
Vol:.(1234567890)

Algorithmica (2022) 84:566–589
https://doi.org/10.1007/s00453-021-00842-7

1 3

k‑Approximate Quasiperiodicity Under Hamming and Edit
Distance

Aleksander Kędzierski1,2 · Jakub Radoszewski1,2

Received: 1 September 2020 / Accepted: 5 June 2021 / Published online: 22 June 2021
© The Author(s) 2021

Abstract
Quasiperiodicity in strings was introduced almost 30 years ago as an extension
of string periodicity. The basic notions of quasiperiodicity are cover and seed. A
cover of a text T is a string whose occurrences in T cover all positions of T. A seed
of text T is a cover of a superstring of T. In various applications exact quasiperio-
dicity is still not sufficient due to the presence of errors. We consider approximate
notions of quasiperiodicity, for which we allow approximate occurrences in T with a
small Hamming, Levenshtein or weighted edit distance. In previous work Sim et al.
(J Korea Inf Sci Soc 29(1):16–21, 2002) and Christodoulakis et al. (J Autom Lang
Comb 10(5/6), 609–626, 2005) showed that computing approximate covers and
seeds, respectively, under weighted edit distance is NP-hard. They, therefore, con-
sidered restricted approximate covers and seeds which need to be factors of the orig-
inal string T and presented polynomial-time algorithms for computing them. Further
algorithms, considering approximate occurrences with Hamming distance bounded
by k, were given in several contributions by Guth et al. They also studied relaxed
approximate quasiperiods. We present more efficient algorithms for computing
restricted approximate covers and seeds. In particular, we improve upon the com-
plexities of many of the aforementioned algorithms, also for relaxed quasiperiods.
Our solutions are especially efficient if the number (or total cost) of allowed errors is
small. We also show conditional lower bounds for computing restricted approximate
covers and prove NP-hardness of computing non-restricted approximate covers and
seeds under the Hamming distance.

Keywords Quasiperiodicity · Approximate cover · Approximate seed · Hamming
distance · Edit distance

 * Jakub Radoszewski
 jrad@mimuw.edu.pl

 Aleksander Kędzierski
 akedzierski@mimuw.edu.pl

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
2 Samsung R&D Institute Poland, Warsaw, Poland

http://orcid.org/0000-0002-0335-2963
http://orcid.org/0000-0002-0067-6401
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00842-7&domain=pdf

567

1 3

Algorithmica (2022) 84:566–589

1 Introduction

Quasiperiodicity was introduced as an extension of periodicity [4]. Its aim is to
capture repetitive structure of strings that do not have an exact period. The basic
notions of quasiperiodicity are cover (also called quasiperiod) and seed. A cover of
a string T is a string C whose occurrences cover all positions of T. A seed of string
T is a cover of a superstring of T. Covers and seeds were first considered in [5, 19],
respectively, and linear-time algorithms computing them are known; see [6, 19, 25,
30–32].

A cover is necessarily a border, that is, a prefix and a suffix of the string. A seed
C of T covers all positions of T by its occurrences or by left- or right-overhangs,
that is, by suffixes of C being prefixes of T and prefixes of C being suffixes of T. In
order to avoid extreme cases one usually assumes that covers C of T need to satisfy
|C| < |T| and seeds C need to satisfy 2|C| ≤ |T| (so a seed needs to be a factor of T).
Seeds, unlike covers, preserve an important property of periods that if T has a period
or a seed, then every (sufficiently long) factor of T has the same period or seed,
respectively.

The classic notions of quasiperiodicity may not capture repetitive structure of
strings in practical settings; it was also confirmed by a recent experimental study
[10]. In order to tackle this problem, further types of quasiperiodicity were studied
that require that only a certain number of positions in a string are covered. This way
notions of enhanced cover, partial cover and partial seed were introduced. A partial
cover and partial seed are required to cover a given number of positions of a string,
where overhangs are allowed for the partial seed, and an enhanced cover is a partial
cover with an additional requirement of being a border of the string. O(n log n)-time
algorithms for computing shortest partial covers and seeds were shown in [26, 27],
respectively, whereas a linear-time algorithm for computing a proper enhanced cover
that covers the maximum number of positions in T was presented (among other vari-
ations of the problem) in [12].

Further study has lead to approximate quasiperiodicity in which approximate
occurrences of a quasiperiod are allowed. In particular, Hamming, Levenshtein
and weighted edit distance were considered. A k-approximate cover of string T is a
string C whose approximate occurrences with distance at most k cover T; see Fig. 1.
Similarly one can define a k-approximate seed, allowing overhangs. These notions
were introduced by Sim et al. [34] and Christodoulakis et al. [8], respectively, who
showed that the problem of checking if a string T has a k-approximate cover and
k-approximate seed, respectively, for a given k is NP-complete under weighted edit
distance. (Their proof used arbitrary integer weights and a constant-sized—12 letters
in the case of approximate seeds—alphabet.) Therefore, they considered a restricted
version of the problem in which the approximate cover or seed is required to be a

Fig. 1 String C = ����� is a
(restricted) 1-approximate cover
of the text T under the Hamming
distance. Mismatches between C
and its approximate occurrences
in T are highlighted

568 Algorithmica (2022) 84:566–589

1 3

factor of T. Formally, the problem is to compute, for every factor of T, the smallest
k for which it is a k-approximate cover or seed of T. For this version of the problem,
they presented an O(n3)-time algorithm for the Hamming distance and an O(n4)-
time algorithm for the edit distance1. The same problems under Hamming distance
were considered by Guth et al. [17] and Guth and Melichar [16]. They studied a
k-restricted version of the problems, in which we are only interested in factors of T
being �-approximate covers or seeds for � ≤ k , and developed O(n3(|�| + k))-time
and O(n3|�|k)-time automata-based algorithms for k-restricted approximate covers
and seeds, respectively. Experimental evaluation of these algorithms was performed
by Guth [14].

Recently, Guth [15] extended this study to k-approximate restricted enhanced
covers under Hamming distance. In this problem, we search for a border of T whose
k-approximate occurrences cover the maximum number of text positions. In another
variant of the problem, which one could see as approximate partial cover problem,
we only require the approximate enhanced cover to be a k-approximate border of T,
but still to be a factor of T. Guth [15] proposed O(n2)-time and O(n3(|�| + k))-time
algorithms for the two respective variants.

We improve upon previous results on restricted approximate quasiperiodicity. We
introduce a general notion of k-coverage of a string S in a string T, defined as the
number of positions in T that are covered by k-approximate occurrences of S; see
Fig. 2. Efficient algorithms computing the k-coverage for factors of T are presented.
We also show NP-hardness for non-restricted approximate covers and seeds under
the Hamming distance. A detailed list of our results is as follows.

1. The Hamming k-coverage for every prefix and for every factor of a string of length
n can be computed in (A) O(n +min{ nk, nk2∕3 log1∕3 n log k }) time (for a string
over an integer alphabet) and in the optimal (B) O(n2) time, respectively. (See
Sect. 3.)

 With this result we obtain algorithms with the time complexities (A) and (B)
for the two versions of k-approximate restricted enhanced covers that were pro-
posed by Guth [15] and an O(n2k)-time algorithm computing k-restricted approxi-
mate covers and seeds. Our algorithms work in the optimal O(n) and O(n2) time,
respectively, when computing 0-coverage of prefixes and factors. Moreover, our
algorithm for prefixes actually works in linear time assuming that a k-mismatch
version of the ���� table [9] is given. Thus, as a by-product, for k = 0 , we obtain

Fig. 2 The 1-coverage of string
S = ����� in text T under the
Hamming distance is 20

1 In fact, they consider relative Hamming and Levenshtein distances which are inversely proportional
to the length of the candidate factor and seek for an approximate cover/seed that minimizes such dis-
tance. However, their algorithms actually compute the minimum distance k for every factor of T under
the standard distance definitions.

569

1 3

Algorithmica (2022) 84:566–589

an alternative linear-time algorithm for computing all (exact) enhanced covers of
a string. (A different linear-time algorithm for this problem was given in [12]).

 The complexities come from using tools of Kaplan et al. [22] and Flouri et al.
[11], respectively.

2. The k-coverage under Levenshtein distance and weighted edit distance for every
factor of a string of length n can be computed in O(n3) time and O(n3

√
n log n)

time, respectively. (See Sect. 4.)
 We also show in Sect. 4 how our approach can be used to compute restricted

approximate covers and seeds under weighted edit distance in O(n3
√
n log n) time,

thus improving upon the previous O(n4)-time algorithms of Sim et al. [34] and
Christodoulakis et al. [8]. (See also Fig. 3.)

 Our algorithm for Levenshtein distance uses incremental string comparison
[28].

3. Under Hamming distance, it is NP-hard to check if a given string of length n has
a k-approximate cover or a k-approximate seed of a given length c. Moreover,
restricted approximate covers of a given length cannot be computed in O(n2−�)
time, for 𝜀 > 0 , unless the Strong Exponential Time Hypothesis (SETH) of Impa-
gliazzo, Paturi, and Zane [20, 21] is false. These statements hold even for strings
over a binary alphabet. (See Sect. 5.)

 The first result extends the previous proofs of Sim et al. [34] and Christodoula-
kis et al. [8] which worked for the weighted edit distance. The conditional lower
bound is based on conditional hardness of the Orthogonal Vectors problem that
was introduced by Williams [36].

A different notion of approximate cover, which we do not consider in this work,
was recently studied in [1–3], where it was assumed that the string T may not have a
cover, but it is at a small Hamming distance from a string T ′ that has a proper cover.
These works defined an approximate cover of T as the shortest cover of a string T ′
that is closest to T under Hamming distance. Interestingly, this problem was also
shown to be NP-hard [1] and an O(n4)-time algorithm was developed for it in the
restricted case that the approximate cover is a factor of the string T [2].

Let us note that under this definition the total number of substitutions is counted,
instead of the maximum number of mismatches as in our study. Moreover, it is not
true that if T has a k-approximate cover under our definition that has length � and t
occurrences in T, then there is a string T ′ that is at Hamming distance kt to T and has
a cover of length � . This is because, under our definition, one letter of T can corre-
spond to two different letters in occurrences of an approximate cover. E.g., T = ���
has a 1-approximate cover �� under our definition, but there is no string at Hamming

Fig. 3 String C = ������ is a (restricted) 1-approximate cover of the text T under the Levenshtein dis-
tance. Example occurrences with a substitution, a deletion and an insertion are shown

570 Algorithmica (2022) 84:566–589

1 3

distance at most 2 from T that would have a proper cover. Our work can be viewed
as complementary to the study of [1–3] as “the natural definition of an approximate
repetition is not clear” [2].

This is a full version of a conference paper [23]. In particular, the conference ver-
sion is extended by the conditional lower bound.

2 Preliminaries

We consider strings over an alphabet � . The empty string is denoted by � . For a
string T, by |T| we denote its length and by T[0],… , T[|T| − 1] its subsequent letters.
By T[i, j] we denote the string T[i]…T[j] which we call a factor of T. If i = 0 , it is
a prefix of T, and if j = |T| − 1 , it is a suffix of T. A string that is both a prefix and a
suffix of T is called a border of T. For a string T = XY such that |X| = b , by ���b(T)
we denote YX, called a cyclic shift of T.

For equal-length strings U and V, by Ham(U,V) we denote their Hamming dis-
tance, that is, the number of positions where they do not match. For strings U and V,
by ed(U,V) we denote their edit distance, that is, the minimum cost of edit opera-
tions (insertions, deletions, substitutions) that allow to transform U to V. Here the
cost of an edit operation can vary depending both on the type of the operation and
on the letters that take part in it. In case that all edit operations have unit cost, the
edit distance is also called Levenshtein distance and denoted here as Lev(U,V).

For two strings S and T and metric d, we denote by

the set of approximate occurrences of S in T, represented as intervals, under the met-
ric d. We then denote by

the k-coverage of S in T. In case of Hamming or Levenshtein distances we can
assume that k ≤ n , but for the weighted edit distance k can be arbitrarily large.
Moreover, by ��������d

k
(S, T) we denote the set of left endpoints of the intervals in

���d
k
(S, T).

Definition 1 Let d be a metric and T be a string. We say that string C, |C| < |T| , is
a k-approximate cover of T under metric d if �������d

k
(C, T) = |T|.

We say that string C, 2|C| ≤ |T| , is a k-approximate seed of T if it is a k-approx-
imate cover of some string T ′ whose factor is T. Let ♢ be a wildcard symbol that
matches every other symbol of the alphabet. Strings over � ∪ {♢} are also called
partial words. In order to compute k-approximate seeds, it suffices to consider
k-approximate covers of ♢|T|T♢|T|.

The main problems in scope can now be stated as follows.

���d
k
(S, T) = {[i, j] ∶ d(S, T[i, j]) ≤ k}

�������d
k
(S, T) = |

⋃
���d

k
(S, T)|

571

1 3

Algorithmica (2022) 84:566–589

General k -approximate Cover/Seed

Input: String T of length n, metric d, integer c ∈ {1,… , n − 1} and number k
Output: A string C of length c that is a k-approximate cover/seed of T under d

k -CoveraGe for prefixeS/faCtorS

Input: String T of length n, metric d and number k
Output: For every prefix/factor of T, compute its k-coverage under d

reStriCted approximate CoverS/SeedS

Input: String T of length n and metric d
Output: Compute, for every factor C of T, the smallest k such that C is a k-approximate cover/seed of

T under d

2.1 Algorithmic Toolbox for Hamming Distance

For a string T of length n, by ���k(i, j) we denote the length of the longest common
prefix with at most k mismatches of the suffixes T[i, n − 1] and T[j, n − 1] . Flouri
et al. [11] proposed an O(n2)-time algorithm to compute the longest common factor
of two strings T1 , T2 with at most k mismatches. Their algorithm actually computes
the lengths of the longest common prefixes with at most k mismatches of every two
suffixes T1[i, |T1| − 1] and T2[j, |T2| − 1] and returns the maximum among them.
Applied for T1 = T2 , it gives the following result.

Lemma 1 ([11]) For a string of length n and an integer 0 ≤ k ≤ n , values ���k(i, j)
for all i, j = 0,… , n − 1 can be computed in O(n2) time.

We also use a table ����k such that ����k[i] = ���k(0, i) ; see Table 1. LCP-queries
with mismatches can be answered in O(k) time after linear-time preprocessing using
the kangaroo method [29]. In particular, this allows to compute the ����k table in
O(n + nk) time. Kaplan et al. [22] presented an algorithm that, given a pattern P of
length m, a text T of length n over an integer alphabet 𝛴 ⊆ {1,… , nO(1)} , and an inte-
ger k > 0 , finds in O(nk2∕3 log1∕3 m log k) time for all positions j of T, the index of the

Table 1 Example of ����0 and ����1 arrays

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

T[i] a b a a a b a b b a a b a b a b a a a a a a b

����0[i] 23 0 1 1 3 0 2 0 0 1 3 0 3 0 5 0 1 1 1 1 1 2 0
����1[i] 23 1 3 2 4 1 8 4 1 2 7 1 5 1 7 1 5 6 4 3 2 2 1

572 Algorithmica (2022) 84:566–589

1 3

k-th mismatch of P with the suffix T[j, n − 1] . Applied for P = T , it gives the following
result.

Lemma 2 ([22, 29]) The ����k table of a string of length n over an integer alpha-
bet can be computed in O(n +min{ nk, nk2∕3 log1∕3 n log k }) time.

We say that strings U and V have a k-mismatch prefix-suffix of length p if U has a
prefix U′ of length p and V has a suffix V ′ of length p such that Ham(U�,V �) ≤ k.

2.2 Algorithmic Toolbox for Edit Distance

For x, y ∈ � , let c(x, y), c(�, x) and c(x, �) be the costs of substituting letter x by letter y
(equal to 0 if x = y), inserting letter x and deleting letter x, respectively. They are usu-
ally specified by a penalty matrix c; it implies a metric if certain conditions are satisfied
(identity of indiscernibles, symmetry, triangle inequality).

In the classic dynamic programming solution to the edit distance prob-
lem [35] for strings T1 and T2 , a so-called D-table is computed such that D[i, j]
is the edit distance between prefixes T1[0, i] and T2[0, j] ; see Table 2. Ini-
tially D[−1,−1] = 0 , D[i,−1] = D[i − 1,−1] + c(T1[i], �) for i ≥ 0 and
D[−1, j] = D[−1, j − 1] + c(�, T2[j]) for j ≥ 0 . For i, j ≥ 0 , D[i, j] can be computed as
follows:

Given a threshold h on the Levenshtein distance, Landau et al. [28] show how to
compute the Levenshtein distance between T1 and bT2 , for any b ∈ � , in O(h) time
using previously computed solution for T1 and T2 (another solution was given later by
Kim and Park [24]). They define an h-wave that contains indices of the last value h in
diagonals of the D-table. Let Lh(d) = max{i ∶ D[i, i + d] = h} . Formally an h-wave is:

D[i, j] =min(D[i − 1, j − 1] + c(T1[i],T2[j]),

D[i, j − 1] + c(�, T2[j]), D[i − 1, j] + c(T1[i], �)).

Lh = [Lh(−h),Lh(−h + 1),… , Lh(h − 1), Lh(h)];

Table 2 The D-table for strings
T1 = ����� and T2 = �����
under the Levenshtein distance.
The 2-wave 4, 3, 4, 3, 2 is
shown in bold

b a b a b

(i, j) −1 0 1 2 3 4

−1 0 1 2 3 4 5
a 0 1 1 1 2 3 4
b 1 2 1 2 1 2 3
a 2 3 2 1 2 1 2
a 3 4 3 2 2 2 2
b 4 5 4 3 2 3 2

573

1 3

Algorithmica (2022) 84:566–589

see also Table 2. Landau et al. [28] show how to update the h-wave when string T2
is prepended by a single letter in O(h) time. This method was introduced to approxi-
mate periodicity in [33].

3 Computing k‑Coverage Under Hamming Distance

Let T be a string of length n and assume that its ����k table is given. We show a
linear-time algorithm for computing the k-coverage of every prefix of T under the
Hamming distance and then apply it to computing the k-coverage of all factors.

In the algorithm we consider all prefix lengths � = 1,… , n . At each step of the
algorithm, a linked list L is stored that contains all positions i such that ����k[i] ≥ �
and a sentinel value n, in an increasing order. The list is stored together with a table
A(L)[0..n − 1] such that A(L)[i] is a link to the occurrence of i in L or nil if i ∉ L . It
can be used to access and remove a given element of L in O(1) time. Before the start
of the algorithm, L contains all numbers 0,… , n.

If i ∈ L and j is the successor of i in L , then the approximate occurrence of
T[0,� − 1] at position i accounts for min(�, j − i) positions that are covered in T.
A pair of adjacent elements i < j in L is called overlapping if j − i ≤ � and non-
overlapping otherwise. Hence, each non-overlapping adjacent pair adds the same
amount to the number of covered positions.

Observation 1 T[0,� − 1] is a k-approximate cover of T if and only if L contains
no non-overlapping pairs when the length � is considered.

All pairs of adjacent elements of L can be conceptually partitioned in two sets,
So and Sno , of overlapping and non-overlapping pairs, respectively. The sets do not
need to be stored explicitly; it suffices to store the following data related to their
elements. The non-overlapping pairs (i, j) are stored in buckets that correspond to
j − i , in a table B(Sno) indexed from 1 to n. Additionally a table A(Sno) indexed 0
through n − 1 is stored such that A(Sno)[i] points to the location of (i, j) in its bucket,
provided that such a pair exists for some j, or nil otherwise. Finally, the number
num(Sno) of non-overlapping adjacent pairs is retained. For overlapping adjacent
pairs (i, j) only the sum of values j − i , sum(So) , is stored. Then

Now we need to describe how the data structures are updated when � is incre-
mented; see Fig. 4.

In the algorithm we store a table Q[0..n] of buckets containing pairs (����k[i], i)
grouped by the first component. When � changes to � + 1 , the second components
of all pairs from Q[�] are removed, one by one, from the list L (using the table
A(L)).

Let us describe what happens when element q is removed from L . Let q1 and q2 be
its predecessor and successor in L . (They exist because 0 and n are never removed
from L .) Then each of the pairs (q1, q) and (q, q2) is removed from the respective set

(1)�������Ham
k

(T[0,𝓁 − 1], T) = sum(So) + num(Sno) ⋅ 𝓁.

574 Algorithmica (2022) 84:566–589

1 3

So or Sno , depending on the difference of elements. Removal of a pair (i, j) from So
simply consists in decreasing sum(So) by j − i , whereas to remove (i, j) from Sno
one needs to remove it from the right bucket (using the table A(Sno)) and decrement
num(So) . In the end, the pair (q1, q2) is inserted to So or to Sno depending on q2 − q1 .
Insertion to So and to Sno is symmetric to deletion.

When � is incremented, non-overlapping pairs (i, j) with j − i = � + 1 become
overlapping. Thus, all pairs from the bucket B(Sno)[� + 1] are removed from Sno and
inserted to So.

This concludes the description of operations on the data structures. Correctness
of the resulting algorithm follows from Equation (1). We analyze its complexity in
the following theorem.

Theorem 1 Let T be a string of length n. Assuming that the ����k table for string
T is given, the k-coverage of every prefix of T under the Hamming distance can be
computed in O(n) time.

Proof There are up to n removals from L . Initially L contains n adjacent pairs. Every
removal from L introduces one new adjacent pair, so the total number of adjacent
pairs that are considered in the algorithm is 2n − 1 . Each adjacent pair is inserted
to So or to Sno , then it may be moved from Sno to So , and finally it is removed from
its set. In total, O(n) insertions and deletions are performed on the two sets, in O(1)
time each. This yields the desired time complexity of the algorithm. ◻

Let us note that in order to compute the k-coverage of all factors of T that start
at a given position i, it suffices to use a table [���k(i, 0),… , ���k(i, n − 1)] instead of
����k . Together with Lemma 1 this gives the following result.

Corollary 1 Let T be a string of length n. The k -coverage of every factor of T under
the Hamming distance can be computed in O(n2) time.

Fig. 4 Transition from � = 5 (top) to � = 6 (bottom) in computing the prefix 1-coverage for an example
string. The occurrences at positions 12, 16 are not preserved because their ����1 values are equal to 5
(cf. Table 1). Removal of these occurrences changes adjacent pairs (10, 12), (12, 14), (14, 16), (16, 17) to
(10, 14), (14, 17) , all of which are overlapping. Moreover, the adjacent pairs (0, 6) and (17, 23) become
overlapping. For � = 5 Eq. (1) gives 1-coverage 22, and for � = 6 we obtain a 1-approximate cover

575

1 3

Algorithmica (2022) 84:566–589

4 Computing k‑Coverage Under Edit Distance

Let us state an abstract problem that, to some extent, is a generalization of the k-mis-
match ���-queries to the edit distance.

lonGeSt approximate prefix problem

Input: A string T of length n, a metric d and a number k
Output: A table Pd

k
 such that Pd

k
[a, b, a�] is the maximum b� ≥ a� − 1 such that d(T[a, b],T[a�, b�]) ≤ k

or −1 if no such b′ exists.

Example 1 Let us consider the following string of length 12:

i 0 1 2 3 4 5 6 7 8 9 10 11

T[i] a b a a b b b a b b a a

 Let us assume that the cost of an insertion and a deletion is 1 and the cost of a
substitution is 2. We have Ped

3
[5, 10, 1] = 7 because ed(T[5, 10], T[1, 7]) ≤ 3 and

ed(T[5, 10], T[1, b�]) > 3 for b′ > 7 , as shown in the following table:

b
′ 1 2 3 4 5 6 7 8

T[1, b�] b ba baa baab baabb baabbb baabbba baabbbab

T[5, 10] bbabba bbabba bbabba bbabba bbabba bbabba bbabba bbabba

ed(T[5, 10],T[1, b�])5 4 3 4 3 4 3 4

b
′ 9 10 11

T[1, b�] baabbbabb baabbbabba baabbbabbaa

T[5, 10] bbabba bbabba bbabba

ed(T[5, 10],T[1, b�]) 5 4 5

Having the table Pd
k
 , one can easily compute the k-coverage of a factor T[a, b]

under metric d as:

where an interval of the form [a�, b�] for b′ < a′ is considered to be empty. The size
of the union of n intervals can be computed in O(n) time, which gives O(n3) time
over all factors.

Remark 1 The set of positions that are covered by occurrences of T[a, b] in T can be
computed within the same time complexity as the union of the n intervals.

(2)�������d
k
(T[a, b], T) =

||||||

n−1⋃

a�=0

[a�,Pd
k
[a, b, a�]]

||||||
,

576 Algorithmica (2022) 84:566–589

1 3

In Sects. 4.1 and 4.2 we show how to compute the tables PLev
k

 and Ped
k

 for a
given threshold k in O(n3) and O(n3

√
n log n) time, respectively. Then in Sect. 4.3

we apply the techniques of Sect. 4.2 to obtain an O(n3
√
n log n)-time algorithm for

computing restricted approximate covers and seeds under the edit distance.

4.1 Longest Approximate Prefix Under Levenshtein Distance

Let Hi,j be the h-wave for strings T[i, n − 1] and T[j, n − 1] and h = k . Then we can
compute PLev

k
 with Algorithm 1. The algorithm basically takes the rightmost diago-

nal of D-table in which the value in row b − a + 1 is less than or equal to k.

The while-loop can run up to 2k times for given a and a′ . Computing Hn−1,a� takes
O(k2) time and updating Ha,a′ takes O(k) time. It makes the algorithm run in O(n3)
time. Together with Eq. (2) this yields the following result.

Proposition 1 Let T be a string of length n. The k -coverage of every factor of T
under the Levenshtein distance can be computed in O(n3) time.

A similar method could be used in case of constant edit operation costs, by apply-
ing the work of [18]. In the following section we develop a solution for arbitrary
costs.

4.2 Longest Approximate Prefix under Edit Distance

For indices a, a� ∈ [0, n] we define a table Da,a′ such that Da,a� [b, b
�] is the edit dis-

tance between T[a, b] and T[a�, b�] , for b ∈ [a − 1, n − 1] and b� ∈ [a� − 1, n − 1] .
For other indices we set Da,a� [b, b

�] = ∞ . The Da,a′ table corresponds to the D-table
for T[a, n − 1] and T[a�, n − 1] and so it can be computed in O(n2) time.

We say that pair (d, b) (Pareto-)dominates pair (d�, b�) if (d, b) ≠ (d�, b�) ,
d ≤ d′ and b ≥ b′ . Let us introduce a data structure La,a� [b] being a list of all pairs
(Da,a� [b, b

�], b�) that are maximal in this sense (i.e., are not dominated by other
pairs), sorted by increasing first component and stored in a table. Using a folklore
stack-based algorithm (Algorithm 2), this data structure can be computed from
Da,a� [b, a

� − 1],… ,Da,a� [b, n − 1] in linear time.

577

1 3

Algorithmica (2022) 84:566–589

Example 2 For the string from Example 1, we have L5,1[10] = [(3, 7), (4, 10), (5, 11)].

Every multiple of M = ⌊
√
n∕ log n⌋ will be called a special point. In our algo-

rithm we first compute the following data structures:

(a) all La,a� [b] lists where a or a′ is a special point, for a, a� ∈ [0, n − 1] and
b ∈ [a − 1, n − 1] (if a ≥ n or a′ ≥ n , the list is empty); and

(b) a l l ce l l s Da,a� [b, b
�] o f a l l Da,a′ t ab les fo r a, a� ∈ [0, n] and

−1 ≤ b − a, b� − a� < M − 1.

Computing part (a) takes O(n4∕M) = O(n3
√
n log n) time, whereas part (b) can be

computed in O(n4∕M2) = O(n3 log n) time. The intuition behind this data struc-
ture is shown in the following lemma.

Lemma 3 Assume that b − a ≥ M − 1 or b� − a� ≥ M − 1 . Then there exists a pair
of positions c, c′ such that the following conditions hold:

– a ≤ c ≤ b + 1 and a� ≤ c� ≤ b� + 1 , and
– c − a, c� − a� < M , and
– ed(T[a, b], T[a�, b�]) = ed(T[a, c − 1], T[a�, c� − 1]) + ed(T[c, b], T[c�, b�]) , and
– at least one of c, c′ is a special point.

Moreover, if c (c′) is a special point, then c ≤ b (c′ ≤ b′ , respectively).
Proof By the assumption, at least one of the intervals [a, b] and [a�, b�] contains a
special point. Let p ∈ [a, b] and p� ∈ [a�, b�] be the smallest among them; we have
p − a, p� − a� < M provided that p or p′ exists, respectively (otherwise p or p′ is set
to ∞). Let us consider the table Da,a′ and how its cell Da,a� [b, b

�] is computed. We
can trace the path of parents in the dynamic programming from Da,a� [b, b

�] to the
origin (Da,a� [a − 1, a� − 1]). Let us traverse this path in the reverse direction until
the first dimension of the table reaches p or the second dimension reaches p′ . Say
that just before this step we are at Da,a� [q, q

�] . If q + 1 = p and q′ < p′ , then we set
c = q + 1 and c� = q� + 1 . Indeed c = p is a special point,

and c − a, c� − a� < M . Moreover, q� ∈ [a� − 1, b�] , so c� ∈ [a�, b� + 1] . The opposite
case (that q� + 1 = p�) is symmetric. ◻

ed(T[a, b], T[a�, b�]) = ed(T[a, c − 1], T[a�, c� − 1]) + ed(T[c, b], T[c�, b�])

578 Algorithmica (2022) 84:566–589

1 3

If b − a < M − 1 and Ped
k
[a, b, a�] − a� < M − 1 , then Ped

k
[a, b, a�] can be com-

puted using one of the M ×M prefix fragments of the Da,a′ tables. Otherwise,
according to the statement of the lemma, one of the Lc,c� [b] lists can be used, where
c − a, c� − a� < M , as shown in Algorithm 3. The algorithm uses a predecessor
operation Pred(x, L) which for a number x and a list L = Lc,c� [b] returns the maximal
pair whose first component does not exceed x, or (∞,∞) if no such pair exists. This
operation can be implemented in O(log n) time via binary search.

Example 3 Let us consider computing Ped
3
[5, 10, 1] = 7 for the string

T = ������������ from Example 1 (insertion and deletion with cost 1, substitu-
tion with cost 2) and let us choose M = 4 , so positions 0, 4, 8 are special. In this
case b − a, b� − a� ≥ M − 1 and we have

for c = 8, c� = 3 where the position 8 is special, as shown in Fig. 5 (cf. Lemma 3).
One can check that for this text L8,3[10] = [(2, 7), (3, 8), (4, 9), (5, 10), (6, 11)]

holds. In this case Ped
3
[5, 10, 1] is determined by the index in the first element of the

list since D5,1[7, 2] + 2 = 3 . Let us emphasize that D5,1[7, 2] is stored in the algo-
rithm because 7 − 5, 2 − 1 < M − 1 and L8,3[10] is stored as 8 is special.

Theorem 2 Let T be a string of length n. The k -coverage of every factor of T under
the edit distance can be computed in O(n3

√
n log n) time.

Proof We want to show that Algorithm 3 correctly computes Ped
k
[a, b, a�] . Let us

first check that the result b� = res of Algorithm 3 satisfies Da,a� [b, b
�] ≤ k . It is clear

if the algorithm computes b′ in line 5. Otherwise, it is computed in line 10. This
means that Lc,c� [b] contains a pair (Dc,c� [b, b

�], b�) such that

ed(T[5, 10], T[1, 7]) = 1 + 2 = ed(T[5, 7], T[1, 2]) + ed(T[8, 10], T[3, 7]),

Fig. 5 Illustration of Example 3

579

1 3

Algorithmica (2022) 84:566–589

Now we show that the returned value res is at least x = Ped
k
[a, b, a�] . If b − a < M − 1

and x − a� < M − 1 , then the condition in line 4 holds for b� = x , so indeed res ≥ x .
Otherwise, the condition of Lemma 3 is satisfied. The lemma implies two positions
c, c′ such that at least one of them is special and that satisfy additional constraints.

If c is special, then the constraints a ≤ c and c − a < M imply that c = s , as
defined in line 6. Additionally, a� ≤ c� ≤ a� +M − 1 , so (c, c�) will be considered in
the loop from line 7. By the lemma and the definition of x, we have

The list Lc,c� [b] either contains the pair (Dc,c� [b, x], x) , or a pair (Dc,c� [b, x
�], x�) such

that Dc,c� [b, x
�] ≤ Dc,c� [b, x] and x′ > x . In the latter case by (3) we would have

and x′ > x . In both cases the predecessor computed in line 8 returns a value res such
that res ≥ x and res ≠ ∞ . The case that c′ is special admits an analogous argument.

Combining Algorithm 3 with Equation (2), we obtain correctness of the
computation.

As for complexity, Algorithm 3 computes Ped
k
[a, b, a�] in

O(M log n) = O(
√
n log n) time and the pre-computations take O(n3

√
n log n) total

time. ◻

4.3 Restricted Approximate Covers and Seeds under Edit Distance

The techniques that were developed in Sect. 4.2 can be used to improve upon the
O(n4) time complexity of the algorithms for computing the restricted approximate
covers and seeds under the edit distance [8, 34]. We describe our solution only for
restricted approximate covers; the solution for restricted approximate seeds fol-
lows by considering the text ♢|T|T♢|T|.

Let us first note that the techniques from the previous subsection can be used
as a black box to solve the problem in scope in O(n3

√
n log n log(nw)) time, where

w is the maximum cost of an edit operation. Indeed, for every factor T[a, b] we
use binary search for finding the smallest k for which T[a, b] is a k-approximate
cover of T. A given value k is tested by computing the tables Ped

k
[a, b, a�] for all

a� = 0,… , n − 1 and checking if �������ed
k
(T[a, b], T) = n using Eq. (2).

Now we proceed to a more efficient solution. Same as in the algorithms from
[8, 34] we compute, for every factor T[a, b], a table Qa,b[0..n] such that Qa,b[i] is
the minimum edit distance threshold k for which T[a, b] is a k-approximate cover
of T[i, n − 1] . In the end, all factors T[a, b] for which Qa,b[0] is minimal need to
be reported as restricted approximate covers of T. We will show how, given the

k ≥ Dc,c� [b, b
�] + Da,a� [c − 1, c� − 1] ≥ Da,a� [b, b

�].

(3)Dc,c� [b, x] = Da,a� [b, x] − Da,a� [c − 1, c� − 1] ≤ k − Da,a� [c − 1, c� − 1].

k ≥ Da,a� [c − 1, c� − 1] + Dc,c� [b, x]

≥ Da,a� [c − 1, c� − 1] + Dc,c� [b, x
�] ≥ Da,a� [b, x

�]

580 Algorithmica (2022) 84:566–589

1 3

data structures (a) and (b) of the previous section, we can compute this table in
O(nM log n) time.

Example 4 Let us consider the string T = ������������ from Example 1 (insertion
and deletion with cost 1, substitution with cost 2). For the factor T[5, 10] = ������
from this example, we have:

i 0 1 2 3 4 5 6 7 8 9 10 11

T[i] a b a a b b b a b b a a

Q5,10[i] 3 3 3 2 1 1 2 2 2 3 4 5

 For example, we have Q5,10[0] = 3 because T can be covered by factors at edit dis-
tance at most 3 from T[5, 10]. One of such coverings is depicted in Fig. 6.

A dynamic programming algorithm for computing the Qa,b table, similar to the
one in [8], is shown in Algorithm 4. Computing Qa,b takes O(n2) time provided
that all Da,b arrays, of total size O(n4) , are available. The algorithm considers all
possibilities for the approximate occurrence T[i, j] of T[a, b].

During the computation of Qa,b , we will compute a data structure for on-line
range-minimum queries over the table. We can use the following simple data struc-
ture with O(n log n) total construction time and O(1)-time queries. For every posi-
tion i and power of two 2p , we store as RM[i, p] the minimal value in the table Qa,b
on the interval [i, i + 2p − 1] . When a new value Qa,b[i] is computed, we com-
pute RM[i, 0] = Qa,b[i] and RM[i, p] for all 0 < p ≤ log2(n − i) using the formula
RM[i, p] = min(RM[i, p − 1],RM[i + 2p−1, p − 1]) . Then a range-minimum query
over an interval [i, j] of Qa,b can be answered by inspecting up to two cells of the RM
table for p such that 2p ≤ j − i + 1 < 2p+1.

Let us note that the variable minQ , which denotes the minimum of a growing seg-
ment in the Qa,b table, can only decrease. We would like to make the second argument of

Fig. 6 Illustration of Example 4

581

1 3

Algorithmica (2022) 84:566–589

max in line 7 non-decreasing for increasing j. The values ed(T[a, b], T[i, j]) = Da,i[b, j]
may increase or decrease as j grows. However, it is sufficient to consider only those
values of j for which (Da,i[b, j], j) is not (Pareto-)dominated (as in Sect. 4.2), i.e., the
elements of the list La,i[b] . For these values, Da,i[b, j] is indeed increasing for increas-
ing j. The next observation follows from this monotonicity and the monotonicity of
minQa,b[i + 1..j + 1].

Observation 2 Let (Da,i[b, j
�], j�) be the first element on the list La,i[b] such that

If j′ does not exist, we simply take the last element of La,i[b] . Further let (Da,i[b, j
��], j��)

be the predecessor of (Da,i[b, j
�], j�) in La,i[b] (if it exists). Then j ∈ {j�, j��} minimizes

the value of the expression max(minQa,b[i + 1..j + 1],Da,i[b, j]).

If we had access to the list La,i[b] , we could use binary search to locate the index
j′ defined in the observation. However, we only store the lists La,i[b] for a and i such
that at least one of them is a special point. We can cope with this issue by separately
considering all j such that j < i +M − 1 and then performing binary search on every
of O(M) lists Lc,c� [b] where a ≤ c < a +M , i ≤ c� < i +M and at least one of c, c′ is a
special point, just as in Algorithm 3. A pseudocode of the resulting algorithm is given
as Algorithm 5.

Let us summarize the complexity of the algorithm. Pre-computation of auxiliary
data structures requires O(n3

√
n log n) time. Then for every factor T[a, b] we com-

pute the table Qa,b . The data structure for constant-time range-minimum queries over
the table costs only additional O(n log n) space and computation time. When com-
puting Qa,b[i] using dynamic programming, we may separately consider first M − 1
indices j, and then we perform a binary search in O(M) lists Lc,c� [b] . In total, the
time to compute Qa,b[i] given a, b, i is O(M log n) = O(

√
n log n).

Theorem 3 Let T be a string of length n. All restricted approximate covers and
seeds of T under the edit distance can be computed in O(n3

√
n log n) time.

minQa,b[i + 1..j� + 1] ≤ Da,i[b, j
�].

582 Algorithmica (2022) 84:566–589

1 3

The work of [8, 34] on approximate covers and seeds originates from a study
of approximate periods [33]. Interestingly, while our algorithm improves upon the
algorithms for computing approximate covers and seeds, it does not seem to apply to
approximate periods.

5 Hardness of Hamming k‑Approximate Cover and Seed

We consider conditional hardness of the restricted version of the problem and NP-
hardness of the general version.

5.1 Conditional Hardness of the Restricted Version

We will now show a quadratic conditional lower bound for computing restricted
approximate covers. The original problem clearly cannot be solved in subquadratic
time because its output has size �(n2) . Hence, we focus on computing restricted
approximate covers among factors of a given length. For simplicity we consider a
decision version of the problem, in which k is specified.

reStriCted approximate CoverS of a Given lenGth

Input: String T of length n, integers �, k ∈ [1, n] , and metric d
Output: Check, for every length-� factor C of T, if C is a k-approximate cover of T under d

We will show that existence of a strongly subquadratic-time algorithm for
computing restricted approximate covers of a given length for strings over binary
alphabet for k = �(log n) refutes SETH. The hypothesis asserts that for every
𝛿 > 0 , there exists an integer q such that SAT on q-CNF formulas with m clauses
and n variables cannot be solved in mO(1)2(1−�)n time. Our proof is based on condi-
tional hardness of the following problem.

orthoGonal veCtorS

Input: A set A of N vectors from {0, 1}q each
Output: Does there exist a pair of vectors U,V ∈ A that is orthogonal, i.e.,

∑q

i=1
U[i]V[i] = 0?

Fact 1 [36, Section 5.1] Suppose there is 𝜀 > 0 such that for all constant c, Orthog-
onal Vectors Problem on a set of N vectors of dimension q = c logN can be solved in
2o(q) ⋅ N2−� time. Then SETH is false.

We will make the reduction from a variant of this problem in which there are
two sets of N vectors from {0, 1}q , A and B, and we are to check if there is a pair
of vectors U ∈ A and V ∈ B that are orthogonal. Let us consider two morphisms
� and �:

�(0) = 01011, �(1) = 01101, �(0) = 10111, �(1) = 11101.

583

1 3

Algorithmica (2022) 84:566–589

Let A� = {�(U) ∶ U ∈ A} and B� = {�(V) ∶ V ∈ B} . (Further we treat vectors
as strings.) We can make the following easy observation; see Fig. 7.

Observation 3

(a) For every U,U� ∈ A� , Ham(U,U�) ≤ 2q . (And for every V ,V � ∈ B� ,
Ham(V ,V �) ≤ 2q.)

(b) Let U� ∈ A� and V � ∈ B� such that U� = �(U) and V � = �(V) . If U and V are
orthogonal, then Ham(U�,V �) = 3q . Otherwise, Ham(U�,V �) ≤ 3q − 2.

Let G = (05q−11)3q , A�� = {UG ∶ U ∈ A�} and B�� = {VG ∶ V ∈ B�} . By � we
denote the common length of each element of A�� ∪ B�� ; we have � = �(q2) . Below
we use a simple observation that for each a ∈ {0, 1} , �(a) and �(a) contain at least
three ones.

Observation 4 Let C = A�� ∪ B�� , U,V ,W ∈ C , and Z be a length-� factor of VW. If
Z is neither a prefix nor a suffix of VW, then Ham(U, Z) ≥ 3q − 1.

Proof We consider a few cases depending on the starting position i of an occurrence
of Z in VW; we have i ∈ [1,� − 1] . If i < 5q , then Z contains G as a factor being
neither its prefix nor its suffix. Then each of the 3q 1s in this factor constitutes a mis-
match with a 0 in U. Similarly, if i > � − 5q , then each of the 3q 1s in the suffix G of
U constitutes a mismatch with a 0 in Z. Finally, if 5q ≤ i ≤ � − 5q , then the length-
5q prefix of U contains at least 3q 1s, whereas the length-5q prefix of Z is a cyclic
shift of 05q−11 and contains exactly one 1. ◻

The following lemma gives the main part of the reduction.

Lemma 4 Consider a set A = {W1,… ,WN} of N vectors from {0, 1}q with q ≥ 2 ,
B = A , and the sets A′,A′′,B′,B′′ defined as above with A�� = {U1,… ,UN} and
B�� = {V1,… ,VN} . Let

Fig. 7 Hamming distances
between the strings defining
morphisms � and �

584 Algorithmica (2022) 84:566–589

1 3

and k = 3q − 2 . Then:

(a) If Wi,Wj ∈ A are orthogonal for i, j ∈ [1,N] , then Ui is not a k-approximate cover
of T.

(b) If the set A does not contain two orthogonal vectors, then for each i ∈ [1,N] , Ui
is a k-approximate cover of T.

Proof By Observation 4, ��������Ham
k

(Ui, T) ⊆ {0,�, 2�,… , (2N − 1)�} . Hence,
�������Ham

k
(Ui, T) = |T| if and only if this inclusion is an equality.

Let us fix i ∈ [1,N] . If Wi and Wj are orthogonal for some j ∈ [1,N] , then, by
Observation 3(b), (N + j − 1)� ∉ ��������Ham

k
(Ui, T) , so �������Ham

k
(Ui, T) < |T|.

Now assume that Wi and Wj are not orthogonal for all j ∈ [1,N] . By Observa-
tion 3(a), {0,�,… , (N − 1)�} ⊆ ��������Ham

k
(Ui, T) , since 2q ≤ 3q − 2 = k . By

Observation 3(b), we have that {N�,… , (2N − 1)�} ⊆ ��������Ham
k

(Ui, T) . In con-
clusion, �������Ham

k
(Ui, T) = |T| . ◻

Theorem 4 Suppose there is 𝜀 > 0 such that reStriCted approximate CoverS of
a Given lenGth under Hamming distance can be solved in O(n2−�) time for strings
over binary alphabet. Then SETH is false.

Proof Let A be an instance of the orthoGonal veCtorS problem, with N vectors
of dimension q = �(logN) , and text T be defined as in Lemma 4. By the lemma,
we can check if A contains a pair of orthogonal vectors by checking which of the
length-� factors of T are k-approximate covers of T, for k = 3q − 2 = �(logN) and
� = �(k2) . We have n = |T| = O(Nq2) . If the reStriCted approximate CoverS of
a Given lenGth problem can be solved in O(n2−�) time, then orthoGonal veCtorS
can be solved in O(N2−� logO(1) N) time, which refutes SETH by Fact 1. ◻

Remark 2 The same conditional lower bound can be proved for reStriCted approxi-
mate CoverS of a Given lenGth under edit distance. To show this, it suffices to use
the fact that the Levenshtein distance of two binary strings cannot be computed in
strongly subquadratic time unless SETH is false [7]. Indeed, in order to check if the
Levenshtein distance between binary strings S1 and S2 is at most k, one can check if
#S1# is a k-approximate cover of T = #S1#S2# , where # is a special symbol such that
the cost of any edit operation involving # is ∞.

5.2 NP‑Hardness of the General Version

We make a reduction from the following problem.

hamminG StrinG ConSenSuS

Input: Strings S1,… , Sm , each of length � , and an integer k ≤ �

Output: A string S, called consensus string, such that Ham(S, Si) ≤ k for all i = 1,… ,m

T = U1 …UNV1 …VN

585

1 3

Algorithmica (2022) 84:566–589

Fact 2 [13] hamminG StrinG ConSenSuS is NP-complete even for the binary
alphabet.

Let strings S1,… , Sm of length � over the alphabet � = {0, 1} and integer k be an
instance of hamminG StrinG ConSenSuS. We introduce a morphism � such that

We will exploit the following simple property of this morphism.

Observation 5 For every string S, every length-(2k + 4) factor of �(S) contains at
most three ones.

Let �i = 12k+4�(Si) and let �(U) be an operation that reverses this encod-
ing, i.e., �(�i) = Si . Formally, it takes as input a string U and outputs
U[4k + 12 − 1]U[2 ⋅ (4k + 12) − 1]…U[(𝓁 − 1)(4k + 12) − 1].

Lemma 5 Strings �i and �j , for any i, j ∈ {1,… ,m} , have no 2k-mismatch prefix-
suffix of length p ∈ {2k + 4,… , |�i| − 1}.

Proof We will show that the prefix U of �i of length p and the suffix V of �j of length
p have at least 2k + 1 mismatches. Let us note that U starts with 12k+4 . The proof
depends on the value d = |�i| − p ; we have 1 ≤ d ≤ |�i| − 2k − 4 . Let us start with
the following observation that can be readily verified.

Observation 6 For A,B ∈ {1010, 1011} , the strings A04 and 04B have no 1-mis-
match prefix-suffix of length in {5,… , 8}.

If 1 ≤ d ≤ 4 , then U and V have a mismatch at position 2k + 4 since V starts with
12k+4−d0 . Moreover, they have at least 2� mismatches by the observation (applied for
the prefix-suffix length d + 4). In total, Ham(U,V) ≥ 2� + 1 ≥ 2k + 1.

If 4 < d < 2k + 4 , then every block 1010 or 1011 in �i and in �j is matched against
a block of zeroes in the other string, which gives at least 4� mismatches. Hence,
Ham(U,V) ≥ 4� ≥ 2k + 1.

Finally, if 2k + 4 ≤ d ≤ |�i| − 2k − 4 , then U starts with 12k+4 and every fac-
tor of V of length 2k + 4 has at most three ones (see Observation 5). Hence,
Ham(U,V) ≥ 2k + 1 . ◻

We set T = �1 … �m . The following lemma gives the reduction.

Lemma 6 If hamminG StrinG ConSenSuS for S1,… , Sm , � , k has a positive answer,
then the General k -approximate Cover under Hamming distance for T, k, and
c = |�i| returns a k-approximate cover C such that S = �(C) is a Hamming consen-
sus string for S1,… , Sm.

�(0) = 02k+4 1010 02k+4, �(1) = 02k+4 1011 02k+4.

586 Algorithmica (2022) 84:566–589

1 3

Proof By Lemma 5, if C is a k-approximate cover of T of length c,
then every position a ∈ ��������H

k
= Ham(C, T) satisfies c ∣ a . Hence,

��������Ham
k

(C, T) = {0, c, 2c,… , (m − 1)c}.
If hamminG StrinG ConSenSuS for S1,… , Sm has a positive answer S, then

12k+4�(S) is a k-approximate cover of T of length c. Moreover, if T has a k-approxi-
mate cover C of length c, then for S = �(C) and for each i = 1,… ,m , we have that

so S is a consensus string for S1,… , Sm . This completes the proof. ◻

Lemma 6 and Fact 2 imply that computing k-approximate covers is NP-hard.
Obviously, it is in NP.

Theorem 5 General k -approximate Cover under the Hamming distance is NP-
complete even over a binary alphabet.

A lemma that is similar to Lemma 6 can be shown for approximate seeds. Let

Lemma 7 If hamminG StrinG ConSenSuS for S1,… , Sm , � , k has a positive answer,
then the General k -approximate Seed under Hamming distance for T ′ , k, and
c = |�1| + 2k + 4 returns a k-approximate seed C such that S = �(C�) is a Hamming
consensus string for S1,… , Sm , for some cyclic shift C′ of C.

Proof Assume that C is a k-approximate seed of T ′ of length c and let us consider
the approximate occurrence of C that covers position c − 1 in T ′ . Note that it has to
be a full occurrence. It follows from the next claim that the position of this occur-
rence is in {0,… , 2k + 3} ∪ {|�1| − 2k − 4,… , |�1| + 2k − 3}.

Claim Let X be any length-c factor of �(S1)12k+4�(S1) and Y be any length-c factor
of (�m12k+4)2 . Then Ham(X, Y) > 2k.

Proof Let us note that the string (�m12k+4)2 contains a middle block 14k+8 . If Y con-
tains this whole block, then certainly Ham(X, Y) ≥ 2k + 1 , since every factor of X of
length 4k + 8 contains at most 2k + 7 ones (see Observation 5). Otherwise,

for some b ∈ {0,… , 2k + 3} . In particular, Y has 12k+4 as a prefix or as a suffix. By
comparing lengths we see that the length-(2k + 4) prefix and suffix of X are factors
of �(S1) . Hence, each of them contains at most three ones (see Observation 5) and
Ham(X, Y) ≥ 2k + 1 . ◻

Ham(C, T[(i − 1)c, ic − 1]) ≥ Ham(S, Si),

T � = �1�1 … �m1
2k+4�m1

2k+4.

Y = 12k+4+b�(Sm)1
2k+4−b or Y = 12k+4−b�(Sm)1

2k+4+b

587

1 3

Algorithmica (2022) 84:566–589

We have established that C has to match, up to at most k mismatches, a string
of the form

for some b ∈ {0,… , 2k + 4} . We consider the second case; a proof for the first case
is analogous (using strings � �

i
= �(Si)1

2k+4 instead of �i).
In the second case, Ham(C, 0b�112k+4−b) ≤ k . Applying Lemma 5 for �1 and

every �j , we get that the starting position p of an occurrence of C in T ′ that covers
the first zero of �j in the factor �1 … �m of T ′ has to satisfy p ≡ −b mod |�1|.

If hamminG StrinG ConSenSuS for S1,… , Sm has a positive answer S, then the
string 12k+4�(S)12k+4 is a k-approximate cover (hence, k-approximate seed) of T ′
of length c. Moreover, if T ′ has a k-approximate seed C of length c such that
Ham(C, 0b�11

2k+4−b) ≤ k , then for a cyclic shift C� = ���b(C) , S = �(C�) and for
each i = 1,… ,m , we have that

so S is a consensus string for S1,… , Sm . This completes the proof. ◻

Theorem 6 General k -approximate Seed under the Hamming distance is NP-com-
plete even over a binary alphabet.

6 Conclusions

We have presented several polynomial-time algorithms for computing restricted
approximate covers and seeds and k-coverage under Hamming, Levenshtein and
weighted edit distances and shown NP-hardness of non-restricted variants of these
problems under the Hamming distance. We have also shown conditional lower
bounds for the restricted variants of the problems. However, in many of the prob-
lems there is a gap between the (conditional) lower and the current upper bound. An
interesting open problem is if restricted approximate covers or seeds under Ham-
ming distance, as defined in [8, 34], can be computed in O(n3−�) time, for any 𝜀 > 0.

Acknowledgements Jakub Radoszewski was supported by the Polish National Science Center, Grant
Number 2018/31/D/ST6/03991.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

1b�(S1)1
2k+402k+4−b or 0b12k+4�(S1)1

2k+4−b

Ham(C, T[i|�1| − b, (i + 1)|�1| + 2k + 4 − b]) ≥ Ham(S, Si),

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

588 Algorithmica (2022) 84:566–589

1 3

References

 1. Amir, A., Levy, A., Lewenstein, M., Lubin, R., Porat, B.: Can we recover the cover? Algorithmica
81(7), 2857–2875 (2019). https:// doi. org/ 10. 1007/ s00453- 019- 00559-8

 2. Amir, A., Levy, A., Lubin, R., Porat, E.: Approximate cover of strings. Theor. Comput. Sci. 793,
59–69 (2019). https:// doi. org/ 10. 1016/j. tcs. 2019. 05. 020

 3. Amir, A., Levy, A., Porat, E.: Quasi-periodicity under mismatch errors. In: Navarro, G., Sankoff,
D., Zhu, B. (eds.) Annual Symposium on Combinatorial Pattern Matching, CPM 2018, LIPIcs, vol.
105, pp. 4:1–4:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https:// doi. org/ 10.
4230/ LIPIcs. CPM. 2018.4

 4. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings. Theor. Comput.
Sci. 119(2), 247–265 (1993). https:// doi. org/ 10. 1016/ 0304- 3975(93) 90159-Q

 5. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for strings. Inf. Pro-
cess. Lett. 39(1), 17–20 (1991). https:// doi. org/ 10. 1016/ 0020- 0190(91) 90056-N

 6. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6), 345–347 (1992).
https:// doi. org/ 10. 1016/ 0020- 0190(92) 90111-8

 7. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string problems and
dynamic time warping. In: Guruswami, V. (ed.) IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, pp. 79–97. IEEE Computer Society (2015). https:// doi. org/ 10. 1109/
FOCS. 2015. 15

 8. Christodoulakis, M., Iliopoulos, C.S., Park, K., Sim, J.S.: Approximate seeds of strings. J. Autom.
Lang. Comb. 10(5/6), 609–626 (2005)

 9. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific, Singapore (2003). https:// doi.
org/ 10. 1142/ 4838

 10. Czajka, P., Radoszewski, J.: Experimental evaluation of algorithms for computing quasiperiods.
Theor. Comput. Sci. 854, 17–29 (2021). https:// doi. org/ 10. 1016/j. tcs. 2020. 11. 033

 11. Flouri, T., Giaquinta, E., Kobert, K., Ukkonen, E.: Longest common substrings with k mismatches.
Inf. Process. Lett. 115(6–8), 643–647 (2015). https:// doi. org/ 10. 1016/j. ipl. 2015. 03. 006

 12. Flouri, T., Iliopoulos, C.S., Kociumaka, T., Pissis, S.P., Puglisi, S.J., Smyth, W.F., Tyczyński, W.:
Enhanced string covering. Theor. Comput. Sci. 506, 102–114 (2013). https:// doi. org/ 10. 1016/j. tcs.
2013. 08. 013

 13. Frances, M., Litman, A.: On covering problems of codes. Theory Comput. Syst. 30(2), 113–119
(1997). https:// doi. org/ 10. 1007/ s0022 40000 044

 14. Guth, O.: Searching regularities in strings using finite automata. Ph.D. thesis, Czech Technical Uni-
versity in Prague (2014)

 15. Guth, O.: On approximate enhanced covers under Hamming distance. Discrete Appl. Math. 274,
67–80 (2020). https:// doi. org/ 10. 1016/j. dam. 2019. 01. 015

 16. Guth, O., Melichar, B.: Using finite automata approach for searching approximate seeds of strings.
In: Huang, X., Ao, S.I., Castillo, O. (eds.) Intelligent Automation and Computer Engineering, pp.
347–360. Springer, Netherlands (2010). https:// doi. org/ 10. 1007/ 978- 90- 481- 3517-2_ 27

 17. Guth, O., Melichar, B., Balík, M.: Searching all approximate covers and their distance using finite
automata. In: P. Vojtás (ed.) Proceedings of the Conference on Theory and Practice of Information
Technologies, ITAT 2008, CEUR Workshop Proceedings, vol. 414. CEUR-WS.org (2008). http://
ceur- ws. org/ Vol- 414/ paper4. pdf

 18. Hyyrö, H., Narisawa, K., Inenaga, S.: Dynamic edit distance table under a general weighted cost
function. J. Discrete Algorithms 34, 2–17 (2015). https:// doi. org/ 10. 1016/j. jda. 2015. 05. 007

 19. Iliopoulos, C.S., Moore, D.W.G., Park, K.: Covering a string. Algorithmica 16(3), 288–297 (1996).
https:// doi. org/ 10. 1007/ BF019 55677

 20. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375
(2001). https:// doi. org/ 10. 1006/ jcss. 2000. 1727

 21. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J.
Comput. Syst. Sci. 63(4), 512–530 (2001). https:// doi. org/ 10. 1006/ jcss. 2001. 1774

 22. Kaplan, H., Porat, E., Shafrir, N.: Finding the position of the k-mismatch and approximate tandem
repeats. In: L. Arge, R. Freivalds (eds.) Algorithm Theory—SWAT 2006, 10th Scandinavian Work-
shop on Algorithm Theory, Lecture Notes in Computer Science, vol. 4059, pp. 90–101. Springer
(2006). https:// doi. org/ 10. 1007/ 11785 293_ 11

https://doi.org/10.1007/s00453-019-00559-8
https://doi.org/10.1016/j.tcs.2019.05.020
https://doi.org/10.4230/LIPIcs.CPM.2018.4
https://doi.org/10.4230/LIPIcs.CPM.2018.4
https://doi.org/10.1016/0304-3975(93)90159-Q
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1016/0020-0190(92)90111-8
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1142/4838
https://doi.org/10.1142/4838
https://doi.org/10.1016/j.tcs.2020.11.033
https://doi.org/10.1016/j.ipl.2015.03.006
https://doi.org/10.1016/j.tcs.2013.08.013
https://doi.org/10.1016/j.tcs.2013.08.013
https://doi.org/10.1007/s002240000044
https://doi.org/10.1016/j.dam.2019.01.015
https://doi.org/10.1007/978-90-481-3517-2_27
http://ceur-ws.org/Vol-414/paper4.pdf
http://ceur-ws.org/Vol-414/paper4.pdf
https://doi.org/10.1016/j.jda.2015.05.007
https://doi.org/10.1007/BF01955677
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/11785293_11

589

1 3

Algorithmica (2022) 84:566–589

 23. Kędzierski, A., Radoszewski, J.: k-approximate quasiperiodicity under Hamming and edit distance.
In: I.L. Gørtz, O. Weimann (eds.) 31st Annual Symposium on Combinatorial Pattern Matching,
CPM 2020, LIPIcs, vol. 161, pp. 18:1–18:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020). https:// doi. org/ 10. 4230/ LIPIcs. CPM. 2020. 18

 24. Kim, S., Park, K.: A dynamic edit distance table. J. Discrete Algorithms 2(2), 303–312 (2004).
https:// doi. org/ 10. 1016/ S1570- 8667(03) 00082-0

 25. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear-time algorithm for
seeds computation. ACM Trans. Alg. 16(2), Article 27 (2020). https:// doi. org/ 10. 1145/ 33863 69

 26. Kociumaka, T., Pissis, S.P., Radoszewski, J., Rytter, W., Waleń, T.: Efficient algorithms for shortest
partial seeds in words. Theor. Comput. Sci. 710, 139–147 (2018). https:// doi. org/ 10. 1016/j. tcs. 2016.
11. 035

 27. Kociumaka, T., Pissis, S.P., Radoszewski, J., Rytter, W., Waleń, T.: Fast algorithm for partial covers
in words. Algorithmica 73(1), 217–233 (2015). https:// doi. org/ 10. 1007/ s00453- 014- 9915-3

 28. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM J. Comput. 27(2),
557–582 (1998). https:// doi. org/ 10. 1137/ S0097 53979 42648 10

 29. Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theor. Comput. Sci. 43,
239–249 (1986). https:// doi. org/ 10. 1016/ 0304- 3975(86) 90178-7

 30. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1), 95–106 (2002).
https:// doi. org/ 10. 1007/ s00453- 001- 0062-2

 31. Moore, D.W.G., Smyth, W.F.: An optimal algorithm to compute all the covers of a string. Inf. Pro-
cess. Lett. 50(5), 239–246 (1994). https:// doi. org/ 10. 1016/ 0020- 0190(94) 00045-X

 32. Moore, D.W.G., Smyth, W.F.: A correction to “An optimal algorithm to compute all the covers of a
string.” Inf. Process. Lett. 54(2), 101–103 (1995). https:// doi. org/ 10. 1016/ 0020- 0190(94) 00235-Q

 33. Sim, J.S., Iliopoulos, C.S., Park, K., Smyth, W.F.: Approximate periods of strings. Theor. Comput.
Sci. 262(1), 557–568 (2001). https:// doi. org/ 10. 1016/ S0304- 3975(00) 00365-0

 34. Sim, J.S., Park, K., Kim, S.R., Lee, J.S.: Finding approximate covers of strings. J. Korea Inf. Sci.
Soc. 29(1), 16–21 (2002)

 35. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173
(1974)

 36. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor.
Comput. Sci. 348(2–3), 357–365 (2005). https:// doi. org/ 10. 1016/j. tcs. 2005. 09. 023

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.4230/LIPIcs.CPM.2020.18
https://doi.org/10.1016/S1570-8667(03)00082-0
https://doi.org/10.1145/3386369
https://doi.org/10.1016/j.tcs.2016.11.035
https://doi.org/10.1016/j.tcs.2016.11.035
https://doi.org/10.1007/s00453-014-9915-3
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1016/0304-3975(86)90178-7
https://doi.org/10.1007/s00453-001-0062-2
https://doi.org/10.1016/0020-0190(94)00045-X
https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.1016/S0304-3975(00)00365-0
https://doi.org/10.1016/j.tcs.2005.09.023

	k-Approximate Quasiperiodicity Under Hamming and Edit Distance
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Algorithmic Toolbox for Hamming Distance
	2.2 Algorithmic Toolbox for Edit Distance

	3 Computing k-Coverage Under Hamming Distance
	4 Computing k-Coverage Under Edit Distance
	4.1 Longest Approximate Prefix Under Levenshtein Distance
	4.2 Longest Approximate Prefix under Edit Distance
	4.3 Restricted Approximate Covers and Seeds under Edit Distance

	5 Hardness of Hamming k-Approximate Cover and Seed
	5.1 Conditional Hardness of the Restricted Version
	5.2 NP-Hardness of the General Version

	6 Conclusions
	Acknowledgements
	References

