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Abstract
In the classicminimummakespan scheduling problem, we are given an input sequence
of n jobs with sizes. A scheduling algorithm has to assign the jobs to m parallel
machines. The objective is to minimize the makespan, which is the time it takes
until all jobs are processed. In this paper, we consider online scheduling algorithms
without preemption. However, we allow the online algorithm to change the assignment
of up to k jobs at the end for some limited number k. For m identical machines,
Albers and Hellwig (Algorithmica 79(2):598–623, 2017) give tight bounds on the
competitive ratio in this model. The precise ratio depends on, and increases with,m. It
lies between 4/3 and ≈ 1.4659. They show that k � O(m) is sufficient to achieve this
bound and no k � o(n) can result in a better bound. We study m uniform machines,
i.e., machines with different speeds, and show that this setting is strictly harder. For
sufficiently large m, there is a δ � Θ(1) such that, for m machines with only two
different machine speeds, no online algorithm can achieve a competitive ratio of less
than 1.4659 + δ with k � o(n). We present a new algorithm for the uniform machine
setting. Depending on the speeds of the machines, our scheduling algorithm achieves
a competitive ratio that lies between 4/3 and ≈ 1.7992 with k � O(m). We also show
that k � Ω(m) is necessary to achieve a competitive ratio below 2. Our algorithm is
based on maintaining a specific imbalance with respect to the completion times of the
machines, complemented by a bicriteria approximation algorithm that minimizes the
makespan and maximizes the average completion time for certain sets of machines.
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1 Introduction

In the classicminimummakespan scheduling problem, we are given an input sequence
of n jobs with sizes. A scheduling algorithm has to assign the jobs to m parallel
machines. The objective is to minimize the makespan, which is the time it takes until
all jobs are processed. This problem is NP-hard in the strong sense [20]. In this paper,
we consider online scheduling without preemption.

An online algorithm does not have knowledge about the input sequence in advance.
Instead, it gets to know the input sequence job by job without knowledge about the
future. An online algorithm is called c-competitive if the makespan of the algorithm
is at most c times the makespan of an optimal offline solution.

Extensivework has been done to narrow the gap between lower and upper bounds on
the competitive ratio for online minimum makespan scheduling. Increasingly sophis-
ticated algorithms and complex analyses were developed. Nevertheless, even for the
most basic case of identical machines, in which each job has the same processing time,
i.e., its size, on every machine, there is still a gap between the best known lower and
upper bounds on the competitive ratio of 1.880 [30] and 1.9201 [18], respectively. In
the setting with uniform machines, in which different machines may run at different
speeds, the best known lower and upper bounds on the competitive ratio are 2.564
[13] and 5.828 [6], respectively.

In this work, we study to what extent the ability to migrate a limited number of jobs
can help an online algorithm in terms of the competitive ratio in the uniform machine
setting. In this model, the online algorithm has to assign jobs to machines as they
arrive. However, after all jobs have arrived, the algorithm may remove up to k jobs
from the machines and reassign them to different machines.

Job migration is a useful tool to balance loads and it is natural to study how many
jobs need to be migrated to achieve certain load guarantees. Indeed, job migration
in scheduling has been studied previously, see for example [8, 12, 27, 32–34], but in
particular, Albers and Hellwig [2] studied this problem for m identical machines1 and
gave tight bounds on the competitive ratio for this case. Roughly speaking, k � Θ(m)
job migrations are sufficient and necessary to achieve this tight bound. Allowing more
job migrations does not result in further improvements as long as k � o(n), where n
denotes the total number of arriving jobs.

We provide related results for the more general setting of uniform machines, which
introduces new technical challenges. Our contribution also implies new results on a
different but related problem: online reordering for scheduling. In this model, a so-
called reordering buffer can be used to reorder the input sequence of jobs in a restricted
fashion. Arriving jobs are first stored in the reordering buffer which has capacity to
store up to k jobs.When the buffer is full, the online scheduling algorithm has to decide
which of the jobs to remove from the buffer and to assign (irrevocably) to a machine.
When no more jobs arrive, all jobs remaining in the buffer have to be assigned to
machines as well.

1Technically, they allow job migration to be performed before all jobs have arrived as long as the total
number of migration is still bounded by k. However, performing all migrations at the end cannot increase
the competitive ratio.
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This model was introduced by Englert et al. [14] and the work by Albers and
Hellwig [2] generalizes their results for identical machines to the setting were no
buffer is used, but a limited number of job migrations are permitted. It is not known
what the relationship between the two models is in general. However, Albers and
Hellwig note that any online algorithm for the job migration model that satisfies a
certain monotonicity property can be transformed into an online algorithm for the
corresponding reordering buffer problem which has the same competitive ratio. If
the algorithm migrates k jobs, the transformed algorithm requires a buffer of size k.
The aforementioned monotonicity property is as follows: if the algorithm would not
migrate a job at time t if we pretend that the input sequence ends at that time, then the
algorithm does not migrate the job at any later time either.

Both the algorithm by Albers and Hellwig and the algorithm we present in this
work satisfy the monotonicity property. Therefore, our results also directly imply an
improved upper bound for the online minimum makespan scheduling problem with a
reordering buffer on uniform machines.

1.1 TheModel and Our Contribution

We present a lower bound on the competitive ratio showing that the problem is strictly
harder for uniform machines than for identical machines. We give the first online
algorithm for uniform machines with job migration. Depending on the speeds of the
m machines, our scheduling algorithm achieves a competitive ratio that lies between
4/3 and ≈ 1.7992 and performs O(m) job migrations. In addition, we show that Ω(m)
job migrations are necessary to achieve a competitive ratio of less than 2.

For the corresponding problem of online minimum makespan scheduling with a
reordering buffer, Englert et al. [14] present a greedy algorithm that achieves a com-
petitive ratio of 2 (or 2+ε if the algorithm is supposed to be efficient) with a reordering
buffer of sizem. Subsequently, Ding et al. [9] improved the competitive ratio to 2−1/m
with a buffer of size m + 1.2 Therefore, we also obtain a significant improvement over
these previously known results for the reordering buffer version of the problem, since
our upper bound translates to this model as well.

Before we explain our contribution in more detail, we define the model more for-
mally and introduce some useful notation and definitions. The m ≥ 2 machines are
denoted by M0, . . . , Mm−1. For each 0 ≤ i ≤ m − 1, the speed of machine Mi

is denoted by si , with min{s0, . . . , sm−1} � 1. Later, for our upper bounds, we
will assume that the machines are sorted in ascending order of their speeds, i.e.,
1 � s0 ≤ . . . ≤ sm−1, but in our lower bound construction this is not necessarily the
case. The sum of speeds is denoted by S � ∑m−1

i�0 si . The size of a job J is denoted
by p(J). The load L(Mi ) of a machine Mi is defined as the sum of the sizes of the
jobs assigned to machine Mi . The completion time of a machine Mi is defined as the

2Note that in this and several of the following papers, the model differs from the model in [14] in
that arriving jobs can bypass the buffer and may directly be assigned to a machine. This is equivalent to
increasing the buffer size in the model from [14] by 1. We express buffer sizes in terms of the model from
[14] here.
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load L(Mi ) of machine Mi divided by the speed si of machine Mi . The objective is to
minimize the makespan, i.e., the maximum completion time.

As in previousworks of Englert et al. [14] andAlbers andHellwig [2], our algorithm
attempts to maintain a specific (and not balanced) load distribution on the machines.
The desired load on amachineMi is definedby the so-calledweight wi of themachine.
The weight is defined as

wi :� min

{

si · r
S
, si · r − 1

∑i−1
j�0 s j

}

�
{
si · r

S , if 0 ≤∑i−1
j�0 s j ≤ r−1

r · S
si · r−1

∑i−1
j�0 s j

, if r−1
r · S <

∑i−1
j�0 s j < S .

Now, r is the smallest positive solution to
∑m−1

i�0 wi � 1, i.e., we ensure that the
weights of all machines sum up to 1. Due to Corollary 16 in the “Appendix”, such a
solution always exists. It is important to note that r depends on the number ofmachines
m as well as the machine speeds s0, . . . , sm−1. If s0 � · · · � sm−1 � 1, the weights
match those in [2, 14] and r �: rm is equal to the competitive ratio achieved in [2, 14]
for m identical machines.

Unfortunately, we do not know a closed-form formula for r, but the value can
be calculated for any given m and speeds s0, . . . , sm−1. Due to Corollary 16 in the
“Appendix”,

1 < r ≤ W−1(−1/e2)/(1 + W−1(−1/e2)) ≈ 1.4659,

where W−1 is the lower branch of the Lambert W function, i.e., W−1(−1/e2) is the
smallest real solution to x · ex � −1/e2. Note that, for the optimal competitive ratio
rm for m identical machines,

4/3 ≤ rm ≤ W−1(−1/e2)/(1 + W−1(−1/e2)).

Depending on the speeds of the machines, r can be significantly smaller than rm .
Our results are as follows.

• We prove that a δ � Θ(1) exists such that, for m uniform machines with only
two different machine speeds, m sufficiently large, no online algorithm can achieve
a competitive ratio less than W−1(−1/e2)/(1 + W−1(−1/e2)) + δ ≈ 1.4659 + δ

while migrating o(n) jobs. Recall that, for the optimal competitive ratio rm for m
identical machines, rm ≤ W−1(−1/e2)/(1 + W−1(−1/e2)) ≈ 1.4659. Hence, the
more general problem of uniform machines is strictly harder than the special case
of identical machines. The lower bound construction differs from the previous ones
for identical machines in [2, 14]. The previous constructions used a very large
number (1/ε many) of very small jobs (of size ε), which the online algorithm has to
schedule on the machines. The adversary then identifies a machine with load of at
least wi , i.e., a machine with a load that is not below the “target load” and, roughly
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speaking, produces just enough large jobs so that one of them has to be assigned
to a machine with load wi . Migrating small jobs is ineffective and the large jobs
cannot all avoid a machine with load wi . This technique alone however is no longer
sufficient to obtain a lower bound that is strictly larger than the known one. Using
a larger number of possible continuations of the initial input, we can show that to
handle these additional continuations, the online algorithm would have to have a
significant number ofmachines with completion time strictly less than, and bounded
away from, wi . But then another machine must have completion time strictly above
wi (rather than just equal to wi ). We remark that the same lower bound can be
constructed for the reordering buffer model with uniform machines.

• We show that, for m uniform machines, Ω(m) migrations are necessary to achieve
a competitive ratio of less than 2. Specifically, for c � �− ln(2 − r )/ ln r� ≥ 2, no
online algorithm can achieve a competitive ratio less than r ∈ (1, 2) while migrating
at most (m − c)/(c2 + c) jobs. For example, r ≈ 1.8393 > W−1(−1/e2)/(1 +
W−1(−1/e2)) + 1/3 if at most (m − 3)/12 job migrations are allowed. Again, we
remark that the same lower bound can be constructed for the reordering buffermodel
with uniform machines.

• For m uniform machines with speeds 1 � s0 ≤ . . . ≤ sm−1, our online algorithm
achieves a competitive ratio of r + 1/3 with O(m) job migrations. If an efficient
algorithm is desired, there is an additional additive loss of ε in the competitive ratio
due to the use of a PTAS by Hochbaum and Shmoys [24] in a subroutine. Note
that 1 < r ≤ W−1(−1/e2)/(1 + W−1(−1/e2)) ≈ 1.4659, i.e., the competitive
ratio is at most an additive 1/3 larger than in the identical machines case. However,
depending on the speeds of the machines, r can also be significantly smaller than
rm in which case the difference between the competitive ratios can also be smaller
than 1/3. The basic structure of our algorithm is similar to the algorithm for the
special case of identical machines [2]: Jobs are classified into small and large jobs
according to their relative size compared to the total load on all machines. Ignoring
the contribution of large jobs, the small jobs are scheduled in such a way that an
imbalance with respect to the completion times of the machines is maintained.
Roughly speaking, faster machines are kept at lower completion times than slower
ones. After all jobs have arrived, some jobs are migrated. The rough intuition is
that the largest jobs should be reassigned to improve the solution. For this, we first
remove some jobs from machines. Then, we schedule the largest ones optimally
on m empty virtual machines M ′

0, . . . , M
′
m−1 with L(M ′

0) ≤ · · · ≤ L(M ′
m−1). For

m identical machines, this means that, for each 0 ≤ i ≤ m − 1, the completion
time of machine M ′

i is less than or equal to the average completion time of the
machines M ′

i , . . . , M
′
m−1, and this is a crucial property for achieving the optimal

competitive ratio for the identical machine case. In the more general case of uniform
machines, this property does not always hold. For example, if M ′

0 has speed 1 and
M ′

1, . . . , M
′
m−1 have speed 3/2, then m jobs of size 1 are optimally scheduled with

makespan 1, but the completion time of M ′
0 is 1, which is strictly greater than

the average completion time of the machines M ′
0, . . . , M

′
m−1. To address this new

complication, our algorithm contains a crucial additional balancing step in which
the average completion time for certain sets of virtual machines is increased at the
cost of a small increase in the maximum completion time (which is responsible
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for the additive loss of 1/3). Finally, the smaller jobs that were removed from their
machines are reassigned greedily one by one. The analysis of this step is also
more involved than the corresponding one for identical machines because a more
straightforward naive argument would introduce a factor of sm−1/s0 into the number
of job migrations. Obviously, once we determine which jobs to migrate, we could
just assign those jobs optimally to the existing machines. However, it is not clear
how to analyze such a procedure directly. We state a specific algorithm for the
reassignment step because it provides us with important properties that enable us
to analyze the competitive ratio.

1.2 RelatedWork

Minimummakespan scheduling has been extensively studied. See the survey by Pruhs,
Sgall, and Torng [29] for an overview. For m identical machines, the currently best
upper and lower bounds are 1.9201 [18] and 1.880 [30], respectively. These bounds
were the last ones in a long series of successive improvements for general or specific
values of m [1, 4, 5, 7, 17, 21, 22, 25, 31].

For uniform machines, Aspnes et al. [3] present the first algorithm that achieves a
constant competitive ratio. Due to Berman, Charikar andKarpinski [6], the best known
upper bound on the competitive ratio is 5.828, and, due to Ebenlendr and Sgall [13],
the best known lower bound on the competitive ratio is 2.564.

In a semi-online variant of the problem the jobs arrive in decreasing order of their
size. The greedy LPT algorithm, which assigns each job to a machine on which it will
be completely processed as early as possible, was considered in this setting. For m
identical machines, Graham [23] shows that the LPT algorithm achieves a competitive
ratio of 4/3−1/(3m). For uniformmachines, theLPTalgorithmachieves a competitive
ratio of 1.66 and a lower bound of 1.52 on its competitive ratio is known [19].Adetailed
and tight analysis for two uniform machines is given by Mireault, Orlin, and Vohra
[28] and Epstein and Favrholdt [15].

For m identical machines, Albers and Hellwig [2] present an algorithm that is
rm-competitive, which is optimal as long as at most o(n) jobs can be migrated. For
m ≥ 11, the algorithm migrates at most 7m jobs. For smaller m, 8m to 10m jobs may
bemigrated. They further give some results on the trade-off between the number of job
migrations and the competitive ratio. For example, 2.5m job migrations are sufficient
to achieve a competitive ratio of 1.75.

Tan and Yu [33] study two identical machines. They give a tight bound of 4/3 on
the competitive ratio and this bound is achievable by migrating a single job. They also
explore two other models. One in which, at the end, for each machine, the last job that
was assigned to the machine may be migrated. And another in which, at the end, the
k jobs that arrived last in the input may be migrated.

Chen et al. [8] give an optimal algorithm for two uniform machines. Using inde-
pendent techniques and algorithms, Wang et al. [34] show bounds which are similar,
but not quite optimal for all machine speeds. Both improve upon work by Liu et al.
[27].
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Dósa et al. [12] consider a variant in which up to k jobs can be migrated after every
job arrival, which is a relaxation of online scheduling with a reordering buffer of size
k. Sanders, Sivadasan, and Skutella [32] introduce another model in which, after every
job arrival, a number of jobs can be reassigned as long as the total size of the reassigned
jobs is bounded by some linear function of the size of the arriving job.

Numerous variants related to online minimum makespan scheduling with reorder-
ing buffers have been studied. Kellerer et al. [26] present, for two identical machines,
an algorithm that achieves an optimal competitive ratio of 4/3 with a reordering buffer
of size 2, i.e., the smallest buffer size allowing reordering.

Form identical machines, Englert et al. [14] present a tight and, in comparison to the
problem without reordering, improved bound on the competitive ratio for minimum
makespan scheduling with reordering buffers. Depending onm, their scheduling algo-
rithm achieves the optimal competitive ratio rm with a buffer of size Θ(m). Further,
they show that larger buffer sizes do not result in an additional advantage and that a
buffer of size Ω(m) is necessary to achieve this competitive ratio.

Ding et al. [9] give, for m identical machines, a 1.5-competitive algorithm with
a buffer of size 1.5m + 1 and, for three identical machines, a (15/11)-competitive
algorithm with a buffer of size 7.

Dósa and Epstein [10] study minimum makespan scheduling on two uniform
machines with speed ratio s ≥ 1. They show that, for any s > 1, a buffer of size
3 is sufficient to achieve an optimal competitive ratio (i.e. even a larger buffer cannot
result in a smaller competitive ratio) and, in the case s ≥ 2, a buffer of size 2 already
allows to achieve an optimal ratio.

Dósa and Epstein [11] further study preemptive scheduling, as opposed to non-
preemptive scheduling, onm identical machines with a reordering buffer. They present
a tight bound on the competitive ratio for any m. This bound is 4/3 for even values
of m and slightly lower for odd values of m. They show that a buffer of size Θ(m)
is sufficient to achieve this bound, but a buffer of size o(m) does not reduce the best
overall competitive ratio of e/(e − 1) that is known for the case without reordering.

Epstein, Levin, and van Stee [16] study the objective to maximize the minimum
completion time. For m identical machines, they present an upper bound on the com-
petitive ratio of Hm−1 + 1 for a buffer of sizem and a lower bound of Hm for any fixed
buffer size. For m uniform machines, they show that a buffer of sizem +2 is sufficient
to achieve the optimal competitive ratio m.

2 Lower Bounds

Theorem 1 A δ � Θ(1) exists such that, for m uniform machines with only two
machine speeds, m sufficiently large, no online algorithm can achieve a competitive
ratio of less than W−1(−1/e2)/(1 + W−1(−1/e2)) + δ ≈ 1.4659 + δ while migrating
o(n) jobs, where n denotes the total number of arriving jobs.

Proof Only two machine speeds 1 and 3/2 are used. Letms denote the number of slow
machines with speed 1 and m f � m − ms denote the number of fast machines with
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speed 3/2. Note that the sum of speeds S � ms + 3/2 · m f . Define ms in such a way
thatms � �(r∞ −1)/r∞ · S�, with r∞ � W−1(−1/e2)/(1 +W−1(−1/e2)) ≈ 1.4659.

Consider an online algorithm A that uses at most k(n) � o(n) job migrations. We
start with the following initial input sequence: S/ε small jobs of size ε > 0 arrive.
Depending on the actions of the online algorithm up to at mostm additional larger jobs
arrive later on. Therefore, in total our input sequencewill contain nomore than S/ε+m
jobs (i.e. S/ε ≤ n ≤ S/ε+m). In the remainder of the proof, wewill frequently use that
limε→0+ ε ·k(n) � 0 which is a simple consequence of this. LetM0, . . . , Mm−1 denote
them uniformmachines on which A has scheduled these jobs. Let s0, . . . , sm−1 denote
the respective speeds of these machines, with L(M0)/s0 ≥ · · · ≥ L(Mm−1)/sm−1.
According to this order of the machine speeds, define the weight wi of a machine Mi .

In the following, we show that the competitive ratio of A is at least r + 1/19 · (r −
1)4/r3. Due to Observation 17 in the “Appendix”, limm→∞ r � W−1(−1/e2)/(1 +
W−1(−1/e2)) � r∞, as long as all machine speeds are upper bounded by some
constantwhich is independent ofm. Hence, form sufficiently large, 1/19·(r−1)4/r3 �
Θ(1). As a consequence, for m sufficiently large, there exists a δ � Θ(1) such that no
online algorithm can achieve a competitive ratio of less than r∞ + δ.

Due to Corollary 16 in the “Appendix”, 1 < r ≤ r∞ ≈ 1.4659. This gives the
following observation.

Observation 2

r − 1

r
≤ r∞ − 1

r∞
<

1

3
and r +

1

19
· (r − 1)4

r3
< 1 +

r

3
<

3

2
.

Assume for contradiction that A achieves a competitive ratio of rA < r + 1/19 ·
(r − 1)4/r3.

The lower bound construction for the identical machines case, is based on the
following idea: there must exist a machine M� with load of at least w� · S after the
initial sequence, since otherwise, the total scheduled load would be strictly less than∑m−1

i�0 wi · S � S. Since at most k(n) of these jobs can be migrated at the end, at least
w� · S/ε − k(n) of them are guaranteed to stay on M� which is still almost all the load
for sufficiently small ε since limε→0+ ε · k(n) � 0. The high load on M� can now be
exploited by continuing the input sequence in the right way.

However, for uniform machines we now want to get a larger lower bound than for
the identical machine case. Hence, a significant contribution is the following lemma
that gives an improved lower bound on the completion time. Specifically, it shows a
lower bound on the completion time that is larger than the original w�/s� · S by an
additive 1/19 · (r − 1)3/r2, resulting in an improved lower bound on the competitive
ratio of A.

Lemma 3 After the initial input sequence, a machine M� with completion time of at
least w�/s� · S + 1/19 · (r − 1)3/r2 exists.

Proof We show that the lemma holds as otherwise a continuation of the input sequence
that leads to a contradiction toA being rA-competitive exists.We distinguish two cases.
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• The number of fast machines with weight wi � 3/2 · r/S is at least �2/11 · (r −
1)/r · S�: In addition,m f −�1/11 · (r −1)/r · S� large jobs of size 3/2 · S/Sε ≥ 3/2
arrive, with

Sε � ms +
3

2
·
⌈
1

11
· r − 1

r
· S
⌉

�
⌈
r∞ − 1

r∞
· S
⌉

+
3

2
·
⌈
1

11
· r − 1

r
· S
⌉

≥ r∞ − 1

r∞
· S +

3

2
· 1

11
· r − 1

r
· S

≥ 25

22
· r − 1

r
· S.

An optimal offline algorithm can schedule each large job on a separate fast machine
and evenly distribute the small jobs among the remaining machines. These remain-
ing machines, among which the small jobs are distributed, consist of all ms slow
machines and the �1/11 · (r −1)/r · S� fast machines that do not get assigned any of
the large jobs. Therefore, the sum of their speeds is exactly Sε. Hence, the optimal
makespan is at most S/Sε + ε. If, in the final schedule after migrations, A sched-
ules one large job on a slow machine or two large jobs on the same fast machine,
the completion time of such a machine is at least 3/2 · S/Sε and, therefore, the
competitive ratio of A is at least

3/2 · S/Sε

S/Sε + ε
,

which is strictly larger than rA if ε is sufficiently small. As a consequence, A sched-
ules each of the large jobs on a separate fast machine. Let U be the set of such
machines which have weight wi � 3/2 · r/S. Then for any machine Mi ∈ U , for
the load Lε(Mi ) on Mi caused by small jobs,

Lε(Mi ) ≤ wi · S − 137

12 · 19 · (r − 1)2

r
,

since otherwise the completion time of Mi is at least

S

Sε

+
Lε(Mi )

si
≥ S

Sε

+
wi

si
· S − 1

si
· 137

12 · 19 · (r − 1)2

r

� S

Sε

+
3/2 · r/S

si
· S − 1

si
· 137

12 · 19 · (r − 1)2

r

� S

Sε

+ r − 2

3
· 137

12 · 19 · (r − 1)2

r

≥ S

Sε

+
S

Sε

· 25
22

· r − 1

r
· r − S

Sε

· 2
3

· 137

12 · 19 · (r − 1)2

r
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� S

Sε

·
(

1 +
25

22
· (r − 1) − 137

18 · 19 · (r − 1)2

r

)

� S

Sε

·
(

r +
3

22
· (r − 1) − 137

18 · 19 · (r − 1)2

r

)

≥ S

Sε

·
(

r +
3

22
· (r − 1) · 3 · r − 1

r
− 137

18 · 19 · (r − 1)2

r

)

� S

Sε

·
(

r +

(
3

22
· 3 − 137

18 · 19
)

· (r − 1)2

r

)

≥ S

Sε

·
(

r +

(
3

22
· 3 − 137

18 · 19
)

· (r − 1)2

r
· 32 · (r − 1)2

r2

)

≥ S

Sε

·
(

r +
1

19
· (r − 1)4

r3

)

,

which is a contradiction to A being rA-competitive. For the fourth step, recall that

22

25
· r

r − 1
≥ S

Sε

≥ 1,

and for steps seven and nine, note that Observation 2 gives 3 · (r − 1)/r < 1. The
number of large jobs that are scheduled on a machine with weight 3/2 · r/S is

|U |≥
⌈
2

11
· r − 1

r
· S
⌉

−
⌈
1

11
· r − 1

r
· S
⌉

≥
(

2

11
− 142

11 · 137
)

· r − 1

r
· S

� 12

137
· r − 1

r
· S,

for S � ms + 3/2 ·m f sufficiently large. We conclude that there must be a machine
M� /∈ U such that

Lε(M�)

s�
≥ w�

s�
· S +

1

19
· (r − 1)3

r2
,

as otherwise

∑

M� /∈U
Lε(M�) +

∑

Mi∈U
Lε(Mi )

<
∑

M� /∈U

(

w� · S +
1

19

(r − 1)3

r2
· s�
)

+
∑

Mi∈U

(

wi · S − 137

12 · 19
(r − 1)2

r

)

� S ·
m−1∑

i�0

wi +
∑

M� /∈U

1

19

(r − 1)3

r2
· s� −

∑

Mi∈U

137

12 · 19
(r − 1)2

r
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≤ S ·
m−1∑

i�0

wi +
1

19

(r − 1)3

r2
· S − |U |· 137

12 · 19
(r − 1)2

r

≤ S,

which is a contradiction to the fact that the total size of all small jobs combined is
S.

• The number of fast machines with weight wi � 3/2 · r/S is at most �2/11 · (r −
1)/r · S� − 1: In addition, m f + �1/2 ·ms large jobs of size S/Sε ≥ 1 arrive, with

Sε �
⌈
1

2
· ms

⌉

+
1

3
· 3
2

· m f ≥ 1

3
· S +

1

6
· ms ≥ S ·

(
1

3
+
1

6
· r∞ − 1

r∞

)

≥ S ·
(
1

3
+
1

6
· r − 1

r

)

.

An optimal offline algorithm can schedule each large job on a separate machine of
the set of all fast and �1/2 ·ms slow machines. Now, the fast machines can process
additional jobs while the slow machines are working on large jobs. Therefore, the
small jobs can be distributed among the remaining slow machines and the fast
machines, which give a weighted sum of speeds of Sε. Hence, the optimal makespan
is at most S/Sε +ε. If A schedules two large jobs on the same slow machine or three
large jobs on the same fast machine, the competitive ratio of A is at least

2 · S/Sε

S/Sε + ε
,

which is strictly larger than rA if ε is sufficiently small. As a consequence, A sched-
ules at most one large job on each slow machine and at most two large jobs on each
fast machine. Let U be the set of all slow machines that have weight wi � r/S and
receive one large job and all fast machines that receive two large jobs. Then for any
slow machine Mi ∈ U , for the load Lε(Mi ) on Mi caused by small jobs,

Lε(Mi ) ≤ wi · S − 1

4
· (r − 1)2

r
,

since otherwise the completion time of Mi is at least

S

Sε

+
Lε(Mi )

si
≥ S

Sε

+
wi

si
· S − 1

si
· 1
4

· (r − 1)2

r

≥ S

Sε

·
(

1 + r ·
(
1

3
+
1

6
· r − 1

r

)

− 1

4
· (r − 1)2

r

)

≥ S

Sε

·
(

1 + r ·
(
1

3
+
1

6
· (r − 1)2

r2
· 3
)

− 1

4
· (r − 1)2

r

)

≥ S

Sε

·
(

1 +
r

3
+

(
1

6
· 3 − 1

4

)

· (r − 1)2

r

)
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≥ S

Sε

·
(
1 +

r

3

)

≥ S

Sε

·
(

r +
1

19
· (r − 1)4

r3

)

,

which is a contradiction to A being rA-competitive. For the second step, recall that

(
1

3
+
1

6
· r − 1

r

)−1

≥ S

Sε

≥ 1,

and note that the last step follows form Observation 2. In addition, for any fast
machine Mi ∈ U , for the load Lε(Mi ) on Mi caused by small jobs,

Lε(Mi ) ≤ wi · S − 1

4
· (r − 1)2

r
,

since otherwise the completion time of Mi is at least

4

3
· S

Sε

+
Lε(Mi )

si
≥ 4

3
· S

Sε

+
wi

si
· S − 1

si
· 1
4

· (r − 1)2

r

≥ 4

3
· S

Sε

+ (r − 1) − 1

si
· 1
4

· (r − 1)2

r

≥ S

Sε

(
4

3
+ (r − 1)

(
1

3
+
1

6
· r − 1

r

)

− 2

3
· 1
4

· (r − 1)2

r

)

� S

Sε

(
1 +

r

3

)

≥ S

Sε

(

r +
1

19
· (r − 1)4

r3

)

,

which is a contradiction to A being rA-competitive. For the second step, note that
by the definition of the weights, wi ≥ si · (r − 1)/S for all i. If the number of fast
machineswithweightwi � 3/2·r/S is atmost �2/11·(r−1)/r ·S�−1 (as is the case
here), then their combined speed is at most 3/2 ·�2/11·(r−1)/r ·S� − 3/2. The sum
of the speeds of all machines with weightwi � 3/2·r/S is at least S ·(r−1)/r−3/2
by the definition of the weights. Then the number of slow machines with weight
3/2 · r/S is at least S · (r − 1)/r − 3/2 − (3/2 · �2/11 · (r − 1)/r · S� − 3/2) �
S · (r − 1)/r − 3/2 · �2/11 · (r − 1)/r · S�.
We conclude that the number of slowmachineswith aweight different from3/2·r/S
is at mostms − S · (r −1)/r +3/2 · �2/11 · (r −1)/r · S�. Thus, for the �ms/2+m f

large jobs, the number of large jobs that are scheduled on a slow machine with
weight r/S or together with another large job on a fast machine is
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|U | ≥
⌊
1

2
· ms

⌋

−
(

ms −
(
r − 1

r
· S
)

+
3

2
·
⌈
2

11
· r − 1

r
· S
⌉)

≥ −
⌈
1

2
·
⌈
r∞ − 1

r∞
· S
⌉⌉

+

(
r − 1

r
· S
)

− 3

2
·
⌈
2

11
· r − 1

r
· S
⌉

≥ −
(
105

209
· r∞ − 1

r∞
· S
)

+

(
r − 1

r
· S
)

− 3

2
·
(
116

627
· r − 1

r
· S
)

� −105

209
· S ·

(
r∞ − 1

r∞
− r − 1

r

)

+

(
46

209
· r − 1

r
· S
)

≥
(

− 2

209
+

46

209

)

· r − 1

r
· S � 4

19
· r − 1

r
· S.

The second step holds for S � ms + 3/2 ·m f sufficiently large. For the fourth step,
note that, for m sufficiently large, (r∞ − 1)/r∞ − (r − 1)/r ≤ 2/105 · (r − 1)/r ,
since (r − 1)/r ≤ (r∞ − 1)/r∞ and limm→∞ r � r∞. We conclude that there must
be a machine M� /∈ U such that

Lε(M�)

s�
≥ w�

s�
· S +

1

19
· (r − 1)3

r2
,

as otherwise

∑

M� /∈U
Lε(M�) +

∑

Mi∈U
Lε(Mi )

<
∑

M� /∈U

(

w� · S +
1

19

(r − 1)3

r2
· s�
)

+
∑

Mi∈U

(

wi · S − 1

4

(r − 1)2

r

)

� S ·
m−1∑

i�0

wi +
∑

M� /∈U

1

19

(r − 1)3

r2
· s� −

∑

Mi∈U

1

4

(r − 1)2

r

≤ S ·
m−1∑

i�0

wi +
1

19

(r − 1)3

r2
· S − |U |·1

4

(r − 1)2

r

≤ S,

which is a contradiction to the fact that the total size of all small jobs combined is
S. �

Let M� denote a machine which, after the initial input sequence of jobs of size ε,
has a completion time of at least w�/s� · S + 1/19 · (r − 1)3/r2. We distinguish two
cases.
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• w� � s� · r/S:
No more jobs arrive. An optimal offline algorithm can evenly distribute all jobs

among the machines. Hence, the optimal makespan is at most S/S + ε � 1 + ε.
Finally, the competitive ratio of A is at least

r + 1/19 · (r − 1)3/r2 − ε · k(n)
1 + ε

≥ r + 1/19 · (r − 1)4/r3

1 + ε
− ε · k(n)

1 + ε
,

which is strictly larger than rA if ε is sufficiently small.
• w� � s� · (r − 1)/

∑�−1
j�0 s j :

In addition, min{m f , �2/3 · (S − ∑�−1
j�0 s j )} large 3/2-jobs of size 3/2 ·

S/
∑�−1

j�0 s j and max{0, �ms −∑�−1
j�0 s j} � max{0, �S −∑�−1

j�0 s j − 3/2 · m f }
large 1-jobs of size S/

∑�−1
j�0 s j arrive. An optimal offline algorithm can sched-

ule each large x-job, with x ∈ {1, 3/2}, on a separate machine with speed x and
evenly distribute the small jobs among the remaining machines. Hence, the optimal
makespan is at most S/

∑�−1
j�0 s j + ε.

If A schedules one large 3/2-job on a slow machine or two large jobs on the same
machine, the competitive ratio of A is at least

3/2 · S/
∑�−1

j�0 s j

S/
∑�−1

j�0 s j + ε
,

which is strictly larger than rA if ε is sufficiently small.
Ifm f > �2/3 · (S−∑�−1

j�0 s j ), the number of 3/2-jobs that arrive is greater than
the number of fast machines M�′ which have an index of �′ ≥ �. Since these jobs
can only be scheduled on fast machines, at least one of them has to be scheduled
on a machine with index �′ < �. If m f ≤ �2/3 · (S − ∑�−1

j�0 s j ) the number
of 3/2-jobs that arrive is equal to the total number of fast machines m f . If there
exists a fast machine which has an index �′ ≤ �, at least one of these jobs has to
be scheduled on such a machine. On the other hand, if all fast machines have an
index of �′ > �, then we observe that the total number of 1-jobs and 3/2-jobs is
m f +ms −∑�−1

j�0 s j � m−�. Hence, at least one of the jobs has to be scheduled on a
machine with index �′ ≤ � (and this machine is slow).We conclude thatA schedules
at least one large x-job, with x ∈ {1, 3/2}, on a machine with speed x that, after the
initial assignment of the jobs of size ε, that, after the initial assignment of the jobs
of size ε, already has a completion time of at least w�/s� · S + 1/19 · (r − 1)3/r2.

By definition of w�,
∑�−1

j�0 s j/S ≥ (r − 1)/r . Finally, the competitive ratio of A
is at least

(1 + r − 1) · S/
∑�−1

j�0 s j + 1/19 · (r − 1)3/r2 − ε · k(n)
S/
∑�−1

j�0 s j + ε

≥
(
r + 1/19 · (r − 1)4/r3

) · S/
∑�−1

j�0 s j

S/
∑�−1

j�0 s j + ε
− ε · k(n)

S/
∑�−1

j�0 s j + ε
,

which is strictly larger than rA if ε is sufficiently small. �
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Theorem 4 For c � �− ln(2 − r )/ ln r� ≥ 2, no online algorithm can achieve a
competitive ratio of less than r ∈ (1, 2) while migrating at most (m − c)/(c2 + c) jobs.

Proof Let 1 < r < 2 and c � �− ln(2−r )/ ln r� ≥ 2. For each 0 ≤ i ≤ c−1, there are
�m/cmachineswith speed r i . Addmachines of speed 1 such that there aremmachines
in total. Consider an online algorithm A that migrates at most k � �(m − c)/(c2 + c)
jobs.

The input sequence consists of atmost c consecutive phases. In phase 0 ≤ i ≤ c−1,
�m/c jobs of size r i arrive. Let ki denote the number of jobs of size r i that are assigned
by A to machines with speed strictly less than rc−1 or to machines where at least one
job of size r i is already scheduled. If ki > k, stop at the end of this phase. Otherwise,
if i < c − 1, continue with phase i + 1.

If the input sequence stops at the end of phase 0 ≤ i ≤ c − 1 due to the fact that
ki > k, the competitive ratio of A is at least

min{r i/rc−2, 2 · r i/rc−1}
r i/rc−1 � r .

Otherwise, we focus on the �m/c machines with speed rc−1. In each phase i, at least
�m/c−k of these machines are assigned a job of size r i . This means that after the last
phase, there must be �m/c − c · k such machines which each were assigned one job
from each phase. We can remove jobs from at most k such machines in the migration
phase. Therefore, after the migration phase, at least

⌊m

c

⌋
− (c + 1) · k �

⌊m

c

⌋
− (c + 1) ·

⌊
m − c

c2 + c

⌋

≥
⌊m

c

⌋
−
⌊
m − c

c

⌋

≥ 1

machines with speed rc−1 exist, to which, for each 0 ≤ i ≤ c − 1, A has assigned at
least one job of size r i . Hence, the competitive ratio of A is at least

∑c−1
i�0 r

i

rc−1 � rc − 1

(r − 1) · rc−1 ≥ r ,

since c ≥ − ln(2 − r )/ ln r . �

3 Scheduling Algorithm

For m uniform machines with speeds 1 � s0 ≤ . . . ≤ sm−1, our algorithm consists of
two phases: In the scheduling phase, arriving jobs are assigned to (or scheduled on)
machines online. In the migration phase, which starts after all jobs have arrived, some
jobs are removed from their machines and reassigned to other machines.

More specifically, the scheduling phase consists of steps 1, . . . , n, where n denotes
the total number of arriving jobs. In step t, the t-th job arrives and is assigned to a
machine. For t > 1, let Tt denote the total size of the t − 1 jobs that have arrived up
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to and including step t − 1. In addition, define T1 � 0. A job J is called small in step
t, if p(J ) ≤ Tt/(b ·m), where b is a constant that will be defined later. Otherwise, J is
called large in step t. Note that during the scheduling phase, a job that is large in step
t can become small in step t + 1.

Further, let T s
t denote the total size of the jobs that have arrived up to and including

step t − 1 and that are small in step t. Finally, let Lt (Mi ) denote the total size of the
jobs that are scheduled on machine Mi at the end of step t − 1, i.e., after the (t − 1)-th
job is assigned to a machine, and let Ls

t (Mi ) denote the total size of the jobs that are
scheduled on machine Mi at the end of step t − 1 and that are small in step t.

We use two different algorithms. The first algorithm, which is used when sm−1 >

3/4 · S, schedules every job on machine Mm−1 and does not migrate any jobs. The
second algorithm, which is used when sm−1 ≤ 3/4 · S, is more interesting and works
as follows.

• Scheduling phase: The t-th arriving job J is scheduled in step t as follows.

• If J is small in step t, J is assigned to a machine Mi with Ls
t (Mi ) ≤ wi · T s

t .
(Since

∑m−1
j�0 wi � 1 and

∑m−1
i�0 Ls

t (Mi ) � T s
t , such a machine always exists.)

• If J is large in step t, J is assigned to a machine Mi that has minimum completion
time Lt (Mi )/si among all machines.

• Migration phase: Throughout the migration phase, we remove jobs from machines
and reassign them. At any point during this process, let L(Mi ) denote the load
of machine Mi at that point, i.e., the L(Mi ) values are changing throughout the
migration phase.

At the start of the migration phase, after all n jobs have arrived, we have, for each
0 ≤ i ≤ m − 1, L(Mi ) � Ln+1(Mi ). Then do the following. For each machine Mi ,
as long as L(Mi ) > wi · T s

n+1 and L(Mi ) > (r − 1) · Tn+1 · si/S, remove the job of
largest size from Mi .

The removed jobs can now be reassigned optimally to the machines, i.e., in such a
way that the resulting makespan is minimized. However, as stated before, it is difficult
to analyze the resulting makespan directly. In the following, we therefore present a
more specific procedure for this reassignment step which provides us with certain
properties that enable us to analyze the competitive ratio. The resulting bound is of
course also an upper bound on the competitive ratio achieved through an optimal
reassignment.

(1) Those removed jobs that are large at time n + 1 are scheduled on m empty virtual
machines M ′

0, . . . , M
′
m−1 with speeds 1 � s0 ≤ . . . ≤ sm−1:

(1a) The jobs are scheduled on the virtual machines optimally, i.e., to minimize
the makespan of the virtual machines.3 Call the resulting makespan on the
virtual machines OPT′. We assume that the resulting loads of the virtual
machines are sorted, i.e., L(M ′

0) ≤ . . . ≤ L(M ′
m−1), and that, for each

1 ≤ i ≤ m − 1, L(M ′
i )/si > OPT′/2 if L(M ′

i−1) > 0. (See the following
Observation 5 items (1) and (2).)

3If computational efficiency is a concern, the PTAS byHochbaum and Shmoys [24] may be used instead,
resulting in an additive loss of ε in the competitive ratio.

123



Algorithmica (2021) 83:3537–3566 3553

(1b) Each machine M ′
i , with i ∈ C where

C �
{

0 ≤ i ≤ m − 1 :
m−1∑

j�0

L(M ′
j ) ≤

(
L(M ′

i )

si
− OPT′

3

)

·
m−1∑

j�i

s j

}

,

is called critical. If C �� ∅, all jobs from the machines M ′
0, . . . , M

′
c, with

c � max(C) < m − 1, are reassigned to M ′
c+1, . . . , M

′
m−1.

For i � 0, . . . , c do the following:
• Find the largest � ≥ c + 1 such that (L(M ′

i ) + L(M ′
�))/s� ≤ 4/3 · OPT′.

(Due to the following Observation 5 item (3), such a machine always
exists.)

• Reassign all jobs from M ′
i to M ′

�, i.e., L(M
′
�) is increased by L(M ′

i ) and
L(M ′

i ) is set to 0.• Re-sort the loads of the machines such that L(M ′
0) ≤ . . . ≤ L(M ′

m−1)
again. (See the following Observation 5 item (1).)

Finally, for each 0 ≤ i ≤ m − 1, assign the jobs from M ′
i to the real machine Mi .

(2) Those removed jobs that are small at time n + 1 are scheduled according to the
greedy algorithm that assigns a job to a machine finishing it first.

Observation 5 For the migration phase, the following observations can be made.

(1) Sorting according to the load does not increase the makespan.
(2) We can assume that, for each 1 ≤ i ≤ m − 1, L(M ′

i )/si > OPT′/2 if L(M ′
i−1) >

0.
(3) If C �� ∅, then for each 0 ≤ i ≤ c, {c + 1 ≤ j ≤ m − 1 : (L(M ′

i ) + L(M ′
j ))/s j ≤

4/3 · OPT′} �� ∅.
(4) For each 0 ≤ i ≤ m − 1, L(M ′

i )/si ≤ 4/3 · OPT′.

Proof

(1) Assume that L(M ′
i ) > L(M ′

j ), with 0 ≤ i < j ≤ m−1. Since si ≤ s j , swapping
the loads of M ′

i and M ′
j does not increase the makespan.

(2) While a 1 ≤ i ≤ m − 1 exists with L(M ′
i )/si ≤ OPT′/2 and L(M ′

i−1) > 0,
reassign the jobs from M ′

i−1 to M ′
i , i.e., L(M

′
i ) is increased by L(M ′

i−1) and
L(M ′

i−1) is set to 0, and sort according to the load. This does not increase the
makespan, since L(M ′

i−1) ≤ L(M ′
i ) and due to item (1). Further, this process

terminates, since after each iteration there is one more machine with no load.
(3) Assume for contradiction that, for each c + 1 ≤ j ≤ m − 1, L(M ′

j )/s j >

2/3 ·OPT′. This yields the following contradiction to the fact that M ′
c is critical:
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m−1∑

j�c

L(M ′
j ) >

(
L(M ′

c)

sc
− OPT′

3

)

· sc +
m−1∑

j�c+1

2

3
· OPT′ · s j

≥
(
L(M ′

c)

sc
− OPT′

3

)

·
m−1∑

j�c

s j ,

since L(M ′
c)/sc ≤ OPT′. Then, there exists a c+1 ≤ j ≤ m−1,with L(M ′

j )/s j ≤
2/3 · OPT′. Since L(M ′

i ) ≤ L(M ′
j ), (L(M

′
i ) + L(M ′

j ))/s j ≤ 4/3 · OPT′.
(4) Clearly, at the beginning of step (1b), for each 0 ≤ i ≤ m−1, L(M ′

i )/si ≤ OPT′.
Then, after each reassignment in step (1b), for each 0 ≤ i ≤ m − 1, L(M ′

i )/si ≤
4/3 · OPT′ due to items (3) and (1). �

3.1 Analysis of the Algorithm

The analysis of the algorithm consists of two parts. The first part provides a bound on
the number of migrated jobs. The second part provides a bound on the competitive
ratio of the algorithm. These two parts together give the following theorem.

Theorem 6 For m uniform machines with speeds 1 � s0 ≤ . . . ≤ sm−1, our online
algorithm achieves a competitive ratio of r + 1/3 with O(m) job migrations.

3.1.1 Bounding the Number of Migrated Jobs

The following lemma gives an upper bound on the number of jobs removed from a
single machine.

Lemma 7 For each 0 ≤ i ≤ m − 1, in the migration phase, at most r/(r − 1) · b ·m ·
si/S + 1 jobs are removed from machine Mi .

Proof If the final load of Mi at the end of the scheduling phase satisfies Ln+1(Mi ) ≤
wi · T s

n+1 or Ln+1(Mi ) ≤ (r − 1) · Tn+1 · si/S, no job is removed from Mi . Otherwise,
let t be the last time at which Ls

t (Mi ) ≤ wi · T s
n+1 or Lt (Mi ) ≤ (r − 1) · Tn+1 · si/S.

Such a time t exists because the condition is met for t � 1. Note that the condition is
slightly different than the negation of the condition for job removals in the migration
phase because we are using Ls

t (Mi ) rather than Lt (Mi ) in the first part. We do this so
that the first part of the condition aligns with the condition for the placement of small
jobs in the scheduling phase.

It is sufficient to remove the following jobs fromMi to guarantee L(Mi ) ≤ wi ·T s
n+1

or L(Mi ) ≤ (r − 1) · Tn+1 · si/S.
(a) All jobs that are large at time t and are scheduled on Mi before the arrival of the

t-th job and
(b) all jobs assigned to Mi in step t or after.
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At any time t ′ (before the arrival of the t ′-th job), there are at most b · m · si/S
jobs that are large at time t ′ scheduled on Mi . Suppose this is not true and let t ′
be the first time at which this is not true. Then there were b · m · si/S jobs of size
greater than Tt ′/(b · m) scheduled on Mi at time t ′ − 1 and in step t ′ − 1 one more
such job J is assigned to Mi . However, before the assignment of J , the load of Mi is
Lt ′−1(Mi ) > Tt ′ · si/S ≥ Tt ′−1 · si/S. Then Mi cannot be a machine with minimum
completion time among all machines in step t ′ and therefore a large job J would not
be assigned to it. We conclude that at most b · m · si/S jobs are removed in (a).

To bound the number of jobs removed in (b), we observe that in steps t + 1, . . . , n
our algorithm only allocates jobs to Mi that are large at the time of allocation. This is
due to the fact that by definition of t, for each t ′ ≥ t +1, Ls

t ′(Mi ) > wi ·T s
t ′ . Therefore,

whenever a job J is assigned to Mi in a step t ′ ≥ t + 1, it is a large job, which is
assigned to amachine ofminimum completion time. But then, for each 0 ≤ j ≤ m−1,
Lt ′(Mj ) > (r − 1) · Tn+1 · s j/S, because we also have Lt ′ (Mi ) > (r − 1) · Tn+1 · si/S.
Hence Tt ′ � ∑m−1

j�0 Lt ′(Mj ) > (r − 1) · Tn+1. Since job J is large at the time of
assignment, its size has to be greater than (r − 1) · Tn+1/(b · m). After assigning
b ·m ·si/(S · (r −1)) such jobs to Mi in steps after t, the load of Mi exceeds Tn+1 ·si/S.
After that, no further such jobs are assigned toMi , because amachinewith load greater
than Tn+1 · si/S can never be a machine that has the smallest completion time among
all machines. We conclude that, at most b · m · si/(S · (r − 1)) + 1 jobs are removed
in (b), where the additive 1 is due to the job that is assigned to machine Mi in step t.

In total, it is sufficient to remove these b · m · si/S + b · m · si/(S · (r − 1)) + 1 �
r/(r − 1) · b · m · si/S + 1 many jobs, and, because the algorithm removes jobs from
Mi in decreasing order of size, the number of jobs removed is bounded by the same
number. �

Due to Lemma 7, the total number of jobs migrated is bounded by

m−1∑

i�0

(
r

r − 1
· b · m · si

S
+ 1

)

�
(

r

r − 1
· b + 1

)

· m.

Recall, that we only migrate jobs when sm−1 ≤ 3/4 · S, as otherwise, we simply
schedule all jobs on machine Mm−1. If sm−1 ≤ 3/4 · S, according to Corollary 16 and
Observation 18 in the “Appendix”, 16/13 ≤ r ≤ W−1(−1/e2)/(1 +W−1(−1/e2)) ≈
1.4659. Hence, we number of migrated jobs is at most

(
r

r − 1
· b + 1

)

· m � Θ(m).

3.1.2 Bounding the Competitive Ratio

If sm−1 > 3/4 · S, we assign all jobs to machine Mm−1. The resulting makespan is
Ln+1(Mm−1)/sm−1 � Tn+1/sm−1 < 4/3 · Tn+1/S ≤ 4/3 · OPT, where OPT denotes
the optimal makespan. Hence the competitive ratio is bounded by 1 + 1/3.

123



3556 Algorithmica (2021) 83:3537–3566

For the remainder of the paper, we consider the case sm−1 ≤ 3/4 · S. The following
lemma shows that, at the end of step (1b), there are no critical machines. In fact, it
gives a lower bound on

∑m−1
j�0 L(M ′

j ).

Lemma 8 At the end of step (1b), for each 0 ≤ j ≤ m − 1,

m−1∑

k�0

L(M ′
k) ≥

(
L(M ′

j )

s j
− OPT

3

)

·
m−1∑

k� j

sk .

Proof Clearly we have

(
L(M ′

j )

s j
− OPT′

3

)

·
m−1∑

k� j

sk ≥
(
L(M ′

j )

s j
− OPT

3

)

·
m−1∑

k� j

sk,

because OPT′ ≤ OPT (optimally scheduling a subset of all jobs can only result in a
smaller makespan than optimally scheduling all jobs). Therefore, it only remains to
show

m−1∑

k�0

L(M ′
k) ≥

(
L(M ′

j )

s j
− OPT′

3

)

·
m−1∑

k� j

sk .

If C � ∅, the lemma is true by definition of C. In the following, we consider the case
C �� ∅. At the end of step (1b), for each 0 ≤ j ≤ c, L(M ′

j ) � 0 and, as a consequence,
the lemma is true for these machines. In the following, we show that the lemma is
true for M ′

c+1, . . . , M
′
m−1 after each reassignment in step (1b), if it is true for these

machines before this reassignment.
Initially, at the beginning of step (1b), for each c+1 ≤ j ≤ m−1, M ′

j is not critical
by definition of c, i.e., the lemma is true for M ′

j .
Now, consider a reassignment in step (1b). For each 0 ≤ j ≤ m−1, let L(M ′

j ) and

L̂(M ′
j ) denote the load of machineM ′

j before and after this reassignment, respectively.
Assume that the lemma is true for M ′

c+1, . . . , M
′
m−1 before this reassignment.

In this reassignment, all jobs from M ′
i , with 0 ≤ i ≤ c, are reassigned to M ′

�, with

� � max

{

c + 1 ≤ j ≤ m − 1 :
L(M ′

i ) + L(M ′
j )

s j
≤ 4

3
· OPT′

}

.

Then, re-sort the loads of the machines again. Specifically,

z � max
{
� ≤ j ≤ m − 1 : L(M ′

j ) < L(M ′
i ) + L(M ′

�)
}
,

i.e., after re-sorting, L̂(M ′
z) � L(M ′

i ) + L(M ′
�), and, for each � ≤ j ≤ z−1, L̂(M ′

j ) �
L(M ′

j+1). In addition, for each j ∈ {c + 1, . . . ,m − 1} \ {�, . . . , z}, L̂(M ′
j ) � L(M ′

j ).

123



Algorithmica (2021) 83:3537–3566 3557

Note that, for each c + 1 ≤ j ≤ m − 1, L(M ′
j ) ≤ L̂(M ′

j ) and, if j + 1 ≤ m − 1,

L̂(M ′
j ) ≤ L(M ′

j+1).
It remains to show that the lemma is true for M ′

�, . . . , M
′
z . Consider machine M ′

x

with � ≤ x ≤ z. If L̂(M ′
x )/sx ≤ OPT′, then

m−1∑

j�0

L̂(M ′
j ) ≥

m−1∑

j�x

L̂(M ′
j ) ≥ L̂(M ′

x )

sx
· sx +

m−1∑

j�x+1

2

3
· OPT′ · s j

≥
(
L̂(M ′

x )

sx
− OPT′

3

)

·
m−1∑

j�x

s j ,

since, by definition of �, for each � + 1 ≤ j ≤ m − 1, L̂(M ′
j )/s j ≥ L(M ′

j )/s j ≥
(L(M ′

i ) + L(M ′
j ))/(2s j ) > 2/3 · OPT′.

In the following, we consider the case L̂(M ′
x )/sx > OPT′.

Observation 9 For each x + 1 ≤ j ≤ m − 1, L(M ′
j )/s j ≥ 4/5 · OPT′.

Proof Assume for contradiction that there exists a x+1 ≤ j ≤ m−1with L(M ′
j )/s j <

4/5 · OPT′. Then,

4

5
· OPT′ >

L(M ′
j )

s j
≥ L(M ′

x+1)

s j
≥ L̂(M ′

x )

s j
>

OPT′ · sx
s j

,

i.e., 4/5 · s j > sx ≥ s�. This yields the following contradiction to the fact that all jobs
from M ′

i are reassigned to M ′
�: � < x + 1 ≤ j and

L(M ′
i ) + L(M ′

j ) ≤ 2

3
· OPT′ · s� + 4

5
· OPT′ · s j

≤
(
2

3
· 4
5
+
4

5

)

· OPT′ · s j ≤ 4

3
· OPT′ · s j ,

since, by definition of �, L(M ′
i )/s� ≤ (L(M ′

i ) + L(M ′
�))/(2s�) ≤ 2/3 · OPT′. �

Due to the fact that M ′
c is critical,

m−1∑

j�c

L(M ′
j ) ≤

m−1∑

j�0

L(M ′
j ) ≤

(
L(M ′

c)

sc
− OPT′

3

)

·
m−1∑

j�c

s j .

As a consequence, by subtracting L(M ′
c)/sc ≥ L(M ′

c)/sc − OPT′/3,

m−1∑

j�c+1

L(M ′
j ) ≤

(
L(M ′

c)

sc
− OPT′

3

)

·
m−1∑

j�c+1

s j ≤ 2

3
· OPT′ ·

m−1∑

j�c+1

s j ,
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where the second step follows from L(M ′
c)/sc ≤ OPT′.

Due to Observation 5 item (2),

x∑

j�c+1

L(M ′
j ) ≥ 1

2
· OPT′ ·

x∑

j�c+1

s j

and, due to Observation 9,

m−1∑

j�x+1

L(M ′
j ) ≥ 4

5
· OPT′ ·

m−1∑

j�x+1

s j .

Hence,

2

3
· OPT′ ·

m−1∑

j�c+1

s j ≥
m−1∑

j�c+1

L(M ′
j )

≥ 1

2
· OPT′ ·

x∑

j�c+1

s j +
4

5
· OPT′ ·

m−1∑

j�x+1

s j .

As a consequence,

2

3
·

x∑

j�c+1

s j +
2

3
·

m−1∑

j�x+1

s j ≥ 1

2
·

x∑

j�c+1

s j +
4

5
·

m−1∑

j�x+1

s j ,

i.e.,

x∑

j�c+1

s j ≥ 4

5
·

m−1∑

j�x+1

s j .

Altogether,

m−1∑

j�0

L̂(M ′
j ) ≥

x−1∑

j�c+1

L(M ′
j ) + L̂(M ′

x ) +
m−1∑

j�x+1

L(M ′
j )

≥ 1

2
· OPT′ ·

x−1∑

j�c+1

s j +
OPT′

3
· sx +

(
L̂(M ′

x )

sx
− OPT′

3

)

· sx

+
4

5
· OPT′ ·

m−1∑

j�x+1

s j

≥ 1

3
· OPT′ ·

x∑

j�c+1

s j +

(
L̂(M ′

x )

sx
− OPT′

3

)

· sx
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+
4

5
· OPT′ ·

m−1∑

j�x+1

s j

≥
(
L̂(M ′

x )

sx
− OPT′

3

)

· sx +
(
1

3
· 4
5
+
4

5

)

· OPT′ ·
m−1∑

j�x+1

s j

≥
(
L̂(M ′

x )

sx
− OPT′

3

)

·
m−1∑

j�x

s j ,

where the second Step uses Observation 5 item (2) and Observation 9, the fourth step
uses

∑x
j�c+1 s j ≥ 4/5 ·∑m−1

j�x+1 s j , and the fifth step uses L̂(M ′
x )/sx ≤ 4/3 · OPT′

which holds due to Observation 5 item (4). �
Next, we give a bound on the makespan at the end of step (1) of the migration

phase. We distinguish two cases.

• L(Mi ) ≤ (r − 1) · Tn+1 · si/S after the removal of jobs:
Then, L(Mi ) ≤ (r − 1) · Tn+1 · si/S ≤ (r − 1) · OPT · si . The completion time of
machine Mi at the end of step (1) of the migration phase is (L(Mi ) + L(M ′

i ))/si ≤
(r−1)·OPT+4/3·OPT ≤ (r+1/3)·OPT, since L(M ′

i )/si ≤ 4/3·OPT′ ≤ 4/3·OPT
due to Observation 5 item (4).

• L(Mi ) > (r − 1) · Tn+1 · si/S after the removal of jobs:
Then, L(Mi ) ≤ wi ·T s

n+1 after the removal of jobs. S ·OPT is an upper bound on the
total size of all jobs in the input and the virtual machines only contain jobs which
are large at time n + 1. Therefore T s

n+1 ≤ S · OPT −∑m−1
j�0 L(M ′

j ). We distinguish
two sub-cases.

• wi � si · r/S:
By definition of wi ,

∑i−1
j�0 s j ≤ (r − 1)/r · S and, as a consequence,

m−1∑

j�i

s j � S −
i−1∑

j�0

s j ≥ S − r − 1

r
· S � S

r
.

Then we can bound the completion time of machine Mi at the end of step (1) of
the migration phase as follows:

L(Mi )

si
≤ wi

si

⎛

⎝S · OPT −
m−1∑

j�0

L(M ′
j )

⎞

⎠ +
L(M ′

i )

si

≤ r

S

⎛

⎝S · OPT − max

{

0,
L(M ′

i )

si
− OPT

3

} m−1∑

j�i

s j

⎞

⎠ +
L(M ′

i )

si

≤ r

S

(

S · OPT − max

{

0,
L(M ′

i )

si
− OPT

3

}
S

r

)

+
L(M ′

i )

si

≤ r · OPT +
1

3
· OPT,
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where the second step uses Lemma 8.
• wi � si · (r − 1)/

∑i−1
j�0 s j :

By definition of wi ,

r − 1

r
· S ≤

i−1∑

j�0

s j .

Then we can bound the completion time of machine Mi at the end of step (1) of
the migration phase as follows:

L(Mi )

si
≤ wi

si
·
⎛

⎝S · OPT −
m−1∑

j�0

L(M ′
j )

⎞

⎠ +
L(M ′

i )

si

≤ r − 1
∑i−1

j�0 s j
·
⎛

⎝S · OPT − max

{

0,
L(M ′

i )

si
− OPT

3

}

·
m−1∑

j�i

s j

⎞

⎠

+
L(M ′

i )

si

≤ r − 1
∑i−1

j�0 s j
· S ·

(

OPT − max

{

0,
L(M ′

i )

si
− OPT

3

})

+ (r − 1) · max

{

0,
L(M ′

i )

si
− OPT

3

}

+
L(M ′

i )

si

≤ r · OPT − max

{

0,
L(M ′

i )

si
− OPT

3

}

+
L(M ′

i )

si

≤ r · OPT +
1

3
· OPT,

where the second step uses Lemma 8, the third step uses
∑m−1

j�i s j � S−∑i−1
j�0 s j

and 4/3 · OPT − L(M ′
i )/si ≥ 4/3 · OPT′ − L(M ′

i )/si ≥ 0 which holds due to

Observation 5 item (4), and the fourth step uses
∑i−1

j�0 s j ≥ (r − 1)/r · S.
In all cases, the makespan is at most (r + 1/3) · OPT at the end of step (1) of the

migration phase.
Finally, we analyze the makespan at the end of step (2) of the migration phase. We

start with the following observation.

Observation 10 There exists a machine Mi with mb ≤ i ≤ m − 1 and completion
time of at most (

√
b + 1)/

√
b · OPT, where

mb � min

⎧
⎨

⎩
0 ≤ i ≤ m − 1 :

i∑

j�0

s j ≥ S√
b + 1

⎫
⎬

⎭
.

123



Algorithmica (2021) 83:3537–3566 3561

Proof Assume for contradiction that, for each mb ≤ j ≤ m − 1, L(Mj )/s j > (
√
b +

1)/
√
b · OPT. This yields the following contradiction:

OPT · S ≥
m−1∑

j�mb

L(Mj ) >

m−1∑

j�mb

√
b + 1√
b

· OPT · s j

�
√
b + 1√
b

· OPT ·
⎛

⎝S −
mb−1∑

j�0

s j

⎞

⎠

≥
√
b + 1√
b

· OPT · S ·
√
b√

b + 1
,

since
∑mb−1

j�0 s j < S/(
√
b + 1) by the definition of mb. �

Consider a removed job J that is scheduled in step (2) of the migration phase.
Since J is small at time n + 1, p(J ) ≤ Tn+1/(b · m) ≤ OPT · S/(b · m). According to
Observation 10, there exists a machine Mi withmb ≤ i ≤ m−1 and completion time
of at most (

√
b+1)/

√
b ·OPT. Since∑mb

j�0 s j ≥ S/(
√
b+1), si ≥∑i

j�0 s j/(i +1) ≥
S/((

√
b+1) ·m). In step (2) of the migration phase, J is assigned to amachine finishing

it first. Then, we can bound the completion time of this machine after J is assigned to
it as follows:

L(Mi )

si
+

p(J )

si
≤

√
b + 1√
b

· OPT + OPT · S

b · m · (
√
b + 1) · m

S

�
(√

b + 1√
b

)2

· OPT.

At the end of the migration phase, the makespan is at most max{r +1/3, (1+1/√b)2} ·
OPT. Recall that 1 < r ≤ W−1(−1/e2)/(1 + W−1(−1/e2)) ≈ 1.4659. For example,
for b � 8.5827, (1+1/

√
b)2 ≤ 1.4659+1/3, and, for b � 41.7847, (1+1/

√
b)2 ≤ 4/3.
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is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
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Appendix: Properties of r

For y ≥ 1, define

f (x, y) �
{

y
S , if x ≤ y−1

y · S
y−1
x , if x >

y−1
y · S .

Further, for each 0 ≤ i ≤ m−1, define ci �∑i−1
j�0 s j . Then, for each 0 ≤ i ≤ m−1,

wi � si · f (ci , r ).

Observation 11 For any x < S, f (x, y) is continuous and monotonically increasing
in y.

Proof For any fixed x ≤ 0, f (x, y) � y/S is continuous andmonotonically increasing
in y. For any fixed 0 < x < S, each of the branches is continuous and monotonically
increasing in y and for the limits at y � S/(S − x):

lim
y→S/(S−x)−

f (x, y) � S

S · (S − x)
� x

x · (S − x)
� lim

y→S/(S−x)+
f (x, y).

�
Observation 12 For any y > 1, f (x, y) is continuous and monotonically decreasing
in x.

Proof For any fixed y > 1, each of the branches is continuous and monotonically
decreasing in x and for the limits at x � (y − 1)/y · S:

lim
x→(y−1)/y·S− f (x, y) � (y − 1) · y

(y − 1) · S � lim
x→(y−1)/y·S+

f (x, y).

�
Observation 13 For any constant t ≥ 0 and any y ≥ 1,

∫ S

x�0
f (x − t, y) dx � y

S
· t + (y − 1) ·

(

1 + ln

(
y

y − 1

)

+ ln

(
S − t

S

))

.

Proof
∫ S

x�0
f (x − t, y) dx �

∫ (y−1)/y·S+t

x�0

y

S
dx +

∫ S

x�(y−1)/y·S+t
y − 1

x − t
dx

� y

S
· t + (y − 1) ·

(

1 + ln

(

(S − t) · y

(y − 1) · S
))

� y

S
· t + (y − 1) ·

(

1 + ln

(
y

y − 1

)

+ ln

(
S − t

S

))

.

�
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Corollary 14 For any constant t ≥ 0,

lim
S→∞

∫ S

x�0
f (x − t, y) dx � (y − 1) ·

(

1 + ln

(
y

y − 1

))

�
∫ S

x�0
f (x, y) dx .

Observation 15 (i) For r ≥ 1,
∑m−1

i�0 wi is continuous in r.
(ii) For r � 1,

∑m−1
i�0 wi < 1.

(iii) For r � W−1(−1/e2)/(1 + W−1(−1/e2)),
∑m−1

i�0 wi ≥ 1.

Proof (i) Due to Observation 11 and 0 � c0 < · · · < cm−1 < S,
∑m−1

i�0 wi �
∑m−1

i�0 si · f (ci , r ) is continuous in r.
(ii) For r � 1,

∑m−1
i�0 wi � w0 � s0 · r/S < 1, since w1 � · · · � wm−1 � 0 and

s0 < S.

(iii) Due to Observation 12,

m−1∑

i�0

wi �
m−1∑

i�0

si · f (ci , r ) ≥
m−1∑

i�0

∫ ci+1

x�ci
f (x, r ) dx

�
∫ S

x�0
f (x, r ) dx,

since, for each 0 ≤ i ≤ m − 1, ci+1 � ci + si .
Due to Obs. 13,

∫ S
x�0 f (x, r ) dx � 1 for r � W−1(−1/e2)/(1 + W−1(−1/e2)). �

The above observation and the intermediate value theorem gives the following
corollary.

Corollary 16 A solution r to
∑m−1

i�0 wi � 1 exists, with

1 < r ≤ W−1(−1/e2)

1 + W−1(−1/e2)
.

The latter term is approximately 1.4659 and in particular less than 3/2.

Observation 17 For any constant t ≥ 1, with si ≤ t for all 0 ≤ i ≤ m − 1,

lim
m→∞ r � W−1(−1/e2)

1 + W−1(−1/e2)
.

Proof Due to Observation 12, for 0 ≤ i ≤ m − 1 and x ≤ ci + si � ci+1, f (ci , r ) ≤
f (x − si , r ) ≤ f (x − t, r ). As a consequence,
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∫ S

x�0
f (x, r ) dx ≤

m−1∑

i�0

wi �
m−1∑

i�0

si · f (ci , r )

≤
m−1∑

i�0

∫ ci+1

x�ci
f (x − t, r ) dx

�
∫ S

x�0
f (x − t, r ) dx .

Now, due to Observation 14 and limm→∞ S � ∞, limm→∞
∑m−1

i�0 wi � (r −
1) · (1 + ln(r/(r − 1))). Finally, limm→∞ r � W−1(−1/e2)/(1 + W−1(−1/e2)) for
limm→∞

∑m−1
i�0 wi � 1. �

Observation 18 If s0 ≤ · · · ≤ sm−1 and sm−1 ≤ 3/4 · S, r ≥ 16/13.

Proof Pick the smallest � such that
∑�

i�0 si ≥ 1/4 · S. Then∑�−1
i�0 si < 1/4 · S. Note

that, because sm−1 ≤ 3/4 · S, we know that � ≤ m − 2 and therefore s� + sm−1 ≤ S.
Hence, because s� ≤ sm−1, s� ≤ S/2. Thus,

∑�
i�0 si � s� +

∑�−1
i�0 si ≤ 1/2 · S +1/4 ·

S � 3/4 · S. To summarize, we have

1

4
· S ≤

�∑

i�0

si ≤ 3

4
· S.

Due to the definition of the weights wi , we also have

1 �
m−1∑

i�0

wi ≤
�∑

i�0

si · r
S
+

m−1∑

i��+1

si · r − 1
∑i−1

j�0 s j

≤
�∑

i�0

si · r
S
+

m−1∑

i��+1

si · r − 1
∑�

j�0 s j

�
�∑

i�0

si · r
S
+

(

S −
�∑

i�0

si

)

· r − 1
∑�

j�0 s j

which implies

r ≥ S2

S · (S −∑�
i�0 si ) + (

∑�
i�0 si )

2
.

Together with 1/4 · S ≤∑�
i�0 si ≤ 3/4 · S, this implies r ≥ 16/13. �
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