
Vol:.(1234567890)

Algorithmica (2022) 84:670–693
https://doi.org/10.1007/s00453-021-00864-1

1 3

Computing Minimal Unique Substrings for a Sliding
Window

Takuya Mieno1,2 · Yuta Fujishige1,2,3 · Yuto Nakashima1 ·
Shunsuke Inenaga1,4 · Hideo Bannai1,5 · Masayuki Takeda1

Received: 29 August 2020 / Accepted: 1 August 2021 / Published online: 20 August 2021
© The Author(s) 2021

Abstract
A substring u of a string T is called a minimal unique substring (MUS) of T if u
occurs exactly once in T and any proper substring of u occurs at least twice in T.
In this paper, we study the problem of computing MUSs for a sliding window over
a given string T. We first show how the set of MUSs can change when the window
slides over T. We then present an O(n log ��)-time and O(d)-space algorithm to com-
pute MUSs for a sliding window of size d over the input string T of length n, where
�
′ ≤ d is the maximum number of distinct characters in every window.

Keywords Minimal unique substring · Sliding window · Suffix tree

 * Takuya Mieno
 takuya.mieno@inf.kyushu-u.ac.jp

 Yuto Nakashima
 yuto.nakashima@inf.kyushu-u.ac.jp

 Shunsuke Inenaga
 inenaga@inf.kyushu-u.ac.jp

 Hideo Bannai
 hdbn.dsc@tmd.ac.jp

 Masayuki Takeda
 takeda@inf.kyushu-u.ac.jp

1 Department of Informatics, Kyushu University, Fukuoka, Japan
2 Japan Society for the Promotion of Science, Tokyo, Japan
3 Present Address: Fujitsu Laboratories Ltd., Kawasaki, Japan
4 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
5 Present Address: M&D Data Science Center, Tokyo Medical and Dental University, Tokyo,

Japan

http://orcid.org/0000-0003-2922-9434
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00864-1&domain=pdf

671

1 3

Algorithmica (2022) 84:670–693

1 Introduction

1.1 Minimal Unique Substrings and Shortest Unique Substrings

A unique substring of string T is a substring of T which appears exactly once in T.
Finding unique substrings of DNA sequences has gained attention in bioinformat-
ics [8, 9, 15, 24]. For example, it can be applied in PCR primer design [24] and
alignment-free genome comparison [9].

In the last decade, problems that relate to computing unique substrings in a given
string have been studied in the field of string algorithmics. A unique substring u of
T is said to be a minimal unique substring (MUS) of T if any proper substring of u is
not a unique substring. Ilie and Smyth [13] formalized MUSs and proposed a linear
time algorithm to compute all MUSs of a given string T.

MUSs has been heavily utilized for solving the shortest unique substring (SUS)
problems: A unique substring v = T[s… t] of T is said to be a shortest unique sub-
string (SUS) of T for a text position p if v contains the position p (i.e., p ∈ [s, t]) and
any proper substring of v which contains p is not a unique substring. The single-
SUS problem is to preprocess a given string T of length n so that for any subsequent
query position p, a SUS for p can be answered quickly. Pei et al. [20] introduced
the single-SUS problem and gave an O(n2)-time preprocessing scheme which can
answer single-SUS queries in constant time. Tsuruta et al. [22], Ileri et al. [12], and
Hu et al. [11] independently showed O(n)-time preprocessing schemes which can
answer single-SUS queries in constant time. Also, Hon et al. [10] proposed an in-
place algorithm for computing SUSs for all positions in linear time. The all-SUS
problem is a generalization of the single-SUS problem which requires to output all
SUSs for given position p. The methods of Tsuruta et al. [22] and Hu et al. [11]
can answer all-SUS queries in O(occ) time, where occ is the number of SUSs to
output. Note that the SUS problem studied by [11] is more general, that is, they
find SUSs covering a given interval in the string, instead of a text position. More-
over, Mieno et al. [16] considered the all-SUS problem on a run-length encoded
string, and proposed an O(r)-space data structure which can answer all-SUS (inter-
val) queries in O(

√
log r∕ log log r + occ) time, where r is the size of a given run-

length encoded string. Although not mentioned explicitly in [16], the size of their
data structure (except for the input string) and query time can be respectively written
as O(m) space and O(

√
logm∕ log logm + occ) time with respect to the number m of

MUSs of the input string T. Note that all the above algorithms for the SUS problems
compute all MUSs of the given string (or some data structure which is essentially
equivalent to MUSs) in the preprocessing. We also refer to [1, 3, 7, 17] for related
results on the SUS problems.

1.2 Sliding Window Model

In this paper, we tackle the problem of computing MUSs in the sliding window
model. In the sliding window model, the input string is given in an online fashion,

672 Algorithmica (2022) 84:670–693

1 3

one character at a time from left to right, and the memory usage is limited to some
pre-determined space. The task of the sliding window model is to process all sub-
strings T[i… i + d − 1] of pre-fixed length d in a string T of length n in an incre-
mental fashion, for increasing i = 0,… , n − d . Usually the window size d is set to
be much smaller than the string length n, and thus the challenge here is to design
efficient algorithms that process all such substrings using only O(d) working space.

A typical application to the sliding window model is data compression; examples
are the famous Lempel-Ziv 77 (the original version) [25] and PPM [4]. Recently,
Crochemore et al. [5] introduced the problem of computing Minimal Absent Words
for a sliding window, and proposed an O(n�)-time and O(d�)-space algorithm using
suffix trees for a sliding window where � is the alphabet size. This paper deals
with the problem of computing MUSs in a sliding window. This problem can be
directly applied to compute uniqueness score of oligonucleotides for designing till-
ing arrays [8].

1.3 Our Contributions

We begin with combinatorial results on MUSs for a sliding window. Namely, we
show that the number of MUSs that are added or deleted by one slide of the win-
dow is always constant (Sect. 3). We then present the first efficient algorithm that
maintains the set of MUSs for a sliding window of length d over a string of length n
in a total of O(n log ��) time and O(d) working space where �′ ≤ d is the maximum
number of distinct characters in every window (Sect. 4). Our main algorithmic tool
is the suffix tree for a sliding window that requires O(d) space and can be maintained
in O(n log ��) time [6, 14, 21]. Our algorithm for computing MUSs for a sliding win-
dow is built on our combinatorial results, and it keeps track of three different loci
over the suffix tree, all of which can be maintained in O(log ��) amortized time per
each sliding step.

A part of the results reported in this article appeared in a preliminary version of
this paper, [18]. The preliminary paper [18] consists of two parts: (1) efficient com-
putation and combinatorial properties of MUSs for a sliding window, and (2) combi-
natorial properties of minimal absent words (MAWs) [19] for a sliding window. This
current article is a full version of the former part (1) which contains complete proofs
and supplemental figures which were omitted in the preliminary version [18]. We
remark that an extended version of the latter part (2) can be found as an independent
article [2].

2 Preliminaries

2.1 Strings

Let Σ be an alphabet of size � . An element of Σ is called a character. An element
of Σ∗ is called a string. The length of a string T is denoted by |T|. The empty string
� is the string of length 0. If T = xyz , then x, y, and z are called a prefix, substring,

673

1 3

Algorithmica (2022) 84:670–693

and suffix of T, respectively. They are called a proper prefix, proper substring, and
proper suffix of T if x ≠ T , y ≠ T , and z ≠ T , respectively. If a string b is a proper
prefix of T and is a proper suffix of T, b is called a border of T.

For any 0 ≤ i ≤ |T| − 1 , T[i] denotes the ith character of T. For any
0 ≤ i ≤ j ≤ |T| − 1 , T[i… j] denotes the substring of T starting at position i and
ending at position j, i.e., T[i… j] = T[i]T[i + 1]⋯T[j] . For convenience, let
T[i� … j�] = � for any i′ > j′ . For any 0 ≤ i ≤ |T| − 1 , T[i…] denotes the suffix start-
ing at position i, i.e., T[i…] = T[i… |T| − 1].

For a non-empty string w, the set of beginning positions of occurrences of w in
T is denoted by occT (w) = {i ∣ T[i… i + |w| − 1] = w} . Let #occT (w) = |occT (w)| .
For any substring w of T, w is called unique in T if #occT (w) = 1 , quasi-unique in
T if 1 ≤ #occT (w) ≤ 2 , and repeating in T if #occT (w) ≥ 2 . For convenience, let
#occT (�) = |T| + 1 , and thus, � is always repeating in any non-empty string. For any
0 ≤ i ≤ j ≤ |T| − 1 , lrSufi,j denotes the longest repeating suffix of T[i… j] , sqSufi,j
denotes the shortest quasi-unique suffix of T[i… j] , and sqPrefi,j denotes the shortest
quasi-unique prefix of T[i… j] . While lrSufi,j can be the empty string, both sqSufi,j
and sqPrefi,j are always non-empty strings for any i, j with 0 ≤ i ≤ j ≤ |T| − 1 . See
Fig. 1 for examples.

In what follows, we consider an arbitrarily fixed string T of length n ≥ 1 over an
alphabet Σ of size � ≥ 2.

2.2 Minimal Unique Substrings

A unique substring u = T[s… t] of T is called a minimal unique substring (MUS)
of T if and only if both T[s + 1… t] and T[s… t − 1] are repeating in T. Since a
unique substring u of T has exactly one occurrence in T, it can be identified with
a unique interval [s, t] such that 0 ≤ s ≤ t ≤ n − 1 and u = T[s… t] . We denote by
���(T) = {[s, t] ∣ T[s… t] is a MUS of T} the set of intervals corresponding to the
MUSs of T. See Fig. 1 for examples of MUSs.

Fig. 1 String T = �������������� of length 14 and its substrings lrSuf2,11 , sqSuf2,11 , and sqPref2,11 for
the current window T[2… 11]

674 Algorithmica (2022) 84:670–693

1 3

This paper deals with the problem of computing MUSs for a sliding window of
fixed length d over a given string T, formalized as follows:

Input String T of length n and positive integer d (< n).
Output ���(T[i… i + d − 1]) for all 0 ≤ i ≤ n − d.

2.3 Suffix Trees

The suffix tree of string T, denoted �����(T) , is a compacted trie that represents
all suffixes of T. We consider a version of suffix trees a.k.a. Ukkonen trees [23]:
Namely, �����(T) is a rooted tree such that

1. each edge is labeled by a non-empty substring of T,
2. each internal node has at least two children,
3. the out-going edges of each node begin with mutually distinct characters, and
4. the suffixes of T that are unique in T are represented by paths from the root to the

leaves, and the other suffixes of T that are repeating in T are represented by paths
from the root that end either on internal nodes or on edges.

Fig. 2 The suffix tree of string T = ���������� , where the suffix links are depicted by broken arrows,
the implicit suffix nodes are depicted by black circles, as well as the three kinds of active points are
marked. For example of other notions on the suffix tree, substring w = ����� of T is considered here

675

1 3

Algorithmica (2022) 84:670–693

To simplify the description of our algorithm, we assume that there is an auxiliary
node ⟂ which is the parent of only the root node. The out-going edge of ⟂ is labeled
with Σ ; This means that we can go down from ⟂ by reading any character in Σ . See
Fig. 2 for an example of �����(T).

For each node v in �����(T) , parent(v) denotes the parent of v, str(v) denotes
the path string from the root to v, depth(v) denotes the string depth of v (i.e.,
depth(v) = |str(v)|), and subtree(v) denotes the subtree of �����(T) rooted at v.
For each leaf � in �����(T) , start(�) denotes the starting position of str(�) in T.
For each non-empty substring w of T, hed(w) = v denotes the highest explicit
descendant where w is a prefix of str(v) and depth(parent(v)) < |w| ≤ depth(v) .
For each substring w of T, locus(w) = ⟨u, h⟩ represents the locus in �����(T)
where the path that spells out w from the root terminates, such that u = hed(w) and
h = depth(u) − |w| ≥ 0 . Namely, h is the off-set length from the child u of the locus
for w when w is on an edge, and h = 0 when w is on a node (namely u). We say that
a substring w of T with locus(w) = ⟨u, h⟩ is represented by an explicit node if h = 0 ,
and by an implicit node if h ≥ 1 . We remark that in the Ukkonen tree �����(T) of a
string T, some repeating suffixes may be represented by implicit nodes. An implicit
node which represents a suffix of T is called an implicit suffix node. For any internal
node v except for the root, the suffix link of v is a reversed edge from v to the explicit
node that represents str(v)[1…] . The suffix link of the root that represents � points
to ⟂.

3 Combinatorial Results on MUSs for a Sliding Window

Throughout this section, we consider positions i and j with 0 ≤ i ≤ j ≤ n − 1 such
that T[i… j] denotes the sliding window for the ith position over the input string T.
The following arguments hold for any values of i and j, and hence, they will be use-
ful for sliding windows of any length d. The next lemmas are useful for analyzing
combinatorial properties of MUSs and for designing an efficient algorithm for com-
puting MUSs for a sliding window.

Lemma 1 The following three statements are equivalent:

(1) |lrSufi,j| ≥ |sqSufi,j|,
(2) #occT[i…j](lrSufi,j) = 2 , and
(3) #occT[i…j](sqSufi,j) = 2.

Proof (1) ⇒ (2) and (3): Since |lrSufi,j| ≥ |sqSufi,j| , sqSufi,j is a suffix of lrSufi,j
and thus #occT[i…j](sqSufi,j) ≥ #occT[i…j](lrSufi,j) . By the definitions of sqSufi,j and
lrSufi,j , #occT[i…j](sqSufi,j) ≤ 2 and #occT[i…j](lrSufi,j) ≥ 2 . Thus #occT[i…j](lrSufi,j)
= #occT[i…j](sqSufi,j) = 2.

(2) ⇒ (1): Since #occT[i…j](lrSufi,j) = 2 , the shortest suffix sqSufi,j of T[i… j] that
occurs at most twice in T[i… j] cannot be longer than lrSufi,j , i.e., |lrSufi,j| ≥ |sqSufi,j|.

676 Algorithmica (2022) 84:670–693

1 3

(3) ⇒ (1): Since #occT[i…j](sqSufi,j) = 2 , the longest suffix lrSufi,j of T[i… j] that
occurs at least twice in T[i… j] is at least as long as sqSufi,j , i.e., |lrSufi,j| ≥ |sqSufi,j|.

Figure 1 shows a concrete example where (1) of Lemma 1 holds (and hence both
(2) and (3) also hold.)

Lemma 2 |lrSufi,j+1| ≤ |lrSufi,j| + 1.

Proof Assume on the contrary that |lrSufi,j+1| > |lrSufi,j| + 1 . By the defini-
tion of lrSufi,j+1 , lrSufi,j+1 = T[j + 2 − |lrSufi,j+1|… j + 1] occurs at least twice in
T[i… j + 1] . Hence, T[j + 2 − |lrSufi,j+1|… j] which is a proper prefix of lrSufi,j+1
also occurs at least twice in T[i… j] . In addition, lrSufi,j = T[j + 2 − |lrSufi,j|… j] is
a proper suffix of T[j + 2 − |lrSufi,j+1|… j] since |lrSufi,j+1| > |lrSufi,j| + 1 . However,
this contradicts the definition of lrSufi,j . Therefore, |lrSufi,j+1| ≤ |lrSufi,j| + 1.

3.1 Changes to MUSs When Appending a Character to the Right

In this subsection, we consider an operation that slides the right-end of the cur-
rent window T[i… j] with one character by appending the next character T[j + 1] to
T[i… j] . We use the following observation.

Observation 1 For any non-empty substring s of T[i… j],

Also, the equality holds if and only if s is a suffix of T[i… j + 1].

3.1.1 MUSs to be Deleted When Appending a Character to the Right

Due to Observation 1, we obtain Lemma 3 which describes MUSs to be deleted
when a new character T[j + 1] is appended to the current window T[i… j].

Lemma 3 For any [s, t] with i ≤ s < t ≤ j , [s, t] ∈ ���(T[i… j])
and [s, t] ∉ ���(T[i… j +1]) if and only if T[s… t] = sqSufi,j+1 and
#occT[i…j+1](sqSufi,j+1) = 2.

Proof (⇒) Let w = T[s… t] . Since [s, t] ∈ ���(T[i… j]) and
[s, t] ∉ ���(T[i… j + 1]) , #occT[i…j](w) = 1 and #occT[i…j+1](w) ≥ 2 . It follows
from Observation 1 that #occT[i…j+1](w) = 2 and w is a suffix of T[i… j + 1] . If we
assume that w is a proper suffix of sqSufi,j+1 , then #occT[i…j+1](w) ≥ 3 by the definition
of sqSufi,j+1 , but this contradicts with #occT[i…j+1](w) = 2 . If we assume that sqSufi,j+1
is a proper suffix of w, then #occT[i…j](sqSufi,j+1) ≥ #occT[i…j](T[s + 1… t]) ≥ 2 .

#occT[i…j+1](s) ≤ #occT[i…j](s) + 1.

677

1 3

Algorithmica (2022) 84:670–693

Also, #occT[i…j+1](sqSufi,j+1) = #occT[i…j](sqSufi,j+1) + 1 ≥ 3 by Observation 1,
but this contradicts the definition of sqSufi,j+1 . Therefore, w = sqSufi,j+1 . Moreover,
#occT[i…j+1](sqSufi,j+1) = 2 since w = sqSufi,j+1 is a substring of T[i… j].

(⇐) Since w = T[s… t] is a suffix of T[i… j + 1] and #occT[i…j+1](w) = 2 ,
w is unique in T[i… j] . By the definition of sqSufi,j+1 , a proper suffix
w[1…] = T[s + 1… t] of w = sqSufi,j+1 occurs at least three times in T[i… j + 1] ,
i.e., T[s + 1… t] is repeating in T[i… j] (see also Fig. 3 for illustration).

Also, a prefix w[0… |w| − 2] = T[s… t − 1] of w = sqSufi,j+1 is clearly repeat-
ing in T[i… j] . Therefore, w = T[s… t] is a MUS of T[i… j] and is not a MUS of
T[i… j + 1].

By Lemma 3, at most one MUS can be deleted when appending T[j + 1] to the
current window T[i… j] , and such a deleted MUS must be sqSufi,j+1.

3.1.2 MUSs to be Added When Appending a Character to the Right

First, we consider a MUS to be added when appending T[j + 1] to T[i… j] , which is
a suffix of T[i… j + 1] . The next observation follows from the definition of lrSufi,j:

Observation 2 If [s, j] ∈ ���(T[i… j]) , then s = j − |lrSufi,j| . Namely, if there is a
MUS of T[i… j] that is a suffix of T[i… j] , then it must be the suffix of T[i… j] that
is exactly one character longer than lrSufi,j.

Lemma 4 The interval [j + 1 − �, j + 1] ∈ ���(T[i… j + 1]) if and only if
T[j + 1 − �… j + 1] = �

�+1 or � ≤ |lrSufi,j| , where � = |lrSufi,j+1| and � = T[j + 1].

Proof (⇒) Assume on the contrary that T[j + 1 − �… j + 1] ≠ �
�+1 and

� > |lrSufi,j| . By the assumptions and Lemma 2, |lrSufi,j| = � − 1 , and thus,
T[j − |lrSufi,j|… j] = T[j + 1 − �… j] . Since T[j + 1 − �… j + 1] is a MUS
of T[i… j + 1] , T[j + 1 − �… j] = T[j − |lrSufi,j|… j] occurs at least twice in
T[i… j + 1] . On the other hand, T[j − |lrSufi,j|… j] is unique in T[i… j] by the
definition of lrSufi,j , hence T[j − |lrSufi,j|… j] occurs in T[i… j + 1] as a suffix of
T[i… j + 1] . Consequently, we have T[j − |lrSufi,j|… j] = T[j + 1 − |lrSufi,j|… j + 1] , i.e.,
T[j − �… j] = T[j + 1 − �… j + 1] = �

�+1 with � = T[j + 1] , a contradiction.

Fig. 3 Illustration for the case where #occT[i…j+1](sqSufi,j+1) = 2 . In this case, T[s… t] = sqSufi,j+1 is
unique in T[i… j] and T[s + 1… t] is repeating in T[i… j]

678 Algorithmica (2022) 84:670–693

1 3

(⇐) By the definition of lrSufi,j+1 , T[j + 2 − �… j + 1] = lrSufi,j+1 is repeating in
T[i… j + 1] , and T[j + 1 − �… j + 1] is unique in T[i… j + 1] . Now it suffices to
show T[j + 1 − �… j] is repeating in T[i… j + 1] . If T[j + 1 − �… j + 1] = �

�+1 ,
then clearly T[j + 1 − �… j] = �

� is repeating in T[i… j + 1] . If � ≤ |lrSufi,j| , then
T[j + 1 − �… j] is a suffix of T[j + 1 − |lrSufi,j|… j] (see Fig. 4).

Thus #occ
T[i…j+1](T[j + 1 − �… j]) ≥ #occ

T[i…j](T[j + 1 − �… j]) ≥ #occT[i…j](T[j + 1 − |lrSufi,j|… j]) ≥ 2.

Next, we consider MUSs to be added when appending T[j + 1] to T[i… j] , which
are not suffixes of T[i… j + 1].

Lemma 5 For each [s, t] ∈ ���(T[i… j + 1]) with t ≠ j + 1 , if [s, t] ∉ ���(T[i… j])
then #occT[i…j+1](sqSufi,j+1) = 2 and sqSufi,j+1 is a proper substring of T[s… t].

Proof Since [s, t] ∈ ���(T[i… j + 1]) and t ≠ j + 1 , T[s… t] is unique in T[i… j] .
Moreover, since T[s… t] is not a MUS of T[i… j] , there exists a MUS u of T[i… j]
which is a proper substring of T[s… t] . Since T[s… t] is a MUS of T[i… j + 1] , u
is repeating in T[i… j + 1] . Then, it follows from Lemma 3 that u = sqSufi,j+1 and u
occurs exactly twice in T[i… j + 1].

Namely, a MUS which is not a suffix is added by appending one character only
if there is a MUS to be deleted by the same operation. Moreover, such added MUSs
must contain the deleted MUS.

Lemma 6 If #occT[i…j+1](sqSufi,j+1) = 2 , then there are three integers pl, ps, q such
that i ≤ pl ≤ ps ≤ q < j + 1 , T[ps … q] = sqSufi,j+1 and T[pl … q] = lrSufi,j+1 . Also,
the following propositions hold:

(a) If there is no MUS of T[i… j] ending at q + 1 , then [ps, q + 1] ∈ ���(T[i… j + 1])

.
(b) If there is no MUS of T[i… j] starting at pl − 1 and pl ≥ i + 1 , then

[pl − 1, q] ∈ ���(T[i… j + 1]).

Proof Since #occT[i…j+1](sqSufi,j+1) = 2 , it follows from Lemma 1 that #occT[i…j+1]
(lrSufi,j+1) = 2 and sqSufi,j+1 is a suffix of lrSufi,j+1 . Hence, the ending positions of the

Fig. 4 Illustration for the case where |lrSufi,j+1| ≤ |lrSufi,j| . In this case, T[j + 1 − |lrSufi,j+1|… j + 1] is a
MUS of T[i… j + 1]

679

1 3

Algorithmica (2022) 84:670–693

occurrences of sqSufi,j+1 in T[i… j] and that of lrSufi,j+1 in T[i… j] are the same (see
Fig. 5). Hence, there exist indices ps , pl , and q such that T[ps … q] = sqSufi,j+1 and
T[pl … q] = lrSufi,j+1.

Next, we consider MUSs to be added.

(a) First, for the sake of contradiction, assume that T[ps … q + 1] is repeating in
T[i… j + 1] . By the definition, T[ps … q] = sqSufi,j+1 occurs in T[i… j + 1] as
a suffix. Also, T[ps … q] occurs at least twice in T[i… j + 1] as a proper prefix
of T[ps … q + 1] . These implies that #occT[i…j+1](T[ps … q]) ≥ 3 , however, this
contradicts the definition of sqSufi,j+1 (= T[ps … q]) . Hence, T[ps … q + 1] is
unique in T[i… j + 1] . Next, T[ps … q] is repeating in T[i… j + 1] by the assump-
tion. Further, by Lemma 3, T[ps … q] = sqSufi,j+1 is a MUS of T[i… j] since
#occT[i…j+1](sqSufi,j+1) = 2 . Thus, T[ps + 1… q] is repeating in T[i… j] . Finally,
for the sake of contradiction, assume that T[ps + 1… q + 1] is unique in T[i… j] .
Let u be a MUS of T[i… j] which is a substring of T[ps + 1… q + 1] . Since
T[ps + 1… q] is repeating in T[i… j] , the ending position of u must be q + 1 . This
contradicts the assumption that there is no MUS of T[i… j] ending at q + 1 . Thus,
T[ps + 1… q + 1] is repeating in T[i… j] , as well as in T[i… j + 1] . Therefore,
T[ps … q + 1] is a MUS of T[i… j + 1].

(b) First, for the sake of contradiction, assume that T[pl − 1… q] is repeating in
T[i… j + 1] . From the discussion at the beginning of the proof, the starting
positions of the occurrences of lrSufi,j+1 are pl and j + 2 − |lrSufi,j+1| (see also
Fig. 5). Since lrSufi,j+1 is a proper suffix of T[pl − 1… q] and T[pl − 1… q] is
repeating, the starting positions of the occurrences of T[pl − 1… q] are pl − 1
and j + 1 − |lrSufi,j+1| . Then, T[j + 1 − |lrSufi,j+1 … j + 1] of length |lrSufi,j+1| + 1
is a repeating suffix of T[i… j + 1] , however, it contradicts the definition of
lrSufi,j+1 . Thus, T[pl − 1… q] is unique in T[i… j + 1] . Also, by the defini-
tion, T[pl … q] = lrSufi,j+1 is repeating in T[i… j + 1] . Finally, for the sake of
contradiction, assume that T[pl − 1… q − 1] is unique in T[i… j] . Let v be a
MUS of T[i… j] which is a substring of T[pl − 1… q − 1] . Since T[pl … q − 1]

Fig. 5 Illustration of the situation when sqSufi,j+1 is repeating in T[i… j + 1] . In this situation, [pl − 1, q]
and [ps, q + 1] are the only candidates for MUSs in ���(T[i… j + 1])⧵���(T[i… j]) each of which is
not a suffix of T[i… j + 1]

680 Algorithmica (2022) 84:670–693

1 3

is repeating in T[i… j] , the starting position of v must be pl − 1 . This contra-
dicts the assumption that there is no MUS of T[i… j] starting at pl − 1 . Thus,
T[pl − 1… q − 1] is repeating in T[i… j] , as well as in T[i… j + 1] . Therefore,
T[pl − 1… q] is a MUS of T[i… j + 1].

Now we have the main result of this subsection:

Theorem 1 For any 0 ≤ i ≤ j < n − 1 , |���(T[i… j + 1])△���(T[i… j])| ≤ 4
and −1 ≤ |���(T[i… j + 1])| − |���(T[i… j])| ≤ 2 . Furthermore, these bounds
are tight for any �, i, j with � ≥ 3 , 0 ≤ i ≤ j < n − 1 , and j − i + 1 ≥ 5.

Proof First, we show that |���(T[i… j + 1])△���(T[i… j])| ≤ 4 .
By Lemma 3, |���(T[i… j])⧵���(T[i… j + 1])| ≤ 1 . By Observa-
tion 2 and Lemma 6, |���(T[i… j + 1])⧵���(T[i… j])| ≤ 3 . Thus,
|���(T[i… j + 1])△���(T[i… j])| = |���(T[i… j + 1])⧵ ���(T[i… j])| + |���(T[i… j])⧵���(T[i… j + 1])| ≤ 4 .
Also, we show that the upper bound is tight if � ≥ 3 . For an integer k ≥ 2 , we consider
two strings u and u′ such that u = �

k
��� of length k + 3 ≥ 5 and u� = u� = �

k
����

of length k + 4 ≥ 6 . Then, ���(u) = {[0, k − 1], [k, k], [k + 1, k + 2]} and
���(u�) = {[0, k − 1], [k − 1, k], [k, k + 1], [k + 1, k + 2], [k + 2, k + 3]} . Therefore,
|���(u�)△���(u)| = 4.

Next, we show that −1 ≤ |���(T[i… j + 1])| − |���(T[i… j])| ≤ 2 . By
Lemma 3, it is clear that −1 ≤ |���(T[i… j + 1])| − |���(T[i… j])| . By
Observation 2, the number of added MUSs which are suffixes of T[i… j + 1] is
at most one. Also, by Lemma 6, the number of added MUSs which are not suf-
fixes of T[i… j + 1] is at most two, however, if such an added MUS exists,
exactly one MUS (= sqSufi,j+1) must be deleted (cf. Lemmas 3, 5). There-
fore, |���(T[i… j + 1])| − |���(T[i… j])| ≤ 2 . Also, we show that each
bound is tight when � ≥ 3 . We consider strings u and u′ that are described
in the case (a), and we then obtain |���(u�)| − |���(u)| = 2 . On the
other hand, for any integer � with � ≥ 1 , we consider two strings v and v′ ;
v = �

�
���� of length � + 4 ≥ 5 and v� = v� = �

�
����� of length � + 5 ≥ 6 .

If � = 1 , then ���(v) = {[1, 1], [2, 3], [3, 4]} , and ���(v�) = {[1, 1], [3, 4]} . If
� ≥ 2 , then ���(v) = {[0,� − 1], [�,�], [� + 1,� + 2], [� + 2,� + 3]} , and
���(v�) = {[0,� − 1], [�,�], [� + 2,� + 3]} . Therefore, |���(v�)| − |���(v)| = −1.

3.2 Changes to MUSs When Deleting the Leftmost Character

In this subsection, we consider an operation that deletes the leftmost character T[i − 1]
from T[i − 1… j] . Basically, we can use symmetric arguments to the previous subsec-
tion where we considered appending a character to the right of the window.

Observation 3 For each non-empty substring s of T[i − 1… j] , #occ
T[i−1…j](s) ≤ #occ

T[i…j](s) + 1 .
Also, #occT[i−1…i](s) = #occT[i…j](s) + 1 if and only if s is a prefix of T[i − 1… j].

681

1 3

Algorithmica (2022) 84:670–693

3.2.1 MUSs to be Added When Deleting the Leftmost Character

Lemma 7 For any i ≤ s ≤ t ≤ j , [s, t] ∉ ���(T[i − 1… j]) and [s, t] ∈ ���(T[i… j])
if and only if T[s… t] = sqPrefi−1,j and #occT[i−1…j](sqPrefi−1,j) = 2.

Proof Symmetric to the proof of Lemma 3.

3.2.2 MUSs to be Deleted When Deleting the Leftmost Character

Next, we consider MUSs to be deleted by removing T[i − 1] from T[i − 1… j] . If
there is a MUS w of T[i − 1… j] which is a prefix of T[i − 1… j] , clearly, w is not a
MUS of T[i… j] . Then, we consider MUSs to be deleted which are not prefixes of
T[i − 1… j].

Lemma 8 For each [s, t] ∈ ���(T[i − 1… j]) with s ≠ i − 1 , if [s, t] ∉ ���(T[i… j])
then #occT[i−1…j](sqPrefi−1,j) = 2 and sqPrefi−1,j is a proper substring of T[s… t].

Proof Symmetric to the proof of Lemma 5.

Namely, when deleting the leftmost character, a MUS which is not a prefix is
deleted only if an added MUS exists. Moreover, such deleted MUSs must contains
the added MUS.

Lemma 9 If #occT[i−1…j](sqPrefi−1,j) = 2 , then following propositions hold:

(a) If there is a MUS w starting at s in T[i − 1… j] , w is not a MUS of T[i… j],
(b) If there is a MUS w′ ending at t in T[i − 1… j] , w′ is not a MUS of T[i… j],

where T[s… t] = sqPrefi−1,j and s ≠ i − 1.
Proof Symmetric to the proof of Lemma 6. See also Fig. 6 for illustration.

Fig. 6 Illustration of the situation when sqPrefi−1,j is repeating in T[i − 1… j] . In this situation,
T[s… t] = sqPrefi−1,j is a new MUS of T[i… j] by Lemma 7

682 Algorithmica (2022) 84:670–693

1 3

The main result of this subsection is the following:

Theorem 2 For any 0 < i ≤ j ≤ n − 1 , |���(T[i − 1… j])△���(T[i… j])| ≤ 4
and −1 ≤ |���(T[i − 1… j])| − |���(T[i… j])| ≤ 2 . Furthermore, these bounds
are tight for any �, i, j with � ≥ 3 , 0 < i ≤ j ≤ n − 1 , and j − i + 1 ≥ 5.

Proof Symmetric to the proof of Theorem 1.

The next corollary is immediate from Theorems 1 and 2.

Corollary 1 Let 0 < d < n . For every i with 0 ≤ i ≤ n − d − 1 ,
|���(T[i… i + d − 1])△���(T[i + 1… i + d])| ∈ O(1).

4 Algorithm for Computing MUSs for a Sliding Window

This section presents our algorithm for computing MUSs for a sliding window.

4.1 Updating Suffix Tree and Its Three Loci

First, we introduce some additional notions. Since we use Ukkonen’s algorithm [23]
for updating the suffix tree when a new character T[j + 1] is appended to the right
end of the window T[i… j] , we maintain the locus for lrSufi,j as in [23]. Also, in
order to compute the changes of MUSs, we use sqSufi,j (c.f. Lemma 3, 6). Thus, we
also maintain the locus for sqSufi,j.

The locus for lrSufi,j (resp. sqSufi,j) in �����(T[i… j]) is called the primary active
point (resp. the secondary active point) and is denoted by ��i,j (resp. ��i,j). Addition-
ally, in order to maintain ��i,j efficiently, we also maintain the locus for the longest
suffix of T[i… j] which occurs at least three times in T[i… j] . We call this locus the
tertiary active point that is denoted by ��i,j . See Fig. 2 for concrete examples of these
three loci in a suffix tree.

4.1.1 Appending One Character

When T[i… j] is the empty string (the base case, where i = 0 and j = −1), we set all
the three active points ⟨root, 0⟩ . Then we increase j, and the suffix tree grows in an
online manner until j = d − 1 using Ukkonen’s algorithm. Then, for each j > d − 1 ,
we also increase i each time j increases, so that the sliding window is shifted to the
right, by using sliding window algorithm for the suffix tree [21].

When T[j + 1] is appended to the right end of T[i… j] , we first update the suffix
tree to �����(T[i… j + 1]) and compute ��i,j+1 . Since ��i,j+1 coincides with the active
point, ��i,j+1 can be found in amortized O(log ��) time [21].

683

1 3

Algorithmica (2022) 84:670–693

After updating the suffix tree, we can compute ��i,j+1 and ��i,j+1 as follows:

• Traverse character T[j + 1] from ��i,j , and set w ← str(𝗍𝗉i,j)T[i + 1].
• While #occT[i…j+1](w) < 3 , set w ← w[1…] and search for the locus � for w by

using suffix links in �����(T[i… j + 1]).
• After breaking from the while-loop, obtain ��i,j+1 = �.
• ��i,j+1 equals the locus stored in � at the penultimate iteration of the while-loop.

Let us show the correctness of the above algorithm. After the first step, w is the long-
est suffix which possibly corresponds to ��i,j+1 . In the while loop of the second step,
we search for the suffix corresponding to ��i,j+1 by deleting the first characters from
w one-by-one. After breaking from the while-loop, we store in w the longest suffix
of T[i… j + 1] which occurs more than twice in T[i… j + 1] , i.e., ��i,j+1 = locus(w) .
Also, by the definitions of �� and �� , ��i,j+1 is the locus for the suffix of T[i… j + 1]
which is one character longer than w = str(��i,j+1).

As is described in the above algorithm, we can locate ��i,j+1 using suffix links, in
a similar manner to the active point ��i,j+1 . Thus, the time cost for locating ��i,j+1 for
each increasing j is amortized O(log ��) , again by a similar argument to the active
point ��i,j+1 . What remains is, for each candidate w for ��i,j+1 , how to quickly deter-
mine whether #occT[i…j+1](w) < 3 or not. In what follows, we show that it can be
checked in O(1) time for each candidate.

Observation 4 For each suffix s of string T[i… j + 1] , let locus(s) = ⟨u, h⟩ .

Case 1 If u is an internal node, s occurs at least three times in T[i… j + 1].
Case 2 If u is a leaf and h = 0 , s occurs exactly once in T[i… j + 1].
Case 3 If u is a leaf and h ≠ 0 ,

 Case 3.1 if there is a suffix s′ of T[i… j + 1] with hed(s�) = hed(s) which is longer
than s, s occurs at least three times in T[i… j + 1] (see Fig. 7 for examples).

Case 3.2 otherwise, s occurs exactly twice in T[i… j + 1].

For any suffix s of T[i… j + 1] , if we are given locus(s) = ⟨u, h⟩ , then we can
obviously determine in constant time whether s occurs at least three times in
T[i… j + 1] or not, except Case 3. The next lemma allows us to determine it in con-
stant time in Case 3 as well.

Lemma 10 Suppose the locus ��i,j+1 in �����(T[i… j + 1]) is already computed.
Given a leaf � of �����(T[i… j + 1]) , it can be determined in O(1) time whether
there is an implicit suffix node on the edge (parent(�),�) and if so, the locus of the
lowest implicit suffix node on (parent(�),�) can be computed in O(1) time.

684 Algorithmica (2022) 84:670–693

1 3

Proof By Observation 4, for each leaf � , the suffix corresponding to the lowest
implicit suffix node on (parent(�),�) occurs exactly twice in T[i… j + 1] if such an
implicit suffix node exists. Let x = lrSufi,j+1 and ��i,j+1 = ⟨u, h⟩.

If u is not a leaf, there is no implicit suffix node on the edge (parent(�),�) for any
leaf � , since every suffix of T[i… j + 1] which is shorter than |x| occurs more than
twice in T[i… j + 1].

If u is a leaf, then #occT[i…j+1](x) = 2 . Let s = start(u) and t� = start(�) for each
leaf � . Notice that x is a border of T[s… j + 1] . There are two sub-cases:

• First, we consider the case where t� < s . Suppose that there is an implicit suf-
fix node on (parent(�),�) for the sake of contradiction. Let w be a string cor-
responding to the lowest implicit suffix node on (parent(�),�) . Then, w is a
proper suffix of x, and occurs exactly twice in T[i… j + 1] . Furthermore, w
occurs exactly twice in T[s… j + 1] since x is a border of T[s… j + 1] . How-
ever, w is also a prefix of T[t� … j + 1] , hence w occurs at least three times
in T[i… j + 1] , it is a contradiction. Thus, if t� < s , there is no implicit suffix
node on (parent(�),�).

• Second, we consider the case where t� ≥ s (see Fig. 8). In this case,
T[t� … s + |x| − 1] which is a prefix of T[t� … j + 1] matches the suf-
fix of x which is t� − s characters shorter than x, i.e., x[t� − s…] .
Thus, there is an implicit suffix node on (parent(�),�) if and only if
|T[t� … s + |x| − 1]| = |x| − (t� − s) > depth(parent(�)) . Also, if there is an
implicit suffix node on (parent(�),�) , the locus of the lowest one is ⟨�, h⟩.

Fig. 7 The suffix tree of string T = ��������� as an example of the Case 3.1 in Observation 4. Black
circles represent implicit suffix nodes. For two suffixes s = �� and s� = ����� of T, hed(s�) = hed(s) and
s occurs three times in T

685

1 3

Algorithmica (2022) 84:670–693

4.1.2 Deleting the Leftmost Character

When the leftmost character T[i − 1] is deleted from T[i − 1… j] , we first update
the suffix tree and compute ��i,j by using the sliding window algorithm for the suffix
tree [21]. Each pair of position pointers for the edge-labels of the suffix tree can be
maintained in amortized O(1) time so that these pointers always refer to positions
within the current sliding window, by a simple batch update technique (see [21] for
details). After that, we compute ��i,j and ��i,j in a similar way to the case of append-
ing a new character shown previously.

It follows from the above arguments in this subsection that we can update the
suffix tree and the three active points in amortized O(log ��) time, each time the win-
dow is shifted by one character.

4.2 Computing sqPrefi−1,j

In order to compute the changes of MUSs when the leftmost character T[i − 1] is
deleted from T[i − 1… j] , we use sqPrefi−1,j (c.f. Lemmas 7 and 9) before updating
the suffix tree. In this subsection, we present an efficient algorithm for computing
sqPrefi−1,j . First, we consider the following cases (see Fig. 9), where � is the leaf
corresponding to T[i − 1… j] :

Case A hed(lrSufi−1,j) = �.
Case B hed(lrSufi−1,j) ≠ � and subtree(parent(�)) has more than two leaves.
Case C hed(lrSufi−1,j) ≠ � and subtree(parent(�)) has exactly two leaves.

For Case A, the next lemma holds:

Fig. 8 For an example of Lemma 10. The situation of this figure is that each of u and � is a leaf with
t� = start(�) ≥ s = start(u) and |lrSufi,j+1| − (t� − s) > depth(parent(�)) where ⟨u, h⟩ represents the pri-
mary active point. Also, black nodes represent implicit suffix nodes

686 Algorithmica (2022) 84:670–693

1 3

Lemma 11 Given �����(T[i − 1… j]) and ��i−1,j . Let � be the leaf corresponding to
T[i − 1… j] . If ��i−1,j is on the edge (parent(�),�) , the following propositions hold:

(a) occT[i−1…j](sqPrefi−1,j) = {i − 1, j − |lrSufi−1,j| + 1}.
(b) If there is exactly one implicit suf f ix node on (parent(�),�) ,

sqPrefi−1,j = T[i − 1… i − 1 + depth(parent(�))].
(c) If there are more than one implicit suffix node on (parent(�),�) , then

�lrSufi−1,j� > ⌊(j − i + 2)∕2⌋ and sqPrefi−1,j = T[i − 1… j − 2h + 1] , where
��i−1,j = ⟨�, h⟩.

Proof Let ��i−1,j = ⟨�, h⟩ and m = |lrSufi−1,j| .

(a) Since ��i−1,j is on the edge (parent(�),�) , sqPrefi−1,j is a prefix of lrSufi−1,j , and
#occT[i−1…j](lrSufi−1,j) = #occT[i−1…j](sqPrefi−1,j) = 2 . Therefore, we obtain that
occT[i−1…j](sqPrefi−1,j) = occT[i−1…j](lrSufi−1,j) = {i − 1, j − m + 1}.

(b) In this case, it is clear that sqPrefi−1,j = T[i − 1… i − 1 + depth(parent(�))].
(c) Let ⟨�, h′⟩ be the locus of the implicit suffix node which is the lowest on the

edge (parent(�),�) except ��i−1,j . Also, let x be the string corresponding to the
locus ⟨�, h′⟩ . In this case, x occurs exactly three times in T[i − 1… j] . Also, x is
the longest border of lrSufi−1,j . Assume on the contrary that m ≤ ⌊(j − i + 2)∕2⌋ .
Then, two occurrences of lrSufi−1,j in T[i − 1… j] are not overlapping, and
thus #occT[i−1…j](x) ≥ 2 × #occT[i−1…j](lrSufi−1,j) = 4 , it is a contradiction.
Therefore, m > ⌊(j − i + 2)∕2⌋ (see Fig. 10). Next, we consider a relation
between h and h′ . By the definition, h = |T[i − 1… j]| − m = j − i + 2 − m .
Since m > ⌊(j − i + 2)∕2⌋ , x matches the intersection of two occur-

Fig. 9 Illustration for the three cases that are described in Sect. 4.2

687

1 3

Algorithmica (2022) 84:670–693

r e n c e s o f lrSufi−1,j , i . e . , x = T[j − m + 1… i + m − 2] . T h u s ,
h� = |T[i − 1… j]| − |x| = j − i + 2 − (2m − j + i − 2) = 2(j − i + 2 − m) = 2h .
Therefore sqPrefi−1,j = T[i − 1… j − h� + 1] = T[i − 1… j − 2h + 1].

In Case B, it is clear that sqPrefi−1,j = T[i − 1… i − 1 + depth(p)] since str(p)
occurs at least three times in T[i − 1… j] (see Fig. 9).

For Case C, the next lemma holds:

Lemma 12 Suppose that �����(T[i − 1… j]) and ��i−1,j have already been com-
puted. Let � be the leaf corresponding to T[i − 1… j] , p = parent(�) , and
q = parent(p) . If subtree(p) has exactly two leaves and there are no implicit suffix
nodes on any edges in subtree(p) , then it can be determined in O(1) time whether
there is an implicit suffix node on (q, p). If such an implicit node exists, then the
locus of the lowest implicit suffix node on (q, p) can be computed in O(1) time.

Proof Note that the suffix corresponding to the lowest implicit suffix node on (q, p)
occurs exactly three times in T[i − 1… j] from the assumptions. Let ��i−1,j = ⟨u, h⟩ .
If h = 0 , the primary active point is an explicit node, and there is no implicit suffix
node on every edge in �����(T[i − 1… j]) . If h ≠ 0 and u = p , the lowest implicit
suffix node on (q, p) is clearly the primary active point. Thus, in the following, we
consider the situation with u ≠ p and h ≠ 0.

If u is not a leaf and the number of leaves in subtree(u) is greater than two, then
the number of leaves in subtree(hed(v)) is also greater than two for each implicit
suffix node v. Thus, there is no implicit suffix node on (q, p). If u is not a leaf and

Fig. 10 Illustration for the proposition (c) in Lemma 11. For the sake of simplicity, this figure shows
a simple case where there are only two implicit suffix nodes on the edge (parent(�),�) . However, the
lemma also holds for the other cases

688 Algorithmica (2022) 84:670–693

1 3

the number of leaves in subtree(u) is exactly two, then lrSufi−1,j occurs at least three
times in T[i − 1… j] since u ≠ p . Thus, if a suffix s of T[i − 1… j] which is shorter
than lrSufi−1,j occurs as a prefix of T[i − 1… j] , #occT[i−1…j](s) ≥ 4 . Therefore, there
is no implicit suffix node on (q, p).

If u is a leaf, as in the proof in Lemma 10, it can be proven that
there is an implicit suffix node on (q, p) if and only if t ≥ s and
depth(p) > |lrSufi−1,j| − (t − s) > depth(q) , where s = start(u) , t = start(��) with �′
being the sibling of � (see Fig. 11).

In addition, if there is an implicit suffix node on the edge (q, p), the
length of the string x corresponding to the lowest implicit suffix node on
the edge (q, p) is |lrSufi−1,j| − (t − s) , and thus, the implicit suffix node is
⟨p, depth(p) − �x�⟩ = ⟨p, depth(p) − �lrSufi−1,j� + t − s⟩.

We can design an algorithm for computing sqPrefi−1,j by using the above lem-
mas, as follows. Let � be the leaf corresponding to T[i − 1… j] , p = parent(�)
and q = parent(p) .

In Case A. sqPrefi−1,j is computed by Lemma 11.
In Case B. sqPrefi−1,j = T[i − 1… i − 1 + depth(p)] and

#occT[i−1…j](sqPrefi−1,j) = 1.
In Case C. We divide this case into some subcases by the existence of an implicit

suffix node on edges (p,��) and (q, p) where �′ is the sibling of � . We
first determine the existence of an implicit suffix node on (p,��) (by
Lemma 10).

Fig. 11 Illustration for Lemma 12

689

1 3

Algorithmica (2022) 84:670–693

• If there is an implicit suffix node on (p,��) , then
sqPrefi−1,j = T[i − 1… i − 1 + depth(p)] and #occT[i−1…j](sqPrefi−1,j) = 1.

• If there is no implicit suffix node on both (p,�) and (p,��) , we
can determine in constant time the existence of an implicit suf-
fix node on (q, p) (by Lemma 12). If there is an implicit suf-
fix node on (q, p), sqPrefi−1,j = T[i − 1… depth(p) − h + 1] and
occT[i−1…j](sqPrefi−1,j) = {i − 1, start(��)} . Otherwise, sqPrefi−1,j = T[i − 1… depth(q) + 1]
and occT[i.−1.j](sqPrefi−1,j) = {i − 1, start(��)}.

It follows from the above arguments in this subsection that sqPrefi−1,j can be
computed in O(1) time by using the suffix tree and the (primary) active point.

4.3 Detecting MUSs to be Added/Deleted

By using the afore-mentioned lemmas in this section, we can design an efficient algo-
rithm for detecting MUSs to be added / deleted.

4.3.1 Data Structure for Maintaining MUSs

First, we introduce a data structure for managing the set of MUSs for a sliding window.
Our data structure for MUSs consists of two arrays ��� and ��� of length d each. Note
that by the definition of MUSs, any MUSs cannot be nested each other. Thus, for any
text position i, if a MUS starting (resp. ending) at i exists, then its ending (resp. start-
ing) position is unique. From this fact, we can define ��� and ��� as follows:

Let [p, p + d − 1] be the current window. For every index i with p ≤ i ≤ p + d − 1,

Fig. 12 A long string T = ��������������⋯ and two arrays ��� and ��� . The current window
is T[2… 11] of length d = 10 , and the MUSs in the window are T[2… 4],T[4… 8],T[8… 10] , and
T[9… 11]

690 Algorithmica (2022) 84:670–693

1 3

Since MUSs cannot be nested each other, these arrays are uniquely defined (see
Fig. 12). By using these two arrays, all the following operations for MUSs can
be executed in O(1) time; compute the ending/starting position of the MUS that
starts/ends at a specified position, and add/remove a MUS into/from the set of
MUSs. In particular, when a MUS [sr, er] is removed from the set of MUSs, we set
���[sr mod d] = ���[er mod d] = nil . Also, when a MUS [sa, ea] is added into the
set of MUSs, we set ���[sa mod d] = ea and ���[ea mod d] = sa.

4.3.2 Algorithm When Appending a Character to the Right

Assume that ��� , ��� and the suffix tree of T[i… j] are computed before reading
� = T[j + 1] . Also, assume that the longest single character run �e as a suffix of
T[i… j] is known, where � = T[j] and e ≥ 1.

• First, compute the length of lrSufi,j.
• Second, read � , and update the suffix tree and the active points. Then,

compute the lengths of lrSufi,j+1 and sqSufi,j+1 . Also, update informa-
tion about the run of the last character of T[i… j + 1] . Specifically, if
� = � then �

e = �
e+1 , and otherwise �

e = �
1 . If |lrSufi,j+1| ≤ |lrSufi,j| or

T[j + 1 − |lrSufi,j+1|… j + 1] = �
|lrSufi,j+1|+1 , add [j + 1 − |lrSufi,j+1|, j + 1] into

the set of MUSs (by Lemma 4).
• If |lrSufi,j+1| < |sqSufi,j+1| , then terminate this step (by Lemma 5).
• Otherwise, compute ps and q of Lemma 6 by using �����(T[i… j + 1]) and

��i,j+1 . Then, remove [ps, q] from the set of MUSs (by Lemma 3).
• Next, if ���[t� mod d] = nil , then add [ps, t�] into the set of MUSs, where

t� = q + 1 . Also, if s′ ≥ i and ���[s� mod d] = nil , then add [s�, q] into the set
of MUSs, where s� = q − |lrSufi,j+1| (by Lemma 6).

• Terminate this step.

4.3.3 Algorithm When Deleting the Leftmost Character

Assume that ��� , ��� and the suffix tree of T[i − 1… j] are computed before
deleting � = T[i − 1].

• First, compute #occT[i−1…j](sqPrefi−1,j) . If #occT[i−1…j](sqPrefi−1,j) = 2 , com-
pute two integers s and t with T[s… t] = sqPrefi−1,j and s ≠ i − 1.

���[i mod d] =

{
e if [i, e] ∈ ���(T[p… p + d − 1]) exists,

nil otherwise.

���[i mod d] =

{
s if [s, i] ∈ ���(T[p… p + d − 1]) exists,

nil otherwise.

691

1 3

Algorithmica (2022) 84:670–693

• Second, delete T[i − 1] and update the suffix tree and the active points. If
���[(i − 1) mod d] ≠ nil , remove the MUS starting at i − 1 from the set of
MUSs.

• If #occT[i−1…j](sqPrefi−1,j) = 1 , terminate this step (by Lemma 8).
• Otherwise, if ���[s mod d] ≠ nil , then remove the MUS starting at s from the

set of MUSs. Also, if ���[t mod d] ≠ nil , then remove the MUS ending at t
from the set of MUSs (by Lemma 9).

• Finally, add [s, t] into the set of MUSs (by Lemma 7), and terminate this step.

The main result of this section is the following:

Theorem 3 We can maintain the set of MUSs for a sliding window of length d on
a string T of length n in a total of O(n log ��) time and O(d) working space where
�
′ ≤ d is the maximum number of distinct characters in every window.

Corollary 2 There exists an online algorithm to compute all MUSs in a string T of
length n in a total of O(n log �) time with O(n) working space where � is the alpha-
bet size.

5 Conclusions and Future Work

In this paper, we studied the problem of computing MUSs for a sliding window over
a given string T of length n. We first showed combinatorial properties on MUSs
for a sliding window, i.e., changes of the set of MUSs are at most constant when
appending a character to the right end of the window or deleting the first character
from the window. Also, we proposed an O(n log ��)-time and O(d)-space algorithm
to compute MUSs for a sliding window of size d over T, where �′ ≤ d is the maxi-
mum number of distinct characters in every window.

As future work, we are interested in developing a data structure for the SUS prob-
lems for a sliding window. As we described in the introduction, MUSs are heavily
utilized for solving the SUS problems. Our sliding window MUS algorithm could
be used as a basis for an efficient SUS query data structure for a sliding window.
Also, it would be interesting to extend or generalize MUSs for a sliding window,
e.g., to computing MUSs with k-mismatches for a sliding window. A substring of T
is said to be unique with k-mismatches in T, if it is unique in T even when substitut-
ing arbitrary k characters of the substring. To the best of our knowledge, only one
deterministic algorithm to compute unique substrings with k-mismatches is known
in [10], and their algorithm runs in O(n2) time for any k ≥ 1 in an offline manner. An
interesting open question is: Can we design an online deterministic algorithm which
computes MUSs with k-mismatches in sub-quadratic time?.

692 Algorithmica (2022) 84:670–693

1 3

Acknowledgements This work was supported by JSPS KAKENHI Grant Numbers JP20J11983 (TM),
JP18J10967 (YF), JP18K18002 (YN), JP17H01697 (SI), JP16H02783 (HB), JP20H04141 (HB),
JP18H04098 (MT), and by JST PRESTO Grant Number JPMJPR1922 (SI).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Abedin, P., Ganguly, A., Pissis, S.P., Thankachan, S.V.: Range shortest unique substring queries. In:
Brisaboa, N.R., Puglisi, S.J. (eds.) String Processing and Information Retrieval—26th International
Symposium, SPIRE 2019, Segovia, Spain, October 7-9, 2019, Proceedings, Lecture Notes in Com-
puter Science, vol. 11811, pp. 258–266. Springer (2019). https:// doi. org/ 10. 1007/ 978-3- 030- 32686-
9_ 18

 2. Akagi, T., Kuhara, Y., Mieno, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Combina-
torics of minimal absent words for a sliding window. abs/2105.08496 (2021). https:// arxiv. org/ abs/
2105. 08496

 3. Belazzougui, D., Cunial, F.: Indexed matching statistics and shortest unique substrings. In:
de Moura, E.S., Crochemore, M. (eds.) String Processing and Information Retrieval—21st Inter-
national Symposium, SPIRE 2014, Ouro Preto, Brazil, October 20–22, 2014. Proceedings, Lecture
Notes in Computer Science, vol. 8799, pp. 179–190. Springer (2014). https:// doi. org/ 10. 1007/ 978-3-
319- 11918-2_ 18

 4. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching.
IEEE Trans. Commun. 32(4), 396–402 (1984). https:// doi. org/ 10. 1109/ TCOM. 1984. 10960 90

 5. Crochemore, M., Héliou, A., Kucherov, G., Mouchard, L., Pissis, S.P., Ramusat, Y.: Absent words in
a sliding window with applications. Inf. Comput. (2020). https:// doi. org/ 10. 1016/j. ic. 2019. 104461

 6. Fiala, E.R., Greene, D.H.: Data compression with finite windows. Commun. ACM 32(4), 490–505
(1989). https:// doi. org/ 10. 1145/ 63334. 63341

 7. Ganguly, A., Hon, W., Shah, R., Thankachan, S.V.: Space-time trade-offs for finding shortest unique
substrings and maximal unique matches. Theor. Comput. Sci. 700, 75–88 (2017). https:// doi. org/ 10.
1016/j. tcs. 2017. 08. 002

 8. Gräf, S., Nielsen, F.G.G., Kurtz, S., Huynen, M.A., Birney, E., Stunnenberg, H., Flicek, P.: Opti-
mized design and assessment of whole genome tiling arrays. In: Proceedings 15th International
Conference on Intelligent Systems for Molecular Biology (ISMB) & 6th European Conference on
Computational Biology (ECCB), Vienna, Austria, July 21–25, 2007, pp. 195–204 (2007). https://
doi. org/ 10. 1093/ bioin forma tics/ btm200

 9. Haubold, B., Pierstorff, N., Möller, F., Wiehe, T.: Genome comparison without alignment
using shortest unique substrings. BMC Bioinform. 6, 123 (2005). https:// doi. org/ 10. 1186/
1471- 2105-6- 123

 10. Hon, W., Thankachan, S.V., Xu, B.: In-place algorithms for exact and approximate shortest unique
substring problems. Theor. Comput. Sci. 690, 12–25 (2017). https:// doi. org/ 10. 1016/j. tcs. 2017. 05.
032

 11. Hu, X., Pei, J., Tao, Y.: Shortest unique queries on strings. In: de Moura, E.S., Crochemore, M.
(eds.) String Processing and Information Retrieval—21st International Symposium, SPIRE 2014,
Ouro Preto, Brazil, October 20–22, 2014. Proceedings, Lecture Notes in Computer Science, vol.
8799, pp. 161–172. Springer (2014). https:// doi. org/ 10. 1007/ 978-3- 319- 11918-2_ 16

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-32686-9_18
https://doi.org/10.1007/978-3-030-32686-9_18
https://arxiv.org/abs/2105.08496
https://arxiv.org/abs/2105.08496
https://doi.org/10.1007/978-3-319-11918-2_18
https://doi.org/10.1007/978-3-319-11918-2_18
https://doi.org/10.1109/TCOM.1984.1096090
https://doi.org/10.1016/j.ic.2019.104461
https://doi.org/10.1145/63334.63341
https://doi.org/10.1016/j.tcs.2017.08.002
https://doi.org/10.1016/j.tcs.2017.08.002
https://doi.org/10.1093/bioinformatics/btm200
https://doi.org/10.1093/bioinformatics/btm200
https://doi.org/10.1186/1471-2105-6-123
https://doi.org/10.1186/1471-2105-6-123
https://doi.org/10.1016/j.tcs.2017.05.032
https://doi.org/10.1016/j.tcs.2017.05.032
https://doi.org/10.1007/978-3-319-11918-2_16

693

1 3

Algorithmica (2022) 84:670–693

 12. Ileri, A.M., Külekci, M.O., Xu, B.: A simple yet time-optimal and linear-space algorithm for short-
est unique substring queries. Theor. Comput. Sci. 562, 621–633 (2015). https:// doi. org/ 10. 1016/j.
tcs. 2014. 11. 004

 13. Ilie, L., Smyth, W.F.: Minimum unique substrings and maximum repeats. Fundam. Inform. 110(1–
4), 183–195 (2011). https:// doi. org/ 10. 3233/ FI- 2011- 536

 14. Larsson, N.J.: Structures of string matching and data compression. Ph.D. thesis, Lund University,
Sweden (1999). http:// lup. lub. lu. se/ record/ 19255

 15. Li, F., Stormo, G.D.: Selection of optimal DNA oligos for gene expression arrays. Bioinformatics
17(11), 1067–1076 (2001). https:// doi. org/ 10. 1093/ bioin forma tics/ 17. 11. 1067

 16. Mieno, T., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substring queries on run-length
encoded strings. In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) 41st International Sym-
posium on Mathematical Foundations of Computer Science, MFCS 2016, August 22–26, 2016—
Kraków, Poland, LIPIcs, vol. 58, pp. 69:1–69:11. Schloss Dagstuhl - Leibniz-Zentrum für Informa-
tik (2016). https:// doi. org/ 10. 4230/ LIPIcs. MFCS. 2016. 69

 17. Mieno, T., Köppl, D., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Compact data structures
for shortest unique substring queries. In: Brisaboa, N.R., Puglisi, S.J. (eds.) String Processing and
Information Retrieval—26th International Symposium, SPIRE 2019, Segovia, Spain, October 7–9,
2019, Proceedings, Lecture Notes in Computer Science, vol. 11811, pp. 107–123. Springer (2019).
https:// doi. org/ 10. 1007/ 978-3- 030- 32686-9_8

 18. Mieno, T., Kuhara, Y., Akagi, T., Fujishige, Y., Nakashima, Y., Inenaga, S., Bannai, H., Takeda,
M.: Minimal unique substrings and minimal absent words in a sliding window. In: Chatzigeorgiou,
A., Dondi, R., Herodotou, H., Kapoutsis, C.A., Manolopoulos, Y., Papadopoulos, G.A., Sikora, F.
(eds.) SOFSEM 2020: Theory and Practice of Computer Science—46th International Conference on
Current Trends in Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus, January
20–24, 2020, Proceedings, Lecture Notes in Computer Science, vol. 12011, pp. 148–160. Springer
(2020). https:// doi. org/ 10. 1007/ 978-3- 030- 38919-2_ 13

 19. Mignosi, F., Restivo, A., Sciortino, M.: Words and forbidden factors. Theor. Comput. Sci. 273(1),
99–117 (2002)

 20. Pei, J., Wu, W.C., Yeh, M.: On shortest unique substring queries. In: Jensen, C.S., Jermaine, C.M.,
Zhou, X. (eds.) 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8–12, 2013, pp. 937–948. IEEE Computer Society (2013). https:// doi. org/ 10. 1109/
ICDE. 2013. 65448 87

 21. Senft, M.: Suffix tree for a sliding window: An overview. In: WDS, vol. 5, pp. 41–46. Matfyzpress
(2005)

 22. Tsuruta, K., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substrings queries in optimal time.
In: Geffert, V., Preneel, B., Rovan, B., Stuller, J., Tjoa, A.M. (eds.) SOFSEM 2014: Theory and
Practice of Computer Science—40th International Conference on Current Trends in Theory and
Practice of Computer Science, Nový Smokovec, Slovakia, January 26–29, 2014, Proceedings, Lec-
ture Notes in Computer Science, vol. 8327, pp. 503–513. Springer (2014). https:// doi. org/ 10. 1007/
978-3- 319- 04298-5_ 44

 23. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995). https:// doi.
org/ 10. 1007/ BF012 06331

 24. Zheng, J., Close, T.J., Jiang, T., Lonardi, S.: Efficient selection of unique and popular oligos for
large EST databases. Bioinformatics 20(13), 2101–2112 (2004). https:// doi. org/ 10. 1093/ bioin forma
tics/ bth210

 25. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory
23(3), 337–343 (1977). https:// doi. org/ 10. 1109/ TIT. 1977. 10557 14

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1016/j.tcs.2014.11.004
https://doi.org/10.1016/j.tcs.2014.11.004
https://doi.org/10.3233/FI-2011-536
http://lup.lub.lu.se/record/19255
https://doi.org/10.1093/bioinformatics/17.11.1067
https://doi.org/10.4230/LIPIcs.MFCS.2016.69
https://doi.org/10.1007/978-3-030-32686-9_8
https://doi.org/10.1007/978-3-030-38919-2_13
https://doi.org/10.1109/ICDE.2013.6544887
https://doi.org/10.1109/ICDE.2013.6544887
https://doi.org/10.1007/978-3-319-04298-5_44
https://doi.org/10.1007/978-3-319-04298-5_44
https://doi.org/10.1007/BF01206331
https://doi.org/10.1007/BF01206331
https://doi.org/10.1093/bioinformatics/bth210
https://doi.org/10.1093/bioinformatics/bth210
https://doi.org/10.1109/TIT.1977.1055714

	Computing Minimal Unique Substrings for a Sliding Window
	Abstract
	1 Introduction
	1.1 Minimal Unique Substrings and Shortest Unique Substrings
	1.2 Sliding Window Model
	1.3 Our Contributions

	2 Preliminaries
	2.1 Strings
	2.2 Minimal Unique Substrings
	2.3 Suffix Trees

	3 Combinatorial Results on MUSs for a Sliding Window
	3.1 Changes to MUSs When Appending a Character to the Right
	3.1.1 MUSs to be Deleted When Appending a Character to the Right
	3.1.2 MUSs to be Added When Appending a Character to the Right

	3.2 Changes to MUSs When Deleting the Leftmost Character
	3.2.1 MUSs to be Added When Deleting the Leftmost Character
	3.2.2 MUSs to be Deleted When Deleting the Leftmost Character

	4 Algorithm for Computing MUSs for a Sliding Window
	4.1 Updating Suffix Tree and Its Three Loci
	4.1.1 Appending One Character
	4.1.2 Deleting the Leftmost Character

	4.2 Computing
	4.3 Detecting MUSs to be AddedDeleted
	4.3.1 Data Structure for Maintaining MUSs
	4.3.2 Algorithm When Appending a Character to the Right
	4.3.3 Algorithm When Deleting the Leftmost Character

	5 Conclusions and Future Work
	Acknowledgements
	References

