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Abstract
Apart from the principles and methodologies inherited from Economics and Game 
Theory, the studies in Algorithmic Mechanism Design typically employ the worst-
case analysis and design of approximation schemes of Theoretical Computer Sci-
ence. For instance, the approximation ratio, which is the canonical measure of eval-
uating how well an incentive-compatible mechanism approximately optimizes the 
objective, is defined in the worst-case sense. It compares the performance of the 
optimal mechanism against the performance of a truthful mechanism, for all pos-
sible inputs. In this paper, we take the average-case analysis approach, and tackle 
one of the primary motivating problems in Algorithmic Mechanism Design—the 
scheduling problem  (Nisan and Ronen, in: Proceedings of the 31st annual ACM 
symposium on theory of computing (STOC), 1999). One version of this problem, 
which includes a verification component, is studied by Koutsoupias (Theory Com-
put Syst 54(3):375–387, 2014). It was shown that the problem has a tight approxi-
mation ratio bound of (n + 1)∕2 for the single-task setting, where n is the number of 
machines. We show, however, when the costs of the machines to executing the task 
follow any independent and identical distribution, the average-case approximation 
ratio of the mechanism given by Koutsoupias (Theory Comput Syst 54(3):375–387, 
2014) is upper bounded by a constant. This positive result asymptotically separates 
the average-case ratio from the worst-case ratio. It indicates that the optimal mecha-
nism devised for a worst-case guarantee works well on average.
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1 Introduction

The field of Algorithmic Mechanism Design [19, 20, 22] focuses on optimization 
problems where the input is provided by self-interested agents that participate 
in the mechanism by reporting their private information. These agents are util-
ity maximizers, so they may misreport their private information to the mecha-
nism if that results in a more favorable outcome. Given the agents’ reports as 
input, a mechanism is a function that maps the input to allocations and payments 
if monetary transfers are allowed. The goal of the mechanism designer is twofold. 
On the one hand, the objective is to motivate agents always to report truthfully, 
regardless of what strategies the other agents follow; on the other hand, the aim is 
to optimize a specific objective function that measures the quality of the outcome, 
subject to a polynomial-time implementability constraint. However, these objec-
tives are usually incompatible. Therefore, we often need to trade one objective to 
achieve the other. One standard approach is to maintain the truthfulness property 
of the mechanism, and approximately optimize the specific objective function 
(e.g., social welfare maximization, revenue maximization, or cost minimization). 
The approximation ratio is the canonical measure for evaluating the performance 
of a truthful mechanism towards this goal. It compares the performance of the 
truthful mechanism against the optimal mechanism, which is not necessarily 
truthful, over all possible inputs.

The approximation ratio is defined in the worst-case sense, which resembles 
the worst-case time complexity of the algorithms. These are strong but very pes-
simistic measures. On the one hand, if it is possible to obtain a small worst-case 
ratio, it is a very solid guarantee of the mechanism’s performance, no matter what 
the inputs are. On the other hand, if it turns out to be a large value, one can hardly 
be certain about the mechanism’s performance as it may perform well on most 
inputs and perform poorly on only a few inputs. To address this issue,   Deng 
et al. [7] and Gao and Zhang [9] propose an alternative measure, the average-case 
approximation ratio, that compares the performance of the truthful mechanism 
against the optimal mechanism, averaged over all possible inputs when they fol-
low a specific distribution. Although average-case analysis is usually more com-
plex than the worst-case analysis, it complements the worst-case analysis.

In this paper, we study the problem of scheduling unrelated machines with-
out money. Scheduling is one of the primary problems in algorithmic mecha-
nism design. In the general setting, the problem is to schedule a set of tasks to 
n unrelated machines with private processing times to minimize the makespan. 
The machines (alternatively, speaking of agents in game-theoretical settings) are 
rational and want to minimize their execution time. They may achieve this by 
misreporting their processing times to the mechanism. No monetary payments are 
allowed in this problem. The objective is to design truthful mechanisms with a 
good approximation ratio. One important version of the problem is studied by 
Koutsoupias [11] in which the machines are bounded by their declarations. More 
specifically, if a machine declares a time that is longer than its actual time for a 
task and is allocated the task, then its processing time must be the declared value 
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in practice. This is because machines are under observation during the execu-
tion of the task and cannot afford to be caught lying about the execution times 
(an unaffordable penalty would apply). Koutsoupias  [11] devises a truthful-in-
expectation mechanism which achieves the tight bound of n+1

2
 for one task, and 

generalizes to n(n+1)
2

 for multiple tasks when the objective is minimizing makespan 
and n+1

2
 when the objective is minimizing social cost. We note that the tight bound 

instance is obtained when the ratio of the minimum value of the processing times 
against the maximum value of the processing times approaches 0. Obviously, this 
instance is very unlikely to occur in practice. Therefore, it would be interesting to 
understand how well the optimal mechanism given in [11] performs on average 
when the instances are chosen from a certain distribution.

1.1  Our Contribution

This paper provides a novel perspective on the performance of the mechanism devel-
oped by Koutsoupias [11]. In particular, we show the following results:

– The average-case approximation ratio of the mechanism devised by Koutsou-
pias  [11] is upper bounded by a constant when the inputs are independent and 
identically distributed random variables.

In contrast, the worst-case approximation ratio of the mechanism shown in [11] is 
n+1

2
 , which is asymptotically different.
A major criticism about average-case analysis is that the results usually depend 

on the inputs’ distribution, as real-world data are not guaranteed to follow a particu-
lar distribution. Even for the same mechanism, when applied to different application 
areas, the real-world distribution may vary. For example, Deng et al. [7] shows that 
their average-case result holds for a uniform distribution; the positive results in the 
Bayesian analysis of auctions usually need to assume that the hazard rate function 
is monotone non-decreasing. In this paper, we develop powerful techniques to show 
a constant bound of the average-case approximation ratio for any i.i.d distribution. 
Our results complement the worst-case approximation ratio of the known mecha-
nisms, which is asymptotically large.

1.2  Related Work

The field of Algorithmic Mechanism Design was initiated by Nisan and Ronen [19] 
and is further advanced by Procaccia and Tennenholtz [22] to approximate mecha-
nism design without money. For a more detailed investigation, we refer the reader to 
Nisan et al. [20].

The scheduling problem has been extensively studied. However, after nearly two 
decades, we still have little progress in resolving this challenge. The known approxi-
mation ratio upper bounds are rather negative, and there is a large gap between the 
lower bounds and upper bounds. For the model presented by Nisan and Ronen [19] 
where payments are allowed to facilitate designing truthful mechanisms, the best 
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known upper bound is given in their original paper and is achieved by allocating 
each task independently using the classical VCG mechanism, while the best known 
lower bound is 2.61 [12]. Ashlagi et al. [3] prove that the upper bound of n is tight 
for anonymous mechanisms. For randomized mechanisms, the best known upper 
bound is n+1

2
 shown by Mu’alem and Schapira [18]. For the special case of related 

machines, where each machine’s private information is a single value, Archer and 
Tardos [1] gives a randomized 3-approximation mechanism. Lavi and Swamy [15] 
show a constant approximation ratio for the special case that the processing times 
of each task can take one of two fixed values. Yu [25] generalizes this result to two-
range-values, while together with Lu and Yu [17] and Lu [16], they show constant 
bounds for the case of two machines. For the case that payments are not allowed, 
Koutsoupias [11] first considers the setting that the machines are bounded by their 
declarations. This is influenced by the notion of impositions that appears in [8] for 
the facility location problems, as well as the notion of verification that appears in [4]. 
Penna and Ventre [21] present a general construction of collusion-resistant mecha-
nisms with verification that return optimal solutions for a wide class of mechanism 
design problems, including the scheduling problem. The mechanism presented in 
[11] has a tight approximation ratio bound of n+1

2
 for the single-task setting; by run-

ning the mechanism independently on multiple tasks a tight bound of n+1
2

 can be 
achieved for social cost minimization and an upper bound of n(n+1)

2
 can be achieved 

for the makespan minimization. Kovács and Vidali  [14] further apply mechanism 
design with monitoring techniques to the truthful RAM allocation problem. There 
are some works on characterizing truthful mechanisms for scheduling problems, 
such as Kovács and Vidali [13], as well as scheduling with uncertain execution time, 
such as Conitzer and Vidali [6].

In [7], the authors propose to study the average-case and smoothed approximation 
ratios and conduct these analyses on the one-sided matching problem. They show 
that, although the asymptotically best truthful mechanism for the problem is Ran-
dom Priority and its worst-case approximation ratio is bounded by �(

√

n) , Random 
Priority has a constant average-case approximation ratio when the inputs follow a 
uniform distribution, and it has a constant smoothed approximation ratio. Gao and 
Zhang [9] extend the constant approximation results to more general distributions.

Notably, the average-case approximation ratio analysis takes a similar but funda-
mentally different approach to the Bayesian analysis. In the Bayesian auction design 
literature [5, 10], the focus is on how well a truthful mechanism can approximately 
maximize the expected revenue when instances are taken from the entire input 
space. More specifically, the dominant approach in the study of Bayesian auction 
design is the ratio of expectations. A more detailed comparison of the two metrics 
will be given in the next section after their definitions are given.

2  Preliminaries

In the problem of scheduling unrelated machines without payment, there are a 
set of self-interested machines (alternatively, speaking of self-interested agents 
in game theoretical settings) and a set of tasks. The general setting comprises n 
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machines and m tasks. In this paper we consider the setting of a single task. The 
machines are lazy and prefer not to execute any tasks. There are no monetary 
tools to incentivize machines to execute tasks. Machine i needs time (or cost) ti 
to execute the task, i ∈ [n] . These ti ’s are independent of each other. For m tasks, 
there could be two different objectives. One is to allocate the task to machines so 
that the makespan is minimized; the other is to allocate the task so that the social 
cost is minimized. The makespan is the total length of the schedule, and the social 
cost is the sum of all agents’ costs. In the single-task setting, these two objectives 
are identical. Obviously, allocating the task to the machine with minimum execu-
tion time is the optimal solution. However, the mechanism has no access to the 
values ti . Instead, each machine reports an execution time t̃i to the mechanism, 
where t̃i is not necessarily equal to ti,∀i ∈ [n] . A mechanism is a (possibly rand-
omized) algorithm which computes an allocation based on the declarations t̃i of 
the machines. Denote the output of the mechanism by � = (pi)i∈[n] , where pi is an 
indicator variable in deterministic mechanisms and is the probability of machine 
i getting allocated to execute the task in randomized mechanisms. We follow the 
standard literature and consider the case that machines are bound by their reports. 
That is, the cost of machine i for the task is max{ti, t̃i} . So in case a machine 
i declares t̃i ≥ ti and it is allocated the task, then its actual cost is the declared 
value t̃i and not ti . This is in the spirit that machines are being observed during 
the execution of the task and cannot afford to be caught lying about the execution 
times (a high penalty would apply). Therefore, the expected cost of machine i is 
ci = ci(ti, �̃) = pi(�̃)max(ti, t̃i) . In approximate mechanism design, we restrict our 
interest to the class of truthful mechanisms. A mechanism is truthful if for any 
report of other agents, the expected cost ci of agent i is minimized when t̃i = ti . 
We note that this weak notion of truthfulness, truthful-in-expectation, enables us 
to consider a richer class of mechanisms than universal truthfulness. However, as 
mentioned in the Introduction, even with this rich class of truthful mechanisms, 
the performance of these mechanisms is still very limited in terms of approxima-
tion ratio. The canonical measure of efficiency of a truthful mechanism M is the 
worst-case approximation ratio,

where SCOPT(�) = min�∈P
∑n

i=1
ci is the optimal social cost which is essentially the 

minimum ti , for all i ∈ [n] ; SCM(�) is the social cost of the mechanism M on the 
input � ; and T  is the input space. This ratio compares the social cost of the truthful 
mechanism M against the social cost of the optimal mechanism OPT over all pos-
sible inputs �.

In [11], the author devises the following randomized mechanism.
Mechanism M: Given the input � = (t1,… , tn) , without loss of generality, let 

the values of ti ’s be in ascending order 0 < t1 ≤ t2 ≤ ⋯ ≤ tn . Then the allocation 
probabilities are

rworst(M) = sup
�∈T

SCM(�)

SCOPT(�)
,
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Note that this is a symmetric mechanism, so it suffices to describe it when 
0 < t1 ≤ t2 ≤ ⋯ ≤ tn . It is shown in [11] that this mechanism is truthful and achieves 
an approximation ratio tight bound of n+1

2
.

Analogously to the definition of the average-case approximation ratio of 
mechanisms for social welfare maximization in [7], we define it for social cost 
minimization as follows:

where the input � = (t1,… , tn) is chosen from a distribution D . Hence, the metric we 
study in this paper is the expectation of the ratio.

2.1  Comparison with the Bayesian Approach

In Bayesian mechanism design [5, 10], there is also a prior distribution from 
which the agent types come from. However, the objective is to characterize the 
maximum ratio (for some given distribution of the agent types) of the expected 
social welfare (or social cost) of a truthful mechanism over the expected social 
welfare (or social cost) of the optimal mechanism. So, the metric in the study 
of the Bayesian approach is the ratio of expectations. That is, the objective is to 
characterize the ratio r in the following formula,

Therefore, in Bayesian approach, the optimal mechanism is in respect of the entire 
input space. In other words, it outputs the optimal solution in expectation, when the 
inputs are taken over the entire prior distribution. In contrast, in the analysis of aver-
age-case approximation ratio, the optimal mechanism is in respect of each individual 
input instance.

In light of this difference, also due to the fact that the expectation of the ratio 
is a nonlinear function of the two random variables, the analysis of average-
case approximation ratio introduces more technical challenges. In some specific 
scenarios, a constant average-case approximation ratio would imply a constant 
approximation ratio under the Bayesian approach.

p1 =
1

t1 �
t1

0

n
∏

i=2

(

1 −
y

ti

)

dy,

pk =
1

t1tk �
t1

0 �
y

0

∏

i = 2,… , n

i ≠ k

(

1 −
x

ti

)

dx dy, for k ≠ 1.

raverage(M) = ��∼D

[

SCM(�)

SCOPT(�)

]

,

r ⋅ �
[

SCOPT(�)
] ≤ �

[

SCM(�)
]

.
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3  Average‑Case Approximation Ratio

In this section we show that the average-case approximation ratio of the mechanism 
M is upper bounded by a constant, when the inputs ti ’s follow any independent and 
identical distribution D[tmin,∞) , where tmin is the minimum processing time for the 
task.

Let h be a constant, and denote event A = {t n
2

≤ h ⋅ tmin} . So, it corresponds to 
the case that the n

2
-th order statistic of the inputs ti ’s is less than or equal to h ⋅ tmin . 

Firstly, we show that if A is true, then the social cost of the mechanism M is upper 
bounded by a constant times t1.

Lemma 1 For any constant h > 0, given that event A holds, we have

Proof The expected cost of the mechanism M is

Since 1 − y

ti
≤ 1 for any y ∈

[

0, t1
]

, i = 2,… , n , we can simply bound the first term 
by

Because event A holds, i.e., t n
2

≤ h ⋅ tmin , we have 
∏

i = 2,… , n

i ≠ k

�

1 −
x

ti

� ≤ �

1 −
x

h⋅tmin

�
n

2
−2

⋅ 1
n

2 ,∀k = 2,… , n . So we can bound the 

second term as follows.

SCM(�) ≤ (2h + 1)t1.

SCM(�) =

n
∑

i=1

pi ⋅ ti = �
t1

0

n
∏

i=2

(

1 −
y

ti

)

dy

+

n
∑

k=2

1

t1 �
t1

0 �
y

0

∏

i = 2,… , n

i ≠ k

(

1 −
x

ti

)

dxdy

�
t1

0

n
∏

i=2

(

1 −
y

ti

)

dy ≤ �
t1

0

1dy = t1
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The last term approaches 2ht1 as n approaches infinity. So, 
SCM(�) =

∑n

i=1
pi ⋅ ti ≤ (2h + 1)t1.   ◻

Since SCOPT(�) = t1 , we get the following Corollary.

Corollary 1 When event A holds, we have

Obviously, Lemma 1 and Corollary 1 hold regardless of the distribution.
Secondly, we show that there exists a constant h such that event A occurs with a 

large probability. Intuitively, the larger h is, the higher the probability that event A 
occurs. We will need the following Lemma to find such an h.

Lemma 2 For any n > 1, we have 
�

n

n∕2

� ≤ e

�
√

n
⋅ 2n, where e is the base of the natural 

logarithm.

Proof According to the estimation by [24],

where 1

12n+1
< r(n) <

1

12n
 . Here we only need a looser bound to prove our lemma, 

i.e.,

We have

n
∑

k=2

1

t1 �
t1

0 �
y

0

∏

i = 2,… , n

i ≠ k

(

1 −
x

ti

)

dx dy

≤
n
∑

k=2

1

t1 �
t1

0 �
y

0

(

1 −
x

h ⋅ tmin

)
n

2
−2

⋅ 1
n

2 dx dy

≤ n − 1

t1 �
t1

0 �
y

0

(

1 −
x

h ⋅ t1

)
n

2
−2

dx dy

=
n − 1

t1 �
t1

0

(

2ht1

n − 2
−

2ht1

n − 2

(

1 −
y

ht1

)
n

2
−1
)

dy

=
n − 1

t1

[

2ht2
1

n − 2
+

4h2t2
1

n(n − 2)

(

(

1 −
1

h

)

n

2

− 1

)

]

≤ n − 1

n − 2
⋅ 2ht1

��∼D

[

SCM(�)

SCOPT(�)

]

≤ 2h + 1.

n! =
√

2�nn+
1

2 e−n+r(n),

√

2𝜋nn+
1

2 e−n < n! <
√

2𝜋nn+
1

2 e
−n+

1

12n < n
n+

1

2 e−n+1.
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  ◻

Next we show that event A can occur with a large probability, with a properly cho-
sen h.

Lemma 3 For any n > 1, there exists a constant h, such that F(htmin) ≥ 11

12
, and we 

have

where F is the cumulative distribution function of t.

Proof Since A = {t n
2

≤ h ⋅ tmin} , the probability that event A occurs can be calcu-
lated by

Since 
(

1 − F(htmin)
)n−k ≤ (

1 − F(htmin)
)n∕2 , 

(

n

k

) ≤ (

n

n∕2

)

 , k = 0,⋯ ,
n

2
− 1 , and 

(

F(htmin)
)k

< 1 , we get

By choosing h such that F(htmin) ≥ 11

12
 , we get

�

n

n∕2

�

=
n!

(
n

2
)!(

n

2
)!

≤ e
√

n(
n

e
)n

�

�

2�
n

2

�

n

2e

�
n

2

�2
=

e

�
√

n
⋅ 2n

Pr[A] ≥ 1 −
e

2�
⋅

1

n
,

(1)

Pr[A] = Pr[t n
2

≤ h ⋅ tmin]

=

n
∑

k=
n

2

(

n

k

)

(

F(htmin)
)k(

1 − F(htmin)
)n−k

= 1 −

n

2
−1
∑

k=0

(

n

k

)

(

F(htmin)
)k(

1 − F(htmin)
)n−k

(2)

(1) ≥ 1 −

n

2
−1
�

k=0

�

n

n∕2

�

�

1 − F(htmin)
�

n

2

= 1 −
n

2

�

n

n∕2

�

�

1 − F(htmin)
�

n

2

≥ 1 −
n

2
⋅

e

�
√

n
⋅ 2n ⋅

�

1 − F(htmin)
�

n

2
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The last inequality is due to 3n ≥ n3,∀n > 1.
Therefore, Pr[A] ≥ 1 −

e

2�
⋅

1

n
 .   ◻

We can then bound the probability of the case that the expected cost of the mech-
anism M is larger than (2h + 1)t1.

Lemma 4 When event A holds, and for the choice of h in the above lemma, we have

Proof According to Lemma 1, event A implies SCM(�) ≤ (2h + 1)t1 , so we have

Hence,

According to Lemma 3, we have

So,

  ◻

We have established necessary building blocks. By carefully choosing the param-
eter h, we can partition the valuation space into two sets: {SCM(�) ≤ (2h + 1)t1} and 
{SCM(�) > (2h + 1)t1} . Last, we will use Corollary  1 and Lemma  4 to prove our 
main result. Essentially, Corollary 1 upper bounds the expected approximation ratio 
of the first case and Lemma 4 upper bounds the probability of the second case occur-
ring. Note that in any case, the worst-case ratio is upper bounded by n+1

2
 according to 

Koutsoupias [11]. By adding them up together, we obtain our upper bound.

Theorem  1 For any distribution on [tmin,+∞), and a constant h such that 
F(htmin) ≥ 11

12
, the average-case approximation ratio of the mechanism M is upper 

bounded by 2h + 1.33. That is,

(2) ≥ 1 −
n

2
⋅

e

�
√

n
⋅ 2n ⋅

�

1

12

�

n

2

= 1 −
e

2�
⋅

√

n ⋅ 3−
n

2

≥ 1 −
e

2�
⋅

1

n

Pr
[

SCM(�) > (2h + 1)t1
]

<
e

2𝜋
⋅

1

n
.

Pr[A] ≤ Pr[SCM(�) ≤ (2h + 1)t1]

1 − Pr[A] ≥ Pr[SCM(�) > (2h + 1)t1]

1 − Pr[A] ≤ e

2�
⋅

1

n

Pr
[

SCM(�) > (2h + 1)t1
]

<
e

2𝜋
⋅

1

n



1648 Algorithmica (2021) 83:1638–1652

1 3

Proof It is easy to see that the above two sets are collectively exhaustive and mutu-
ally exclusive, and Lemma 4 holds. So we have

Therefore, the average-case approximation ratio of the mechanism M is upper 
bounded by 2h + 1.33 .   ◻

In hindsight, when the costs of the machines ti ’s follow any heavy-tailed distribution, 
the mechanism M has a constant average-case approximation ratio bound. However, 
this was not intuitively foreseeable, as the social cost of the mechanism M depends on 
how often the inputs contain large ti and how big they are.

In the following, we give a few examples of the distributions to show the choice of h 
and the constant upper bounds for these distributions.

Example 1: Pareto Distribution
The Pareto distribution is a power law distribution that is widely used in the descrip-

tion of social, scientific, geophysical, actuarial, and many other types of observable 
phenomena. According to the influential studies by Arlitt and Williamson [2] and Reed 
and Jorgensen [23] as well as the references therein, the distributions of web server 
workload and of Internet traffic which uses the TCP protocol match well with the 
Pareto distribution.

That is, for a random variable T chosen from this Pareto distribution, the probability 
that T is smaller than a value t, is given by

raverage = ��∼D

[

SCM(�)

SCOPT(�)

]

< 2h + 1.33

raverage = ��∼D

[

SCM(�)

SCOPT(�)

]

≤ Pr
[

SCM(�) ≤ (2h + 1)t1
]

⋅ �

[

SCM(�)

SCOPT(�)

]

+ Pr
[

SCM(�) > (2h + 1)t1
]

⋅ �

[

SCM(�)

SCOPT(�)

]

≤ Pr
[

SCM(�) ≤ (2h + 1)t1
]

⋅ (2h + 1)

+ Pr
[

SCM(�) > (2h + 1)t1
]

⋅

n + 1

2

≤ 1 ⋅ (2h + 1) +
e

2𝜋
⋅

1

n
⋅

n + 1

2

= 2h + 1 +
e

4𝜋
⋅

n + 1

n

≤ 2h + 1 +
3e

8𝜋

< 2h + 1.33

F(t) = Pr(T < t) =

{

1 −
(

tmin

t

)𝛼

t ≥ tmin

0 t < tmin
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where 𝛼 > 0 is the tail index of the distribution.
Note that in the proof of Theorem 1, the only place we need to deal with the 

particular distribution is Lemma 3. So, by handling the constant h for the Pareto 
distribution, we obtain the following result.

Theorem 2 For the Pareto distribution, let h = 12
1

�. The average-case approxima-
tion ratio of the mechanism M is upper bounded by 2 ⋅ 12

1

� + 1.33.

Proof For the Pareto distribution, let h = 12
1

� . In Lemma 3, we would have

The rest of the proof follows the proof of Theorem 1.   ◻

Example 2: Exponential Distribution
We then consider the case that the machines’ costs ti ’s are independent vari-

ables and follow a truncated Exponential distribution D[tmin,∞) . That is, for a 
random variable T chosen from this Exponential distribution, the probability that 
T is smaller than a value t, is given by

Pr[A] = Pr[t n
2

≤ h ⋅ tmin]

=

n
�

k=
n

2

�

n

k

�

�

F(htmin)
�k�

1 − F(htmin)
�n−k

=

n
�

k=
n

2

�

n

k

�

�

1 −
1

h�

�k� 1

h�

�n−k

= 1 −

n

2
−1
�

k=0

�

n

k

�

�

1 −
1

h�

�k� 1

h�

�n−k

≥ 1 −

n

2
−1
�

k=0

�

n

n∕2

�

�

1

h�

�

n

2

= 1 −
n

2

�

n

n∕2

�

�

1

h�

�

n

2

≥ 1 −
n

2
⋅

e

�
√

n
⋅ 2n

�
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2

= 1 −
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⋅

e
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2
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⋅
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n ⋅ 3−
n

2

≥ 1 −
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⋅
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where 𝜆 > 0 is the tail index of the distribution.

Theorem  3 For the Exponential distribution, let h =
1

�tmin

ln 12. The average-case 
approximation ratio of the mechanism M is upper bounded by 2 ⋅ 1

�tmin

ln 12 + 1.33.

The proof is similar to the case of a Pareto distribution.
Example 3: Log-logistic Distribution
The log-logistic distribution is the probability distribution of a random variable 

whose logarithm has a logistic distribution. It is similar in shape to the log-normal 
distribution but has heavier tails. It is used in networking to model the transmission 
times of data. The cumulative distribution function is

where 𝛼 > 0 is a scale parameter and 𝛽 > 0 is a shape parameter. For simplicity, we 
take � = 1 and have the following result.

Theorem  4 For the Log-logistic distribution, let h =
1

tmin

⋅ e
ln 11

�  . The average-case 

approximation ratio of the mechanism M is upper bounded by 2 ⋅ 1

tmin

⋅ e
ln 11

� + 1.33.

4  Conclusion and Future Work

In this paper, we extended the worst-case approximation ratio analysis for the sched-
uling problem studied in [11] to the average-case approximation ratio analysis. We 
showed that, when the costs of the machines are independent and identically dis-
tributed, the average-case approximation ratios of the optimal mechanism M have 
constant bounds, which is asymptotically better than the worst-case approximation 
ratios. While in the worst case, the expected cost of the mechanism is �(n) times of 
what the optimal cost is, our results offered some relief for deploying the mechanism 
M in practice.

Many problems remain open. Firstly, similar to employing the worst-case analysis 
as a framework for comparing truthful mechanisms, we can employ the average-case 
analysis as a framework. Although the mechanism M in [11] is optimal for the prob-
lem in terms of the worst-case ratio, it may be the case that there are other mecha-
nisms that perform better than M in the average case. Note that this comparison may 
need to be done on a distribution base.

Secondly, it would be interesting to show some lower bounds for the average-case 
ratio of any truthful mechanism, but one should expect some much more involved 

F(t) = Pr(T < t) =

{

1 −
1

e𝜆t
t ≥ tmin

0 t < tmin

F(t;�, �) =
t�

�� + t�



1651

1 3

Algorithmica (2021) 83:1638–1652 

arguments than their worst-case lower bound counterparts, and again, very likely 
different distributions need to be handled differently.

One might query the smoothed analysis of the mechanism M . We note, though, 
unlike the random priority mechanism studied in [7] that has a constant smoothed 
approximation ratio, the smoothed ratio of the mechanism M would not be asymp-
totically different from the worst-case ratio. To see this, the tight bound example in 
the worst-case analysis of the mechanism M is obtained when the ratio of the mini-
mum value of the processing times against the maximum value of the processing 
times approaches 0, i.e., t1∕tn → 0 . Obviously, any small perturbation around these 
inputs would not change the nature of this fact.

Many more approximate mechanism design problems deserve average-case anal-
ysis to understand the nature of the problems and the performance of the mecha-
nisms designed to optimize their worst-case performance.
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