and reflem:ccol:root asserts that the solution to the problem can
be read off the table entries at the root, once computed. Using standard memoization
techniques, we can modify the above algorithm so that it returns a coloring if one
exists. Lastly, we observe that we may assume that k < n. For if k ≥ n, then the input
instance is a trivial Yes-instance: we can simply assign each vertex of the input graph
G a distinct color; this clearly results in a clique coloring of G. We have the following
theorem.

Theorem 6 There is an algorithm that given an n-vertex graph G together with one
of its rooted branch decompositions (T ,L) and a positive integer k, decides whether

G has a clique coloring with k colors in time k2
2O (w) · n ≤ n2

2O (w)

, where w ..=
mw(T ,L). If such a coloring exists, the algorithm can construct it.

5 Conclusion

In this work, we considered structural parameterizations of the Clique Coloring
problem by two of the most commonly used width measures of graphs: treewidth and
clique-width.We showed that for fixed number of colors q ≥ 2, q- Clique Coloring
can be solved in time O�(qtw), where tw denotes the width of a given tree decompo-
sition of the input graph, and that under SETH, there is no such algorithm running in
time O�((q − ε)tw), for any ε > 0. Regarding the clique-width parameterization, we

gave a k2
2O (cw) · n time algorithm, where k is the requested number of colors and the

input graph is given together with a clique-width cw-expression. We would like to end
this work by recalling and explicitly stating the open questions from the introduction
that are raised by the clique-width based algorithm. First, we would be interested in
the coarse parameterized complexity of this problem.

Open Problem 1 Is Clique Coloring parameterized by clique-width W[1]-hard?
Arguably the most promising route to an FPT-algorithm for Clique Coloring

parameterized by clique-width (if it exists) is via a proof that the number of colors

123

Algorithmica (2022) 84:273–303 301

that is needed in any clique coloring is upper bounded in terms of some function of
the clique-width of a graph.

Open Problem 2 Is there a function g : N → N such that each graph G can be clique
colored with at most g(cw) colors, where cw denotes the clique-width of G?

Next, it would be interesting to see if the triple-exponential dependence on cw of our
algorithm can be avoided – both in the case when the number of colors is unbounded
and when the number of colors is bounded.

Open Problem 3 Is there an algorithm for Clique Coloring running in time n2
2o(cw)

,

or for fixed q ≥ 2, an algorithm for q- Clique Coloring running in time q2
2o(cw) ·

nO(1), when the input graph is given together with a clique-width cw-expression, or
would any such algorithm violate ETH?

Acknowledgements Wewould like to thank the anonymous reviewers for comments that helped improving
the presentation of this paper.

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital)

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Andreae, T., Schughart, M., Tuza, Z.: Clique-transversal sets of line graphs and complements of line
graphs. Discrete Math. 88(1), 11–20 (1991)

2. Bacsó, G., Gravier, S., Gyárfás, A., Preissmann, M., Sebo, A.: Coloring the maximal cliques of graphs.
SIAM J. Discrete Math. 17(3), 361–376 (2004)

3. Bacsó, G., Tuza, Z.: Clique-transversal sets and weak 2-colorings in graphs of small maximum degree.
Discrete Math. Theor. Comput. Sci. 11(2), 15–24 (2009)

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution.
In: Johnson, D.S., Feige, U. (eds.) Proceedings of the 39th Annual ACM Symposium on Theory of
Computing (STOC 2007), pp. 67–74. ACM (2007)

5. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)
6. Campos, C.N., Dantas, S., de Mello, C.P.: Colouring clique-hypergraphs of circulant graphs. Electron.

Notes Discrete Math. 30, 189–194 (2008)
7. Cerioli, M.R., Korenchendler, A.L.: Clique-coloring circular-arc graphs. Electron. Notes Discrete

Math. 35, 287–292 (2009)
8. Charbit, P., Penev, I., Thomassé, S., Trotignon, N.: Perfect graphs of arbitrarily large clique-chromatic

number. J. Combin. Theory Ser. B 116, 456–464 (2016)

123

http://creativecommons.org/licenses/by/4.0/

302 Algorithmica (2022) 84:273–303

9. Chudnovsky, M., Lo, I.: Decomposing and clique-coloring (diamond, odd-hole)-free graphs. J. Graph
Theory 86(1), 5–41 (2017)

10. Cochefert, M., Kratsch, D.: Exact algorithms to clique-colour graphs. In: Geffert, V., Preneel, B.,
Rovan, B., Stuller, J., Tjoa, A.M. (eds.) Proceedings of the 40th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2014), LNCS, vol. 8327, pp. 187–198.
Springer, New York (2014)

11. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst.
Sci. 46(2), 218–270 (1993)

12. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3),
77–114 (2000)

13. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S.,
Wahlström, M.: On problems as hard as CNF-SAT. ACM Transactions on Algorithms 12(3), 41:1-
41:24 (2016)

14. Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer, New York (2015)

15. Défossez, D.: Clique-coloring some classes of odd-hole-free graphs. J. Graph Theory 53(3), 233–249
(2006)

16. Downey, R.G., Fellows,M.R.: Fundamentals of ParameterizedComplexity. Springer, NewYork (2013)
17. Duffus, D., Sands, B., Sauer, N., Woodrow, R.E.: Two-colouring all two-element maximal antichains.

J. Combin. Theory Ser. A 57(1), 109–116 (1991)
18. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-width parameteriza-

tions. SIAM J. Comput. 39(5), 1941–1956 (2010)
19. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S., Zehavi, M.: Clique-width III: Hamiltonian

cycle and the odd case of graph coloring. ACM Trans. Algorithms 15(1), 9:1-9:27 (2019)
20. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
21. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Com-

put. Syst. Sci. 63(4), 512–530 (2001)
22. Jaffke, L., Jansen, B.M.P.: Fine-grained parameterized complexity analysis of graph coloring problems.

In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) Proceedings of the 10th International Conference
on Algorithms and Complexity (CIAC 2017), LNCS, vol. 10236, pp. 345–356. Springer (2017)

23. Jaffke, L., Lima, P.T., Lokshtanov, D.: b-Coloring parameterized by clique-width. In: Bläser, M.,
Monmege, B. (eds.) Proceedings of the 38th International Symposium on Theoretical Aspects of
Computer Science (STACS 2021), LIPIcs, vol. 187, pp. 43:1–43:15. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany (2021)

24. Jaffke, L., Lima, P.T., Philip, G.: Structural parameterizations of clique coloring. In: Esparza, J., Král’,
D. (eds.) Proceedings of the 45th International Symposium onMathematical Foundations of Computer
Science (MFCS 2020), LIPIcs, vol. 170, pp. 49:1–49:15. Schloss Dagstuhl (2020)

25. Klein, S., Morgana, A.: On clique-colouring of graphs with few P4’s. J. Braz. Comput. Soc. 18(2),
113–119 (2012)

26. Kloks, T.: Treewidth: Computations and approximations, LNCS, vol. 842. Springer, New York (1994)
27. Kratochvíl, J., Tuza, Z.: On the complexity of bicoloring clique hypergraphs of graphs. J. Algorithms

45(1), 40–54 (2002)
28. Lokshtanov, D.,Marx, D., Saurabh, S.: Known algorithms on graphs of bounded treewidth are probably

optimal. ACM Trans. Algorithms 14(2), 13:1-13:30 (2018)
29. Lovász, L.: Combinatorial Problems and Exercises. North-Holland Publishing Co., London (1993)
30. Marx, D.: Complexity of clique coloring and related problems. Theoret. Comput. Sci. 412(29), 3487–

3500 (2011)
31. Mohar, B., Škrekovski, R.: The Grötzsch theorem for the hypergraph of maximal cliques. Electron. J.

Combin. 6(1), 128 (1999)
32. Penev, I.: Perfect graphswith no balanced skew-partition are 2-clique-colorable. J. GraphTheory 81(3),

213–235 (2016)
33. Rao, M.: Décompositions de graphes et algorithmes efficaces. Ph.D. thesis, University of Metz (2006)
34. Rao,M.: Clique-width of graphs defined by one-vertex extensions. DiscreteMath. 308(24), 6157–6165

(2008)
35. Shan, E., Liang, Z., Kang, L.: Clique-transversal sets and clique-coloring in planar graphs. Eur. J.

Comb. 36, 367–376 (2014)

123

Algorithmica (2022) 84:273–303 303

36. Vassilevska, W.V.: Hardness of easy problems: basing hardness on popular conjectures such as the
strong exponential time hypothesis (invited talk). In: Husfeldt, T., Kanj, I.A. (eds.) Proceedings of the
10th International Symposium on Parameterized and Exact Computation (IPEC 2015), LIPIcs, vol.
43, pp. 17–29. Schloss Dagstuhl, New York (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Structural Parameterizations of Clique Coloring
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Treewidth
	2.2 Clique-Width, Branch Decompositions, and Module-Width
	2.3 Colorings

	3 Parameterized by Treewidth
	3.1 Algorithm
	3.2 Lower Bound

	4 Parameterized by Clique-Width
	4.1 Potentially Bad Cliques
	4.2 The Type of a Color Class
	4.3 The Algorithm

	5 Conclusion
	Acknowledgements
	References

