
https://doi.org/10.1007/s00453-021-00837-4

U -Bubble Model for Mixed Unit Interval Graphs and Its
Applications: The MaxCut Problem Revisited

Jan Kratochvíl1 · Tomáš Masařík1,2 · Jana Novotná1,2

Received: 11 July 2020 / Accepted: 18 May 2021
© The Author(s) 2021

Abstract
Interval graphs, intersection graphs of segments on a real line (intervals), play a key
role in the study of algorithms and special structural properties. Unit interval graphs,
their proper subclass, where each interval has a unit length, has also been extensively
studied. We study mixed unit interval graphs—a generalization of unit interval graphs
where each interval has still a unit length, but intervals of more than one type (open,
closed, semi-closed) are allowed. This small modification captures a richer class of
graphs. In particular, mixed unit interval graphs may contain a claw as an induced
subgraph, as opposed to unit interval graphs. Heggernes, Meister, and Papadopoulos
defined a representation of unit interval graphs called the bubble model which turned
out to be useful in algorithm design. We extend this model to the class of mixed
unit interval graphs and demonstrate the advantages of this generalized model by
providing a subexponential-time algorithm for solving the MaxCut problem on mixed
unit interval graphs. In addition, we derive a polynomial-time algorithm for certain
subclasses of mixed unit interval graphs. We point out a substantial mistake in the
proof of the polynomiality of the MaxCut problem on unit interval graphs by Boyacı
et al. (Inf Process Lett 121:29–33, 2017. https://doi.org/10.1016/j.ipl.2017.01.007).
Hence, the time complexity of this problem on unit interval graphs remains open. We
further provide a better algorithmic upper-bound on the clique-width of mixed unit
interval graphs.

An extended abstract of this manuscript has appeared at Mathematical Foundations of Computer Science
(MFCS) 2020 [28]

B Jana Novotná
janca@kam.mff.cuni.cz

Jan Kratochvíl
honza@kam.mff.cuni.cz

Tomáš Masařík
masarik@kam.mff.cuni.cz

1 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

2 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland

123

Algorithmica (2021) 83:3649–3680

/ Published online: 2 September 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00837-4&domain=pdf
http://orcid.org/0000-0002-2620-6133
http://orcid.org/0000-0001-8524-4036
http://orcid.org/0000-0002-7955-4692
https://doi.org/10.1016/j.ipl.2017.01.007

1 Introduction

A graph G is an intersection graph if there exists a family of non-empty sets F =
{S1, . . . , Sn} such that for each vertex vi of G, a set Si ∈ F is assigned in a way that
there is the edge viv j inG if and only if Si∩S j �= ∅.We say thatGhas anF-intersection
representation. Every graph can be represented as an intersection graph since per each
vertex, we can use the set of its incident edges. However, many important graph classes
can be described as intersection graphs of a restricted family of sets. Depending on
the geometrical representation, different types of intersection graphs are defined, for
instance, interval, circular-arc, disk graphs, etc. Interval graphs are intersection graphs
of segments of the real line, called intervals. Such a representation is being referred to
as interval representation. They have been a well known and widely studied class of
graphs from both the theoretical and the algorithmic points of view since 1957. They
were first mentioned independently in combinatorics (Hajos [10, 22]) and genetics
(Benzer [3]).

Interval graphs have a nice structure, they are chordal and, therefore, also perfect
which provides a variety of graph decompositions and models. Such properties are
often useful tools for the algorithm design—the most common algorithms on them
are based on dynamic programming. Therefore, many classical NP-hard problems are
polynomial-time solvable on interval graphs, for instance Hamiltonian cycle (Keil
[31]), Graph isomorphism (Booth [6]) or Colorability (Golumbic [19]) are solvable
even in linear time. Surprisingly, the complexity of some well-studied problems is still
unknown despite extensive research, e.g. the L2,1-labeling problem, or the packing
coloring problem.

Interval graphs have many real applications in diverse areas including genetics [3],
economics, and archaeology [37, 38]. According to Golumbic [19], many real-world
applications involve solving problems on graphswhich are either interval graphs them-
selves or are related to interval graphs in a natural way. An important subclass of
interval graphs is the class of proper interval graphs, graphs which can be represented
by such an interval representation that no interval properly contains another one.
Another interval representation is a representation with intervals of only unit lengths,
graphswhich have such a representation are called unit interval graphs. Roberts proved
in 1969 [36] that a graph is a proper interval graph if and only if it is a unit interval
graph. Later, Gardi came up with a constructive combinatorial proof [17].

The mentioned results do not specifically care about what types of intervals (open,
closed, semi-closed) are used in the interval representation. However, as far as there
are no restrictions on lengths of intervals, it does not matter which types of intervals
are used [40]. The same applies if there is only one type of interval in the interval
representation.However, this is not truewhen all intervals in the interval representation
have unit length and at least two types of intervals are used. In particular, the claw K1,3
can be represented using one open interval and three closed unit intervals whereas it
cannot be represented with unit intervals of the same type.

Recently, it has been observed that a restriction on different types of intervals in
the unit interval representation leads to several new subclasses of interval graphs.
We denote the set of all open, closed, open-closed, and closed-open intervals of unit
length by U−−, U++, U−+, and U+−, respectively. Let U be the set of all types of

123

Algorithmica (2021) 83:3649–36803650

unit intervals. Although there are 16 different combinations of types of unit intervals,
it was shown in [13, 25, 35, 40, 41] in the years 2012–2018 that they form only four
different classes of mixed unit interval graphs. In particular, the following holds:

∅ � unit interval � unit open and closed interval � semi-mixed unit interval �

mixed unit interval � interval graphs,

where unit open and closed interval graphs have
(U++ ∪ U−−)

-intersection repre-
sentation, semi-mixed unit interval graphs have

(U++ ∪ U−− ∪ U−+)
-intersection

representation, and mixed unit interval graphs have U-intersection representation.
Hence, mixed unit interval graphs allow all types of intervals of unit length.

Definition 1 A graph G is a mixed unit interval graph if it has a U-intersection repre-
sentation. We call such representation a mixed unit interval representation.

There are lots of characterizations of interval and unit interval graphs. Amongmany
of the characterizations, we single out amatrix-like representation called bubble model
[23]. A similar notion was independently discovered by Lozin [30] under the name
canonical partition. In the bubble model, vertices of a unit interval graph G are placed
into a “matrix” where each matrix entry may contain any number (possibly zero) of
vertices. Edges of G are represented implicitly with the following conditions: each
column forms a clique; and in addition, edges are only between consecutive columns
where they form nested neighborhood (two vertices u and v from consecutive columns
are adjacent if and only if v occurs in a higher row than u). In particular, there are
no edges between non-consecutive columns. This representation can be computed in
linear time given a proper interval ordering representation.

We introduce a similar representation ofmixed unit interval graphs, calledU-bubble
model, and we extend some results from unit interval graphs to mixed unit interval
graphs using this representation. The representation has almost the same structure as
the original bubblemodel, except that edges are allowed in the same row under specific
conditions. We show that a graph is mixed unit interval graph if and only if it can be
represented by a U-bubble model.

Theorem 1 A graph is a mixed unit interval graph if and only if it has a U-bubble
model. Moreover, given a mixed unit interval representation of graph G on n vertices,
a U-bubble model can be constructed in O(n) time.

In addition, we show properties of our model, such as the relation of the size of a
maximum independent set or maximum clique, and the size of themodel, see Sect. 2.6.

Given a graph G, the MaxCut problem is the problem of finding a partition of
the vertices of G into two sets S and S such that the number of edges with one
endpoint in S and the other one in S is maximum among all partitions. There were
two results about polynomiality of the MaxCut problem in unit interval graphs in the
past years; the first one by Bodlaender et al. in 1999 [5], the second one by Boyacı
et al. which has been published in 2017 [7]. The result of the first paper was disproved
by authors themselves a few years later [4]. In the second paper, the authors used a
bubble model for proving the polynomiality. However, we realized that this algorithm

123

Algorithmica (2021) 83:3649–3680 3651

is also incorrect. Moreover, it seems to us to be hardly repairable. We provide further
discussion and also a concrete example, in Sect. 3.2. The complexity of the MaxCut
problem in interval graphs was surprisingly unknown for a long time. Interestingly,
a result about NP-completeness by Adhikary et al. has appeared on arXiv [1] very
recently1.

Using the U-bubble model, we obtain at least a subexponential-time algorithm
for MaxCut in mixed unit interval graphs. We are not aware of any subexponential
algorithms on interval graphs. In general graphs, there has been extensive research
dedicated to approximation of MaxCut in subexponential time, see e.g. [2] or [24].
Furthermore, we obtain a polynomial-time algorithm if the given graph has aU-bubble
model with a constant number of columns. This extends a result by Boyacı et al. [8]
who showed a polynomial-time algorithm for MaxCut on unit interval graphs which
have a bubble model with two columns (also called co-bipartite chain graphs). The
question of whether the MaxCut problem is polynomial-time solvable or NP-hard in
unit interval graphs still remains open.

Theorem 2 Let G be a mixed unit interval graph. A maximum cardinality cut can be
found in time nO(1) 2

√
n(log n+2).

From the proof of Theorem 2, we derive the following corollary.

Corollary 3 The size of a maximum cut in the graph class defined by U-bubble models
with k columns can be determined in time O(nk+5). Moreover, for k = 2 in time
O(n5).

The third part of the paper is devoted to clique-width, one of the graph parameters
that is used to measure the complexity of a graph. Many NP-hard problems can be
solved efficiently on graphs with bounded clique-width [11]. In general, it is NP-
complete to decide if the graph has clique-width at most k for a given number k, see
[15].

Unit interval graphs are known to have unbounded clique-width [20]. It follows
from results by Fellows et al. [14], and Kaplan and Shamir [26] that the clique-width
of (mixed) unit interval graphs is upper-bounded by ω (the maximum size of their
clique) + 1. Heggernes et al. [23] improved this result for unit interval graphs using
the bubble model. There, the clique-width is upper-bounded by a minimum of α (the
maximum size of an independent set) + 1, and a parameter related to the bubble
model representation which is in the worst case ω + 1. We use similar ideas to extend
these bounds to mixed unit interval graphs using the U-bubble model. In particular,
we obtain that the upper-bound on clique-width is the minimum of the analogously
defined parameter for a U-bubble model and 2α + 3. The upper-bound is still in the
worst case ω + 1. The upper-bound can be also expressed in the number of rows or
columns of U-bubble model. Refer to Theorem 21 and Corollary 22 in Sect. 4 for
further details. As a consequence, we obtain an analogous result to Corollary 3 for
rows using the following result. Fomin et al. [16] showed that the MaxCut problem
can be solved in time O(n2t+O(1)) where t is clique-width of the input graph. By the
combination of their result and our upper-bounds on clique-width (Theorem 21 in

1 After the submission of the conference version of this paper.

123

Algorithmica (2021) 83:3649–36803652

Sect. 4) we derive not only polynomial-time algorithm when the number of columns
is bounded (with worse running time than Corollary 3) but also a polynomial-time
algorithmwhen the number of rows is bounded, formulated as Corollary 42.Moreover,
the above combination provides an alternative proof of Theorem 2 with slightly worse
running-time; see Remark 1 in Sect. 3.3 for more details.

Corollary 4 The size of a maximum cut in the graph class defined by U-bubble models
with k rows can be determined in time O(n4k+O(1)).

1.1 Preliminaries and Notation

By a graph we mean a finite, undirected graph without loops and multiedges. Let G
be a graph. We denote by V (G) and E(G) the vertex and edge set of G, respectively;
with n = |V (G)| and m = |E(G)|. Let α(G) and ω(G) denote the maximum size
of an independent set of G and the maximum size of a clique in G, respectively. Let
u, v ∈ V (G) be two adjacent vertices, we say that u, v are twins if they have the same
neighborhood in G. By a family we mean a multiset {S1, . . . , Sn}, i.e., it allows the
possibility that Si = S j even though i �= j .

Let x, y ∈ R be real numbers. We call the set {z ∈ R : x ≤ z ≤ y} closed interval
[x, y], the set {z ∈ R : x < z < y} open interval (x, y), the set {z ∈ R : x < z ≤ y}
open-closed interval (x, y], and the set {z ∈ R : x ≤ z < y} closed-open interval [x, y).
By semi-closed interval we mean interval which is open-closed or closed-open. We
denote the set of all open, closed, open-closed, and closed-open intervals of unit length
by U−−, U++, U−+, and U+−, respectively. Formally, U++:={[x, x + 1] : x ∈ R},
U−−:={(x, x + 1) : x ∈ R}, U+−:={[x, x + 1) : x ∈ R}, and U−+:={(x, x + 1] :
x ∈ R}. We further denote the set of all unit intervals by

U :=U++ ∪ U−− ∪ U+− ∪ U−+.

From now on, we will be speaking only about unit intervals.
Let I be an interval, we define the left and right end of I as �(I):= inf(I) and

r(I):= sup(I), respectively. Let I , J ∈ U be unit intervals, I , J are almost-twins if
�(I) = �(J). The type of an interval I is a pair (r, s) where I ∈ Ur ,s, r , s ∈ {+,−}.

Let G = (V , E) be a graph and I an interval representation of G. Let v ∈ V
be represented by an interval Iv ∈ Ur ,s , where r , s ∈ {+,−}, in I. The type of a
vertex v ∈ V in I, denoted by typeI(v), is the pair (r, s). We use type(v) if it is
clear which interval representation we have in mind. We follow the standard approach
where the maximum over the empty set is −∞. The notion of Õ denotes the standard
O which ignores polylogarithmic factors, i.e, O(f (n) logk n) = Õ(f (n)), where k is
a constant.

2 Note edit in proof:Wewish to remark a follow-up preprint [9] that further investigates parameterizations
of a bubble model-like structure leading to an FPT algorithm for MaxCut parameterized by the number of
rows of U -bubble model.

123

Algorithmica (2021) 83:3649–3680 3653

1.1.1 Recognition andU -Intersection Representation of Mixed Unit Interval Graphs

All the classes of mixed unit interval graphs can be characterized using forbidden
induced subgraphs, sometimes by infinitely many. Rautenbach and Szwarcfiter [35]
gave a characterization of unit open and closed interval graphs using five forbidden
induced subgraphs. Joos [25] gave a characterization of mixed unit interval graphs
without twins by an infinite class of forbidden induced subgraphs. Shuchat et al. [40]
proved independently also this characterization, moreover, they complemented it by a
quadratic-time algorithm that produces amixed proper interval representation. Finally,
Kratochvíl and Talon [41] characterized the remaining classes.

Le and Rautenbach [29] characterized graphs that have a mixed unit interval repre-
sentations in which all intervals have integer endpoints, and provided a quadratic-time
algorithm that decides whether a given interval graph admits such a representation.
We refer the reader to the original papers for more details and concrete forbidden
subgraphs. More structural results can be found in [41].

Theorem5 ([41])The classes of semi-mixed andmixed unit interval graphs can be rec-
ognized in timeO(n2).Moreover, there exists an algorithm which takes a semi-mixed
interval graph G on input, and outputs a corresponding

(U++ ∪ U−−)
-intersection

representation of G in time O(n2).

Corollary 6 ([41]). It is possible to modify the algorithm for semi-mixed unit interval
graphs such that given a mixed unit interval graph G, it outputs a mixed unit interval
representation of G in time O(n2).

2 Bubble Model for Mixed Unit Interval Graphs

In this section, we present a U-bubble model, a new representation of mixed unit
interval graphs which is inspired by the notion of bubble model for proper interval
graphs created by Heggernes et al. [23] in 2009.

2.1 Definition of Bubble Model

First, we present the bubble model for proper interval graphs as it was introduced by
Heggernes et al.

Definition 2 (Heggernes et al. [23], reformulated). If A is a finite non-empty set, then
a 2-dimensional bubble structure for A is a partition B = 〈Bi, j 〉1≤ j≤k,1≤i≤r j , where
A = ⋃

i, j Bi, j , ∅ ⊆ Bi, j ⊆ A for every i, j with 1 ≤ j ≤ k and 1 ≤ i ≤ r j , and
B1,1 . . . Brk ,k are pairwise disjoint. The graph given by B, denoted as G(B), is defined
as follows:

1. the vertex set of G(B) is A, and
2. uv is an edge of G(B) if and only if there are indices i, i ′, j, j ′ such that u ∈ Bi, j ,

v ∈ Bi ′, j ′, | j − j ′| ≤ 1, and one of the two conditions holds: either j = j ′ or
(i − i ′)(j − j ′) < 0.

123

Algorithmica (2021) 83:3649–36803654

A bubble model for a graph G = (V , E) is a 2-dimensional bubble structure B for V
such that G = G(B).

Theorem 7 (Heggernes et al. [23]). A graph is proper interval if and only if it has a
bubble model.

We define a similar matrix-type structure for mixed unit interval graphs where each
set Bi, j is split into four parts and edges are allowed also in the same row under specific
conditions.

Definition 3 Let A be a finite non-empty set and B = 〈Bi, j 〉1≤ j≤k,1≤i≤r j be a 2-
dimensional bubble structure for A such that Bi, j = B++

i, j ∪ B+−
i, j ∪ B−+

i, j ∪ B−−
i, j ,

Br ,s
i, j are pairwise disjoint, and ∅ ⊆ Br ,s

i, j ⊆ Bi, j for every r , s ∈ {+,−} and i, j with
1 ≤ j ≤ k and 1 ≤ i ≤ r j . We call the partitionB a 2-dimensional U-bubble structure
for A.

We call each set Bi, j a bubble, and each set Br ,s
i, j , r , s ∈ {+,−}, a quadrant of

the bubble Bi, j . The type of a quadrant Br ,s
i, j , r , s ∈ {+,−}, is the pair (r, s). We

denote by ∗ both + and −, for example B∗+
i, j = B−+

i, j ∪ B++
i, j . Bubbles with the same

i-index form a row of B, and with the same j-index a column of B, we say vertices
from bubbles Bi,1 ∪ · · ·∪ Bi,k appear in row i, and we denote i as their row-index. We
define an analogous notion for columns. We denote the index of the first row with a
non-empty bubble as top(j):=min {i | Bi, j ∈ B and Bi j �= ∅}. Thus, Btop(j), j is the
first non-empty bubble in the column j. Let B be a bubble, then row(B) and col(B) is
the row-index and column-index of B, respectively. Let u ∈ Bi, j , v ∈ Bi ′, j ′ ; we say
that u is under v and v is above u if i > i ′.

Definition 4 Let B = 〈Bi, j 〉1≤ j≤k,1≤i≤r j be a 2-dimensional U-bubble structure for
A. The graph given by B, denoted as G(B), is defined as follows:

1. V (G(B)) = A,
2. uv is an edge of G(B) if and only if there are indices i, i ′, j, j ′ such that u ∈ Bi, j ,

v ∈ Bi ′, j ′ , or v ∈ Bi, j , u ∈ Bi ′, j ′ , and one of the three conditions holds:

(a) j = j ′, or
(b) j = j ′ − 1 and i > i ′, or
(c) j = j ′ − 1 and i = i ′ and u ∈ B∗+

i, j , v ∈ B+∗
i ′, j ′ .

The definition says that the edges are only between vertices from the same or
consecutive columns and if u ∈ Bi, j and v ∈ Bi ′, j+1, there is an edge between u and v
if and only if u is under v (i > i ′), or they are in the same rowand u ∈ B∗+

i, j , v ∈ B+∗
i ′, j+1.

Observation 8 Vertices from the same column in G(B) form a clique. Moreover, the
neighborhoods of vertices from the same bubble can differ only in the same row, and
vertices from the same bubble quadrant are twins.

Definition 5 Let G = (V , E) be a graph. A U-bubble model for a graph G is a
2-dimensional U-bubble structure B = 〈Bi, j 〉1≤ j≤k,1≤i≤r j for V such that

(i) G is isomorphic to G(B), and

123

Algorithmica (2021) 83:3649–3680 3655

(a) Graph G; the gray ellipse denotes clique cde f gh.

(b) A mixed unit interval representation of G.

(c) A U-bubble model B = Bi, ,j 1 j 8 1 i r j , , ,

,

, ,

r1 = r2 = 5 r3 = r4 = r5 = r7 = r8 = 2 r6 = 4, of G (above). Types
of bubble quadrants (below).

· · £ £ £ £

B+

B++

B

B +

Fig. 1 Different representations of a mixed unit interval graph G

123

Algorithmica (2021) 83:3649–36803656

(ii) each column and each row contains a non-empty bubble, and
(iii) no column ends with an empty bubble, and
(iv) top(1) = 1, and for every j ∈ {1, . . . , k − 1} : top(j) ≤ top(j + 1).

For a U-bubble model B = 〈Bi, j 〉1≤ j≤k,1≤i≤r j , by the number of rows of B we
mean max{r j | 1 ≤ j ≤ k}. We define the size of the U-bubble modelB as the number
of columns multiplied by the number of rows, i.e., k · max{r j | 1 ≤ j ≤ k}.

See Fig. 1 with an example of a mixed unit interval graph, given by a mixed unit
interval representation, and by a U-bubble model.

2.2 Construction ofU -Bubble Model

First, we construct a mixed unit interval representation I of amixed unit interval graph
G using the quadratic-time algorithm, see Corollary 6; then each vertex of G is repre-
sented by a corresponding interval in I. Having a mixed unit interval representation
of the graph, our algorithm outputs a U-bubble model for the graph in O(n) time.

We now describe the creation of bubbles. Given amixed unit interval representation
I, all the vertices that are represented by almost-twins in I form a single bubble where
they belong to the particular quadrants according to the type of their corresponding
intervals in I. We denote the set of all bubbles by B. From now on, we speak about
bubbles only. We are going to determine their place (row and column) to create a
2-dimensional U-bubble structure for B. We show that the U-bubble structure is a
U-bubble model for our graph. Based on the order σ by endpoints of intervals in the
representation I from left to right, we obtain the same order on bubbles inB. In line
with that, we denote �(B):=�(Iv) and r(B):=r(Iv) for a bubble B ∈ B and an interval
Iv ∈ I corresponding to v ∈ B (note that it is well-defined as every bubble contains
only vertices which are represented by almost-twins in I). The idea of the algorithm is
to process the bubbles in the order σ , and assign to each bubble its column immediately
after processing it. During the processing, the algorithm maintains an auxiliary path
in order to assign rows at the end. Thus, rows are assigned to each bubble after all
bubbles are processed.

For bubbles A, B ∈ B, A <σ B denotes that A is smaller than B in order σ.

For technical reasons, we create two new bubbles: Bstart , Bend such that �(Bstart) =
r(Bstart) = −∞ and �(Bend) = r(Bend) = ∞. We refer to them as auxiliary bubbles,
in particular, if we speak about bubbles, we exclude auxiliary bubbles (also Bstart ,
Bend /∈ B). We enhance the representation in a way that each bubble B ∈ B has a
pointer prev : B → B ∪ {Bstart } defined as follows.

prev(B) =
{
Bstart if �(B) < r(minσ B),

maxσ

{
A ∈ B | �(B) ≥ r(A)

}
otherwise.

In order to set rows at the end, the algorithm is creating a single oriented path P
that has the information about the height of elements in the U-bubble structure being
constructed. Some of the arcs of the path can be marked with level indicator (L).
Intuitively, a consecutive level indicators create a row. For ease of notation, we use
next P (Bi) = Bj to say that Bj is the next element on path P after Bi . We note that we

123

Algorithmica (2021) 83:3649–3680 3657

can view P as an order of bubbles; we denote by A <P B, A, B ∈ B, the information
that A occurs earlier than B on P. Also from technical reasons, P starts and ends with
Bstart and Bend , respectively. Except P and pointers prev and next P , the algorithm
remembers the highest bubble of column i, denoted by C top

i . Also, denote by curr, the
index of the currently processed column.

Now, we are able to state the algorithm for assigning columns and rows to bubbles
in B and its properties (which are discussed in the Correctness section but are also
straightforward to verify while reading the algorithm).

Property 1: Bubbles are processed (and therefore added somewhere to P) one by
one respecting the order σ .

Property 2: The order induced by P of already processed vertices never changes,
i.e., once A ≤P B then A ≤P B for the rest of the algorithm.

Property 3: The arc of P between bubbles A and B has the level indicator (L) if
and only if r(A) = �(B). Moreover, if the arc from A to B has level
indicator, then col(A) < col(B).

Property 4: col(A) ≤ col(B) whenever A ≤σ B.
Property 5: prev(B) is the closest ancestor of B on P in the previous column, i.e.,

prev(B) = max{A | A ≤P B, col(A) = col(B) − 1}.
Property 6: The order induced by P of vertices in the same column is exactly the

order of those vertices induced by σ .

2.3 Algorithm

Given bubbles in B ordered by σ , the algorithm creates P by processing bubbles
one by one in order σ . For the purpose of the algorithm description, we denote the
order σ of bubbles in B by subscripts, i.e., B1 <σ B2 <σ . . . are all bubbles in
B in the described order σ (do not confuse with the notation Bi, j where subscripts
denote the row and column). See Fig. 2 for an example of a step of the algorithm.
The algorithm outputs a row and a column to each bubble. Initially, set col(B1) = 1,
P = (Bstart , B1, Bend), curr =1 and C top

1 = B1.
Suppose that i − 1 bubbles have been already processed, for i ≥ 2. Split the cases

of processing bubble Bi based on the following possibilities:

i. �(Bi) > r(C top
curr): First increase curr by one, then set col(Bi) = curr and C top

curr =
Bi .

ii. �(Bi) = r(C top
curr): First increase curr by one, then set col(Bi) = curr and C top

curr =
Bi . LetQ be next P (C top

curr−1). Substitute arc in P from C top
curr−1 toQ with two new

arcs C top
curr−1 to Bi that has L indicator set and from Bi to Q.

iii. �(Bi) < r(C top
curr): Set col(Bi) = curr.

We continue only with cases i. and iii. and distinguish multiple possibilities:

1. r(prev(Bi)) = �(Bi): Let Q be next P (prev(Bi)). Then substitute arc in P from
prev(Bi) toQ with two new arcs prev(Bi) to Bi that has L indicator set and from
Bi to Q.

2. r(prev(Bi)) < �(Bi): Split this case further based on the properties of Bi−1.

123

Algorithmica (2021) 83:3649–36803658

(a) The bubbles in

<s <s <s <s <s <s <s<s. . .

. . .

. . .

and their upre pointer for the mixed unit interval representation from Fig.1(b).

(b) Path P (gray) after processing first eight bubbles (left) from (a), and first ninth bubbles (right). Level indicator is
depicted by a straight line.

Fig. 2 An example of an input and one step of the construction algorithm

2a. prev(Bi−1) = prev(Bi): Let Q be next P (Bi−1). Substitute arc in P from
Bi−1 to Q with two new arcs Bi−1 to Bi and from Bi to Q.

2b. prev(Bi−1) �= prev(Bi): LetQ be next P (prev(Bi)). Then substitute arc in
P from prev(Bi) to Q with two new arcs prev(Bi) to Bi and from Bi to Q.

After processing all the bubbles in B, assign rows to bubbles by a single run over
P, inductively: Take the first bubble B of P and assign row(B):=1. Let B be the last
bubble on P with already set row index. We are about to determine row(next P (B)). If
arc in P from B to next P (B) has L indicator, set row(next P (B)):=row(B), otherwise
row(next P (B)):=row(B) + 1.

2.4 Correctness

Here, we show that the algorithm above gives us aU-bubblemodel for a graph given by
mixed unit interval representation. It gives us the forward implication of Theorem 1.

Lemma 9 Given a mixed unit interval representation I of a connected graph G on n
vertices, a U-bubble model for G can be constructed in O(n) time.

123

Algorithmica (2021) 83:3649–3680 3659

Proof of Lemma 9 We show the correctness of the construction, i.e., that the con-
structed object satisfies Definition 5 and that declared Properties 1–6 are satisfied
during the whole algorithm. Let B be the set of bubbles created from I as in Sect.
2.2. It follows immediately from the construction that Properties 1–4 are satisfied.
Observe that prev(B) is always in the previous column than B, for B ∈ B. More-
over, observe that in step ii. of the algorithm, C top

col(B)−1 = prev(B), B ∈ B. Then,
Property 5 follows from the construction. Property 6 can be seen by examining the
construction. Let A, B ∈ B be two bubbles in the same column such that A <σ B.
Either prev(A) = prev(B), thenB is put later thanA onP. Or prev(A) <σ prev(B),
then, by the construction, prev(B) is put after A and B is put after prev(B). In both
cases, A <P B. Using Property 2, the Property 6 holds.

It is readily seen that the algorithm outputs a 2-dimensional U-bubble structure for
the vertex set of G. Let B denote the U-bubble structure and G(B) denote the graph
given by B. We want to show that B is a U-bubble model for G. Parts (ii), (iii) from
Definition 5 are clearly satisfied. It remains to show (i) and (iv).

Let us start with (i), that is, G(B) is isomorphic toG. Let u ∈ A, v ∈ B, where A, B
are bubbles inG(B). Recall from the construction ofB that u and v are represented by
almost-twins in I if and only if A = B. The former implies that u and v are adjacent
in G, the latter implies that u and v are adjacent in G(B). Since the case of A = B
is trivially satisfied, without loss of generality, we assume A <σ B. We distinguish a
few cases based on the position of A and B in B.

First, let A and B be in non-consecutive columns in B. Denote by c = col(A). By
Definition 4, u and v are non-adjacent in G(B). By the construction, there exists a
non-empty bubble C top

c+1 in B such that it is the top bubble of column c + 1. It follows

that C top
c+1 >σ A, by Property 4, and also C top

c+1 �= A. Since the construction assigns B

to a different column than C top
c+1, we know that r(C top

c+1) ≤ �(B). It gives immediate
conclusion that u, v are not adjacent in G.

Second, let A and B be in the same column c in B. Vertices u, v are adjacent in
G(B) by Definition 4. By the construction, there exists a non-empty bubble C top

c in B
such that it is the top bubble in column c and �(C top

c) ≤ �(A) < �(B) < r(C top
c) =

1 + �(C top
c). Therefore, u, v are adjacent in G.

Third, let A and B appear in consecutive columns in B. We denote c = col(A) =
col(B) − 1. By Definition 4, vertices u, v are adjacent in G(B) if and only if either
row(A) > row(B), or row(A) = row(B) and u ∈ A∗+, v ∈ B+∗. By Properties 1 and
2 of P, it is sufficient to verify only the situation when bubble B was added. Observe
that if B ′ <P B ′′ then row(B ′) ≤ row(B ′′). We split the case into the following all
possibilities:

• prev(B) >σ A: By the definition of prev and the interval property, u is non-
adjacent to v inG and r(A) �= �(B). By Property 6, A <P prev(B). By Property 5,
prev(B) <P B. As A <P B, row(A) ≤ row(B). By Property 3, row(A) <

row(B). Therefore, u, v are non-adjacent in G(B).
• prev(B) = A: By Properties 3, 5 and the rows assignment, row(B) = row(A) if
and only if �(B) = r(A). Therefore, there is an edge in both models if and only if
u and v are of correct types; that is, u has a type (∗,+) and v has a type (+, ∗).

123

Algorithmica (2021) 83:3649–36803660

• prev(B) <σ A: By the definition of prev and the interval property, u is adjacent to v
in G and r(A) > �(B). By Property 6, prev(B) <P A, therefore, row(prev(B) ≤
row(A)). By Property 5, row(A) ≥ row(B). By Property 3, the equality cannot
occur. Therefore, row(A) > row(B).

Indeed, G(B) is isomorphic to G.
Part (iv) follows by the construction of P. When B = C top

j , j ≥ 2 is added on P, by

Property 5, prev(B) <P B.We note thatC top
j−1 ≤P prev(B).We obtain row(C top

j−1) ≤
row(C top

j) for every possible j. Also note that row(minσ B) = row(C top
1) = 1.

It remains to show the running-time of the algorithm. We note that prev can be
easily computed by a single run over the representation, as well as the assigning
columns can be done simultaneously by a single run over the representation (having
prev and remembering top bubbles of columns). Moreover, rows are assigned by a
single run over path P which leads to overall running timeO(n)where n is the number
of intervals of the given mixed unit interval representation. �

2.5 Proof of Theorem 1

Proof of Theorem 1 First, we prove the reverse implication: given a U-bubble
model for a graph G, we construct a mixed unit interval representation of G. Let
B = 〈Bi, j 〉1≤ j≤k,1≤i≤r j be a U-bubble model of G. Let

ε:= 1

max {r j | 1 ≤ j ≤ k} .

We create a mixed unit interval representation I of G as follows. Let v ∈ Br ,s
i, j , where

r , s ∈ {+,−}. The corresponding interval Iv of v has the properties:

Iv ∈ U r ,s and �(Iv):= j + (i − 1)ε.

We note that all vertices from the same bubble are represented by intervals that are
almost-twins and the type of an interval corresponds with the type of the bubble
quadrant. Since ε was chosen such that ε(i − 1) < 1 for any row i in B, the graph
given by the constructed mixed unit interval representation is isomorphic to the graph
given by B. The forward implication follows from Lemma 9. �

2.6 Properties ofU -Bubble Model

In this section, we give basic properties of a U-bubble model which are used later in
the text. It is readily seen that a U-bubble model of graph G = (V , E) has at most n
rows and n columns where n is the number of vertices of G since each column and
each row contains at least one vertex. Consequently, the size of a U-bubble model is
at most n2.

123

Algorithmica (2021) 83:3649–3680 3661

Fig. 3 A maximum clique of G in
a U -bubble model. Dark gray
color represents the bubbles that
are fully contained in the clique.
Light gray color highlights two
bubbles where only parts of
them are contained in the clique,
concretely the one of the sets
Bi, j , Bi, j+1, and B∗+

i, j ∪ B+∗
i, j+1

with the maximum size

Two basic characteristics of a graph are the size of a maximum clique and the size
of a maximum independent set in the graph. The problem of finding those numbers
is NP-complete in general but it is polynomial-time solvable in interval graphs. We
show a relation between those two numbers and the size of a U-bubble model for the
graph. We start with the size of a maximum independent set.

Lemma 10 Let G be a mixed unit interval graph, and let B be a U-bubble model for
G. The number of columns of B is at least α(G) and at most 2α(G).

Proof Let I be amaximum independent set ofG, and let k be the number of columns of
B. We have that α(G) ≥ �k/2� from the property that two non-consecutive columns
from B are not adjacent in G(B). Since each column forms a clique, only one vertex
from each column can be in I . Therefore, α(G) ≤ k. �

In the bubblemodel for unit interval graphs,α(G) is equal to the number of columns
[23]. However, the gap in Lemma 10 cannot be narrowed in general—consider an even
number k and the following unit interval graphs: path on k-vertices (Pk) and a clique
on k vertices (Kk). There exists a unit interval representation of Pk using only closed
intervals which leads to a U-bubble model of Pk containing one row and k columns,
where α(Pk) = �k/2�. A U-bubble model of Kk contains k rows and one column,
where α(Kk) = 1 = number of columns.

Another important and useful property of graphs is the size of a maximum clique.
We show that a maximum clique of a mixed unit interval graph can be found in two
consecutive columns of a U-bubble model of the graph, see Fig. 3.

Lemma 11 Let G be a mixed unit interval graph, and let B be a U-bubble model for
G. Then the size of a maximum clique is

ω(G) = max
j ∈ {1, . . . , k − 1}
i ∈ {1, . . . , r j+1}

⎛

⎝
r j∑

i ′=i+1

|Bi ′, j | +
i−1∑

i ′=1

|Bi ′, j+1| + ai

⎞

⎠,

123

Algorithmica (2021) 83:3649–36803662

ai =
{
max

{
|Bi, j |, |Bi, j+1|, |B∗+

i, j | + |B+∗
i, j+1|

}
i ≤ r j ,

|Bi, j+1| otherwise.

Proof Let K be a maximum clique ofG. Notice, K does not contain two vertices from
non-consecutive columns, as there are no edges between non-consecutive columns.
Furthermore, vertices u and v from two consecutive columns C j and C j+1, respec-
tively, can be in K only if u is under v or they are in the same row in quadrants of types
{∗+} and {+∗}, respectively.

On the other hand, vertices fromone columnofB create a clique inG(B).Moreover,
if we split any two consecutive columns C j and C j+1 in row i (for any index i ∈
{1, . . . ,min {r j , r j+1}}), the second part of C j with the first part of C j+1 form a
clique. This is true even together with bubble quadrants B∗+

i, j ∪ B+∗
i, j+1. �

3 Maximum Cardinality Cut

This section is devoted to the time complexity of the MaxCut problem on (mixed) unit
interval graphs.

3.1 Notation

A cut of a graph G(V , E) is a partition of V (G) into two subsets S, S̄, where S̄ =
V (G) \ S. Since S̄ is the complement of S, we say for the brevity that a set S is a
cut and similarly we use terms cut vertex3 and non-cut vertex for a vertex v ∈ S and
v ∈ S̄, respectively. The cut-set of cut S is the set of edges of G with exactly one
endpoint in S, we denote it E(S, S̄). Then, the value |E(S, S̄)| is the cut size of S. A
maximum (cardinality) cut on G is a cut with the maximum size among all cuts on G.
Finally, the MaxCut problem is the problem of determining the size of the maximum
cut.

3.2 Time Complexity is Still Unknown on Unit Interval Graphs

As it was mentioned in the introduction, there is a paper A polynomial-time algorithm
for the maximum cardinality cut problem in proper interval graphs by Boyacı et al.
from 2017 [7], claiming that the MaxCut problem is polynomial-time solvable in unit
interval graphs and giving a dynamic programming algorithm based on the bubble
model representation.We realized that the algorithm is incorrect; this section is devoted
to it.

We start with a counterexample to the original algorithm.

Example Let B = 〈Bi, j 〉1≤ j≤2,1≤i≤2, where B1,1 = {v1}, B2,1 = {v2}, B1,2 =
{v3, v4, v5}, B2,2 = {v6}, be a bubble model for a graph G, see also Fig. 4. In

3 Do not confuse this term with a more standard definition of a cut vertex which refers to a vertex whose
removal leaves a disconnected graph.

123

Algorithmica (2021) 83:3649–3680 3663

Fig. 4 A counterexample to the original algorithm, a bubble model B where the numbers denote the number
of vertices in each bubble, and dashed lines indicate the edges between bubbles

other words, this bubble model corresponds to a unit interval graph on vertices
v1, v2, v3, v4, v5, v6 where there is the edge v1v2, and vertices v2, v3, v4, v5, v6 create
a complete graph without the edge v2v6.

Then, according to the paper [7], the size of a maximum cut in G is eight. To be
more concrete, the algorithm from [7] fills the following values of dynamic table:
F0,1(0, 0) = 4, F2,1(1, 1) = 8 for s2,1 = 1, s2,2 = 1, and finally, F0,0(0, 0) = 8
which is the output of the algorithm. However, the size of a maximum cut inG is only
seven. Suppose, for contradiction, that the size of a maximum cut is eight. As there are
ten edges in total inG, at least one vertex of the triangle v3, v4, v5 must be a cut-vertex
and one not. Then, those two vertices have three common neighbors. Therefore, the
size of a maximum cut is at most seven which is possible; for example, v1, v4, v5 are
cut-vertices.

The brief idea of the algorithm in [7] is to process the columns from the biggest to
the lowest column from the top bubble to the bottom one. Once we know the number
of cut-vertices in the actual processed bubble B (in the column j) and the number of
cut-vertices which are above B in the columns j and j + 1, we can count the exact
number of edges. For each bubble and each such number of cut-vertices in the columns
j and j + 1 (above the bubble), we remember only the best values of MaxCut4.

We claim that the algorithm and its full idea from [7] are incorrect since we lose the
consistency there—to obtain a maximum cut, we do not remember anything about the
distribution of cut vertices within bubbles, that was used in the previously processed
column. Therefore, there is no guarantee that the final outputted cut of the computed
size exists. To be more specific, one of two problems is in the moving from the column
j to the column j − 1 since we forget there too much. The second problem is that for
each bubble Bi, j and for each possible numbers x, x ′ we count the size Fi, j (x, x ′) of a
specific cut and we choose some values si, j , si, j+1 (possibly different; they represents
the number of cut-vertices in the bubbles Bi, j , Bi, j+1) which maximize the values
of Fi, j (x, x ′). In few steps later, when we are processing the bubble Bi, j−1, again,
for each possible values y and y′ we choose some values s′

i, j−1 and s′
i, j such that

they maximize the size of Fi, j−1(y, y′). However, we need to be consistent with the
selection in the previous column, i.e., to guarantee that si ′, j = si, j for any particular
values y, y′ = x, and x ′.

A straightforward correction of the algorithm would lead to remembering too
much for a polynomial-time algorithm. However, we can be inspired by it to obtain a
subexponential-time algorithm. We attempted to correct the algorithm or extend the

4 We refer the reader to the paper [7] for the notation and the description of the algorithm.

123

Algorithmica (2021) 83:3649–36803664

idea leading to the polynomiality. However, despite lots of effort, we were not success-
ful and it seemed to us that the presented algorithm is hardly repairable. We note here,
that there is another paper by the same authors [8] where a very similar polynomial
algorithm is used for MaxCut of co-bipartite chain graphs with twins. Those graphs
can be viewed as graphs given by bubble models with two columns; but having two
columns is a crucial property for the algorithm.

To conclude, the time complexity of the MaxCut problem on unit interval graphs
is still not resolved and it seems to be a challenging open question.

3.3 Subexponential Algorithm inMixed Unit Interval Graphs

Here, we present a subexponential-time algorithm for the MaxCut problem in mixed

unit interval graphs. Our aim is to have an algorithm running in 2Õ(
√
n) time. Some of

the ideas, for unit interval graphs, originated in discussion with Karczmarz, Nadara,
Rzążewski, and Zych-Pawlewicz at Parameterized Algorithms Retreat of University
of Warsaw 2019 [34].

Let us start with a notation. LetH be a graph,W ⊆ V (H), and S ⊆ W , we say that
a cut X of H agrees with S in W if X ∩W = S. We denote the size of a maximum cut
of H that agrees with S inW as mcs(H , S,W). Let G be a mixed unit interval graph.
We take a U-bubble model B = 〈Bi, j 〉1≤ j≤k,1≤i≤r j for G and we distinguish columns
of B according to their number of vertices. We denote by bi j the number of vertices
in bubble Bi, j and by c j the number of vertices in column j, i.e., bi j = |Bi, j | and
c j = ∑r j

i=1 bi, j . We call a column j with c j >
√
n a heavy column, otherwise a light

column. We call consecutive heavy columns and their two bordering light columns
a heavy part of B (if B starts or ends with a heavy column, for brevity, we add an
empty column at the beginning or the end of B, respectively), and we call their light
columns borders. A heavy part might contain no heavy columns in the case that two
light columns are consecutive.

We note that we can guess all possible cuts in one light column without exceeding
the aimed time and that most of those light column guesses are independent of each
other—once we know the cut in the previous column, it does not matter what the cut
is in columns before. Furthermore, there are at most

√
n consecutive heavy columns

which allow us to process them together in subexponential time. More formally, we
show that we can determine a maximum cut independently for each heavy part, given
a fixed cut on its borders, as stated in the following lemma.

Lemma 12 Let G be a mixed unit interval graph and B = 〈Bx,y〉1≤y≤k,1≤x≤ry be

a U-bubble model for G where B̂1, . . . , B̂p are heavy parts of B in this order. If
S = S0 ∪ · · · ∪ Sp is a (fixed) cut of light columns L = Ci0 ∪Ci1 ∪ · · · ∪Cip in G(B),
where 1 ≤ i0 < . . . < i p ≤ k, such that S j is a cut of Ci j , j ∈ {0, . . . , p}, then

mcs(G, S,L) =
p∑

j=1

mcs(G(B̂ j), S j−1 ∪ S j ,Ci j−1 ∪ Ci j) −
⎛

⎝
p−1∑

j=1

|S j | · |Ci j \ S j |
⎞

⎠.

123

Algorithmica (2021) 83:3649–3680 3665

Fig. 5 A heavy part with light
columns L and R and the
highlighted subgraph Gi

Proof It is readily seen that once we have a fixed cut in an entire column C of a
bubble model, a maximum cut of columns which are to the left of C (including C)
is independent on a maximum cut of those which are to the right of C (including C).
Therefore, we can sum the sizes of maximum cuts in heavy parts which are separated
by fixed cuts. However, the cut size of middle light columns is counted twice since
they are contained in two heavy parts. Therefore, we subtract them. �

Now, our aim is to determine the size of a maximum cut for a heavy part B̂ given
a fixed cut on its borders. This can be also achived by clique-width approach using
results in [16] with a slightly worse running time; see Remark 1 for details. We note
that if B̂ is a heavy part with no heavy columns, we can straightforwardly count the
number of cut-edges of G(B̂) assuming a fixed cut on borders is given. Therefore, we
are focusing on a situation where at least one heavy column is present in a heavy part.
We use dynamic programming to determine the size of a maximum cut on each such
heavy part.

Let B̂ be a heavy part with h ≥ 1 heavy columns (for simplicity numbered by
1, . . . , h) and borders L and R (we also refer to L and R as columns 0 and h + 1,
respectively). First, we present a brief idea of the dynamic programming approach,
followed by technical definitions and proofs later. We take bubbles in B̂ which are
not in borders and process them one-by-one in top-bottom, left-right order. When
processing a bubble, we consider all the possibilities of numbers of cut-vertices in
each its quadrant. We refer to the already processed part after i-th step as Gi , that is,
Gi is the induced subgraph of G(B̂) with V (Gi) = B1 ∪ · · · ∪ Bi ∪ L ∪ R where Bj ,
j ∈ {1, . . . , i} are first i bubbles in top-bottom, left-right order in B̂ (as it is shown in
Fig. 5).

We store all possible (h + 1)-tuples (s1, s2, . . . , sh, a), where s j characterizes the
number of all cut vertices in (heavy) column j, and number a characterizes the number
of cut vertices of types (∗,+) in the last processed bubble. Then, we define recursive

123

Algorithmica (2021) 83:3649–36803666

function f where fi will be related to the maximum size of a cut that has exactly s j
cut vertices in column j (for all j) in the already processed part Gi . More precisely,
we want the recursive function f to satisfy the properties later covered by Lemma 13.
Once, f satisfies the desired properties, we easily obtain the size of a maximum cut in
the heavy part (Theorem 14, below).

Now, we present a key observation for the construction of f . Observe, by the proper-
ties of U-bubble model, that the edges of Gi can be partitioned into following disjoint
sets:

E1 = {edges of the graph Gi−1},
E2 = {edges inside Bi },
E3 = {edges between Bi and the same column above Bi },
E4 = {edges between Bi and the next column above Bi },
E5 = {edges between Bi and the bubble in the previous column and the same row as

Bi },
E6 = {edges between Bi and column L below Bi },
E7 = {edges between Bi and the bubble in column R in the same row as Bi }.
Therefore, the idea there is to count the size of a desired cut of Gi using the sizes of
possible cuts in Gi−1 and add the size of a cut using edges E2 − E7. The former is
stored in fi−1 and the later can be counted from the number of cut vertices in currently
processed bubble Bi and numbers in the (h + 1)-tuple we are processing.

Now, let us properly define the function f and prove Theorem 2 formally. We
develop more notation. Let B1,...,Bm be bubbles in B̂ \ (L ∪ R) numbered in the top-
bottom, left-right order. Let SL and SR be (fixed) cuts in L and R. To handle borders,
we define auxiliary functions n↓, n←, n↑, n→ which output the number of cut vertices
in borders in a specific position depending on the given row and column; they output
0 if the given column is not next to the borders. We define:

• the number of (fixed) cut vertices in L under row r (or 0 if the previous column is
not L):

n↓(r , c):=
{ |SL ∩ ⋃r0

k=r+1 Bk,0| c = 1
0 c �= 1,

• the number of (fixed) cut vertices of type (∗,+) in the left border L in row r:

n←(r , c):=
{

|SL ∩ B∗,+
r ,0 | c = 1

0 c �= 1,

• the number of (fixed) cut vertices in the right border R above row r:

n↑(r , c):=
{ |SR ∩ ⋃r−1

k=1 Bk,h+1| c = h
0 c �= h,

123

Algorithmica (2021) 83:3649–3680 3667

• the number of (fixed) cut vertices of type (+, ∗) in the right border R in row r:

n→(r , c):=
{

|SR ∩ B+,∗
r ,h+1| c = h

0 c �= h.

We denote the number of vertices in Bi by bi :=|Bi |, analogously bxyi :=|Bxy
i |, x, y ∈

{+,−}. We further denote

βi :=
{
(n1, n2, n3, n4) | n1 ∈ {0, . . . , b++

i }, n2 ∈ {0, . . . , b+−
i }, n3 ∈ {0, . . . , b−+

i },
n4 ∈ {0, . . . , b−−

i }}.

In addition, we denote the set of (h + 1)-tuples characterizing all possible counts of
cut-vertices in the h heavy columns and an auxiliary number characterizing the count
of possible edges from the last processed bubble, by

T = {
(s1, . . . , sh, a) | a ∈ N, 0 ≤ a ≤ max

i∈{1,...,m} (b
−+
i + b++

i),

∀ j ∈ {1, . . . , h} : s j ∈ N, 0 ≤ s j ≤ c j
}
.

Let e(s1, s2) denote the number of cut-edges between two sets S1, S2 which are com-
plete to each other and Sk , k ∈ {1, 2}, contains sk cut vertices and sk non-cut vertices,
i.e., e(s1, s2) = s1 · s2 + s1 · s2. We remark that it is important to know the numbers
of non-cut vertices (s1 and s2), however, we will not write them explicitly for the
easier formulas. It will be seen that they can be, for instance, stored in parallel with
the numbers of cut vertices (or counted in each step again).

Finally, we define a recursive function f by the following recurrence relation:

∀(s1, . . . , sh, a) ∈ T :
if s1 ≤ b1, s2 = · · · = sh = 0 :

f1((s1, . . . , sh, a)) = max
(b++,b−+,b+−,b−−)∈β1:
b+++b−++b+−+b−−=s1,

b+++b−+=a

(
e
(
s1, n

↓(1, 1)
)

+ s1 · (b1 − s1)

+ e
(
n←(1, 1), (b++ + b+−)

)

+ e
(
n→(1, 1), b++ + b−+))

,

otherwise:
f1((s1, . . . , sh, a)) = −∞.

∀i ∈ {2, . . . ,m},∀(s1, . . . , sh, a) ∈ T :

123

Algorithmica (2021) 83:3649–36803668

fi ((s1, . . . , sh, a)) = max
(b++, b+−, b−+, b−−)∈βi , z∈N:

b+++b−+=a,
(s1,...,sc−b,...,sh ,z)∈T ,

z≤|B∗+
i−1|

(
fi−1((s1, . . . , sc − b, . . . , sh, z))

+ b · (bi − b)

+ e(b, sc+1) + e(b, sc − b)

+ e
(
n↓(r , c), b

)

+ e
(
n←(r , c), (b++ + b+−)

)

+ e
(
(b++ + b−+), n→(r , c)

) + A

)

where A =
{
e(z , b++ + b+−) i > 1, c = col(Bi−1) + 1,
0 otherwise,

and b = b++ + b+− + b−+ + b−−, c = col(Bi), r = row(Bi), and sh+1 = n↑(r , c).

Recall that Gi denotes the induced subgraph of G(B̂) with V (Gi) = B1 ∪ · · · ∪ Bi ∪
L ∪ R.

Lemma 13 For each s = (s1, . . . , sh, a) ∈ T and for every i ∈ {1, . . . ,m}, the value
fi (s) is equal to the maximum size of a cut S in Gi that satisfies the following

• for every j ∈ {1, . . . , h}, the number of cut vertices in the column j in Gi is equal
to s j , and S agrees with SL ∪ SR in L ∪ R, and

• a is equal to the number of cut vertices from B++
i ∪ B−+

i ,

or fi is equal to −∞ if there is no such cut.

Proof We prove Lemma 13 by induction on the number of steps (bubbles). Since B1
is in the first heavy column, Lemma 13 is true for i = 1 by Definition 5 (iv).

In the inductive step, suppose that for every s = (v1, v2, . . . , vh, z) ∈ T , fi−1(s) is
equal to the size of a maximum cut Si−1 in Gi−1 such that the number of cut vertices
in each column j, for every j ∈ {1, 2, . . . , h}, in Gi−1 is equal to v j , and the number
of cut vertices from B∗+

i−1 is equal to z. Or fi−1(s) is equal to −∞ if such a cut does
not exist.

As it was mentioned, the edges of Gi can be partitioned into disjoint sets E1—E7.
Recall:

E1 = {edges of the graph Gi−1},
E2 = {edges inside Bi },
E3 = {edges between Bi and the same column above Bi },
E4 = {edges between Bi and the next column above Bi },
E5 = {edges between Bi and the bubble in the previous column and the same row as

Bi },
E6 = {edges between Bi and column L below Bi },
E7 = {edges between Bi and the bubble in column R in the same row as Bi }.
We note that E6 is non-empty only if Bi is in the column 1, similarly E7 is non-empty
only if Bi is in the column h. Let s = (s1, . . . , sh, a) ∈ T be fixed. At first assume,
S is a maximum cut in Gi (that agrees with SL ∪ SR in L ∪ R) such that it contains
s j vertices from the column j for each j ∈ {1, 2, . . . , h} and a vertices from B∗+

i ; we

123

Algorithmica (2021) 83:3649–3680 3669

say S satisfies the conditions s. We discuss the case where no such cut exists, later. We
denote by sxy the number of vertices in Bxy

i ∩ S, x, y ∈ {+,−}, and by s′ the sum of
these values, i.e., s′ = s++ + s+− + s−+ + s−−. We denote col(Bi) by j, and row(Bi)
by r. Then,

E(S, S) = (E(S, S) ∩ E(Gi−1)) ∪ {uv ∈ Ek | u ∈ S, v /∈ S, k ∈ {2, . . . , 6}}.

Which leads to the expression:

|E(S, S)| = |E(S, S) ∩ E(Gi−1)|
+ s′ · (bi − s′)
+ e(s′, (s j − s′))
+ e(s′, s j+1)

+ A

+ e(s′, n↓(r , j)) + e(s++ + s+−, n←(r , j))

+ e(s++ + s−+, n→(r , j)),

where A =
{
e(|S ∩ B∗+

i−1|, s++ + s+−) j = col(Bi−1) + 1,
0 otherwise.

By the induction hypothesis,

|E(S, S) ∩ E(Gi−1)| ≤ fi−1(s1, . . . , s j − s′, . . . , sh, |S ∩ B∗+
i−1|). (1)

It gives us togetherwith the right part of the equation, the definition of fi for bxy = sxy ,
b = s′ and z = |S ∩ B∗+

i−1|. Therefore,

|E(S, S)| ≤ fi (s).

Furthermore, we show that fi (s) is the size of a cut satisfying the conditions s. Since
the value of the function fi−1((s1, . . . , s j − b, . . . , sh, z)) is for any number b ∈
{0, . . . ,min (s j , bi)} a size of a cut inGi−1 which satisfies the conditions (s1, . . . , s j −
b, . . . , sh, z), or −∞ (if no such cut exists), we can extend that cut into Gi by adding
bxy vertices from Bxy

i where b++ + b−+ = a and b++ + b+− + b−+ + b−− = b.
Consequently, fi (s) is a size of a cut on Gi satisfying that it contains si vertices from
the column i and a vertices from |B∗+

i |. At least one such cut exists, by (1). Therefore,
|E(S, S)| ≥ fi (s). It leads to the equation |E(S, S)| = fi (s), otherwise, S is not a
maximum cut.

In a similar way, we can extend every cut on Gi−1 to Gi . Therefore, if there exist
no cut on Gi which satisfies the conditions s, there exists no cut in Gi−1 which can be
extended to the cut on Gi satisfying the conditions s. Consequently, fi (s) = −∞ by
the definition of f since fi−1(v) = −∞ for all (h + 1)-tuples v which appear in the
definition. �

123

Algorithmica (2021) 83:3649–36803670

Finally, we obtain the next theorem about a maximum cut of a heavy part as a
corollary of Lemma 13.

Theorem 14 Let B̂ be a heavy part with h ≥ 1 heavy columns (numbered by 1, . . . , h)
and borders L and R. Let B1,...,Bm be bubbles in B̂ \ (L ∪ R) numbered in the top-
bottom, left-right order. Let SL and SR be (fixed) cuts in L and R. Then,

mcs(G(B̂), SL ∪ SR, L ∪ R) = max
s∈T fm(s).

Towards provingTheorem2andCorollary 3, it remains to prove the time complexity
of processing a heavy part.

Lemma 15 Let B̂ be a heavy part with h ≥ 1 columns, m bubbles, and a fixed cut
in the borders. The size of a maximum cut of B̂ that agrees with the fixed cut in the
borders can be determined in time:

(c1 + 1) . . . (ch + 1) · (a + 1) ·
m∑

i=1

(
b++
i · b+−

i · b−+
i · b−−

i

)

where c j is the number of vertices in the column j, i.e., c j = ∑r j
i ′=1 Bi ′, j , and a =

maxi |B∗+
i |.

Proof We analyze the time complexity of the algorithm from Lemma 15. Let T denote
all the possible (h + 1)-tuples. Then |T | = (c1 + 1) . . . (ch + 1) · (a + 1). The time
for processing a bubble Bi is |T | · b++

i · b+−
i · b−+

i · b−−
i . The time complexity of

processing B̂ is then

|T | ·
m∑

i=1

b++
i · b+−

i · b−+
i · b−−

i . �

Now, we are ready to prove Theorem 2.

Proof of Theorem 2 By Lemma 12, heavy parts can be processed independently on
each other, given a cut on their borders. Moreover, it is sufficient for a light column
C to remember only the biggest cuts on the left of C (containing C) for each possible
cut in C. Therefore, there is no need to guess cuts in all light columns at once. It is
sufficient to guess a cut only in two consecutive light columns at once.

Observe that there are at most 2
√
n guesses of cut vertices for a light column and

there are at most n light columns. Therefore, the time complexity of determining the
size of a maximum cut in G is at most n · (2

√
n)2 · P, where P is the maximum time

for processing a heavy part. Now, we want to prove a time complexity of processing
a heavy part B̂ = 〈Bi, j 〉1≤ j≤l,1≤i≤r j with a given guess of light columns.

By Lemma 15, the time complexity of processing a heavy part with a given guess
of light columns is

P = (c1 + 1) . . . (ch + 1) · (a + 1) ·
m∑

i=1

(
b++
i · b+−

i · b−+
i · b−−

i

)

123

Algorithmica (2021) 83:3649–3680 3671

≤ (n + 1)1+
√
n ·

m∑

i=1

b4i ≤ (n + 1)1+
√
n · n4 ∈ O

(
n5 2

√
n log(n)

)
.

To sum up, we can determine the size of a maximum cut in time:

n · (2
√
n)2 · P ∈ O

(
n6 2

√
n(log(n)+2)

)
. (2)

For brevity, we analyzed only the size of a maximum cut. However, the maximum cut
itself can be determined retroactively in the same running time. �

Remark 1 We wish to point out that Theorem 2 with slightly worse bound of
nO(1) 22

√
n(log(n)+1) can be derived by combination of the maxcut algorithm param-

eterized by the clique-width as presented in [16] together with our bounds on the
clique-width expressed by the number of columns of the model (Corollary 22), and
Lemma 12.

More precisely, the heavy part is composed of at most
√
n columns plus two addi-

tional light columns. Therefore, by Corollary 22 the clique-width of the heavy part is
bounded by

√
n + 5. As the algorithm in [16] can be easily modified to determine the

maximum cut size even when the cut on the light columns is given, we conclude by
Lemma 12 and the expression in (2) where P = nO(1) n2(

√
n+5).

Lemma 15 has a nice corollary for graphs with a U-bubble model with a constant
number of columns. According to Lemma 15, we are able to solve the MaxCut prob-
lem in those graphs in polynomial time which is formulated as Corollary 3 in the
introduction. Therefore, we improved another polynomial-time algorithm by Boyacı
et al. [8] solving the MaxCut problem in co-bipartite chain graphs with possible twins
(which is exactly the class of graphs defined by a classic bubble model with only two
columns).

Proof of Corollary 3 Let G be a graph on n vertices which is defined by a U-bubble
modelBwith k columns andm bubbles. The bubblemodelB can be seen as a heavy part
with no cut-vertices in its borders. ByLemma15, the size of amaximumcut inB can be
determined in time T = (c1+1) . . . (ck +1) · (a+1) ·∑m

i=1

(
b++
i · b+−

i · b−+
i · b−−

i

)

where bxyi , xy ∈ {+,−} is the number of vertices in the bubble quadrant Bxy
i , and c j

is the number of vertices in the column j, i.e., c j = ∑r j
i ′=1 Bi ′, j , and a = maxi |B∗+

i |.
By Arithmetic Mean-Geometric Mean Inequality (AM-GM) we obtain

T ≤ (a + 1) ·
⎛

⎝1

k
·

k∑

j=1

(c j + 1)

⎞

⎠

k

·
m∑

i=1

(
b++
i + b+−

i + b−+
i + b−−

i

4

)4

= (a + 1) ·
(
n + k

k

)k

·
m∑

i=1

(
bi
4

)4

≤ (a + 1) ·
(
n + k

k

)k

·
(n
4

)4 ∈ O(nk+5).

123

Algorithmica (2021) 83:3649–36803672

It remains to prove the special case where k = 2. Notice, it is sufficient to distinguish
only between vertices in quadrants of types (∗,+) and (∗,−) in the first column, and

similarly (+, ∗) and (−, ∗) in the second column. Therefore, we obtain
(
bi
2

)2
instead

of
(
bi
4

)4
which leads to the time complexity O(nk+1+2) = O(n5). �

We note that Theorem 14 states the explicit size of a maximum cut.

4 Clique-Width Of Mixed Unit Interval Graphs

Theclique-width is oneof theparameterswhich are used tomeasure the complexity of a
graph.ManyNP-hard problems, thosewhich are expressible inMonadic Second-Order
Logic using second-order quantifiers on vertices (MSO1), can be solved efficiently in
graphs of bounded clique-with [11]. For instance, 3-coloring. Definition of the clique-
width is quite technical but it follows the idea that a graph of the clique-width at most
k can be iteratively constructed such that in any time, there are at most k types of
vertices, and vertices of the same type behave indistinguishably from the perspective
of the newly added vertices.

Definition 6 (Courcelle 2000). The clique-width of a graph G, denoted by cwd(G),
is the smallest integer number of different labels that is needed to construct the graph
G using the following operations:

0. creation of a vertex with label i,
1. disjoint union (denoted by ⊕),
2. relabeling: renaming all labels i to j (denoted by ρi→ j),
3. edge insertion: connecting all vertices with label i to all vertices with label j,

j ∈ {1, . . . , k}, i �= j ; already existing edges are not doubled (denoted by ηi, j).

Such a construction of a graph can be represented by an algebraic term composed
of the operations ⊕, ρi→ j , and ηi, j , called cwd-expression. We call k-expression a
cwd-expression in which at most k different labels occur. Using this, we can say that
the clique-width of a graph G is the smallest integer k such that the graph G can be
defined by a k-expression.

Example The diamond graph G on the four vertices u, v, w, x (the complete graph K4
without the edge vw) is defined by the following cwd-expression:

η1,2(ρ2→1(η1,2(1(u) ⊕ 2(v) ⊕ 2(w))) ⊕ 2(x)).

Therefore, cwd(G) ≤ 2.

Fellows et al. [15] proved in 2009 that the deciding whether the clique-width of a
graph G is at most k is NP-complete. Therefore, researchers put effort into computing
an upper-bound of the clique-width.

Courcelle and Olariu [12] showed in 2000 that bounded treewidth implies bounded
clique-width (but not vice versa). They showed that for any graphGwith the treewidth
k, the clique-width of G is at most 4 · 2k−1 + 1.

123

Algorithmica (2021) 83:3649–3680 3673

Golumbic and Rotics [20] proved that unit interval graphs have unbounded
clique-width via a construction that can be described as a bubble model where all
bubbles contains exactly one vertex. Consequently, (mixed unit) interval graphs have
unbounded clique-width as well. Therefore, computing upper-bounds are of particular
interest. Fellows et al. [14] showed that the clique-width of a graph is bounded by its
pathwidth+ 2, therefore, the clique-width of interval graphs as well as of unit interval
graphs is upper-bounded by the size of their maximum clique + 1 [14, 26]. Using a
bubble model structure, subclasses of unit interval graphs were characterized in terms
of (linear) clique-width [30, 32]. Courcelle [12] observed that clique-width can be
computed componentwise.

Lemma 16 (Courcelle [12]). Any graph G satisfies that

cwd(G) = max{cwd(G ′) | G ′ is a connected component of G}.

We provide an upper-bound of the clique-width of a graph G depending on the
number of columns in a U-bubble model of G. We express it also in the size of a
maximum independent set.

Lemma 17 Let G be a mixed unit interval graph and B be a U-bubble model of
G. Then cwd(G) ≤ k + 3, where k is the number of columns of B. Moreover, a
(k + 3)-expression defining the graph G can be constructed in O(n) time from B.
Proof The proof is inspired by the proof for unit interval graphs [23].

We find a (k+3)-expression definingG and, therefore, prove that cwd(G) ≤ k+3.
We use k+3 labels where label iwill be assigned to i-th column ofB and the remaining
three labels, denoted by l1, l2, l3, are used for maintaining the last two added vertices.

We define a linear order on vertices of G according to B as follows:

(i) We take the vertices from top to bottom, left to right. Formally, let x ∈ Bi, j ,
y ∈ Bl,m , we define x ≺ y if i < l or (i = l and j < m);

(ii) we define the following order on bubble quadrants:

x ≺ y ≺ z ≺ w for x ∈ B−−
i, j , y ∈ B+−

i, j , z ∈ B−+
i, j , w ∈ B++

i, j ;

(iii) we define an arbitrary linear order on vertices in the same quadrant of the same
bubble.

The idea of the proof is that every column has its own label and we need three more
labels formaintaining the last added vertices.Wewill add vertices toG in the described
order which ensures that a new vertex is complete to all vertices from the following
column and anti-complete to all vertices from the previous column except those from
the same row. Recall that according to the definition of U-bubble model, there is an
edge between vertices x ∈ Bi, j and y ∈ Bi, j+1 if and only if x ∈ B∗,+

i, j and y ∈ B+∗
i, j+1.

Therefore, vertices from the last constructed bubble in the previous column must have
two distinct labels according to the types of the vertices. However, once we add all
vertices from the actual bubble, we do not need to distinguish between vertices from
the previous column, anymore. Therefore, we rename their labels to the label of their
column.

123

Algorithmica (2021) 83:3649–36803674

Formally. Let x be the first (smallest) vertex of G according to the defined linear
order. We know that x is from the first column by Definition 5 (iv). If x is of type
(−,+) or (+,+), we label it by l1, otherwise by 1, so the expression for G[{x}] is
1(x) if x is of type (+,−) or (−,−), and l1(x) otherwise.

Let y be thefirst non-processed vertex fromG, i.e., a label is assigned to all preceding
vertices. Let l2, l3 ∈ {k + 1, k + 2, k + 3} are currently unused labels or l2 is used in
the actual bubble Bi, j and l3 is unused, and l1 may be used (in the previous column).
We note that at most one label from {k+1, k+2, k+3} is used in the previous column
any time. We split the proof according to the type of y, the bubble quadrant where y
belongs.

(a) y ∈ B−−
i, j . We use label l2 for y. Then, we make y (the only one vertex with label

l2) complete to vertices with labels j + 1 (if j < k) and j. Relabel l2 to j.
(b) y ∈ B+−

i, j . We use label l2 for y. Then, we make y (the only one vertex with label
l2) complete to vertices with labels j + 1 (if j < k), j, l1. Relabel l2 to j.

(c) y ∈ B−+
i, j . We use label l2 for y. Then, we make all vertices with label l2 complete

to vertices with labels j + 1 (if j < k), j, l2. (Do not relabel vertices with label
l2).

(d) y ∈ B++
i, j . We use label l3 for y. Then, we make y (the only one vertex with label

l3) complete to vertices with labels j + 1 (if j < k), j, l1, l2. Relabel l3 to l2.

If all vertices from Bi, j were used, we rename all vertices with the label l1 to j − 1 if
j > 1. If j = k, we relabel l2 to k.
For the correctness, observe that the previous column has always at most two labels

and in a), b), and d) the temporary label for y is unique (no other vertices are labeled
by it at that time). The rest follows from the definition of adjacency in the U-bubble
model. Since we constructed G using at most k + 3 labels, cwd(G) ≤ k + 3.

The described algorithm processes each vertex once and each vertex has at
most three labels in total. Moreover, the algorithm needs a constant work for each
vertex—for instance, a cwd-expression for the option a) is:

ρl2→ j (η j,l2(η j+1,l2(l2(y) ⊕ G ′))),

where G ′ is the already constructed graph before adding the vertex y. Therefore, the
(k + 3)-expression defining G is constructed in linear time given a U-bubble model in
an appropriate structure. �

Theorem 18 Let G be a mixed unit interval graph. Then cwd(G) ≤ 2α(G) + 3.
Moreover, a (2α(G)+3)-expression defining the graph G can be constructed inO(n)

time provided a U-bubble model of G is given.

Proof We apply Lemma 17 and Lemma 10 together to obtain the statements. �

Next, we provide a different bound for clique-width which is obtained by a small
extension of the proof for unit interval graphs using the bubble model by Heggernes
et al. [23]. We include the full proof for completeness.

We need more notation. Let G be a mixed unit interval graph and let B =
〈Bi, j 〉1≤ j≤k,1≤i≤r j be a U-bubble model for G. We say that vertices from the same

123

Algorithmica (2021) 83:3649–3680 3675

column j ofB create a group if they have the same neighbours in the following column
j+1 ofB. Let v ∈ Bi, j , the group number of vertex v inB, denoted by gB(v), is defined
as the maximum number of groups in N (v) ∩ (⋃r j−1

i ′=i+1 Bi ′, j−1 ∪ ⋃i−1
i ′=1 Bi ′, j ∪ A

)

over the sets A = B∗+
i, j−1 ∪ B+∗

i, j and A = Bi, j . Then the group number of G in B is
defined as

ϕB(G):= max
v∈V (G)

gB(v).

Lemma 19 Let G is a mixed unit interval graph and B a U-bubble model for G. The
following inequality holds

ϕB(G) ≤ ω(G) − 1.

Proof Let v ∈ Bi, j .Observe that
⋃r j−1

i ′=i+1 Bi ′, j−1∪⋃i−1
i ′=1 Bi ′, j∪A∪{v} is a clique (for

both the possibilities of A), see Lemma 11. Moreover, v is not included in the counting
the group number of v, and no vertex can be in more than one group. Therefore,
gB(v) ≤ ω(G) − 1 for any vertex v which leads to the desired inequality. �

Theorem 20 Let G be a mixed unit interval graph and B a U-bubble model for G.
Then cwd(G) ≤ ϕB(G)+ 2. Moreover, a (ϕB(G)+ 2)-expression defining the graph
G can be constructed in O(n + m) time provided a U -bubble model of G is given.

Proof Our aim is to find a (ϕB(G) + 2)-expression defining G. We add vertices in the
order from left to right, top to bottom of B processing vertices of type (+, ∗) at first,
i. e., in the following linear order:

(i) x ≺ y for x ∈ Bi, j , y ∈ Bl,m , where j < m or (j = m and i < l);
(ii) x ≺ y ≺ z ≺ w for x ∈ B++

i, j , y ∈ B+−
i, j , z ∈ B−+

i, j , w ∈ B−−
i, j ;

(iii) an arbitrary linear order on the vertices in the same quadrant of the same bubble.

Now, we follow the original proof. Shortly, we add each vertex v in a proper way.
We assume that a label is assigned for each previous vertex and all the vertices which
belong to the same group have the same label. At first, we change to 1 the label of all
the previous vertices which are non-adjacent to v. We know that at most gB(v) distinct
labels are used in the remaining groups, say labels {2, . . . , gB(v) + 1}. This is true
since all the groups are adjacent to v and because of the linear order.

We note that it is important to add first all the vertices of type (+, ∗) from a bubble.
Otherwise, gB(v)+1 remaining groups could be there; in the situation that v is of type
(+, ∗), a potentially one distinct label is needed for B∗+

i, j−1, and another for B
∗−
i, j . One

the other hand, if all the vertices of type (+, ∗) precede vertices of type (−, ∗) in one
bubble, this situation does not happen—a potential label of B∗+

i, j−1 would be released.

Therefore, it is enough to take into account only the parts A = B∗+
i, j−1 ∪ B+∗

i, j , and

A = Bi, j , and not the bigger one A = B∗+
i, j−1 ∪ Bi, j , in the definition of gB(v).

We use a free label, say gB(v) + 2, for v and join all the vertices with this label
with vertices with labels 2, . . . , gB(v) + 1. Next, change the label of v to a label of
its group if v belongs to an already existing group. We continue with the next vertex.

123

Algorithmica (2021) 83:3649–36803676

During the processing of each vertex, we need no more than its group number + 2
distinct labels. Therefore, cwd(G) ≤ ϕB(G) + 2.

It remains to determine the running time for the construction of the expression
defining G. Assume a U-bubble model is given in a way that going over all vertices
takes linear time in the number of vertices. First, we count the time for the creation
of groups. For each vertex v we compare its neighbors from the next column with the
neighbors of the previous vertex in this column. Therefore, the splitting vertices into
groups and determining the group number of G take O(m + n) time. In a constant
time, we determine a free label for each vertex. Then, we need to check the labels
of groups in the neighborhood of each vertex v and create a O(gB(v)) long cwd-
expression, yieldingO(m + n) time in total. Furthermore, each vertex is at most once
relabeled to 1 since once it is relabeled to 1, its label remains 1 for the rest of the
algorithm. Therefore, the relabeling of vertices that are non-adjacent to a newly added
vertex takes O(n) time in total. To sum up, the algorithm outputs the construction in
O(n + m) time. �

The combination of Theorems 18 and 20 gives us the following upper-bound that
can be compared with the known upper-bound ω(G) + 1 [14, 26].

Theorem 21 Let G be a mixed unit interval graph. Then

cwd(G) ≤ min {2α(G) + 3, ϕB(G) + 2} ≤ ω(G) + 1,

where B is a U-bubble model for G. Moreover, the corresponding expression can be
constructed in O(n + m) time provided B is given, otherwise in O(n2)time.

Observe that ϕB(G) ≤ 2max {r j | 1 ≤ j ≤ k}. A combination of Theorem 21 and
Lemma 17 gives a useful Corollary 22. In particular, if the number of rows or number
of columns is bounded, than clique-width is bounded.

Corollary 22 Let G be a mixed unit interval graph. Then cwd(G) ≤
min {k + 3, 2r + 2}, where k is the number of columns and r is the length of a longest
column in a U-bubble model for G.

We note that by an application of Lemma 4.1 in [30], slightly worse bounds on
clique-width in terms of rows and columns can also be derived. In particular, if we
take two natural orderings of the bubbles in the U-bubble model, one taking rows first
and the other taking columns first, we obtain two times larger multiplicative factor
than in Corollary 22.

5 Conclusion

Themain contribution of thiswork is a new representation ofmixed unit interval graph-
s—theU-bubblemodel. This structure is particularly useful in the design of algorithms
and their analysis. Using the U-bubble model, we presented new upper-bounds for the
clique-width of mixed unit interval graphs and designed a subexponential-time algo-
rithm for the MaxCut problem on mixed unit interval graphs. We further realized that

123

Algorithmica (2021) 83:3649–3680 3677

the state-of-the-art polynomial-time algorithm for the MaxCut problem on unit inter-
val graphs is incorrect. A long-term task is to determine the difference between the
time complexity of basic problems on unit interval graphs compared to interval graphs.
In particular, on a more precise scale of mixed unit interval graphs, determine what is
a key property for the change of the complexity. Independently, a long-standing open
problem is the time complexity of the MaxCut problem on unit interval graphs, in
particular, decide if it is NP-hard or polynomial-time solvable.

An interesting direction to pursue the first task could be the study of labeling
problems; either L2,1-labeling or Packing Coloring. Both problems were motivated by
assigning frequencies to transmitters. The L2,1-labeling problem was first introduced
by Griggs and Yeh in 1992 [21]. The packing coloring problem is newer, it was
introduced by Goddard et al. in 2008 [18]. Although, these are well-known problems,
quite surprisingly, their time complexity is open for interval graphs.

The L2,1-labeling problem assigns labels {0, . . . , k} to vertices such that the labels
of neighboring vertices differ by at least two and the labels of vertices in distance
two are different. The time complexity of this problem is still wide open even for unit
interval graphs, despite partial progress on specific values for the largest used label.
Sakai proved that the value of the largest label lies between 2χ − 2 and 2χ where χ

is the chromatic number [39].
The packing coloring problem asks for an existence of such a mapping c : V →

{1, . . . ,m} that for all u �= v with c(u) = c(v) = i the distance between u and v is
at least i. This problem is wide open on interval graphs. Recently, there was a small
progress on unit interval graphs leading to an FPT algorithm (time f (k) · nO(1) for
some computable function f and parameter k). It is shown in [27] that the packing
coloring problem is in FPT parameterized by the size of a maximum clique. We note
that the algorithm can be straightforwardly extended to mixed unit interval graphs.
However, a polynomial-time algorithm or alternatively NP-hardness for (unit) interval
graphs is of a much bigger interest.

Acknowledgements The authors would like to thank Vít Jelínek for helpful comments. This paper origi-
nated in the master thesis of Jana Novotná [33].

Funding Jan Kratochvíl was supported by grant GAČR 19-17314J of the Czech National Science Foun-
dation. Tomáš Masařík and Jana Novotná received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme Grant Agreement 714704,
and from Charles University student grant SVV–2020–260578.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

123

Algorithmica (2021) 83:3649–36803678

directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

1. Adhikary, R., Bose, K., Mukherjee, S., Roy, B.: Complexity of maximum cut on interval graphs, 2020,
accepted to SoCG ’21’. arXiv:2006.00061

2. Arora, S.: Barak, B., Steurer, D. : Subexponential algorithms for unique games and related problems.
J. ACM 62(5), 1–25 (2015). https://doi.org/10.1145/2775105

3. Benzer, S.: On the topology of the genetic fine structure. Proc. Natl. Acad. Sci. U.S.A. 45(11), 1607
(1959). https://doi.org/10.1073/pnas.45.11.1607

4. Bodlaender,H.L., de Figueiredo,C.M.H.,Gutierrez,M.,Kloks, T.,Niedermeier, R.: Simplemax-cut for
split-indifference graphs and graphs with few P4’s. In Ribeiro, C.C., Martins, S.L. (eds.) Experimental
and Efficient Algorithms, Third International Workshop, WEA 2004, Angra dos Reis, Brazil, May
25-28, 2004, Proceedings, volume 3059 of Lecture Notes in Computer Science, pp. 87–99. Springer
(2004). https://doi.org/10.1007/978-3-540-24838-5_7

5. Bodlaender, H.L., Kloks, T., Niedermeier, R.: Simple max-cut for unit interval graphs and graphs
with few P4s. Electron. Notes Discrete Math. 3, 19–26 (1999). https://doi.org/10.1016/S1571-0653(05
)80014-9

6. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph pla-
narity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976). https://doi.org/10.1016/
S0022-0000(76)80045-1

7. Boyacı, A., Ekim, T., Shalom, M.: A polynomial-time algorithm for the maximum cardinality cut
problem in proper interval graphs. Inf. Process. Lett. 121, 29–33 (2017). https://doi.org/10.1016/j.
ipl.2017.01.007

8. Boyacı, A., Ekim, T., Shalom, M.: The maximum cardinality cut problem in co-bipartite chain graphs.
J. Comb. Optim. 35(1), 250–265 (2018). https://doi.org/10.1007/s10878-015-9963-x

9. Boyacı, A., Ekim, T., Shalom, M.: On the maximum cardinality cut problem in proper interval graphs
and related graph classes (2020). arXiv:2006.03856

10. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, volume 3. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (1999). https://doi.org/10.1137/1.9780898719796

11. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs
of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000). https://doi.org/10.1007/
s002249910009

12. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3),
77–114 (2000). https://doi.org/10.1016/S0166-218X(99)00184-5

13. Dourado, M.C., Le, V.B., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Mixed unit interval graphs.
Discrete Math. 312(22), 3357–3363 (2012). https://doi.org/10.1016/j.disc.2012.07.037

14. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width minimization is NP-hard. In:
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May
21–23, 2006, pp. 354–362 (2006). https://doi.org/10.1145/1132516.1132568

15. Fellows,M.R., Rosamond, F.A., Rotics,U., Szeider, S.: Clique-width isNP-complete. SIAMJ.Discrete
Math. 23(2), 909–939 (2009). https://doi.org/10.1137/070687256

16. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Almost optimal lower bounds for
problems parameterized by clique-width. SIAM J. Comput. 43(5), 1541–1563 (2014). https://doi.
org/10.1137/130910932

17. Gardi, F.: The Roberts characterization of proper and unit interval graphs. Discrete Math. 307(22),
2906–2908 (2007). https://doi.org/10.1016/j.disc.2006.04.043

18. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Harris, J.M., Rall, D.F.: Braodcast chromatic num-
bers of graphs. ARS Comb. 86, 33–50 (2008)

19. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Comput. Sci. Appl. Math. XX (1980).
https://doi.org/10.1016/C2013-0-10739-8

20. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. Int. J. Found. Comput.
Sci. 11(3), 423–443 (2000). https://doi.org/10.1142/S0129054100000260

123

Algorithmica (2021) 83:3649–3680 3679

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2006.00061
https://doi.org/10.1145/2775105
https://doi.org/10.1073/pnas.45.11.1607
https://doi.org/10.1007/978-3-540-24838-5_7
https://doi.org/10.1016/S1571-0653(05)80014-9
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1016/j.ipl.2017.01.007
https://doi.org/10.1007/s10878-015-9963-x
http://arxiv.org/abs/2006.03856
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1007/s002249910009
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.1016/j.disc.2012.07.037
https://doi.org/10.1145/1132516.1132568
https://doi.org/10.1137/070687256
https://doi.org/10.1137/130910932
https://doi.org/10.1016/j.disc.2006.04.043
https://doi.org/10.1016/C2013-0-10739-8
https://doi.org/10.1142/S0129054100000260

21. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Discrete Math. 5(4),
586–595 (1992). https://doi.org/10.1137/0405048

22. Hajós, G.: Über eine art von graphen. Internationale Mathematische Nachrichten 11, 65 (1957)
23. Heggernes, P., Meister, D., Papadopoulos, C.: A new representation of proper interval graphs with an

application to clique-width. Electron. Notes Discrete Math. 32, 27–34 (2009). https://doi.org/10.1016/
j.endm.2009.02.005

24. Hopkins, S.B., Schramm, T., Trevisan, L.: Subexponential LPs approximate max-cut. In: 2020 IEEE
61st Annual Symposium on Foundations of Computer Science (FOCS), pp. 943–953 (2020). https://
doi.org/10.1109/FOCS46700.2020.00092

25. Joos, F.: A characterization of mixed unit interval graphs. J. Graph Theory 79(4), 267–281 (2015).
https://doi.org/10.1002/jgt.21831

26. Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper interval graphs with
small cliques. SIAM J. Comput. 25(3), 540–561 (1996). https://doi.org/10.1137/S0097539793258143

27. Kim, M., Lidický, B., Masařík, T., Pfender, F.: Notes on complexity of packing coloring. Inf. Process.
Lett. 137, 6–10 (2018). https://doi.org/10.1016/j.ipl.2018.04.012

28. Kratochvíl, J., Masařík, T., Novotná, J.: U-bubble model for mixed unit interval graphs and its appli-
cations: The maxcut problem revisited. In Esparza, J., Král’, D. (eds.) 45th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech
Republic, volume 170 of LIPIcs, pp. 53:1–53:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020). https://doi.org/10.4230/LIPIcs.MFCS.2020.57

29. Le, V.B., Rautenbach, D.: Integral mixed unit interval graphs. Discrete Appl. Math. 161(7–8),
1028–1036 (2013). https://doi.org/10.1016/j.dam.2012.09.013

30. Lozin, V.V.:Minimal classes of graphs of unbounded clique-width. Ann. Comb. 15(4), 707–722 (2011).
https://doi.org/10.1007/s00026-011-0117-2

31. MarkKeil, J.: Finding hamiltonian circuits in interval graphs. Inf. Process. Lett. 20(4), 201–206 (1985).
https://doi.org/10.1016/0020-0190(85)90050-X

32. Meister, D., Rotics, U.: Clique-width of full bubble model graphs. Discrete Appl. Math. 185, 138–167
(2015). https://doi.org/10.1016/j.dam.2014.12.001

33. Novotná, J.: Computational and structural apects of interval graphs and their variants. (2019). https://
dodo.is.cuni.cz/handle/20.500.11956/80360

34. Karczmarz, A., Nadara, W., Rzążewski, P., Zych-Pawlewicz, A.: Parameterized Algorithms Retreat of
University of Warsaw (2019). Personal communication

35. Rautenbach, D., Szwarcfiter, J.L.: Unit interval graphs of open and closed intervals. J. Graph Theory
72(4), 418–429 (2013). https://doi.org/10.1002/jgt.21650

36. Roberts, F.S.: Indifference graphs. Proof Techniques in Graph Theory, pp. 139–146 (1969). https://ci.
nii.ac.jp/naid/10025491782/en/

37. Roberts, F.S.: Some applications of graph theory. Draft (2000)
38. Roberts, F.S.: Society for Industrial, and Applied Mathematics. Graph Theory and Its Applications to

Problems of Society. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for
Industrial and Applied Mathematics (1978)

39. Sakai, D.: Labeling chordal graphs: distance two condition. SIAM J. Discrete Math. 7(1), 133–140
(1994). https://doi.org/10.1137/S0895480191223178

40. Shuchat, A., Shull, R., Trenk, A.N., West, L.C.: Unit mixed interval graphs. Congressus Numerantium
221, 189–223 (2014)

41. Talon, A., Kratochvíl, J.: Completion of the mixed unit interval graphs hierarchy. J. Graph Theory
87(3), 317–332 (2018). https://doi.org/10.1002/jgt.22159

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Algorithmica (2021) 83:3649–36803680

https://doi.org/10.1137/0405048
https://doi.org/10.1016/j.endm.2009.02.005
https://doi.org/10.1109/FOCS46700.2020.00092
https://doi.org/10.1002/jgt.21831
https://doi.org/10.1137/S0097539793258143
https://doi.org/10.1016/j.ipl.2018.04.012
https://doi.org/10.4230/LIPIcs.MFCS.2020.57
https://doi.org/10.1016/j.dam.2012.09.013
https://doi.org/10.1007/s00026-011-0117-2
https://doi.org/10.1016/0020-0190(85)90050-X
https://doi.org/10.1016/j.dam.2014.12.001
https://dodo.is.cuni.cz/handle/20.500.11956/80360
https://doi.org/10.1002/jgt.21650
https://ci.nii.ac.jp/naid/10025491782/en/
https://doi.org/10.1137/S0895480191223178
https://doi.org/10.1002/jgt.22159

	mathcalU-Bubble Model for Mixed Unit Interval Graphs and Its Applications: The MaxCut Problem Revisited
	Abstract
	1 Introduction
	1.1 Preliminaries and Notation
	1.1.1 Recognition and mathcalU-Intersection Representation of Mixed Unit Interval Graphs

	2 Bubble Model for Mixed Unit Interval Graphs
	2.1 Definition of Bubble Model
	2.2 Construction of mathcalU-Bubble Model
	2.3 Algorithm
	2.4 Correctness
	2.5 Proof of Theorem 1
	2.6 Properties of mathcalU-Bubble Model

	3 Maximum Cardinality Cut
	3.1 Notation
	3.2 Time Complexity is Still Unknown on Unit Interval Graphs
	3.3 Subexponential Algorithm in Mixed Unit Interval Graphs

	4 Clique-Width Of Mixed Unit Interval Graphs
	5 Conclusion
	Acknowledgements
	References

