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Abstract
We consider the problem of designing a succinct data structure for representing 
the connectivity of planar triangulations. The main result is a new succinct encod-
ing achieving the information-theory optimal bound of 3.24 bits per vertex, while 
allowing efficient navigation. Our representation is based on the bijection of Pou-
lalhon and Schaeffer (Algorithmica, 46(3):505–527, 2006) that defines a mapping 
between planar triangulations and a special class of spanning trees, called PS-trees. 
The proposed solution differs from previous approaches in that operations in planar 
triangulations are reduced to operations in particular parentheses sequences encod-
ing PS-trees. Existing methods to handle balanced parentheses sequences have to 
be combined and extended to operate on such specific sequences, essentially for 
retrieving matching elements. The new encoding supports extracting the d neigh-
bors of a query vertex in O(d) time and testing adjacency between two vertices in 
O(1) time. Additionally, we provide an implementation of our proposed data struc-
ture. In the experimental evaluation, our representation reaches up to 7.35 bits per 
vertex, improving the space usage of state-of-the-art implementations for planar 
embeddings.
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1 Introduction

Consider the set of unlabeled and connected finite planar graphs, where neither 
loops nor multiple edges are allowed, that admit planar embeddings in which each 
face has three and only three incident edges. One such planar embedding pro-
vides, for any vertex, a cyclic ordering of the edges it is incident with. This order-
ing determines a finite number of equivalence classes, each of which is called a 
triangulation. A triangulation is said to be rooted if an edge is distinguished and 
directed. All triangulations appearing in this work are considered to be rooted.

Poulalhon and Schaeffer [37] provided an optimal compression scheme for tri-
angulations. Their algorithm enriches a particular vertex spanning tree (VST) of 
the triangulation with two leaves per node, obtaining what we call a PS-tree. Each 
leaf corresponds to an edge of the triangulation which does not belong to the 
VST. The PS-tree uniquely associated to a triangulation with n vertices is repre-
sented by a binary string S of size 4n, created by performing a left-to-right depth-
first-search traversal of the PS-tree. Taking as the binary elements of S opening 
and closing parentheses symbols, an opening parenthesis symbol, ‘(’, is assigned 
to each down step along VST edges, and a closing parenthesis symbol, ‘)’, is 
assigned to both leaves and up steps along the VST edges. As string S has n sym-
bols of type ‘(’ and 3n symbols of type ‘)’, the encoding space is further reduced 
to 3.24 bits per vertex. Such information-theory optimal encoding is suitable for 
storage or network transmission. However, once the encoding process has been 
performed, the triangulation is not accessible any more until the whole encoding 
is sequentially decoded. In this work, local access is provided at the expense of 
extra o(n) space. This functionality allows managing string S in main memory 
while navigation queries are supported.

The problem under study in this paper has also been treated by Castelli Aleardi 
et al. [2]. In their work, the authors make use of the succinct representation para-
digm: triangulations are hierarchically decomposed into tiny and small triangula-
tions, formalizing the catalog-tiny-small framework. Their proposal requires an 
extra storage of o(n) bits, and supports adjacency queries between vertices and 
faces in constant time. The technique presented in this work completely differs 
from such approach, avoiding the management of the exhaustive catalog of all 
tiny triangulations, the only common point being the use of the Poulalhon and 
Schaeffer bijection [37].

The new proposal makes use of a special parenthesis sequence, which comes 
from a depth-first-search traversal on the contour of the PS-tree uniquely associ-
ated to the triangulation. It does not correspond to a standard balanced parenthe-
sis sequence of equal number of ‘)’ and ‘(’ symbols because, besides the balanced 
binary sequence of the VST, where ‘(’ represent down steps and ‘)’ up steps dur-
ing the left-to-right depth-first-search traversal of the tree, there are interleaved 
‘)’ symbols corresponding to traversed leaves. Hence, previous results to manage 
standard balanced binary sequences with operators such as matching cannot be 
directly applied. On the other side, techniques for dealing with general sequences 
are not efficient. By exploiting the particular structure of sequence S, a new 
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technique to handle it has been developed in this paper. The new representation 
is the first string based encoding requiring the information theoretically optimal 
space of 3.24 bits per vertex plus an o(n) term which allows testing adjacency 
between two vertices in O(1) time and extracting the d neighbors of a query ver-
tex in O(d) time. In previous work based on parentheses encodings, these opera-
tions were allowed at the cost of increasing storage space [16, 17].

Our contribution in this paper is twofold: 

1. We complement the bijection of Poulalhon and Schaeffer, allowing efficient navi-
gation of the triangulation, while the triangulation is encoded in 3.24n + o(n) bits, 
with n the number of vertices of the triangulation. To support efficient naviga-
tion, additional compact data structures of o(n) bits are added. From the two 
major approaches in the area of succinct representations of triangulations we 
have previously described, namely catalog-based representations and string-based 
representations, this paper offers an alternative approach to the former one and 
contributes to the latter.

2. We provide an experimental evaluation of our proposal. We measure the space 
usage and the query time for several datasets. In practice, our structure reaches 
up to 7.35 bits per vertex, improving the space usage of the current best result of 
Ferres et al. [21].

The rest of the paper is organized as follows. In Sect. 2 we discuss the state-of-the-
art of the succinct representations of planar graphs and triangulations. In Sect. 3, the 
necessary background for our contribution is presented. In Sect. 4 we describe our 
succinct encoding, and in Sect. 5, procedures to check if two vertices are adjacent 
and to retrieve the list of neighbors of a vertex are shown. In Sect. 6, we present an 
implementation of our proposal. Finally, in Sect. 7 some conclusions are given.

2  Related Work

In 1962, Tutte’s enumerative work [41] showed that the minimum number of bits to 
encode a triangulation is lg

(
256

27

)
≈ 3.245 bits per vertex.1 Turán  [40] proposed a 

simple and elegant representation for any planar graph in 4 bits per edge (asymptoti-
cally 12n bits, where n is the number of vertices). Since then, decades of research 
were devoted to obtain a space-optimal data structure for both planar maps and tri-
angulations (see [34, Chapter 9]).

Jacobson  [32] started in 1989 a stream of research by posing the problem of 
encoding a graph as shortly as possible while allowing to answer queries. He pro-
poses a compact representation for plane graphs with n vertices requiring O(n) 
bits that supports basic operations such as searching and adjacency testing in O(1) 
time in the RAM model ( O(lg n) time in the bit probe model). The result is based in 

1 All logarithms appearing in this paper are in base 2.
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decomposing plane graphs into k-page embeddings, and encoding them as sequences 
of one type of parenthesis. Following the same decomposition for planar graphs, 
Munro and Raman  [33] provided another encoding requiring 2m + 8n + o(m + n) 
bits, where m is the number of edges, providing analogous query support. Geary 
et al.  [24] presented a simpler parenthesis representation which supports the oper-
ations required by the algorithms in [32, 33], such as retrieving the parenthesis 
matching a given one, is proposed. Its space bound has a smaller o(n) term.

The technique used by Chuang et al. [17] is conceptually different, as graphs are 
encoded as sequences of several types of parentheses, achieving a space require-
ment of 2m + (5 + 1∕k)n + o(m + n) bits, for some constant k > 0 , with the same 
query support. Following the same line of work, Chiang et  al.  [16] gave a repre-
sentation for simple planar graphs using in 2m + 2n + o(n) bits, allowing adjacency 
and degree queries in constant time. Yamanaka and Nakano  [42] further reduced 
the space cost for planar triangulations to 2m + o(m) bits with the same support for 
queries.

Besides proposing the first succinct representation for labeled graphs, Barbay 
et  al.  [8] presented a succinct representation for unlabeled planar triangulations 
using 2m lg 6 + o(m) bits, which also supports rank and select operations of edges 
in counterclockwise order. A succinct encoding of arbitrary graphs with adjacency, 
neighborhood and degree queries in constant time based in the encoding of its adja-
cency matrix was presented by Farzan and Munro [20]. The space required for the 
encoding is a factor of 1 + � away from the minimum for any arbitrarily small con-
stant 𝜖 > 0.

Blandford et al. [10] introduced a representation for separable graphs. It supports 
adjacency and degree queries in constant time, and neighborhood queries in time 
linear in the output size, but their representation requires O(n) bits. Blelloch and 
Farzan [12] presented a succinct representation for separable graphs which supports 
the same queries, all in constant time. Their encoding scheme partitions the graph 
into smaller subgraphs recursively until their size is small enough to be catalogued 
and listed into a look-up table.

He et  al.  [30] proposed the first optimal encoding for triangulations, without 
query support. Castelli Aleardi et al.  [4, 6] proposed a hierarchical decomposition 
for triangulations into sub-triangulations of small and tiny size, small enough to be 
handled by the use of table-lookup and local pointers, reaching 4.35 bits per ver-
tex. Their results were improved latter  [2] to obtain an optimal representation for 
3-connected planar graphs and triangulations, while supporting adjacency queries 
between vertices and faces in constant time. Poulalhon and Schaeffer [37] proposed 
an optimal encoding for triangulations based on Schnyder woods  [39]. We will 
describe their work in more detail later, since our representation is built upon theirs.

Some practical results have been proposed, providing a tradeoff between space 
and time performances. Gurung et al. [27] proposed a data structure which experi-
mentally requires on average either 1.08 references per triangle or optionally 26.2 
bits per triangle. It has linear space and time complexity, while supporting constant-
time adjacency queries. The same authors  [28] gave an alternative presentation 
which uses in average 12 bits per vertex, and supports standard traversal operations 
in constant time. In the branch of separable graphs, Blandford et al. [10, 11] provided 



3436  Algorithmica (2021) 83:3432–3468

1 3

experimental results for static and dynamic planar graphs. Castelli Aleardi et al. [1, 
3, 5, 14] showed practical compact data structures for triangulations and meshes. 
Turán’s non-optimal encoding for planar graphs was enriched by Ferres et al. [21] 
with a sublinear number of bits allowing neighbors retrieval in constant time per 
neighbor, and adjacency test in O(f(m))-time for any given function f (m) ∈ �(1) . 
The encoding is based in the representation of both a vertex spanning tree of the 
graph and the complementary spanning tree of the dual of the graph. Additionally, 
Ferres et  al. proposed a PRAM EREW algorithm to construct their encoding in 
O(lg2 m lg∗ m) time using O(m) processors. Their algorithm can also be adapted to 
work in the PRAM arbitrary CRCW model in O(lg2 m) time using O(m∕ lgm) pro-
cessors, or in O(lgm) time using O(m3) processors.

3  Background

In this section we review previous results on which this article is based, namely 
the encoding of triangulations given by Poulalhon and Schaeffer  [37], the results 
given by Geary et al. [24] to encode balanced binary strings and the result of Raman 
et al. [38] to encode bit-strings in optimal space.

3.1  PS‑Tree of a Triangulation

Let T  be a triangulation with oriented root edge (u2, u1) . By convention, we consider 
that the root edge has the infinite face on its right. The rest of faces are said to be 
finite. Let u3 be the third vertex of T  incident with the infinite face. A linear time 
algorithm is given in [37] to construct uniquely from T  a vertex spanning tree. It 
is based on a minimal Schnyder wood of T  [13, 39], and it satisfies that each vertex 
(except the root vertex, its only child and its only grandchild) has two leaves. From 
now on, such spanning tree is referred to as the PS-tree of T  . From such tree, trian-
gulation T  can be reconstructed [37]. In Fig. 1a, b, both a triangulation and its PS-
tree are shown.

Adapting the terminology of [37], inner nodes are vertices of degree at least 2, 
and leaves are vertices of degree 1 (with the only exception of the root vertex u1 , 
which has degree 1 but is an inner node). Inner edges are edges connecting two 
inner nodes, and stems are edges connecting an inner node to a leaf. By merging 
leaves to inner nodes, triangular faces are created. Let ui , uj , uk be inner nodes, and 
l be a leaf, such that ui , uj , uk and l are found in this order when the infinite face is 
traversed in counterclockwise order. The triple 

(
(ui, uj), (uj, uk), (uk, l)

)
 is called an 

admissible triple. The local closure of such an admissible triple consists in merg-
ing leaf l with inner node ui to create a bounded face of degree 3. Stem (uk, l) then 
becomes inner edge (uk, ui) . The recursive application of local closure to all available 
admissible triples builds the original triangulation. Provided there are several admis-
sible triples, the order of application of local closure is irrelevant. In Fig. 1c, several 
admissible triples are shown. Dashed lines indicate those stems which become inner 
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(a) (b)

(c)

(e)

(f)

(d)

Fig. 1  (a) Original triangulation equipped with a minimal Schnyder wood, with distinguished root edge 
( u2, u1 ). The vertices are labeled as they are found in the left-to-right depth-first-search of the tree. (b) 
PS-tree. Leaves are shown by solid disks. (c) Dashed lines indicate admissible triples. (d) After local clo-
sure of the admissible triples has been performed, new admissible triples are shown. (e) Considering an 
extra ‘( )’ pair enclosing the whole sequence, string S encoding the triangulation is shown. In (f), the ‘)’ 
symbols representing stems have been replaced by ‘ ]’ symbols
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edges when the local closure of the corresponding admissible triples is performed. 
In Fig. 1d, the next step of local closure is shown.

The triangulation T  can be encoded in a binary string S by performing a lin-
ear time left-to-right depth-first-search of its PS-tree. For the sake of clarity we 
will build string S with opening parentheses instead of 1’s and closing parentheses 
instead of 0’s. Whenever an inner edge is found the first time, a ‘(’ symbol is added 
to S. Re-visited inner edges and stems are represented by ‘)’ symbols in S. Tak-
ing into account that in a triangulation with n vertices there are n − 1 inner edges 
and 2n − 5 stems, the length of string S is 4n − 7 plus an extra ‘( )’ pair enclosing 
the whole sequence (Fig. 1e). From now on, by balanced binary strings we refer to 
strings formed by matching ‘( )’ pairs, an by balanced-quadruple string we refer to 
the string S whose construction we have just explained and where, besides each ‘(’ 
and its matching ‘)’, there are some other ‘)’ symbols. Since the string S has n − 1 
1-bits and 3n − 5 0-bits, it can be encoded into nH0(S) + o(n) ≈ 3.24n + o(n) bits 
using a compressed bit-string, such as the representation of Raman et al. [38]. In the 
expression, H0(S) corresponds to the zeroth-order empirical entropy of S.

To reconstruct the triangulation from string S, the exhaustive recursive applica-
tion of local closure to all admissible triples has to be performed.

3.2  Encoding of Balanced Binary Strings

Given a balanced binary string of length 2n, Geary et al. [24] introduced a represen-
tation which supports the following operations in O(1) time:

– find 1 (p) returns the position of the 1 that matches a given 0 in position p.
– find 0 (p) returns the position of the 0 that matches a given 1 in position p.
– enclose (p) finds the 1 of the matching pair that most tightly encloses the ele-

ment in position p.

Proposition 1 (Geary et al. [24, Theorem 6]). A balanced binary string of 2n ele-
ments can be represented using 2n + O

(
n lg lg n

lg n

)
 bits so that the operations find1, 

find0 and enclose can be supported in O(1) time.

To implement these operations, the given string is divided into blocks of size 
B = Θ(lg n) , and a set of O

(
n

B

)
 elements are identified as pioneers. Considering only 

those elements which have their matchings in a block different to the block they 
belong to, a 1 that is a pioneer indicates that its matching 0 is in a different block 
than the matching of the first 1 to its left.

A bit-vector V of the same length as original string (2n) with 1’s at the positions 
of pioneer elements is created. The positions of the sequence of pioneer elements 
are stored in o(n) bits using a data structure called a Nearest Neighbor Dictionary 
(NND). This NND encoding V supports the following operations in O(1) time:
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– rank 1(i,V) : returns the number of 1’s up to the i-th element (included) in V.
– select 1(i,V) : returns the position of the i-th 1 in V.
– pred (i, V): returns the position of the first 1 to the left of the i-th element in V. 

It returns i if the i-th element is a 1.
– succ (i, V): returns the position of the first 1 to the right of the i-th element in V. 

It returns i if the i-th element is a 1.

A bit-vector W of length |W| is said to be uniformly sparsed if it satisfies the follow-
ing two properties: (i) the number of 1 elements in W is O

(
|W|
lg |W|

)
 , (ii) the number of 

0 elements between any two 1’s is at most O(lgc |W|) for some constant c ≥ 1 . A 
simplified NND, called SNND, is proposed by Geary et  al.  [24] for uniformly 
sparsed sets. This SNND requires four arrays of O

(
|W| lg lg |W|

lg |W|

)
 bits each and three 

tables of O
(
|W|2∕3

)
 bits each. In the next lemma some properties of the SNND 

structure are given.

Lemma 1 (Geary et al. [24, Section 2.3]). Given a uniformly sparsed bit-vector W, a 
SNND representing it supports operations rank 1(i,W) and select 1(i,W) in O(1) 
time. The SNND can be constructed from W in O

(
|W|
lg |W|

)
 time using additional 

O

(
|W| lg lg |W|

lg |W|

)
 bits of workspace.

The substring considering only pioneers is itself a balanced substring of length 
O

(
n

lg n

)
 . By applying a recursive process on such substring, a new set of O

(
n

lg2 n

)
 

pioneers appear. For each of them, the pre-computed answers for each required 
operation find1, find0, or enclose, are stored in a table.

Based on the previous operations acting on balanced strings and some others that 
will be developed to handle the balanced-quadruple binary string encoding a tri-
angulation, more complex operators to navigate through the triangulation will be 
developed. They must provide tools to transform operations on the triangulations on 
operations on the balanced-quadruple binary string encoding it, for example finding 
the two endpoints of any edge in the triangulation.

3.3  Compact Representation of Bit‑strings

Given a bit-string S of length n, Raman et al. [38] introduced a succinct representa-
tion of S using nH0(S) + o(n) bits of space which supports rank/select operations in 
constant time. The first term of the space complexity corresponds to the zeroth-order 
empirical entropy S, and the second term corresponds to some lookup tables to sup-
port the efficient decoding of the bit-string. We will apply this data structure to a bit-
string with, roughly, 25% of 1-bits. In this way, we take advantage of the H0(S) term 
in the space complexity.

In their data structure, Raman et al. divide S into blocks of size b. The block Si 
is represented by a class ci and an offset oi , where ci corresponds to the number of 
1-bits in Si , and oi is an index to identify which block is Si among all the blocks 
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of the same class ci . Thus, the bit-string S is represented by two arrays C[1..⌈ n

b
⌉] 

and O[1..⌈ n

b
⌉] , storing the class and the offset of each block. Given the class and 

the offset of a block, it is possible to recover the whole block of size b in O(1) 
time, using a lookup table of o(n) bits. This is particularly useful to our encoding 
of triangulations, since we use lookup tables that are indexed by blocks of size b.

4  Our Proposal

Our representation is built upon the bijection of Poulalhon and Schaeffer [37] to 
represent a triangulation T  as bit string S. We represent S in optimal space using 
the compressed bit-vector of Raman et al.  [38]. In this section we discuss some 
primitives acting on string S which will be used to implement navigational opera-
tions on the triangulation T  . To justify the necessity of such primitives, let us 
focus on the problem of retrieving the neighbours of a vertex in a triangulation T  . 
A procedure to obtain them, which will be thoroughly studied in Section 5, con-
sists in performing a counterclockwise traversal around the query vertex to reach 
the ordered set of neighbouring vertices. Let us consider as the first neighbour to 
be reached the vertex of the triangulation which is the parent of the query vertex 
in the PS-tree. For obtaining such vertex we will take into account that each ver-
tex of triangulation T  , except root vertex u1 , is uniquely associated to an inner 
edge connecting the vertex to its ancestor in the PS-tree, and is encoded in S by 
a pair of symbols, a ‘(’ and a ‘)’, which are said to be matching. By considering 
an extra ‘( )’ pair enclosing the whole encoding sequence, vertex u1 also satisfies 
this property. Let us assume that the vertices of the triangulation T  are stored in 
an array as they are found the first time when the left-to-right depth-first-search 
traversal of the PS-tree is performed. In the triangulation of Fig. 1, the ordered 
sequence of vertices stored in the array of vertices would be u1 , u2,…,u10 . Then, 
vertex ui corresponds to the i-th ‘(’ symbol in S, and the problem of obtaining the 
parent of vertex ui in the PS-tree consists in retrieving in S the ‘(’ element of the 
pair of matching parentheses enclosing the i-th ‘(’ symbol in S. If such element is 
the j-th ‘(’ symbol in S, the parent of ui in the PS-tree will be vertex uj.

Once we have sketched how the navigational operations on triangulation T  can 
be translated into operations on string S encoding T  , we remark that an inner 
edge is represented in the binary string S by a ‘( )’ matching pair, whereas a stem 
is encoded in S by just one ‘)’. Hence, each ‘)’ in binary string S represents either 
an inner edge or a stem. For the sake of clarity, from now on we will denote by ‘)’ 
the closing parentheses in S corresponding to inner edges, and by ‘ ]’ the closing 
parentheses in S associated to stems. However, we must always keep in mind that 
both symbols ‘)’ and ‘ ]’ represent ‘)’ elements in S. According to this criterion, 
string S encoding the triangulation of Fig. 1 is denoted by:

as we can observe in Fig. 1f.

( ( ( ( ( ( ] ] ( ] ] ) ( ] ( ] ] ( ] ] ) ) ] ) ) ] ] ) ] ] ) ] ) ) ),
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We give next some basic properties of PS-trees and their encoding sequences, 
which will be useful all over this section to build the required primitives acting on S. 
The proof is left to the reader.

Lemma 2 Let S be a binary string encoding triangulation T  . Then, 

1. S can be built in linear time by performing a depth-first-search traversal of the 
PS-tree of T  . The PS-tree is obtained by computing the minimal Schnyder wood 
decomposition of the triangulation T  , which can also be done in linear time [37, 
Section 4.1].

2. A left-to-right depth-first-search traversal of the PS-tree of T  reaches, between 
the two occurrences of an inner edge connecting a vertex ui , with i > 3 , to its 
ancestor in the PS-tree, the two stems incident with ui . That is, between a ‘(’ and 
its matching ‘)’ in S, their two associated ‘ ]’ symbols are located.

3. Each element of S, except its first three and its last four elements, belongs to a 
‘( ] ] )’ quadruple. The elements of each ‘( ] ] )’ quadruple do not necessarily 
appear consecutive. Moreover, all substrings nested in a quadruple, i.e., explic-
itly strings x, y and z in a string ‘ ( x ] y ] z ) ’, where the shown parenthesis form a 
quadruple, correspond to the empty string or to a balanced-quadruple string.

4. Given a stem of the PS-tree, represented in S by a ‘ ]’ symbol, the ‘(’ of the ‘( ] ] )’ 
quadruple containing it corresponds to an inner node of the PS-tree the stem is 
incident with.

Taking into account the properties established in this lemma, the following primi-
tives acting on S, as well as some others whose meaning will be explained later on, 
will be studied in this section:

– Given an element p of S which is either a ‘(’ or a ‘)’ representing an inner edge, 
retrieve its matching element.

– Given an element of S, retrieve its enclosing ‘( )’ pair.
– Given a ‘(’ of S, retrieve the two elements of type ‘  ]’ of its associated ‘( ] ] )’ 

quadruple.

The rest of the section is organized as follows. In Sect. 4.1 we show how to find in 
S the two occurrences of an inner edge, and how to perform some other required 
operations in S. In Sect. 4.2 we give a proposal to retrieve the two inner nodes con-
nected by a stem. A procedure to find the stem edges incident at a vertex is given in 
Sect. 4.3. In Sect. 4.4 the storage space required by the proposal is given.

4.1  Detecting in S the Two Occurrences of an Inner Edge

To perform operations on S in constant time, some of its elements deserve special 
consideration. We will be as faithful as possible to original notation of Jacob-
son [32] for retrieving matching elements, and its subsequent extensions [24, 33], 
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in terms of blocks, pioneers, etc., to designate such elements. Assume S is divided 
into blocks of fixed size, and let p be an element of type either ‘(’ or ‘)’ encod-
ing an inner edge. With an abuse of notation, we will call indistinctly to both 
element p and its position in S. The element matching p will be denoted �(p) , 
and the block in which p lies b(p). We will say that p is far() if b(p) ≠ b(�(p)) . A 
block will be called near() if it has not any p that is far() . We note that in Fig. 2 
there is not any near() block. Moreover, all elements encoding inner edges are far() 
elements.

With the next definition we distinguish those ‘(’ that indicate a change in the 
block in which its matching ‘)’ lies, when traversing S from left to right (see 
Fig.  2). That is, all ‘(’ which are between any two such distinguished ‘(’ have 
their matching ‘)’ in the same block. Some ‘)’ will be distinguished in a similar 
way, when S is traversed from right to left.

Definition 1 Consider string S corresponding to a PS-tree as defined above. 

(a) Let p be a ‘(’ of S such that p is far() . We say that p is a pioneer ( if either p is the 
first element of S or 

 where l is the first far() element of type ‘(’ to the left of p.
(b) Let q be a ‘)’ of S such that q is far() . We say that q is a pioneer) if either q is the 

last element of S or 

 where r is the first far() element of type ‘)’ to the right of q.

The reason why pioneer( elements are relevant is given in the next proposition, 
where we prove that the matching of any ‘(’ in S can be retrieved from the match-
ing of its previous pioneer( . Similarly, pioneer ) elements are relevant to compute 
the ‘(’ that matches a given ‘)’. For the sake of conciseness, only the procedure of 

b(�(p)) ≠ b(�(l)),

b(�(q)) ≠ b(�(r)),

Fig. 2  String S encoding the triangulation of Fig. 1, divided into blocks of five elements. Each ‘(’ and its 
matching ‘)’ are joined. The pioneer(  elements are depicted as the ‘(’ symbols surrounded by a square, 
and the pioneer)  elements are the symbols of type ‘)’ surrounded by a square. Element p and its match-
ing �(p) are shown, as well as the first pioneer(  to the left of p, denoted p∗ , and its matching element 
�(p∗)
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finding the ‘)’ matching a given ‘(’ is detailed in this section, the case of retriev-
ing the ‘(’ matching a given ‘)’ being analogous.

Proposition 2 Let S be a binary string encoding triangulation T  , p be a ‘(’ in S such 
that p is a far() element that is not a pioneer( , and p∗ be the first pioneer( to the left 
of p. Then,

where N1 is the number of ‘(’ between p and p∗ , N0 is the number of ‘)’ and ‘ ]  ’ 
between p and p∗ , and M1 is the number of ‘(’ between �(p) and �(p∗) . In all this 
counting, all endpoints p, p∗ , �(p) and �(p∗) , are excluded.

Proof Build the graph whose nodes are the elements of S, and whose edges join 
matching ‘( )’ pairs (see Fig. 2). The substring of S formed by each ‘(’ and its match-
ing ‘)’ is balanced. Thus, the edges of such a graph can be drawn without any cross-
ing, and all far() elements between p and p∗ have their matchings between �(p) and 
�(p∗) . As stated in Lemma 2, the construction of string S from a PS-tree implies 
that, for each ‘(’ in S, its two associated ‘  ]  ’ symbols must be placed before its 
matching ‘)’. Quantity 3N1 − N0 counts three times each ‘(’ between p and p∗ and 
subtracts the number of ‘)’ and ‘ ]  ’ between such positions, reminding the reader 
that ‘)’ and ‘ ] ’ are all ‘)’ in binary string S. That is, for every quadruple ‘ (  ] ] ) ’ 
placed between p and p∗ , such quantity is 0. If, on the contrary, all elements of such 
quadruple are not between p and p∗ , it means that the remaining ‘ ] ’ and ‘)’ have 
to be placed between �(p) and �(p∗) . Therefore, starting at the position of �(p∗) and 
moving towards the left as many positions as the number of such ‘ ] ’ and ‘)’, the 
position of �(p) will be reached. In this process, every ‘ (  ] ] ) ’ quadruple between 
�(p) and �(p∗) must be skipped, which is taken into account by the 4M1 term in (1).  
 ◻

The matching of a pioneer( element needs not be a pioneer) , and the same holds 
for the matching of a pioneer) . As an example, we observe in Fig. 2 that the last ‘(’ 
in the first block of S is a pioneer( element, whereas its matching ‘)’ is not a pio-
neer) . Also, the matching of the pioneer) placed in first position in the fifth block 
of S has a matching ‘(’ which is not a pioneer( . In the following definition the set of 
pioneer( and pioneer) elements is expanded to obtain a family of pioneers which is 
a balanced substring of S. Besides, to achieve that each block has at least a pioneer 
element and that the substring continues being balanced, the first and last element of 
each near() block are also added to such family.

Definition 2 We call pseudo pioneer family( ) of S, and denote it P ( ) , to the set of the 
following elements of S: 

1. Every pioneer( and its matching
2. Every pioneer) and its matching
3. The first and last element of each near() block.

(1)�(p) = �(p∗) − (3N1 − N0) − 4M1 − 3,
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With this definition, for each near() block its first and its last element are added to 
the set of pioneer( and pioneer) elements. And for any other block, the leftmost ‘(’ 
element that is far() , if existing, is also added, as well as the rightmost ‘)’ element 
that is far() , provided such element exists. The elements of P ( ) in string S of Fig. 2 
have been depicted surrounded by a square in Fig. 3. In the next proposition a bound 
for the size of P ( ) , as well as a possible encoding for the positions of its elements in 
S, are given.

Proposition 3 Let S be a binary string encoding triangulation T  , and let P ( ) be the 
pseudo pioneer  family( ) of S. Then, 

(a) The size of P ( ) is at most 4� − 6 , where � is the number of blocks.
(b) Assuming blocks of size2 lg(4n)

8
 , bit-vector V encoding the positions of P ( ) can be 

represented by a SNND.

Proof (a) The proof of Jacobson [32] to provide an upper bound for the number of 
pioneer elements in a balanced string will be straightforwardly adapted to our bal-
anced-quadruple string. The graph whose nodes represent the blocks of S, and 
whose edges join each block containing a pioneer( , resp. pioneer) , with the block 
containing its matching ‘)’, resp. ‘(’, is a simple outerplanar graph, thus having at 
most 2� − 3 edges, which is the number of edges of a maximal outerplanar graph 
with � nodes. Thus, the number of elements satisfying item 1 and item 2 of Defini-
tion 2 is at most 4� − 6 . In case some near() block in S exists, it corresponds to an 

Fig. 3  In string S, elements of pseudo pioneer family P ( ) are surrounded by a square. Bit-string V whose 
1-bits correspond to the elements of P ( ) is shown. In this example the block size is fictitious

2 Floors and ceilings will be ignored for the sake of clarity.
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isolated node of the outerplanar graph, and as each vertex of a maximal outerplanar 
graph has at least degree 2, it follows that for each such block the bound of edges 
decreases by at least two. On the other side, each near() block adds exactly two ele-
ments at P ( ) . We conclude that the upper bound of 4� − 6 remains valid although 
near() blocks exist. (b) A bit-vector V of the same length as S will be created. An ele-
ment of V will be a 1 when the element of S in the same position belongs to P ( ) . For 
V to be encoded by a SNND we must prove that V is a uniformly sparsed set: (i) For 
a binary string of size 4n and a block size lg(4n)

8
 , we have � =

32n

lg(4n)
 . Thus, according 

to (a) the number of 1-bits is at most 128n
lg(4n)

 . (ii) In each near() block the first and last 
elements belong to P () . For any other block, at least one far() element exists. Hence, 
at least one of the elements in the block belongs to P () . Therefore, the number of 
0-bits between any two consecutive 1-bits in V is at most lg(4n)

4
 .   ◻

Now, a recursive procedure will be applied to P ( ) , with the only difference that 
P ( ) is a balanced string, whereas S is not. All available techniques for dealing 
with balanced strings [24] can be applied to P ( ) . In particular, consider P ( ) ficti-
tiously divided into blocks of the same length as the blocks of S. A SNND will be 
created to encode the pseudo pioneer family of P ( ) . As explained in Sect. 3.2, the 
number of pioneer( elements in P ( ) will be O

(
n

lg2 n

)
 . For each element p∗∗ in P ( ) 

that is a pioneer( , its matching element in S, �(p∗∗) , is explicitly stored. Thus, the 
SNND’s of V and the pseudo pioneer family of P ( ) , together with some tables, 
allow to obtain in S the matching ‘)’ of a pioneer( p∗ in O(1) time.

Once �(p∗) is known, to obtain �(p) by table lookup, some more definitions are 
given. We refer the reader to Fig. 4. At any position p of a block, we define the 
net-left-excess(p) as three times the number of ‘(’ minus the number of ‘)’, asso-
ciated to both ‘)’ and ‘ ] ’ symbols, from the left end of the block up to p, includ-
ing p. Similarly, we define the net-right-excess(p) as the number of ‘)’, associated 
to both ‘)’ and ‘ ] ’ symbols, minus three times the number of ‘(’ from the right 
end of the block up to p included. The following proposition shows how the infor-
mation required to retrieve �(p) can be found from such excess information.

Fig. 4  To compute �(p) in Fig.  2, let us consider blocks b(p∗) and b(�(p∗)) . We have 
net-left-excess(p) − net-left-excess(p∗) = 2 . Hence, as stated in Proposition 4, the net-right-excess of 
�(p) is 2 + net-right-excess(�(p∗)) = 4.
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Proposition 4 Let p be a ‘(’ of S such that p is a far() element, and let p∗ be the first 
element to its left that is a far() element of P ( ) , which will be possibly coincident with 
p. Then, the position of �(p) is the leftmost position of a ‘)’ in b(�(p∗)) whose net-
right-excess is:

Proof We begin by observing that both p and p∗ belong to the same block. First we 
compute the net-right-excess of �(p) . According to the definition, it is the net-right-
excess of �(p∗) plus the number of ‘)’ between �(p∗) and �(p) minus three times the 
number of ‘(’ between �(p) and �(p∗) . In both cases, �(p) is included and �(p∗) is 
excluded. Each ‘(’ between �(p) and �(p∗) must have each of its associated ‘ ] ] ) ’ 
elements before �(p∗) , and hence the net-right-excess of �(p) does not depend on 
the number of ‘(’ between �(p) and �(p∗) . The net-right-excess of �(p) is therefore 
obtained from the net right excess of �(p∗) by adding one for each ‘)’ or ‘ ] ’ between 
�(p) and �(p∗) whose corresponding ‘(’ is between p and p∗ , and that quantity is net-
left-excess(p)-net-left-excess(p∗) . Second, we claim that a ‘)’ in b(�(p)) to the left of 
�(p) with its same net-right-excess cannot exist: each ‘)’, representing ‘)’ or ‘ ] ’, to 
the left of �(p) adds up one to the net-right-excess. Due to the construction of string 
S, a ‘(’ to the left of �(p) would substract three to the net-right-excess. Hence, it can-
not exist unless each element of its associated ‘ (  ] ] ) ’ triple is placed between such 
‘(’ and �(p) . Hence the only elements in b(�(p)) to the left of �(p) with its same net-
right-excess can be ‘(’.   ◻

Both quantities, net-right-excess and net-left-excess, will be stored for each 
position of the block. Storing also, for each block, the leftmost position in the 
block with net-right-excess i, where for a block size B we have −3B ≤ i ≤ B (the 
table stores 0 if there is not any element in the block with net right excess i), the 
matching of p is retrieved in O(1) time.

Unlike what happens with the algorithm to compute the matching of an ele-
ment, which was not applicable from previous work, operation enclose for 
balanced binary strings (see Proposition 1) to retrieve the tightest pair of match-
ing ‘(’ and ‘)’ enclosing any given element of the string can be straightforwardly 
applied to our case by using the recursive structure we already have. For each 
pioneer(  p∗∗ in P ( ) , the element in S enclosing p∗∗ is explicitly stored. From this 
information, the SNND of V, the pseudo pioneer family of P ( ) , and the inclusion 
of enclosing information in the tables, the ‘(’ enclosing any pioneer(  p∗ in S is 
obtained in O(1) time. Using the recursive structure, and also in constant time, 
the ‘(’ enclosing any element p of S can be found.

Next, we study two operations to be performed on S that will be useful later. 
The first one requires the use of a structure similar to the representation we have 
developed here. The second one makes use of the structure developed in this 
section and some more tables for transforming a portion of binary string S into 
its corresponding ternary portion.

(2)net-right-excess(�(p∗)) + net-left-excess(p) − net-left-excess(p∗)
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4.1.1  Retrieving the Two ‘ ] ’ Associated to a ‘ (’

Given a ‘(’ of S, we are now interested in finding the positions in S of the two ‘ ] ’ of 
its ‘ (  ] ] ) ’ associated quadruple. We can apply an idea similar to what we have done 
up to now, just considering a different SNND. In order not to be repetitive we will only 
outline the procedure, illustrated in Fig. 5.

Let p be a ‘(’ of S, l be the leftmost ‘ ] ’ associated to p, and r be the rightmost ‘ ] ’ 
associated to p. We say p is far( ] ] if r is not in b(p). Let us assume that p is far( ] ] , and 
let q be the first far( ] ] element of type ‘(’ to the left of p in S. We say that p is a pioneer 
( ] ] if l is in a block different than the leftmost of the two ‘ ] ’ associated to q. Pioneer 
family P ( ] ] is formed by:

– The quadruples ‘ (  ] ] ) ’ corresponding to each ‘(’ that is a pioneer( ] ].
– The third ‘(’ of S, and its only associated ‘ ] ’.
– Provided a block does not contain any element indicated in the two previous items, 

the quadruple ‘ (  ] ] ) ’ corresponding to the first ‘(’ of the block. It can be easily 
proved that such ‘(’ always exists.

Then, a bit-vector V is built with 1 at the positions of elements in P ( ] ].
By defining:

N = net-left-excess(p) + net-right-excess(l∗) − net-left-excess(p∗),

Fig. 5  On string S, a planar graph is built by joining each ‘(’ to its two corresponding ‘  ]  ’, with the 
exception of the two leftmost ‘(’ of S, which do not have any associated ‘ ] ’, and of the third ‘(’ of S, 
which has only one associated ‘ ] ’. The elements of pioneer family P ( ] ] have been squared. These ele-
ments are the 1-bits of bit-vector V. At the bottom of the figure, the recursive structure on P ( ] ] is shown
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we have that l is the leftmost ‘)’ in b(l∗) whose net-right-excess is N − 2 , and r is 
the leftmost ‘)’ in b(l∗) whose net-right-excess is N − 1 . In a recursive level the ‘(’ 
that are far( ] ] elements of P ( ] ] and the ‘(’ that are pioneer( ] ] elements of P ( ] ] are 
considered. For the latter, their associated ‘ ] ’ are explicitly stored. With this newly 
created SNND and the corresponding lookup tables, the ‘ ] ’ associated to a ‘(’ can 
be retrieved in O(1) time.

4.1.2  Passing from Binary to Ternary Strings

Taking into account how string S has been constructed from the PS-tree, ensur-
ing that its substring containing all ‘(’ and their matching ‘)’ is balanced, and that 
between a ‘(’ and its matching ‘)’ their two associated ‘ ] ’ must be placed, the ter-
nary sequence corresponding to S can be built from S by a linear inspection of S. We 
propose here a more efficient procedure when only a portion of S has to be turned 
into a ternary sequence of ‘(’, ‘)’ and ‘ ] ’.

Let us assume we are interested in obtaining the ternary sequence of any portion 
of a block of S between a ‘(’ element p of S and its previous pioneer( element p∗ . Let 
us consider a double size block starting from the left with the portion of S between 
p∗ and p, both included, completed with as many ‘(’ as necessary to reach the size 
of the blocks in S. Then, the portion of S between �(p) and �(p∗) , both included, is 
added, completed with as many ‘)’ to its left as necessary until the size of the block 
is reached. The part of such double size block excluding the ‘(’ and ‘)’ between p 
and �(p) (both excluded) is called the portion of interest. In Fig. 6a, the elements not 
belonging to the portion of interest have been represented by ⋆ symbols. In such fig-
ure we observe how applying the simple rules of the construction of S, for example 
a ‘)’ after a ‘(’ is always a ‘ ] ’ symbol, all ‘)’ in the portion of interest which corre-
spond to ‘ ] ’ can be found. In general, the ‘ ] ’ symbols of any portion of S between 
two far() elements whose known matching elements belong to the same block are 
uniquely determined by taking into account that S is formed by nested sequences of 
‘ (  ] ] ) ’ quadruples, and the corresponding binary and ternary blocks can be stored 
in a table. With this lookup table procedure, the portion of interest can be turned 
into a ternary string of ‘(’, ‘)’ and ‘ ] ’ elements in O(1) time.

A similar process is performed when the part of S between a ‘)’ element and the 
first pioneer) element to its right has to be turned into a ternary portion.

(a) (b)

Fig. 6  (a) The binary parts of string S in Fig. 2 between p∗ and p and between �(p) and �(p∗) are shown. 
Taking into account that all elements between p∗ and p have their matching elements between �(p) and 
�(p∗) , both binary portions of (a) uniquely determine the corresponding ternary substrings shown in (b)
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Next, the main problem considered in this section is retaken. We extend the prob-
lem studied here to stem edges, that is, finding the two vertices of the triangulation 
that are the endpoints of a stem edge.

4.2  Retrieving the Two Inner Nodes Linked to a Stem

Given triangulation T  represented by binary string S, an edge of T  corresponding 
to a stem is represented in S by a ‘)’, and denoted by ‘ ] ’. Consider the problem of 
retrieving the two endpoints of a stem. One of its endpoints is easily obtained, as the 
inner node of the PS-tree it is incident with corresponds to the ‘(’ of the ‘ (  ] ] ) ’ 
quadruple containing it. Hence it can be retrieved by simply computing the ‘( )’ pair 
enclosing ‘  ]  ’. It will be called the first endpoint of e. For an example, we refer 
again to Fig. 1. Consider the edge of T  joining inner nodes u5 and u10 . Such edge is 
represented in string S by the 4-th symbol of type ‘ ] ’, starting from the end. As we 
observe in Fig. 2, the ‘(’ of the ‘( )’ pair enclosing such symbol is the 5-th symbol of 
type ‘(’, which corresponds to u5.

A naive algorithm to detect the other endpoint of a stem ‘ ] ’, called its second 
endpoint, consists in considering the positions previous to ‘ ] ’ in S, and retrieving as 
many admissible triples as necessary until the two edges previous to it in the coun-
terclockwise traversal of the infinite face are both inner edges. Continuing with the 
previous example, let us now consider Fig. 7, where stem called s3 corresponds to a 
symbol ‘ ] ’ belonging to the portion of S shown in the figure. To retrieve the second 
endpoint of stem s3 emanating from u5 , the two previous inner edges in the counter-
clockwise traversal of the infinite face must be retrieved. Such edges are ( u10, u8 ) and 
( u8, u5 ). In the original encoding both of them were stems. Hence, two local closure 
operations must be performed, transforming them into two inner edges, before local 

Fig. 7  A portion of the triangulation given in Fig.1 is shown. The first endpoint of stem s3 is u5 . To 
retrieve its second endpoint, its two previous inner edges in the counterclockwise traversal of the infinite 
face must be retrieved. Hence, two local closure operations, creating inner edges ( u10, u8 ) and ( u8, u5 ), 
have to be previously performed



3450  Algorithmica (2021) 83:3432–3468

1 3

closure creating edge ( u10, u5 ) is done. In general, the retrieval of the two previous 
inner edges to create an admissible triple following this sequential approach takes 
O(n) time. Next, a technique is developed to obtain the second endpoint of a stem in 
O(1) time.

Let us consider an outerplanar representation of triangulation T  , as the one given 
by Turán in [40]. Every time a vertex of T  is reached in the left-to-right depth-first-
search traversal of the PS-tree, an occurrence of such vertex is put on a circle with 
its number of occurrence indicated by a superscript (see Fig.  8). This way, each 
inner edge in the PS-tree appears twice as an edge on the outer face of such outer-
planar representation. Each stem is drawn by a diagonal connecting two vertices in 
the circle. From the planarity of T  it follows that the diagonals are non-intersecting.

A graph, called the ]-graph of T  , is created from this outerplanar representation 
of the triangulation. A traversal of the cyclic sequence of edges bounding the infi-
nite face in the outerplanar graph will be performed. It starts at edge (u(1)

1
, u

(1)

2
) , on 

the side of the edge adjacent at a finite face of the outerplanar graph, as shown by 

Fig. 8  Outerplanar representation of triangulation T  in Fig. 1



3451

1 3

Algorithmica (2021) 83:3432–3468 

dashed arrows in Fig. 8. Once this first edge has been traversed, a counterclockwise 
turn around u(1)

2
 is performed until next edge (u(1)

2
, u

(1)

3
) is reached. The traversal con-

tinues until the first vertex u(1)
1

 is again found. This process is equivalent to perform-
ing a left-to-right depth-first-search traversal of the PS-tree (see [40]). On the basis 
of such traversal, the ]-graph will be defined (see Fig. 9). The nodes of the ]-graph 
are created by adding a ‘(’, resp. a ‘)’, every time the first, resp. second, traversal 
of an inner edge is found, and a ‘  ]  ’ symbol whenever a stem is reached. Hence, 
the nodes of the ]-graph are the elements of string S. The edges of the ]-graph are 
uniquely associated to the diagonals of the outerplanar graph. In particular, a diago-
nal of the outerplanar graph joining vertices u(j)

i
 (from which a stem emanates) and 

u
(l)

k
 will be represented in the ]-graph by an edge connecting the ‘  ]  ’ node to the 

node (u(l)
k
, u(n)

m
) , which can be either a ‘(’ or a ‘)’. This way, the two incident nodes of 

each edge are a source node, corresponding to either a ‘(’ or a ‘)’ symbol, and a des-
tination node always being a ‘ ] ’ symbol. The source node and the destination node 
are said to be adjacent.

(a)

(b)

Fig. 9  (a) ]-graph corresponding to the outerplanar representation of the triangulation shown in Fig. 8. 
Above each node of the ]-graph, the corresponding edge of the outerplanar graph is shown. (b) In string 
S, elements of pseudo pioneer family P ] are shown circled. Bit-vector W keeps the positions of the ele-
ments in P ] . Pseudo pioneer family P ] , and its modification P∗ ] , have been depicted
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Let us now see how to encode the ]-graph from string S. Given a ‘  ]  ’ ele-
ment in S, we call its matching element to the either ‘(’ or ‘)’ adjacent to it in the 
]-graph. We remark that each ‘ ] ’ of S has exactly one matching element, as can 
be observed in Fig. 9, where the element matching each ‘ ] ’ of S is shown. A ‘ ] ’ 
element is said to be far ] if its matching element lies not inside its own block. 
A block is said to be a near ] block if it does not contain any node adjacent to a 
node of a different block. A far ] is a pioneer ] if either it is the first ‘ ] ’ in S or 
its matching element is in a different block than that of the far ] previous to it in S 
when traversing S from left to right.

The next proposition gives a necessary and sufficient condition for a ‘( ’ or ‘)’ 
of S representing an inner edge to be adjacent to a ‘ ] ’ of the ]-graph.

Proposition 5 Let p be either a ‘( ’ or a ‘)’ representing an inner edge in S. Then, p 
is adjacent at some ‘ ] ’ in the ]-graph if and only if the first element to the right of p 
in S is not a ‘ ] ’.

Proof Let p be either a ‘( ’ or a ‘)’ in the ]-graph. Provided p is joined by an arc of 
the ]-graph to some ‘ ] ’, such ‘ ] ’ must be to the right of p (see Fig. 10a). We distin-
guish two cases: (1) If the element next to p in S were a ‘ ] ’, the ‘( ’ or ‘)’ matching 
such ‘ ] ’ would be placed to the left of p, and the planarity condition of the ]-graph 
would not be satisfied. (2) Consider p corresponds to edge (u(j)

i
, u

(l)

k
) in the ]-graph. 

Let us now assume p is not followed by a ‘ ] ’ in S. If p were not adjacent at some 
‘ ] ’, then there would not exist any edge in the ]-graph with source node u(j)

i
 , and 

this in turn would imply that in the PS-tree there would be three or more inner edges 
traversed consecutively in the left-to-right depth-first-search traversal of the PS-tree. 
Hence, a non-triangular face would exist (see Fig. 10 (b)).   ◻

(a) (b)

Fig. 10  In (a) we illustrate that if element p is connected to a ‘ ] ’ by an edge of the ]-graph then the first 
element to the right of p cannot be a ‘ ] ’, because this would imply the intersection of two edges in the 
]-graph. In part (b), edge (u(j)

i
, u

(l)

k
) encoded by p is shown. Provided after p there is another ‘(’ in S, then 

no stem would be incident at u(j)
i

 , implying that a face with at least four vertices would exist
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As a corollary, in a block with two or more elements containing no ‘ ] ’ element, 
some ‘( ’ or ‘)’ must exist which is joined by an arc of the ]-graph to a ‘ ] ’ in a dif-
ferent block, otherwise there would be two or more consecutive ‘(’ or ‘)’ without 
any ‘ ] ’ adjacent at any of them, what would imply the existence of a non triangular 
face. Hence, in each near ] block some ‘ ] ’ element must exist, what makes possible 
the following definition. It introduces some more elements required to navigate effi-
ciently on the ]-graph.

Definition 3 We call pseudo pioneer family ] of S, and denote it P ] , to the set of the 
following elements in S: 

1. Each pioneer ] element and its matching.
2. The leftmost far ] in each block, if existing, and its matching.
3. The first ‘ ] ’ element of each near ] block.

In the next proposition, a bound for the size of P ] is given. Also, it is shown that 
such family can be encoded by a SNND. The proof of this proposition is similar to 
the proof of Proposition 3 and is left to the reader.

Proposition 6 Let S be a binary string encoding triangulation T  , and let P ] be the 
pseudo pioneer family ] of S. Then,

(a) The size of P ] is at most 4� − 6 , where � is the number of blocks.

(b) Assuming blocks of size lg(4n)
8

 , bit-vector W keeping the positions of the ele-
ments in P ] can be encoded by a SNND.

Let us now show how to find the matching of a far ] element q∗ of P ] . To retrieve 
the either ‘( ’ or ‘)’ matching q∗ , instead of storing P ] a modification consisting in a 
ternary string represented by P∗ ] will be stored, as illustrated in Fig. 9b. It is created 
from string P ] by replacing each ‘)’ which does not correspond to a ‘ ] ’ symbol by 
a ‘(’. Provided any element of P ] that is not a ‘ ] ’ is incident in the ]-graph at d ele-
ments of type ‘ ] ’, with d > 1 , then d − 1 elements denoted ‘ ( ∗ ’ will be placed after 
the corresponding ‘(’. On this ternary string, only operations rank( and select 
( have to be supported [9, 26]. These operators allow the position of q∗ in P∗ ] to be 
known . By fictitiously identifying symbols ‘ ( ∗ ’ and ‘(’ a balanced binary sequence 
is obtained. On this balanced sequence, the procedure explained in the previous sec-
tion to operate on P ( ) is valid, and according to it the either ‘( ’ or ‘)’ matching 
q∗ can be retrieved in O(1) time. Operations rank( and select( on P∗ ] allow to 
obtain the position of the element matching q∗ in P ] . Then, the position of q∗ in S is 
also known.

Next, let us explain how to retrieve the matching of an element q of type ‘  ]  ’. 
First, the ternary block q belongs to is obtained as explained in Sect. 4.1.2. Provided 
the matching of q lies inside its own block, such matching is retrieved by lookup 
table. Let us assume that, on the contrary, q is a far ] element. Let q∗ be the far ] 
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element of P ] previous to q in block b(p). If q∗ does not exist, it means that q is the 
first far ] in its block. Hence q is a pioneer ] , and we have explained how to retrieve 
its matching in the previous paragraph. In case q∗ exists, two cases are distinguished. 
First, provided q∗ is either a ‘(’ or a ‘)’, the ‘ ] ’ adjacent at q∗ in the ]-graph must 
be a ‘  ]  ’ to the right of q (see Fig. 11a). Due to the planarity of the ]-graph, ele-
ment �(q) must be placed between q∗ and q. Hence q is not a far ] element. Second, 
if q∗ is a ‘ ] ’, according to Definition 3 we have b(�(q)) = b(�(q∗)) , as illustrated in 
Fig. 11b. Then, let us consider the portions of interest of the ternary blocks corre-
sponding to b(q) and b(�(q)) , that is, the part of b(�(q∗)) to the left of �(q∗) and the 
part of b(q∗) to the right of q∗ . From these two portions of ternary blocks, knowing 
that the last element of the first block, �(q∗) , matches the first element of the second 
block, the rest of elements in the first block matching each ‘ ] ’ between p∗ and p are 
uniquely determined, and can be stored in a table. From the previous reasoning, the 
next result follows.

Proposition 7 Let S be the encoding string of a given triangulation. The second end-
point of any stem can be retrieved from S in O(1) time.

4.3  Retrieving the ‘ ] ’ of the ]‑graph Adjacent at a ‘(’ or a ‘)’

The problem we focus on now is finding all the ‘  ]  ’ adjacent in the ]-graph at a 
given ‘(’ or a ‘)’ of S. This operation will be crucial in the next section to obtain the 
neighbors of the vertex represented in S by a ‘(’ and its matching ‘)’.

Let p be either a ‘(’ or a ‘)’ of S. First, the ‘ ] ’ adjacent at p in the block b(p) in 
which p lies can be retrieved by table lookup on the corresponding ternary block. 
In the ]-graph shown in Fig. 12 we observe that there is not any ‘ ] ’ in b(p) whose 
matching element is p.

Second, by assuming p is adjacent at some ‘ ] ’ in another block, two cases must 
be considered for retrieving them: 

 (i) p belongs to P ] (see Fig. 12 (a)). Pseudo-balanced pioneer family P∗ ] allows 
obtaining the far ] elements of P ] adjacent at p. Let ]1, ]2,… , ]k be such ele-
ments, ordered from left to right. All ‘ ] ’ adjacent at p to the right of ]k must 

(a) (b)

Fig. 11  Cases which can occur when retrieving the second endpoint of a ‘ ] ’ element in position q. (a) 
In case q∗ , the first far] element of P ] to the left of q, is a ‘(’ or a ‘)’, the matching of q must be placed 
between q∗ and q, possibly being �(q) = q∗ . (b) If q∗ is a ‘ ] ’, the matching of q must be placed in the 
block of �(q∗) to the left of �(q∗)
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be in b( ]k) , and can be retrieved from the ternary blocks b(p) and b( ]k) . Due to 
the planarity of the ]-graph, an element in b( ]k) to the left of ]k that is adjacent 
at p cannot exist. Similarly, for the rest of ]i , with 1 ≤ i < k , any ‘ ] ’ adjacent 
at p between the first element of the block b( ]i) and ]i cannot exist. Between ]i 
and either ]i+1 in b( ]i) , if it exists, or the end of b( ]i) , all the ‘ ] ’ adjacent at p 
can be retrieved by lookup table. To retrieve the ‘ ] ’ adjacent at p to the left of 
]1 , let us consider the ‘(’ or ‘)’ of P ] to the right of p in b(p). Let us call it p∗

post
 . 

If such element does not exist it implies that ]1 is the leftmost ‘ ] ’ adjacent at 
p. Provided p∗

post
 exists, by considering the ternary portions of S between p and 

p∗
post

 and between the rightmost ‘ ] ’ adjacent at p∗
post

 and the last position of 
the block such ‘ ] ’ belongs to, the ‘ ] ’ adjacent at p previous to ]1 , if existing, 
are retrieved.

 (ii) Provided p does not belong to P ( ) (see Fig. 12b), let p∗
post

 be the ‘(’ or ‘)’ pos-
terior to p in P ] . Then, the leftmost ‘ ] ’ adjacent at p∗

post
 is obtained, and as 

all the ‘ ] ’ adjacent at p are placed in b(p∗
post

) , they can be retrieved by lookup 
table.

The next result follows from the previously explained process.

Proposition 8 Given a ‘(’ or a ‘)’ in S, each of the ‘  ]  ’ it is adjacent at can be 
retrieved, from left to right, in O(1) time.

(a)

(b)

Fig. 12  The ]-graph of Fig. 9a is shown. The elements required to find the neighbors of u1 in (a) and of u3 
in (b) are shown in bold
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4.4  Storage Requirements

The pioneer families P ( ) , P ( ] ] and P ] can be encoded using the SNND structure, 
storing four arrays of O

(
n lg lg n

lg n

)
 bits and three tables of O

(
n

2

3

)
 bits each [24].

According to Proposition 3, the size of pioneer family P ( ) is |P()| ≤ 128n

lg(4n)
 . Bal-

anced binary string P ( ) is explicitly stored, which requires at most 128n
lg(4n)

= O(
n

lg n
) 

bits. For the balanced sequence of |P ( )| elements, a new pioneer family P2
( ) of 

size |P2
( )| ≤ 32

|P ( )|
lg(|P ( )|) = O

(
n

lg2 n

)
 is stored. For each element p∗∗ in P2

( ) , the val-
ues of both its matching and enclosing element are explicitly stored, what requires 
2|P2

( )| lg(|P2
( )|) = O(

n

lg n
) bits. The same space bound is valid for P ( ] ].

The upper bound for the size of P ] given in Proposition 6 is also valid for P∗ ] . 
This is justified since in the counting of such proposition, for each edge joining 
an element of P ] and its matching, its two nodes are considered. Thus the size of 
pseudo-balanced ternary string P∗ ] satisfies ||P∗ ]|| ≤

128n

lg(4n)
 . The simplest approach, 

which uses 2 bits per ternary element, requires thus 256n

lg(4n)
 bits for the storage of 

P∗ ] . Operators rank1 and select1 acting on P∗ ] are required, involving an 
amount of space of o(n) bits, using the compressed rank/select structure of Bar-
bay et al. [9].

Some lookup tables are needed for the efficient navigation on the pioneer 
families:

– To find the matching elements inside a block of length lg(4n)
8

 , all the possible 
combinations are stored, spending 8

√
4n

lg(4n)

8
lg
�

lg(4n)

8

�
= o(n) bits. This 

matching information must be stored considering two possible cases: first, that 
the block belongs to a balanced binary sequence, and second that the block 
belongs to balanced-quadruple string S. Similar tables can be built and stored 
for other information such as enclosing or for keeping the net left and right 
excess in each position.

– Also, relevant positions in a block can be stored. For example, the leftmost 
position in a block with net-right-excess i, where −3 lg(4n)

8
≤ i ≤

lg(4n)

8
 , if exist-

ing, or 0 otherwise, can be stored in a lookup table of 
8
√
4n

lg(4n)

2
lg
�

lg(4n)

8

�
= o(n) bits.

– To obtain the required double size ternary blocks from the corresponding double 
size binary blocks, another table has to be created. A double size binary block 
is lg(4n)

4
 bits long. A simple representation of a ternary block of the same length 

requires 2 bits per element, that is, lg(4n)
2

 bits. Hence, a bit-string of size 3 lg(4n)
4

 is 
required to store a double size binary block together with its corresponding ter-
nary block. The number of different strings of such length is 4

√
lg(4n)3.

– From two ternary blocks such that the last element of the first block, either a ‘(’ 
or a ‘)’, matches the first element of the second block, a ‘ ] ’, the position of the 
element in the first block matching each ‘ ] ’ in the second block is stored (and 0 
is stored in case the matching of a ‘ ] ’ in the second block is also in the second 
block). In this case, 

√
4n

lg(4n)

8
lg
�

lg(4n)

8

�
= o(n) bits are required.
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Finally, the bit-string S is stored in optimal space using the compressed bit-vector of 
Raman et al. [38], spending (4n − 5)H0(S) + o(n) ≈ 3.24n + o(n) bits, for a block of 
size lg(4n)

8
.

The main results obtained in this section are summarized in the next theorem.

Theorem 1 Let S be the encoding string of a given triangulation with n vertices. An 
encoding of S requiring 3.24n + o(n) bits exists such that the following operations 
can be performed in O(1) time:

– Given an element p of S which is either a ‘(’ or a ‘)’ representing an inner edge, 
retrieve its matching element.

– Given an element of S, retrieve its enclosing ‘( )’ pair.
– Given a ‘(’ of S, retrieve the two ‘ ] ’ of its associated ‘ (  ] ] ) ’ quadruple.
– Given a ‘ ] ’ of S, retrieve its adjacent either ‘(’ or ‘)’ in the ]-graph.
– Given an element p of S which is either a ‘(’ or a ‘)’ representing an inner edge, 

retrieve each of its adjacent ‘ ] ’ in the ]-graph from left to right.

5  Answering Queries on the Triangulation

Let us consider that the vertices of the triangulation are stored in an array in the 
order given by the left-to-right depth-first-search traversal of the PS-tree, namely 
u1, u2,… , un . Retrieving the ‘(’ associated to the i-th reached vertex is equivalent 
to obtain the i-th ‘(’ in S. This is common operation for binary strings, that as we 
have previously seen is usually denoted select((S, i) . Another frequent operation, 
denoted rank((S, i) , consists in counting the number of ‘(’ up to position i in S. 
Both operations have been thoroughly studied in the literature [29, 31, 36], and their 
combination allows us to answer the queries posed in this section.

5.1  Neighborhood Retrieval

Let ui , with 1 ≤ i ≤ n , be the query vertex whose neighborhood, i.e. the set of its 
adjacent vertices in the triangulation, has to be retrieved. For i > 1 , vertex ui is 
uniquely associated to inner edge (u

parent
, ui) , where u

parent
 is the parent of ui in the PS-

tree, and is therefore represented in string S by the i-th symbol of type ‘(’. Let pi be 
the i-th symbol of type ‘(’ in S. The first neighbor of ui in the triangulation to be 
found is u

parent
 . It is obtained by retrieving the ‘(’ of the ‘( )’ pair enclosing pi . Pro-

vided such ‘(’ is the j-th symbol of type ‘(’ in S, with j < i , we have u
parent

= uj.
For vertex u1 , we remind the reader that string S is formed by a binary encoding 

of the PS-tree plus an extra ‘( )’ pair enclosing the whole sequence. Thus, u1 is repre-
sented by the first ‘(’ in S. As u2 is always a neighbor of u1 , we consider u2 plays 
from now on the role of u

parent
 for u1 , in the sense of being the departure edge to 

retrieve the neighbors of u1 ( u3 could have been chosen indistinctly).
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Once u
parent

 has been reached, a recursive process starts which performs a 360◦ 
counterclockwise turn from edge (ui, uparent

) around ui until the ‘)’ matching pi is 
reached. We denote by un the next counterclockwise neighbor of ui to be found when 
such turn is performed. To retrieve it, some element pj in S has to be analyzed. In the 
first step, when finding the first counterclockwise neighbor after u

parent
 , pj is the first 

element to the right of pi in S. Such element can be either a ‘(’ or a ‘)’: 

(a) pj is a ‘)’ which corresponds to a ‘ ] ’. Let us note that in case of being computing 
the first counterclockwise neighbor of ui after u

parent
 we have that pj is a ‘)’ immedi-

ately after pi , which is a ‘(’, and hence pj must correspond to a ‘ ] ’ symbol. In 
general, as pj corresponds to a ‘ ] ’, edge (ui, uj) corresponds to a stem edge, which 
is represented in the PS-tree by a leaf incident at ui (see Fig. 13a). Next counterclock-
wise neighbor is thus un = uj , and it can be obtained as shown in Proposition 7. Then, 
the element to be analyzed next will be the first element to the right of pj in S.

(b) pj is a ‘(’. In this case two situations are distinguished: 

 (b.1) Element pk next to pj in S is a ‘)’. Again we have a ‘)’ placed in S immedi-
ately after a ‘(’, and hence pk must correspond to a ‘ ] ’ symbol. Accord-
ing to Proposition 5, there is not any ‘ ] ’ adjacent at pj in the ]-graph. 
Therefore, (ui, uj) corresponds to an inner edge and next counterclockwise 
neighbor un is uj (see Fig. 13b.1). In this situation, the index of un in the 
array of vertices will be the number of ‘(’ before pj in S. Then, the element 
of S to be analyzed next will be the ‘)’ matching pj.

 (b.2) Element pk next to pj in S is a ‘(’. Proposition 5 ensures that some stem 
exists whose second endpoint is ui (see Fig. 13 (b.2)). The ‘ ] ’ adjacent 
at pi in the ]-graph can be computed as stated in Proposition 8. The set 
of second endpoints of the stems in counterclockwise order immediately 
previous to uj must be found. The counterclockwise neighbor of ui imme-

(a) (b.1) (b.2)

Fig. 13  Neighborhood retrieval of vertex ui , whose parent u
parent

 in the PS-tree has been denoted up . The 
‘(’ in string S encoding tree edge (up, ui) is in position pi . The positions in S of the rest of elements 
involved in the algorithm are also shown. When turning from ui around (ui, up) in counterclockwise order 
next neighbor is un . In (a), un is the second endpoint of a stem corresponding to a leaf adjacent at ui . In 
(b.1), edge (ui, un) is an inner edge of the PS-tree. In (b.2), un is the first endpoint of a stem correspond-
ing to a leaf not adjacent at ui
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diately after them is uj . Finally, the element to be analyzed next is the ‘)’ 
matching pj.

(c) pj is a ‘)’ which does not correspond to a ‘ ] ’. In this case two situations are also 
distinguished: 

 (c.1) Element pk next to pj is a ‘ ] ’. We are in the same situation as (b.1).
 (c.2) Element pk next to pj is either a ‘(’ or a ‘)’. In this case we are in the same 

situation as (b.2).

This procedure is repeated, advancing along string S until pi is reached.
As all the involved operations can be performed in constant time, retrieving the 

neighbors of vertex ui from S in counterclockwise order is performed in time linear in 
the degree of ui.

We note that navigation in clockwise direction can be performed with an straightfor-
ward adaptation of the procedure.

5.2  Adjacency Testing

Let ui and uj be two vertices of the triangulation. Let us explain how to know in O(1) 
time whether they are adjacent or not. A two step process is performed.

First, we will check if one of them is parent of the other one in the PS-tree. Let us 
assume that the index of ui is smaller than the index of uj , that is, ui is traversed previ-
ously to uj in the left-to-right depth-first-search traversal of the PS-tree. By computing 
the parent of uj in such tree, as explained in Sect. 5.1, we will know whether ui is the 
parent of uj or not.

Second, provided ui is not the parent of uj , it must be checked if there exists some stem 
in the PS-tree joining them. Let us take the two stems whose first endpoint is ui , obtained 
as explained in Sect. 4.1.1. For each of the two stems, in Sect. 4.2 we have shown how its 
second endpoint can be retrieved in O(1) time. Thus, it must only be checked whether any 
such second endpoints is coincident with uj . If this is not the case, we will consider the two 
stems whose first endpoint is uj , and check if for some of them its second endpoint is ui.

The next theorem states the results obtained in this section.

Theorem 2 A triangulation of n vertices can be represented using 3.24n + o(n) bits 
so that the operations to obtain each neighbor of a vertex in counterclockwise direc-
tion or to check if two vertices are adjacent are supported in O(1) time.

6  Implementation

As a proof a concept, in this section we present an implementation of our proposed solu-
tion. Even though our approach is based on pioneers, previous studies on succinct repre-
sentations of trees have shown that solutions based on Range Min-Max trees (RmMTs) [35] 
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have a better practical behavior compared to solutions based on pioneers [7]. For that rea-
son, we adapted our solution to use RmMTs, in order to provide a faster implementation. 
A drawback of using RmMTs is that we must represent the three symbols ‘(’, ‘)’ and ‘]’ 
of S, converting the sequence S in a ternary sequence, hence increasing the space of the 
structure. Nevertheless, as we will see in the experimental results, even with the space 
increment, our implementation overcomes state-of-the-art implementations. Originally, 
RmMTs were designed to navigate a tree represented as a balanced parentheses sequence, 
where an open/close parenthesis is represented by a 1/0 bit. Similar to our solution for 
triangulations, an excess value is computed for the balanced parentheses sequence as the 
number of open parentheses minus the number of closing parentheses from a left-to-right 
traversal of the sequence. Then, the parentheses sequence is logically divided into blocks 
of length w. An RmMT is a complete tree where the minimum, maximum and rightmost 
excess values of each block are stored in its leaves. For an internal node v of the RmMT, the 
minimum and maximum excess values of the leaves of the subtree rooted at v are stored. 
Given a position i of the balanced parentheses sequence, we can find the closest position 
to the left (and also to the right) of i with excess e in O(lg n

w
) time, where n is the length 

of the sequence. To do that, an up/down traversal of the RmMT is performed to locate the 
block containing the answer, using the minimum/maximum excess values stored in the 
tree during the traversal. The final answer is obtained using lookup tables. Theoretically, 
the time complexities can be reduced to O(1). For interested readers, we refer to Navarro 
and Sadakane [35] for more details.

Our implementation consists of the following components:

– Bit-string S1[1..4n − 5] , with S1[i] = 1 if the i-th symbol during the traversal of 
the PS-tree is a ‘(’, and S1[i] = 0 , otherwhise. Notice that S1 corresponds to the 
string S described in previous sections.

– Bit-string S2[1..4n − 5] , with S2[i] = 1 if the i-th symbol during the traversal of 
the PS-tree is a ‘)’, and S2[i] = 0 , otherwhise.

– Support for the rank operation over S1 and S2.
– An RmMT, called RmMTleft , over the net-left-excess described in Sect. 4.1, stor-

ing the minimum (m) and maximum (M) excess of each block. See, for exam-
ple, the RmMT of Fig. 14a.

– An RmMT over a new excess, called ]-excess, defined as a right-to-left traversal 
of S, adding 1 for each ‘]’ and subtracting 1 for each ‘(’ or ‘)’. We start the tra-
versal at the rightmost ‘]’ of S, assigning to it an excess of 2. In each node of 
this RmMT we not only store the minimum (m) and maximum (M) excess, but 
also the minimum excess occurring in a position with a ‘]’ symbol ( m] ). We 
use m] excess to implement the retrieval of the neighborhood of a vertex. For 
instance, see Fig. 14b. We call it RmMT[ .

With those components, we can compute the net-left-excess and ]-excess at a given 
position i in constant time, as follows:

net-left-excess(i) = 4 × ����1(i, S1) − i

]-excess(i) = 2 × ����1(i − 1, S1) + 2 × ����1(i − 1, S2) − i
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For instance, in Fig.  14a, if we want to find the corresponding 0 matching the 1 
at position 13 of S, which has net-left-excess e = 19 , we need to find the leftmost 
position j > 13 with net-left-excess e� = e − 3 = 16 . For that, we first check if the 
answer is in the same block using lookup tables. Since the answer is not there, we 
check the right sibling with m = 19 and M = 22 . Then, we go up until the right child 
of the root. Such node has m = 5 and M = 19 , which means that the answer is in 
the subtree below it. We go down following the leftmost path, until reaching the 
node with m = 15 and M = 19 . Finally, we check the block associated to such node 
using lookup tables until obtaining the answer. Similarly, if we want to find the first 
(alt. second) ‘ ] ’ symbol of S[13], we repeat the process with e� = e − 1 = 18 (alt. 
e� = e − 2 = 17).

Each bit-string S1 and S2 can be stored in (4n − 5)H0(S1) + o(n) bits using the 
compressed bit-vector of Raman et al. [38], where H0(S1) corresponds to the zeroth-
order empirical entropy of S1 . In this case, since both S1 and S2 have n 1-bit and 
3n − 5 0-bit, H0(S1) ≈

1

4
lg 4 +

3

4
lg

4

3
≈ 3.24 . The compressed bit-vector of Raman 

et al. also supports rank operations in constant time. Each excess value stored in the 
RmMTs uses O(lg n) bits. The RmMT for net-left-excess can be stored in two arrays 
of length 2⌈ 4n−5

w
⌉ − 1 , one array for the m values and one for M values. Similarly, 

the RmMT for ]-excess can be stored in three arrays of length 2⌈ 4n−5

w
⌉ − 1 , for the 

m, M, and m] values. Thus, the final space of our implementation is bounded by 

(a)

(b)

Fig. 14  The binary RmMTs of the (a) net-left-excess and (b) excess of the string S of Fig. 2
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8nH0(S1) + O(
n

w
lg n) ≈ 6.49n + O(

n

w
lg n) bits. In our experiments, we tested several 

values of w in order to reduce the final size of the structure.

6.1  Experimental Setup

For the implementation of our proposal, we use the library SDSL  [25], a C++ 
library for the implementation of succinct data structures.3 In our implementation, 
the block size of the compressed bit-vectors of Raman et al. was set to 63, and each 
entry of the RmMTs was stored using ⌈lg emax⌉ bits, where emax corresponds to the 
maximum excess value of each RmMT.4 We compared against the representation 
of Ferres et  al.  [21], Pemb, the most space-efficient implementation in the state-
of-the-art, designed for the succinct representation of planar embeddings. Besides, 
we reviewed the implementation of Castelli Aleardi and Devillers  [5] for trian-
gle meshes. Their implementation uses about 100 bits per vertex, which is up to 6 
times more space than the space needed by Pemb, and therefore out of the scope 
of our work. We compiled our solution and the baseline with GCC 6.3 and opti-
mization flag -O3. The experiments ran on a machine with two Intel® Xeon® Sil-
ver 4110 Processors with 16 physical cores clocked at 2.1GHz, with per-core L1 
and L2 caches of 32KB and 1MB respectively, a per-processor L3 cache of 11MB 
and 252GB of DDR3 RAM memory (126GB per NUMA node). Running time was 
measured with the functions in <time.h>. We report the median running time of 
30 repetitions. We tested the block sizes b = {63, 126, 252, 504, 1008}.

We performed experiments with several triangulations, varying the number of 
vertices. Table 1 shows a summary of the datasets. Each triangulation was obtained 
by generating random points (x,  y) with the function rnorm of R.5. The only 

Table 1  Datasets used in our 
experiments

Dataset Vertices (n) Minimum Maximum
Degree Degree

1 tri200m 200,000 3 19
2 tri400m 400,000 3 20
3 tri600m 600,000 3 18
4 tri800m 800,000 3 20
5 tri1M 1,000,000 3 21
6 wc 2,243,467 3 36

3 The implementation is available at https:// github. com/ jfuen tess/ sdsl- lite.
4 In the SDSL library, this can be done with the function bit_compress().
5 The rnorm function generates random numbers with normal distribution given a mean and a stand-
ard deviation. In our case, the x and y components were generated using mean 0 and standard deviation 
10000. For more information about the rnorm function, visit https:// stat. ethz. ch/R- manual/ R- devel/ libra 
ry/ stats/ html/ Normal. html

https://github.com/jfuentess/sdsl-lite
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Normal.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Normal.html
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exception is the dataset wc, which corresponds to the coordinates of 2,  243,  467 
unique cities in the world.6 From those points, we obtained a Delaunay Triangu-
lation using Triangle, a software for the generation of meshes and triangulations.7 
Then, we generated maximal triangulations from the Delaunay triangulations with 
the Boost Library [18], using the function make_maximal_planar.8 Finally, 
we compute the mininal Schnyder woods of the triangulations using the function 
minimal_schnyder_wood.9 We measured the running time of the two queries 
explained in Sect. 5. For adjacency testing, we tested two different sets of edges with 
10,000 edges each set. The first set corresponds to random edges that are present in 
the triangulations, called real edges, and the second set corresponds to random edges 
that does not exist in the triangulations, called non edges. For the recovery of the 
neighborhood of a vertex, we tested 10,000 random vertices of each triangulation.

6.2  Experimental Results

The results of our experiments are shown in Figs. 15 and 16. Figure 15 shows the 
space usage of the succinct representation of each triangulation. For each triangula-
tion, the space of each component, S1 , S2 , RmMTleft and RmMT[  , is reported, varying 
the block size. As expected, the size of RmMTleft and RmMT[  depend directly on the 

Fig. 15  Space usage of the succinct representation of the datasets of Table 1

7 Available at http:// www. cs. cmu. edu/ ~quake/ trian gle. html. Our triangulations were generated using the 
options -cezCBVPNE.
8 For more details of the function make_maximal_planar, please visit http:// www. boost. org/ doc/ 
libs/1_ 49_0/ libs/ graph/ doc/ make_ maxim al_ planar. html.
9 For more details of the function minimal_schnyder_wood, please visit http:// doc. sagem ath. org/ 
html/ en/ refer ence/ graphs/ sage/ graphs/ schny der. html.

6 The dataset containing the coordinates was created by MaxMind, available from https:// www. maxmi 
nd. com/ en/ free- world- cities- datab ase. The original dataset contains 3, 173, 959 cities, but some of them 
have the same coordinates. We selected the 2, 243, 467 cities with unique coordinates to build our dataset 
wc.

http://www.cs.cmu.edu/%7equake/triangle.html
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/make_maximal_planar.html
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/make_maximal_planar.html
http://doc.sagemath.org/html/en/reference/graphs/sage/graphs/schnyder.html
http://doc.sagemath.org/html/en/reference/graphs/sage/graphs/schnyder.html
https://www.maxmind.com/en/free-world-cities-database
https://www.maxmind.com/en/free-world-cities-database
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block size, while bit-strings S1 and S2 are independent on it. Figure 16 provides a 
space-time trade-off of our strucuture compare to Pemb. We only report the results 
for the datasets tri1M and wc, since the results for the other datasets are similar. 
For all tested block sizes, our structure uses less space than Pemb, reaching up to 
7.35 bits per vertex for tri1M and 7.56 bits per vertex for wc, which corresponds 
to an improvement of a 56% and 54% over the space usage of Pemb, respectively. 
In Figs. 16a and c we show the running time of the adjacency test of the two set of 
edges, real edges and non edges. The set non-edges exhibit a worse running time 
compared to real-edges, since to conclude that two vertices are not neighbors, more 
operations must be performed. For both sets, the running time increases propor-
tionally with the block size. A similar situation occurs in Figs. 16b and d, for the 
retrieval of the neighborhood of a vertex. For a block size of 1008, our data structure 
uses less than half of the space used by Pemb, at the cost of being up to two orders 
of magnitude slower. However, our data structure offers some other interesting 
trade-offs. For example, for a block size of 126, it is one order of magnitude slower 
than Pemb, while retaining a significant reduction in the space usage of up to 40%. 
In scenarios where the available main memory has a reduced size, our proposed data 

(a) (b)

(c) (d)

Fig. 16  Running time and space usage of the datasets tri1M (a, b) and wc (c, d) for the queries of adja-
cency and the recovery of the neighborhood of a vertex
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structure may still fit in, while Pemb must access to the next level of the memory 
hierarchy, the disk. In such situations, our proposal is expected to be more time effi-
cient than Pemb.

7  Conclusions

The main contribution of this work is a theoretical new approach to the succinct 
encoding of triangulations by handling a special type of binary string. Two graphs 
are created whose nodes are the elements of such string, one of them encoding the 
edges of a particular vertex spanning tree of the triangulation, and the other one 
encoding the non-tree edges. They allow to establish a method to navigate efficiently 
on the original triangulation by translating operations on the triangulations to opera-
tions on such graphs. The data structures encoding both graphs are not new, being 
slight variations of the ones that have been previously developed by Geary 
et al.  [24]. The total storage cost of maintaining such structures remains the same 
than in the aforementioned paper, O

(
n lg lg n

lg n

)
 . The cost of storing tables could be 

reduced or even eliminated at the expense of increasing computation time. Addition-
ally, we provide an implementation of our proposal based on range min-max 
trees [35]. In practice, our succinct encoding reduces significatively the space usage 
of the state-of-the-art implementations for planar embeddings, obtaining reductions 
of up to 56% at the cost of being two orders of magnitude slower for query time. Our 
implementation also provides a trade-off, which allow us to improve the query time 
(being just one order of magnitude slower) while still obtaining a important space 
saving of 40%.

The underlaying strategy throughout this paper is rather general, and can be eas-
ily adapted to deal with other classes of graphs. For the case of planar triangulations 
with boundaries and quadrangulations, Castelli Aleardi et al. [15] modify the encod-
ing defined by Poulalhon and Schaeffer [37] to handle these graphs. As the proposal 
we have given is also based in the encoding given by Poulalhon and Schaeffer, the 
techniques developed in our work could be subsequently modified to encode such 
classes of graphs. In particular, for the case of planar triangulations with a bound-
ary, Castelli Aleardi et al. define a tree which represents the triangulation, encod-
ing such tree by a string similarly to the bijection of Poulalhon and Schaeffer. Each 
non-boundary vertex carries two stems, and the boundary, with k vertices, carries 
in total k + 2 stems. For planar quadrangulations with no boundary, the bijection 
of Poulalhon and Schaeffer is straighforward applied, and a spanning tree with one 
stem per inner node is created. In the case of bipartite planar quadrangulations with 
a boundary, the technique is similar to that of the triangulations.

Fusy et al.  [23] considered tree-based bijections for 3-connected planar graphs. 
The proposed encoding is based on an orientation associated to the minimal Schny-
der wood of a 3-connected planar map. Local closure operations are similar to the 
ones described by Poulalhon and Schaeffer, but the bijection between the map and 
the considered tree on which local closure operations are performed is different. 
Irreducible triangulations and quadrangulations are also encoded by Fusy  [22]. A 
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bijection between ternary trees and irreducible triangulations and a closure opera-
tion yield to an optimal encoding of 4-connected triangulations. In these cases, a 
modification of the encoding involving a different type of binary string is required.

Despré et al. [19] generalized the method given by Poulalhon and Schaeffer for 
the torus. The proposed encoding is asymptotically optimal, requiring 3.2451n+o(n) 
bits. It is shown that any toroidal triangulation with n vertices can be encoded by a 
plane rooted tree with n vertices where each vertex has exactly two stems. Such tree 
is encoded by a binary string of 4n-2 bits, of which n − 1 elements that are 1 and 
3n − 1 elements that are 0, exactly as occurs in the case we have studied. Hence, the 
work developed in this paper is also applicable to the toroidal case.

From the practical side, an interesting future work is the reduction of the space 
usage of our implementation. Currently, our implementation uses 2.3 times more 
space than the optimal, since we store two bit-strings, S1 and S2 . Theoretically, S1 
plus some additional lookup tables are enough to support the navigational opera-
tions. Another interesting future work is an implementation based on pioneers. Even 
when range min-max trees have shown a better practical behavior than pioneers for 
succinct trees, it is still open a similar study in the context of succinct triangulations.
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