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Abstract
Obvious strategyproofness (OSP) is an appealing concept as it allows to maintain 
incentive compatibility even in the presence of agents that are not fully rational, i.e., 
those who struggle with contingent reasoning (Li in Am Econ Rev 107(11):3257–
3287, 2017). However, it has been shown to impose some limitations, e.g., no OSP 
mechanism can return a stable matching (Ashlagi and Gonczarowski in J Econ The-
ory 177:405–425, 2018). We here deepen the study of the limitations of OSP mecha-
nisms by looking at their approximation guarantees for basic optimization problems 
paradigmatic of the area, i.e., machine scheduling and facility location. We prove a 
number of bounds on the approximation guarantee of OSP mechanisms, which show 
that OSP can come at a significant cost. However, rather surprisingly, we prove that 
OSP mechanisms can return optimal solutions when they use monitoring—a novel 
mechanism design paradigm that introduces a mild level of scrutiny on agents’ dec-
larations (Kovács et al. in WINE 9470:398–412, 2015).

Keywords Mechanism design · Obvious strategyproofness · Approximation ratio · 
Monitoring

1 Introduction

Algorithmic mechanism design (AMD) is by now an established research area in com-
puter science that aims at conceiving algorithms resistant to selfish manipulations. As 
the number of parties (a.k.a., agents) involved in the computation increases, there is, in 
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fact, the need to realign their individual interests with the designer’s. Truthfulness is the 
chief concept to achieve that: in a truthful mechanism, no selfish and rational agent has 
an interest to misguide the mechanism. A valid question of recent interest is, however, 
how easy it is for the selfish agents to understand that it is useless (and possibly costly) 
to attempt to strategize against the truthful mechanism at hand.

Recent research has come up with different approaches to deal with this question. 
Some authors [1, 5, 9, 39] suggest to focus on “simple” mechanisms; e.g., in posted-
price mechanisms one’s own bid is immaterial for the price paid to get some goods 
of interest—this should immediately suggest that trying to play the mechanism is 
worthless no matter the cognitive abilities of the agents. However, in such a body of 
work, this property remains unsatisfactorily vague. An orthogonal approach is that of 
verifiably truthful mechanisms [7], wherein agents can run some algorithm to effec-
tively check that the mechanism is incentive compatible. Nevertheless, these verifica-
tion algorithms can run for long (i.e., time exponential in the input size) and are so far 
known only for quite limited scenarios. Importantly, moreover, they seem to transfer 
the question from the mechanism itself to the verification algorithm.

Li [32] has recently formalized the aforementioned idea of simple mechanisms, 
by introducing the concept of Obviously Strategy-Proof (OSP) mechanisms. This 
notion stems from the observation that the practical evidence of truthfulness depends 
on implementation details. For example, in lab experiments, people facing Vickrey’s 
famous second-price mechanism tend to lie more when this is implemented via a 
sealed-bid auction than when run via an ascending auction. The quite technical def-
inition of OSP formally captures how implementation details matter by looking at a 
mechanism as an extensive-form game; roughly speaking, OSP demands that strategy-
proofness holds among some gross-grained aggregations of strategy profiles and not 
only among pairs of strategies profiles (see below for a formal definition). An impor-
tant validation for the ‘obviousness’ is further provided by Li [32] via a characterization 
of these mechanisms in terms of agents with limited cognitive abilities (i.e., agents with 
limited skills in contingent reasoning). Specifically, Li shows that a strategy is obvi-
ously dominant if and only if these “limited” agents can recognize it as dominant. OSP 
is consequently a very appealing notion as in many cases rationality has been seen as 
the main obstacle to concrete applications of mechanism design paradigms, cf., e.g., 
Ferraioli et al. [16]; such a relaxation might be a panacea in these cases.

Since its introduction the concept of obviously strategyproofness has been adopted 
both for allocation problems [3, 6, 18, 32] and for preference aggregation problems [6]. 
Nevertheless, for all its significant aspects, there appear to be hints that the notion of 
OSP mechanisms might be too restrictive. Ashlagi and Gonczarowski [3] prove, for 
example, that no OSP mechanism can return a stable matching—thus implying that the 
Gale–Shapley matching algorithm is not OSP.

1.1  Our Contribution

We investigate the power of OSP mechanisms in more detail from a theoretical com-
puter science perspective. In particular, we want to understand the quality of approx-
imate solutions that can be output by OSP mechanisms. To answer this question, we 
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focus on two fundamental optimization problems, machine scheduling [2] and facil-
ity location [34], arguably (among) the paradigmatic problems in AMD.

For the former problem, we want to compute a schedule of jobs on selfish related 
machines (i.e., machines with job-independent speeds) so to minimize the makes-
pan. For this single-dimensional problem, it is known that a truthful PTAS is pos-
sible [10]. In contrast, we show that there is no better than 2-approximate OSP 
mechanism for this problem independently from the running time of the mecha-
nism. This result highlights a stark contrast between machine scheduling and auc-
tions. Specifically, [32] characterizes obviously strategyproof mechanisms for every 
single-dimensional problem where the output is binary (e.g., item won or not); it is 
not too hard to see that certain optimal algorithms fall within the characterization. 
Our result, instead, shows that when the output is more general than binary, even 
simple single-parameter problems become hopeless if obvious strategyproofness is 
required.

For the facility location problem, we want to determine the location of a facility 
on the real line given the preferred locations of n agents. The objective is to mini-
mize the social cost, defined as the sum over the individual agents of the distances 
between their preferred location and the facility’s. Moulin [34] proves that the opti-
mal mechanism, that places the facility on the median of the reported locations, 
is truthful without money (i.e., the mechanism does not pay or charge the agents). 
OSP mechanisms without money turn out to be much weaker than that. Badem and 
Gonczarowski [6] indeed prove that this median mechanism is not OSP. Here, we 
strengthen this result, by proving in fact a tight bound of n − 1 on the ratio between 
the social cost output by an OSP mechanism and the optimal social cost. Interest-
ingly, this bound can be shown also for mechanisms that use money, thus show-
ing that transfers are not useful at all to enforce OSP. The proof of this fact uses a 
novel lower bounding technique for OSP mechanisms wherein the bidding domain 
(or, equivalently the strategy set) of the lying agent does not necessarily have size 
two; we in fact show that it is enough to identify two particular values in the bidding 
domain for our argument to work no matter the size of the domain.

However, a surprising connection of OSP mechanisms with a novel mechanism 
design paradigm—called monitoring—allows us to prove strong positive results. 
Building upon the notion of mechanisms with verification [26, 35, 36, 42], Kovács 
et  al. [28] introduce the idea that a mechanism can check the declarations of the 
agents at running time and guarantee that those who overreported their costs end 
up paying the exaggerated costs. This can be enforced whenever costs can be easily 
measured and certified. For example, a mechanism can force a machine that in her 
declaration has augmented her running time to work that long by keeping her idle 
for the difference between real and reported running time.1

1 Based on the specific setting, this extra cost to misreporting users can be seen as corrective fines or 
exaggeration penalties (when they involve money) or cost guarantees (when monetary transfers are not 
allowed). While these terms are more explicit in this context, their general significance is less obvious 
and ultimately depends on the specific setting at the hand. For this reason, in this work we prefer to use 
the less explicit but more general term “monitoring”, as adopted in previous literature.
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We first prove that, no matter the algorithm at hand, there exists an OSP mech-
anism with monitoring that always compensates the agents their costs. This reim-
bursement mechanism, introduced in the context of mechanisms with monitoring 
by Serafino et  al. [40] (with the name of first-price mechanisms), yields a couple 
of interesting observations in the context of OSP mechanisms. Firstly, it is the first 
direct-revelation OSP mechanism. As such it does not need any assumption on the 
agents’ bidding domain nor to repeatedly query/interact with the agents. Secondly, 
the mechanism uses the algorithm at hand as a black box thus reconciling approx-
imation and obvious strategyproofness. This is relevant because, even for truthful 
mechanism, it is known that, without monitoring, black box reduction to a non-
truthful algorithm may not exist [11].

We remark that similar implementability results are also known for strategy-
proofness; in particular, Caragiannis et  al. [8] proved that one can design truthful 
mechanisms for every social function if provided with probabilistic verification and 
large fines, where probabilistic verification means that each agent has some non-zero 
probability of being captured lying, and if caught lying she is charged a fine. Our 
theorem can be then seen as an extension of this result to OSP, where monitoring 
and reimbursements replace probabilistic verification and large fines (an extension 
of the results of [8] to OSP that instead consider probabilistic verification is given 
in [14]. The two sets of assumptions are formally speaking orthogonal to each other. 
Arguably, however, the designer has much less power in the way she controls the 
agents in the monitoring setting, and reimbursements are more natural than extrava-
gantly large fees (whose enforceability might be doubtful).

Our general result can be applied to both our problems of interest, and prove the 
existence of optimal OSP mechanisms with monitoring. Clearly, the optimal mecha-
nism for machine scheduling runs in exponential time; a PTAS that is OSP can how-
ever be obtained by plugging in the appropriate approximation algorithm.

Nevertheless, as noted in related literature [37], paying the agents in facility 
location problems might not be feasible in certain contexts. We therefore look at 
mechanisms that charge agents to use the facilities (e.g., via a subscription fee); note 
that, as stated above, transfers ought to be used for good approximations. We design 
the interval mechanism for facility location that is optimal, OSP with monitoring 
and charges (rather than paying) the agents. This construction adapts the first-price 
mechanism in [40] to guarantee obvious strategyproofness even in absence of funds 
to pay the agents.

Our results for facility location draw an interesting parallel between OSP and 
truthful mechanisms. On the one hand, our bounds for OSP mechanisms without 
money are in stark contrast with the case of strategyproof mechanisms where the 
optimum is known to be truthful [34]. On the other hand, our results for OSP 
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mechanisms can be likened to truthful mechanisms for K-facility location, K ≥ 2 , 
where there is a linear gap between truthful approximations with and without 
money [20, 37] (incidentally, there are hints that the gap remains linear also for 
relaxed notions of truthfulness without money [17]—in the case of OSP mecha-
nisms the price to pay to close the gap is not only money, but also monitoring.

Finally, we focus on the frugality [12, 25, 40, 41] of the interval mechanism, 
i.e., on the possibility to implement an optimal mechanism that is OSP with mon-
itoring and charges agents with less demanding payments. To this aim, we intro-
duce the optimized interval mechanism (OIM), that allows to reduce payments 
in some cases. We also show that payments assigned by this mechanism cannot 
be further lowered as long as one insists on OSP direct-revelation mechanisms. 
Finally we show that even in the most general class of OSP mechanisms, it is 
impossible to find a mechanism that outperforms OIM on every input.

2  Preliminaries

In this work we consider a classical mechanism design setting, in which we have 
n selfish agents and a social choice function to be implemented.

Each agent i has a true type ti ∈ Di , where Di is defined as the domain of i. The 
true type ti is private knowledge of agent i. We will denote with D = D1 ×⋯ × Dn 
the set of type profiles. A social choice function consists of a decision policy f that 
associates each type profile � ∈ D with a public decisions z ∈ Z , and a payment 
policy p that assigns to each type profile � ∈ D a payment profile � = (p1,… , pn) , 
that defines for each agent a payment from the mechanism to each agent. Note 
that the pi ’s can be positive (meaning that the mechanism will pay the agents) or 
negative (meaning that the agents will pay the mechanism).

Moreover, each selfish agent i has a cost function ci ∶ Di ×O → ℝ , where 
O = Z ×ℝ

n . For di ∈ Di and O ∈ O , ci(di,O) is the cost paid by agent i to imple-
ment O when her type is di . Note that we presented our setting for agents having 
a cost to implement the solution chosen by the mechanism; clearly, in some set-
tings, as for example auctions, agents have a non-negative valuation (i.e., non-
positive cost) for the outcome. Our positive results extend also to these settings, 
as we do not rely on the sign of the costs.

Mechanism Implementation Tree  A mechanism then consists of a protocol that 
produces an outcome (z,�) ∈ O . To this aim, the mechanism is allowed to interact 
with agents. During this interaction, agent i is observed to take actions (e.g., saying 
yes/no). Each action of agent i may signal some properties that only a subset of the 
types in Di enjoy (e.g., in English auctions saying “yes” signals that the valuation 
of the agent for the item is above the current price, and saying “no” signals that it is 
below). In other words, each action of i may restrict the set of types of i to a subset 
of Di . To stress this, we then say that agent i takes an action according to di , where 
di is any of the types of i as signaled by the actions taken by this agent. Clearly, 
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the choice of the action taken by the agent can depend on the current status of the 
mechanism’s execution.

We formally model this through the concept of mechanism implementation tree. 
Our definition is different from the original one given in Li [32], and is based on 
the concept of round-table mechanism defined in Mackenzie [33]. (The two defini-
tions are formally proved to be equivalent for what concerns the definition of obvi-
ous strategyproof mechanisms.) Specifically, a mechanism implementation tree is a 
directed tree T = (V ,E) such that:

• every leaf � of the tree is labeled by a possible outcome O(�) ∈ O of the mecha-
nism;

• every internal vertex u ∈ V  is labeled by an agent S(u) ∈ [n] of agents;
• every edge e = (u, v) ∈ E is labeled by a subset D(e) ⊆ D of type profiles such 

that:

• the subsets of profiles that label the edges outgoing from the same vertex u 
are disjoint, i.e., for every triple of vertices u, v, v′ such that (u, v) ∈ E and 
(u, v�) ∈ E , we have that D(u, v) ∩ D(u, v�) = �;

• the union of the subsets of profiles that label the edges outgoing from a non-
root vertex u is equal to the subset of profiles that label the edge going in u, 
i.e., 

⋃
v∶(u,v)∈E D(u, v) = D(�(u), u) , where �(u) is the parent of u in T ;

• the union of the subsets of profiles that label the edges outgoing from the root 
vertex r is equal to the set of all profiles, i.e., 

⋃
v∶(r,v)∈E D(r, v) = D;

• for every u, v such that (u, v) ∈ E and for every two profiles �, �� ∈ D(�(u), u) 
such that di = d�

i
 , where i = S(u) , if � belongs to D(u, v), then also �′ must 

belong to D(u, v).

Roughly speaking, the tree represents the steps of the execution of the mechanism. 
As long as the current visited vertex u is not a leaf, the mechanism interacts with 
agent S(u). Different edges outgoing from vertex u are used for modeling the dif-
ferent actions that this agent can take during this interaction with the mechanism. 
As stated above each action signals some property that only some subset of types 
of S(u) can satisfy. Hence, by taking a specific action at node u, S(u) is publicly 
announcing that her type belongs to the subset corresponding to that action. Our 
definition allows to identify the publicly announced subset of types with each action 
through the label D(e) on edge e = (u, v) : this lists all type profiles in D(�(u), u) in 
which the type of S(u) belongs to the subset of types corresponding to the action 
associated to edge e. Note that we can safely assume that different actions must sig-
nal different subset of types (indeed, if two different actions are signalling the same 
types we can consider them as a single action). The execution ends when we reach a 
leaf � of the tree. In this case, the mechanism returns the outcome that labels �.

Observe that, according to the definition above, for every profile � there 
is only one leaf � = �(�) such that � belongs to D(�(�),�) . For this reason we 
slightly abuse notation, and say that M(�) = O(�) , where M(�) denotes the out-
come returned by the mechanism when agents take actions according to types 
� = (d1,… , dn) . The mechanism is then said to implement a social choice function 
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(f, p) if M(�) = (f (�), p(�)) for every type profile � ∈ D . A mechanisms is said 
without money if the social choice function that it implements sets p(�) = 0n , i.e., 
it assigns a null payment to every agent i and for every profile � ∈ D . Moreo-
ver, a mechanism M is said to satisfy voluntary participation (aka, individual 
rationality) if for every i and every �−i = (d1,… , di−1, di+1,… , dn) , it holds that 
ci(ti,M(ti, �−i)) ≤ 0 , where ti is the true type of i.

Obvious Strategyproofness  Let us now formally define the concept of obviously 
strategyproof mechanism. This concept has been introduced in  [32]. However, we 
here provide a different definition based on [33].

Given a mechanism M with implementation tree T = (V ,E) , for every type pro-
file � and every node u ∈ V  , we say that � is compatible with u if � ∈ D(�(u), u) . 
Finally, two profiles � , �′ are said to diverge at vertex u if there are two distinct 
vertices v, v′ such that (u, v) ∈ E , (u, v�) ∈ E and � ∈ D(u, v) , whereas �� ∈ D(u, v�).

An M with implementation tree T  is obviously strategyproof (OSP) if for 
every agent i, for every vertex u such that i = S(u) , for every �−i, ��−i (not neces-
sarily different), and for every di ∈ Di , such that di is different from the true type ti 
of i, and both (ti, �−i) and (di, ��−i) are compatible with u, but diverge at u, it holds 
that ci(ti,M(ti, �−i)) ≤ ci(ti,M(di, �

�
−i
)) . Roughly speaking, an obvious strategy-

proof mechanism requires that, at each time step agent i is asked to take a deci-
sion that depends on her type, the worst cost that she can pay if at this time step 
she behaves according to her true type is at least the same as the best cost achiev-
able by different strategies. Note, in fact, how the definition considers inconsist-
ent strategies, where agents take actions according to different types at different 
nodes of the tree. In fact, for each node u of the tree in which player i can separate 
ti from a different type in Di with her actions, we compare her cost for each of the 
leaves below u in which she plays according to her type ti with all of the leaves 
below u where she deviates to something different from ti . (We remark that our 
definition of ci takes the payments into account.)

This also highlights the difference with strategyproof mechanisms M : in 
a strategyproof mechanism always taking actions according to the true type is 
dominant for each agent; then in strategyproof mechanisms we do not compare 
all the leaves below a tree node u where agent i can separate her true type from 
other reports in her domains but we only focus on the leaves where �−i is the 
same. Hence, if a mechanism is obviously strategyproof, then it is also strategy-
proof. Indeed, the latter requires that an agent would be able to consider all pro-
files of other agents’ types and to evaluate for each of these that truthful behavior 
provides a larger welfare. In obviously strategyproof mechanisms, an agent only 
needs to look at aggregates of the other agents’ types profiles, roughly the worst 
type profile and the best one, and it is required to evaluate that truthful behavior 
is the best option only against these two aggregates. Clearly, being the most prof-
itable choice even against the worst type profile implies that truthful behavior is 
the best option for every profile, and thus strategyproofness.
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However, the opposite does not necessarily hold. The simplest example of 
this fact is given by sealed-bid second-price auctions that are known to be strat-
egyproof and to produce the same outcome as English ascending-price auctions. 
However, for the latter it can be easily proved they are OSP, whereas for the for-
mer this is not the case [32].

It is important in our context to focus on mechanisms that are not trivial. We 
say that a mechanism with implementation tree T  is trivial if for every vertex 
u ∈ V  and for every two type profiles �, �′ , it holds that � and �′ do not diverge 
at u. That is, a mechanism is trivial if it never requires that agents take actions 
that depend on their type. Observe that if a mechanism M is not trivial, then 
every path from the root to one leaf goes through a vertex u⋆ such that there are 
two type profiles �, �′ that diverge at u⋆ . Since � ≠ �′ , then there exists agent 
i⋆ = S(u⋆) such that di⋆ ≠ d′

i⋆
 . For this reason, we call i⋆ the divergent agent for 

the mechanism M . Note that the divergent agent takes a decision that depends on 
her own type before any other agents revealed any information about their own 
type. For this reason, in order to prove that a mechanism is not obviously strate-
gyproof, it is sufficient to show that there are two type profiles �, �′ with di⋆ ≠ d′

i⋆
 

such that they diverge at u⋆ , and ci⋆(di⋆ ,M(�)) > ci⋆ (di⋆ ,M(��)).
Let us state two further properties of obvious strategyproofness, that turn out 

to be very useful in the rest of the paper. First, if M is OSP when the type profile 
is taken from D, then it continues to be OSP even if the types are only allowed to 
be selected from D� = D�

1
×⋯ × D�

n
 , where D′

i
⊆ Di [32]. Moreover, let us define 

M
′ obtained from M by pruning, i.e. removing, the paths involving actions corre-

sponding to types in D ⧵ D′ . If M is OSP, then also M′ enjoys this property [32].

Direct Revelation Mechanisms  M is said to be a direct-revelation mechanism 
if, for every i, the set of actions that agent i can take during the interaction with the 
mechanism coincides with her domain Di and its (obvious) dominant strategy is to 
always take the action that coincides with her true type ti.

Observe that direct-revelation mechanisms are not constrained in the order in 
which agents interact with mechanism (in particular, in order to fit our definition 
of OSP mechanisms, we will assume that agents reveal their types sequentially).

Monitoring  Commonly, the cost incurred by agent i for the outcome (z,�) is 
defined as a quasi-linear combination of the expense faced by an agent of type ti for 
implementing the public decision z, that with a slight abuse of notation we denote as 
ti(z) , and the payment pi , i.e., ci(ti, (z,�)) = ti(z) − pi . This approach disregards the 
agent’s declaration for evaluating her cost.
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In mechanisms with monitoring the usual quasi-linear definition is maintained 
but costs paid by the agents are more strictly tied to their declarations [28]. Spe-
cifically, in a mechanism with monitoring M , if z is the public decision returned 
by the mechanism when agents behave as if their types was as in the profile � , 
then the expense that i would incur if her true type was the declared type di is con-
sidered a lower bound on the real agent i’s expense for z. So an agent is allowed 
to have a real expense higher than di(z) but not lower.2 Formally, we have3

Note that practical implementation is possible whenever evidences of the expense 
faced by an agent can be provided (and cannot be counterfeited). Indeed, once the 
evidence is provided, the mechanism can check whether ti(f (�)) < di(f (�)) and 
charge the agent the difference for cheating.4

We next describe two specific problems of interest.

Machine Scheduling  Here, we are given a set of m different jobs to execute and 
the n agents control related machines. That is, agent i has a job-independent process-
ing time ti per unit of job (equivalently, an execution speed 1∕ti that is independent 
from the actual jobs). The set of public decisions Z consists of all possible schedules 
� = (z1,… , zn) of jobs to the machines, where zi ∈ {0,… ,m} and 

∑
i zi = m . Here 

zi denotes the job load assigned to machine i. The expense that agent i faces for 
implementing the schedule � is ti(�) = ti ⋅ zi . Note that our mechanisms for machine 
scheduling will always pay the agents.

We focus on mechanism implementing social choice functions whose decision 
policy f ∗ optimizes the makespan, i.e.,

ci(ti,M(�)) = max{ti(f (�)), di(f (�))} − pi(�).

f ∗(�) ∈ argmin
�

��(�, �), ��(�, �) =
n

max
i=1

di(�).

2 We highlight that the designer only checks that agents are not “better” than declared. That is, agents 
can pretend to have a higher expense but this will force him to pay at least that amount. Agents can still 
underbid and at execution time have a higher expense (e.g., they could say to have underestimated their 
expenses). Note that contrarily to the notion of verification in [35] there is here no punishment for this 
misbehavior.
3 Observe that this definition is tailored to direct relevation mechanisms, where each strat-
egy profile is associated to a different leaf of the implementation tree. Since our positive result 
uses direct relevation mechanisms, this is not an issue. For general extensive-form mechanisms, 
each leaf can correspond to more than one profile. The definition of monitoring should then spec-
ify which type di compatible with the leaf reached ought to be used to monitor agent i—see dis-
cussion in [30]. For our negative results, we focus on a pessimistic notion of monitoring where 
ci(ti,M(�)) = max{ti(f (�)), mind�

i
compatible with �(�) d

�
i
(f (�))} − pi(�) , where �(�) denotes the unique leaf 

associated to the profile �.
4 One relevant applicative scenario here is for example for reimbursement of previously declared 
expenses. These expenses are usually reimbursed only upon production of receipts so that for agents to 
be consistent with overbidding they need to pay the exaggerated (reported) cost. Receipts are in this case 
the evidence that one needs to “monitor” the agents.
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We say that the mechanism M is �-approximate if the public decision z returned by 
the mechanism when agents behave according � has a makespan that is at most a 
factor � away from decision returned by f ∗ on the same input. In this case, we also 
say that � is the approximation ratio of mechanism.

In this setting, monitoring means that those agents who have exaggerated their 
unitary processing time, i.e., they take actions according to di > ti , can be made to 
process up to time di instead of the true processing time ti . Note that this can be 
easily achieved in many real-world scenarios even without “evidence”, by simply 
programming jobs so that they run dummy operations until time di if the outcome is 
returned before such time.

Facility Location  In the facility location problem, the type ti of each agent consists 
of her position on the real line. The set of public decisions Z consists of a position 
z ∈ ℝ for the facility. The expense that agent i pays for having the facility in position 
z is ti(z) = d(ti, z) = |ti − z| . So, ti(z) denotes the distance between ti and the location 
of the facility.

We focus on mechanisms implementing social choice functions whose decision 
policy f ∗ optimizes the social cost, i.e.,

As above, we say that the mechanism M is �-approximate if the public decision z 
returned by the mechanism when agents behave according � has a social cost that 
is at most a factor � away from decision returned by f ∗ on the same input, and we 
denote � as the approximation ratio of the mechanism.

3  A General Positive Result

For an decision policy f, define the payment policy p such that pi(�) = di(f (�)) . 
We call the direct-revelation mechanism (that implements) (f, p) a reimbursement 
mechanism.

Theorem 1 Any direct-revelation reimbursement mechanism is OSP with monitoring 
and satisfies voluntary participation, whatever the order in which agents interact 
with the mechanism.

Proof In order to prove that M = (f , p) is OSP, consider agent i and let ti be her 
true type. We next show that for agent i, being truthful always minimizes her cost, 
regardless of the decisions taken by other agents. To this aim, let us recall that in a 
mechanism with monitoring the cost that i pays, given the submitted type profile is 
� , is

f ∗(�) ∈ argmin
z∈ℝ

����(z,�), ����(z,�) =

n∑
i=1

di(z).
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Suppose that i is truthful; then for every �−i , it turns out that

Suppose, instead, that i lies and says di . Then for all �−i , if di(fi(�)) > ti(fi(�)) then

if, instead, ti(fi(�)) ≥ di(fi(�)) then

Note that all the cost (in)equalities hold no matter the value of �−i . Thus, in both 
cases the best cost that i can obtain by adopting a strategy different from the truthful 
one is not smaller than the worst cost that i can obtain by adopting the truthful strat-
egy, as desired.   ◻

It is important to note that in the construction above, we may use every algorithm 
as a black box. This in particular means that we can turn any optimal (approxima-
tion, resp.) algorithm into an optimal (approximate, resp.) OSP mechanism with 
monitoring (without losses to the approximation guarantee, resp.). Thus, for Combi-
natorial Auctions (CAs) with additive bidders our mechanism with monitoring beats 
the lower bound proved by Badem and Gonczarowski [6] for OSP mechanisms. 
Just as the weaker notion of verification has been shown to be useful in the con-
text of truthful CAs without money [21], our result shows that OSP with monitor-
ing matches the best-known (poynomial-time) approximations achieved not only by 
truthful mechanisms [29, 31], but also by general algorithms [22, 24].

We also stress that this construction is query optimal, as the interaction with each 
agent minimizes the number of queries. It is worthy to observe that such an inter-
action does not need to be simultaneous since obvious strategyproofness is main-
tained even if agents are queried in an adversarially chosen order and know what 
the bidders preceding them have declared. We will see how to exploit this property 
to reduce our payments for facility location. Finally, as observed above, we do not 
require the domain of each agent to be finite.

It should be noted that the reimbursement mechanism might require very large 
payments. Just like frugality is an important research agenda for strategyproof mech-
anisms [12, 25], our result paves the way for further research that looks at obviously 
strategyproof mechanisms, especially indirect revelation ones, with lower payments. 
In Sect.  5.2, we will give a first sample of this approach for the facility location 
problem.

ci(ti,M(�)) = max{ti(fi(�)), di(fi(�))} − pi(�).

ci(ti,M(ti, �−i)) = ti(fi(ti, �−i)) − pi(ti, �−i) = 0.

ci(ti,M(di, �−i)) = di(fi(di, �−i)) − pi(di, �−i) = 0;

ci(ti,M(di, �−i)) = ti(fi(di, �−i)) − pi(di, �−i) > 0.
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4  Machine Scheduling

We now show that, without monitoring, there is no OSP mechanism that satis-
fies voluntary participation and returns an assignment of jobs to machines whose 
makespan is less than twice the makespan of the optimal assignment. Hence, while 
in binary allocation problems, optimal OSP mechanisms are possible [6, 32] only 
within a single parameter setting, for scheduling optimality turns out to be impos-
sible even in this setting.

Interestingly, this is the same lower bound that Nisan and Ronen [35] proved for 
the approximation ratio of strategyproof mechanisms for unrelated machines, i.e., 
when it is not possible to express the processing time of jobs on machines as a prod-
uct of jobs’ load and machine’s unit processing time. We wonder if one can improve 
the lower bound for OSP mechanisms with related machines in order to match 
the best known lower bounds for SP mechanisms with unrelated machines, i.e., 
1 + � ≈ 2.61 for general mechanisms [27], and n for anonymous mechanisms [4].

Theorem  2 For every 𝜀 > 0 , there is no (2 − �)-approximate mechanism for the 
scheduling problem on related machines that is OSP without monitoring and satis-
fies voluntary participation.

Proof Let us consider the simple setting in which there are exactly two machines, 
that we denote with 0 and 1, and two equivalent jobs of unit length. We will denote 
with t0 and t1 the type, i.e., the job processing time, of machine 0 and 1, respectively. 
Suppose there is a k-approximate, with k < 2 , OSP mechanism M that satisfies vol-
untary participation.

Since the mechanism is k-approximate, then it must be the case that: if t0 <
t1

2k
 , 

then M assigns both jobs to machine 0; if t0 > 2k ⋅ t1 , then M assigns both jobs to 
machine 1; if k

2
⋅ t1 < t0 <

2

k
⋅ t1 , then M assigns one job to each machine.

Moreover, since mechanism M = (f , �) is OSP, then it must be also strategy-
proof. Archer and Tardos [2] proved that a mechanism for the machine scheduling 
problem is strategyproof and satisfies voluntary participation if and only if (i) the 
allocation of jobs to machine i ∈ {0, 1} returned by f when the type of the other 
machine is t1−i is monotone, i.e., fi(ti, t1−i) ≤ fi(t

�
i
, t1−i) whenever ti > t′

i
 ; (ii) the pay-

ment that the machine i receives is

In our setting, the monotonicity requirement implies that, for every t1−i , there are 
t� ∈

[
t1−i

2k
,
k

2
⋅ t1−i

]
 and t�� ∈

[
2

k
⋅ t1−i, 2k ⋅ t1−i

]
 , such that machine i is assigned both 

jobs if ti < t′ , only one job if t′ ≤ ti ≤ t′′ , and no jobs if ti > t′′ . Hence, 
pi(ti, t1−i) = t� + t�� if ti < t′ , pi(ti, t1−i) = t�� if t′ ≤ ti ≤ t′′ , and pi(ti, t1−i) = 0 
otherwise.

Let us now restrict the domain of the agents to D� = {a, b}2 , with b > k2a . Let 
M

′ be the mechanism obtained by pruning M according to this restriction. As 

pi(ti, t1−i) = tifi(ti, t1−i) + ∫
∞

ti

fi(x, t1−i)dx.
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stated above, M′ must be an OSP mechanism. Moreover, the approximation ratio of 
M

′ cannot be worse than the approximation ratio of M . Hence, M′ cannot be trivial 
(indeed, a trivial mechanism would have approximation ratio worse than k).

Let i be the divergent agent of M′ . Clearly, a and b are the types in which i 
diverges. Suppose that ti = a . If i behaves according to ti , then it may be the case that 
the other agent behaves according type a too. As showed above, in this case machine 
i receives one job and payment t′′ ≤ 2ka . Hence, ci(a,M(a, a)) ≥ a − 2ka . Suppose 
instead that i behaves as if her type was b. It may be the case that the other agent 
behaves according type b too. Then, machine i still receives one job and a payment 
t′′ ≥ 2

k
⋅ b . Hence,

where we used that b > k2a . In words, the best cost paid by i if she does not behave 
according to her true type can be lower than the worst cost she can pay if she 
behaves according to her true type. Then, the mechanism M′ is not OSP, contradict-
ing our hypothesis.   ◻

Since there is a PTAS for the allocation of jobs to related machines [23], then we 
have the following corollary of Theorem 1.

Corollary 1 There is an OSP mechanism with monitoring that computes the optimal 
scheduling of jobs to related machines (in exponential time). Moreover, there is an 
OSP mechanism with monitoring that is a PTAS for the same problem. Both mecha-
nisms satisfy voluntary participation.

5  Facility Location

We now show that, without monitoring, there is no OSP mechanism for the facility 
location problem with an approximation ratio better than n − 1 . To this aim, let us 
first state the following simple observation.

Observation 1 For every �, � , with 𝛼 < 𝛽 , no k-approximate mechanism M for the 
facility location problem, with k < n − 1 , sets f (�) ≤ � , if di = � and dj = � for 
every j ≠ i , and f (��) ≥ � , if d�

i
= � and d�

j
= � for every j ≠ i , where f is the deci-

sion policy implemented by M.

This observation will be proved below in a more general statement.
Observation 1, if combined with the characterization of OSP mechanisms in the 

setting of voting with single-peaked preferences given in [6], immediately holds 
that no approximation better than n − 1 is possible without monitoring and with-
out money. Next we prove that each of these conditions alone is sufficient for the 

ci(a,M(b, b)) ≤ a −
2

k
⋅ b < a − 2ka = ci(a,M(a, a)),
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inapproximability result. That is, we prove that no approximation better than n − 1 
is possible without monitoring (cf. Theorem 3) or without money (cf. Theorem 4).

Theorem 3 For every 𝜀 > 0 , there is no (n − 1 − �)-approximate mechanism for the 
facility location problem that is OSP without monitoring.

Proof Let M be a (n − 1 − �)-approximate mechanism for the facility location 
problem that is OSP without monitoring and let (f,  p) be the social choice func-
tion that this mechanism implements. Let us restrict the domain of every agent 
to D� = {a, a + �,… , b − �, b} , where � ≤ �

n−2
⋅
b−a

2
 . Let M′ be the mechanism 

obtained by pruning M according to this restriction. As stated above, M′ must be an 
OSP mechanism. Moreover, the approximation ratio of M′ cannot be worse than the 
approximation ratio of M . Hence, M′ cannot be trivial, otherwise its approximation 
ratio would be unbounded.

Then, let i be the divergent agent of M′ . Note that, by definition of divergent 
agent, there must be two types ti, t′i of agent i such that t�

i
= ti + � and i takes an 

action in M′ when her type is ti that is different from the action taken when her type 
is t′

i
 . We denote as c and d the smallest ti and the largest t′

i
 , respectively, for which 

this occurs, i.e., c is the smallest type in D′ such that i diverges on c and c + � , and d 
is the largest type in D′ such that i diverges on d and d − �.

Note that either c < b+a

2
 or d >

b+a

2
 . Indeed, if c ≥ b+a

2
 , then d ≥ c + 𝛿 >

b+a

2
 . In 

the rest of the proof we will assume that c < a+b

2
 . The proof for the case that d >

a+b

2
 

simply requires to replace c with d, c + � with d − � , and b with a, and invert the 
direction of the inequalities in the next claims.

The proof uses two profiles � and � , that are defined as follows:

• xi = c + � , and xk = c for every k ≠ i;
• yi = c , and yk = b for every k ≠ i.

We begin by using OSP to relate payments and outcomes of the mecha-
nism M′ on input � and � . Specifically, we note that if the real loca-
tion of i is ti = xi = c + � then ci(ti,M

�(�)) = d(c + �, f (�)) − pi(�) , and 
ci(ti,M

�(�)) = d(c + �, f (�)) − pi(�) . Since i diverges on c and c + � and M′ is 
OSP, we have that ci(ti,M

�(�)) ≤ ci(ti,M
�(�)) . Hence, it follows that

Suppose instead that the real location of i is t�
i
= yi = c then 

ci(t
�
i
,M�(�)) = d(c, f (�)) − pi(�) , and ci(t

�
i
,M�(�)) = d(c, f (�)) − pi(�) . 

As above, since i diverges on c and c + � and M′ is OSP, we have that 
ci(t

�
i
,M�(�)) ≤ ci(t

�
i
,M�(�)) . Hence, it follows that

Therefore, in order to satisfy both (1) and (2), we need that

(1)pi(�) ≥ pi(�) − d(c + �, f (�)) + d(c + �, f (�)).

(2)pi(�) ≤ pi(�) − d(c, f (�)) + d(c, f (�)).

(3)d(c + �, f (�)) − d(c, f (�)) ≥ d(c + �, f (�)) − d(c, f (�)).
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Using (3) above, we first show that f (�) must be at least c and then that f (�) ≤ c + � . 
Finally, we prove how this last fact contradicts the desired approximation ratio.

Let us first show that f (�) ≥ c . Suppose instead that f (�) < c . Since 
f (�) < c , then the r.h.s. of (3) is � . As for the l.h.s., we distinguish two cases. If 
f (�) ≤ c + � , then, since f (�) > c according to Observation  1, then we have 
(c + 𝛿 − f (�)) − (f (�) − c) = 𝛿 − 2(f (�) − c) < 𝛿 . If f (�) > c + 𝛿 , we have 
(f (�) − (c + �)) − (f (�) − c) = −� . Hence, in both cases we reach a contradiction.

We now show that f (�) ≤ c + � . Assume by contradiction that f (�) > c + 𝛿 . 
Since f (�) ≥ c , and f (�) < c + 𝛿 by Observation 1, we can rewrite (3) as

However, this is impossible since f (�) < c + 𝛿.
Finally, we prove that, given that f (�) ≤ c + � , then the mechanism is not 

(n − 1 − �)-approximate. Indeed, since by Observation 1 f (�) > c , the total cost of 
mechanism M′ on input � is

where we used that b − c > b −
b+a

2
=

b−a

2
 . However, this is absurd, since M′ is 

(n − 1 − �)-approximate and the optimal mechanism on input � places the facility in 
b and has total cost b − c .   ◻

Next show that if we insist on mechanisms without money, then there is no OSP 
mechanism that can guarantee an approximation ratio better than n − 1 even when 
the mechanism can use monitoring.

Theorem 4 For every 𝜀 > 0 , there is no (n − 1 − �)-approximate mechanism without 
money for the facility location problem that is OSP, even with monitoring.

In order to prove Theorem 4, we first need to state the following lemma, that can 
be seen as a quantitative version of Observation 1.

Lemma 1 Consider a type profile � such that di = x for some i and dj = x − � for 
every j ≠ i . Then f (�) ∈

[
x − �

(
1 +

k−1

n

)
, x − �

(
1 −

k−1

n−2

)]
 for every k-approxi-

mate mechanism M , where f is the decision policy implemented by M.

Proof The optimal facility location for the given setting consists in placing the facil-
ity in position x − � . The total cost in this case is �.

If f (�) < x − 𝛼
(
1 +

k−1

n

)
 , then the total cost is larger than 

(n − 1)
(k−1)�

n
+ � +

(k−1)�

n
= k� , thus no k-approximate mechanism can place the 

(f (�) − (c + �)) − (f (�) − c) ≥ ((c + �) − f (�)) − (f (�) − c) ⇒ −� ≥ � − 2(f (�) − c).

(f (�) − c) + (n − 1)(b − f (�)) = (n − 1)b − c − (n − 2)f (�)

≥ (n − 1)(b − c) − (n − 2)𝛿

≥ (n − 1)(b − c) − (n − 2)
𝜀

n − 2
⋅
b − a

2

> (n − 1 − 𝜀)(b − c),
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facility in f (�) . Similarly, if f (�) > x − 𝛼
(
1 −

k−1

n−2

)
 , then the total cost is 

(n − 1)(f − x + 𝛼) + x − f = (n − 2)(f − x) + (n − 1)𝛼 > k𝛼 , thus no k-approximate 
mechanism can place the facility in f (�) .   ◻

We are now ready to prove Theorem 4.

Proof of Theorem  4 Suppose there is an OSP mechanism M that is (n − 1 − �)

-approximate. Clearly, the mechanism is non-trivial, otherwise its approximation 
ratio would be unbounded. Then, let i be the divergent agent of M , and let xi and yi 
be the types in which i diverges. W.l.o.g., assume that xi > yi . Let � = 2

(
xi − yi

)
 and 

� = � ⋅
n−2

�
 . Let xi be the truthful position of this agent. If i plays truthfully, then she 

can face the setting in which the remaining n − 1 agents are in position xi − � . By 
applying Lemma 1 with k = n − 1 − � and x = xi , we have that the distance of agent 
i from the facility must be at least xi − xi + �

(
1 −

n−2−�

n−2

)
= � ⋅

�

n−2
= �.

Suppose that instead i plays as if her real location would be yi . It may be then 
the case that the remaining n − 1 agents are exactly in the same position. Then, 
any mechanism with bounded approximation must place the facility in yi = xi −

�

2
 . 

Recall that, with monitoring, the cost of agent i must be taken as the maximum 
between the distance to the facility either from the real position or from the declared 
position. In this case, this is given by the former distance and it is 𝜆

2
< 𝜆 . Thus, the 

best cost paid by i by not playing truthfully is lower than the worst cost that she can 
pay by playing truthfully. Then, the mechanism M is not OSP, contradicting our 
hypothesis.

The bounds above are tight, since there is a (n − 1)-approximate mechanism with-
out money for the facility location problem that is OSP, even without monitoring. 
Consider, indeed, the dictatorship mechanism, in which only the dictator i is que-
ried for her position. It is well-known that this mechanism is (n − 1)-approximate. 
Moreover, it is also OSP [32]. Indeed, agent i is the only agent that is involved in a 
decision and it is always better for her to reveal her real position xi : in this case the 
facility will be located exactly in her position and the cost of i will be 0, whereas by 
declaring a different position x ≠ xi the cost will be |x − xi| > 0.

5.1  Optimal OSP Mechanisms for Facility Location

Interestingly, the combination of monitoring and monetary transfers gives an enor-
mous power in this setting. Indeed, since the optimal facility location is a median 
among the positions declared by agents, it follows from Theorem 1 that there is an 
OSP mechanism with monitoring that computes the optimal facility location in pol-
ynomial time.

Recall that in this mechanism the agents receive a payment. As noted in the intro-
duction, however, for a facility location problem we might need alternative mecha-
nisms in which the designer does not pay agents, but the agents pay the mechanism. 
Note that this is more natural in settings wherein agents’ payments can be easily 
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implemented via subscription fees or delayed access to the facility. We next present 
such an alternative optimal OSP mechanism.

We are going to assume that we are given some bounds on the agents’ potential 
locations. (Note that in some of the related literature on facility location, agents can 
declare any location in ℝ .) To simplify the notation, we assume that Di = [a, b] for 
all agents i. Consider now the following direct-revelation mechanism, that we call 
interval mechanism: 

1. Query agents for their position in any order.
2. Let � be the profile of the collected positions. Then fix the location f (�) of the 

facility to be the median of � . In case of multiple medians, the facility is located 
on the leftmost median.

3. For every agent i = 1,… , n , set pi(�) = d(xi, f (�)) − (b − a).

It is not hard to see that the interval mechanism simply “shifts” the payments of 
the mechanism in Theorem 1 to make them of the right sign. Hence, the result 
below simply follows as a corollary of Theorem  1 by observing that, just like 
truthfulness, OSP is preserved when these shifts are bid-independent.

Corollary 2 The interval mechanism is an optimal mechanism that is OSP with 
monitoring.

We here include a full proof of Corollary 2 for sake of completeness.

Proof We will next prove that the mechanism is OSP, and thus each agent has an 
incentive to declare her real position. Since the mechanism places the facility in the 
median of these positions, that is known to be the minimum cost allocation [37], it 
then turns out to be optimal as well.

In order to prove that it is OSP, recall that in a mechanism with monitoring the 
cost that i pays is ci(xi,M(�)) = max{d(xi, f (�)), d(yi, f (�))} − pi(�) . Consider then 
agent i and let xi be her real position. If i declares the real position, then her total 
cost will be b − a . If i declares a different position x′

i
 , then there are two cases: if 

min��
−�
ci(xi,M(��)) is achieved in a profile ��

−i
 such that f (��) ≠ x�

i
 , then

otherwise (that is, if f (��) = x�
i
≠ xi)

Thus, in both cases the best cost that i can obtain by declaring a position different 
from the real one is not smaller than the worst cost that i can obtain by playing truth-
fully.   ◻

ci(xi,M(��)) = max{d(xi, f (�
�)), d(x�

i
, f (��))} − pi(�

�)

≥ d(x�
i
, f (��)) − pi(�

�) = b − a;

ci(xi,M(��)) = max{d(xi, f (�
�)), d(x�

i
, f (��))} − pi(�

�)

= d(xi, x
�
i
) − pi(�

�) > b − a.
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The drawback of the interval mechanism is that the payment that this mecha-
nism charges may be as large as the size of the interval. This opens the question 
of whether more frugal payment schemes exist—or in other words, how suscep-
tible OSP with monitoring is to payment shifts that are not bid independent.

Next section will show that it is indeed possible to slightly optimize the inter-
val mechanism in order to be less expensive for the agents. We further prove (in 
Sect. 5.3) that our optimization is optimal as long as we focus on direct-revela-
tion mechanisms. However, even this optimized version still requires that O(n) 
agents will pay an amount that is about b − a . We will finally show (in Sect. 5.4) 
that this is unavoidable for at least one type profiles, even if one considers mech-
anisms that are not direct-revelation.

5.2  The Optimized Interval Mechanism

Consider the following optimized version of the interval mechanism, that we call 
Optimized Interval Mechanism (OIM): 

1. Query agents for their position in any sequential order.
2. Let � be the profile of the collected positions. Then fix the location f (�) of the 

facility to be the median of � . In case of multiple medians, the facility is located 
on the leftmost median.

3. For every agent i ∈ [n] , let Ki ( ki , resp.) be the set (number, resp.) of agents que-
ried before i. Let � = (s1,… , ski ) be the profile containing the locations declared 
by these agents in non-decreasing order. Let � =

⌈
n

2

⌉
+ ki − n + 1 and 

r =
⌈
n

2

⌉
− 1 . If � > 1 , r < ki and s

�−1 = sr+1 , then set pi(�) = 0 . Otherwise, we 
define Li and Ri as follows: 

 Let also define Ai and Bi as follows: 

 Finally, let mi = max{Ri − Ai,Bi − Li} . If xi ∈ [Ai,Bi] , then set 
pi(�) = d(xi, f (�)) − mi . If xi < Ai , then set pi(�) = d(xi, f (�)) − mi − d(xi,Ai) . If 
xi > Bi , then set pi(�) = d(xi, f (�)) − mi − d(xi,Bi).

The idea behind OIM is to exploit the information given by the extensive-form 
implementation of the mechanism to reduce the charge to the bidders, i.e., use the 
value of ki to reduce the payment to bidder i. In fact, when all bidders bid simultane-
ously then ki = 0 for all i and OIM is simply the interval mechanism.

Li =

{
s
�
, if � ≥ 1;

a, otherwise .
Ri =

{
sr, if r ≤ ki;

b, otherwise .

Ai =

⎧
⎪⎨⎪⎩

Li, if Li = Ri;

2Li − b, if Ri > Li >
a+b

2
;

a, otherwise .

Bi =

⎧
⎪⎨⎪⎩

Ri, if Li = Ri;

2Ri − a, if Li < Ri <
a+b

2
;

b, otherwise .
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The way in which this optimization upon ki is done can arguably appear a bit 
complex but is not too hard to explain. First, when s

�−1 = sr+1 (this occurs whenever 
there are at least 

⌈
n+1

2

⌉
 among the ones queried before i that declared exactly the 

same position—see, e.g., Fig. 1), then the facility will be placed in s
�−1 regardless of 

the location declared by i and by every other agent j queried after i. Hence, these 
agents will not have any incentive in declaring a position that is different from their 
real location even without payments.

As for the second and most important optimization step, we consider profiles � 
for which there are agents very far away from the facility. Indeed, as we will hint in 
Lemma 2, the facility is very likely to be included in the interval [Li,Ri] . Thus, if an 
agent i in � is very far away from this interval, one can slightly lower the payment 
assigned to her and still have an OSP mechanism. More details on the effectiveness 
of this optimization can be found in Lemma 9.

We highlight that this last optimization is particularly relevant when there is a 
location f such that when i declares f, then the facility will securely be located in f 
even if s

�−1 ≠ sr+1 (this case corresponds to Li = Ri = f—see, e.g., Fig. 2). In this 
case, it is possible to reduce the cost of agent i in profile � from b − a to |xi − f |.

Nevertheless, we note that the mechanism still has very large costs, namely 
b − a , for at least 

⌈
n

2

⌉
− 1 agents. Indeed, for these agents, it turns out that 

Li = Ai = a and Ri = Bi = b , and thus mi = b − a . We will show in the next sec-
tion that this is inevitable with a direct-revelation mechanism.

In order to prove that OIM is an optimal OSP mechanism, we say that a profile 
�′ is i -compatible if �� = (�Ki

, ��
−Ki

) , i.e., x�
j
= xj for all the agents j ∈ Ki , where Ki 

n+1
21 1 1 1

a c f d b

Fig. 1  When i is queried, there are at least 
⌈
n+1

2

⌉
 agents that have declared the same position f. In this 

case the facility will be placed in f regardless of the position declared by i and other remaining agents. 
OIM will then pay 0 to i, whereas a larger payment would be charged by the interval mechanism

n
2 + ki − n n− ki − 1 ki − n

2 + 1

a f b

Fig. 2  Let ki ≥
⌈
n

2

⌉
 . It is not hard to check that in this case, if i declares f, then the facility will be placed 

in f regardless of the position declared by the remaining n − ki − 1 agents. OIM will then pay |xi − f | to i, 
whereas a larger payment would be charged by the interval mechanism
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is the set of agents that in OIM revealed her type before i. We then start by mak-
ing some observations on Li and Ri . Specifically, in Lemma 2 we show that these 
quantities represent a lower and an upper bound for the position of the facility as 
long as the position declared by i is not below Li or above Ri . Lemma 3 instead 
proves that, when this occurs, i.e. the position declared by i is not in the interval 
[Li,Ri] , then it is the declared position to be a lower bound (if below Li ) or an 
upper bound (if above Ri ) to the facility location.

Lemma 2 For every i, and every t > Li , it holds that f (��) ≥ Li for every i-compat-
ible profile �′ with x�

i
= t ; moreover, there is one such profile for which f (��) = Li . 

Similarly, for every t < Ri , f (��) ≤ Ri for every i-compatible profile �′ with x�
i
= t , 

and there is one such profile for which f (��) = Ri.

Proof Let t > Li and consider the profile �′ such that

It is easy to see that f (��) = Li . Indeed, if � < 1 , then in �′ there are 
n − ki − 1 =

⌈
n

2

⌉
− � >

⌈
n

2

⌉
− 1 agents whose location is a. Hence, the leftmost 

median of �′ must be a = Li . If � ≥ 1 , then Li is the �-th smallest location among 
agents that are processed before i, and there are in �′ exactly n − ki − 1 agents whose 
location is surely not larger than Li . Then Li is the � + n − ki − 1 =

⌈
n

2

⌉
-th smallest 

location in �′ , i.e. the (leftmost) median.
On the other hand, it is immediate to see that there is no declaration by agents 

j ∉ Ki , with j ≠ i , that can make the facility go to the left of Li.
Let now t < Ri and consider the profile �′ such that

It is easy to see that f (��) = Ri . Indeed, if r > ki , then in �′ there are n − ki − 1 >
⌊
n

2

⌋
 

agents whose location is b. Hence, the median of �′ is b = Ri . If r ≤ ki , then Ri is the 
r-th smallest location among agents that are processed before i, and there is in �′ 
exactly one agent whose location is smaller than Ri . Then Ri is the r + 1 =

⌈
n

2

⌉
-th 

smallest location in �′ , i.e. the (leftmost) median.
Moreover, as above, it is immediate to see that there is no declaration by agents 

j ∉ Ki , with j ≠ i , that can make the facility go to the right of Ri .   ◻

x�
j
=

⎧
⎪⎨⎪⎩

xj, if j ∈ Ki;

t, if j = i;

a, otherwise .

x�
j
=

⎧
⎪⎨⎪⎩

xj, if j ∈ Ki;

t, if j = i;

b, otherwise .
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Lemma 3 For every i, and every t ≤ Li , f (��) ≥ t for every i-compatible profile �′ 
with x�

i
= t . Similarly, for every t ≥ Ri , f (��) ≤ t for every i-compatible profile �′ 

with x�
i
= t.

Proof Let t ≤ Li and consider the profile �′ such that

If � ≥ 1 , then Li is the �-th smallest location among agents that are processed before 
i, and there are in �′ exactly n − ki agents whose location is surely not larger than Li . 
Then Li is the � + n − ki =

⌈
n

2

⌉
+ 1-th smallest location in �′ . Thus, the leftmost 

median of �′ will be s
�−1 if t ≤ s

�−1 and t otherwise. When � < 1 , then Li = a and 
clearly f (��) ≥ a.

If t ≥ Ri , let us consider the profile �′ such that

If r ≤ ki , then Ri is the r-th smallest location among agents that are processed before 
i, and there is in �′ no agent whose location is surely smaller than Ri . Then Ri is the 
r =

⌈
n

2

⌉
− 1-th smallest location in �′ . Thus, the leftmost median of �′ will be sr+1 if 

t ≥ sr+1 and t otherwise. When r > ki , then Ri = b and clearly f (��) ≤ b .   ◻

We now show that OIM is optimal and OSP with monitoring.

Theorem 5 OIM is an optimal mechanism that is OSP with monitoring.

Proof We will next prove that the mechanism is OSP with monitoring, and thus for 
each agent it is obviously dominant to declare her real position. Since OIM places 
the facility on the median of these positions, that is known to be the minimum cost 
allocation [37], it then turns out to be optimal as well.

Consider then agent i and let xi be her real position. If s
�−1 = sr+1 = � , then the 

facility will be located in � and i receives a zero payment, regardless of her declara-
tion and the declarations of the agents not in Ki.

Suppose now that s
�−1 ≠ sr+1 and the real position of i is xi ∈ [Ai,Bi] . If i declares 

her real position, then her total cost will be at most mi . If i declares a different posi-
tion x′

i
 , then for every i-compatible profile �′

x�
j
=

⎧
⎪⎨⎪⎩

xj, if j ∈ Ki;

t, if j = i;

a, otherwise .

x�
j
=

⎧
⎪⎨⎪⎩

xj, if j ∈ Ki;

t, if j = i;

b, otherwise .

ci(xi,M(��)) = max{d(xi, f (�
�)), d(x�

i
, f (��))} − pi(�

�)

≥ d(x�
i
, f (��)) − pi(�

�) = ci(x
�
i
,M(��)) ≥ mi.
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Suppose now that s
�−1 ≠ sr+1 and the real position of i is xi = Ai − c or xi = Bi + c 

with c > 0 . W.l.o.g. we will assume xi = Ai − c . If i declares the real position, 
then her total cost will be at most mi + c . If i declares a position x�

i
= Ai − c� or 

x�
i
= Bi + c� with c′ > c , then for every i-compatible profile �′ we have that

If i declares a position x�
i
= Ai − c� for 0 < c′ < c , then for every i-compatible profile 

�′ we have that

where we used that, according to Lemma  3, f (��) ≥ x�
i
 and thus 

d(xi, f (�
�)) = d(xi, x

�
i
) + d(x�

i
, f (�)).

If i instead declares a position x�
i
∈ [Ai,Bi + c] , then for every i-compatible pro-

file �′ such that f (��) ≥ x�
i
 we have that

For every i-compatible profile �′ such that f (��) < x�
i
 , we have instead that

where we used that, according to Lemma  2, f (��) ≥ Li , and that Ai > a , and 
therefore

  ◻

5.3  Payments in Direct‑Revelation Mechanisms are at least as in OIM

Next we will prove that no direct-revelation mechanism in which the mechanism 
does not pay the agents can be optimal for the facility location problem and OSP 
with monitoring with smaller payments than OIM.

ci(xi,M(��)) = max{d(xi, f (�
�)), d(x�

i
, f (��))} − pi(�

�) ≥ d(x�
i
, f (��)) − pi(�

�)

≥ mi + c� > mi + c.

ci(xi,M(��)) = max{d(xi, f (�
�)), d(x�

i
, f (��))} − pi(�

�) = d(xi, f (�
�)) − pi(�

�)

= d(xi, x
�
i
) + d(x�

i
, f (��)) − pi(�

�) = (c − c�) + mi + c� = mi + c,

(4)
ci(xi,M(��)) = max{d(xi, f (�

�)), d(x�
i
, f (��))} − pi(�

�) = d(xi, f (�
�)) − pi(�

�)

= d(xi, x
�
i
) + d(x�

i
, f (��)) − pi(�

�) ≥ mi + c.

(5)

ci(xi,M(��)) = max{d(xi, f (�
�)), d(x�

i
, f (��))} − pi(�

�) = d(xi, f (�
�)) − pi(�

�)

= d(xi, f (�
�)) − d(x�

i
, f (��)) + mi +max{0, x�

i
− Bi}

= f (��) − xi − x�
i
+ f (��) + mi +max{0, x�

i
− Bi}

≥ (Li − xi) − (x�
i
− Li) + mi +max{0, x�

i
− Bi}

= (Li − Ai) + (Ai − xi) − (x�
i
− Bi) − (Bi − Li) + mi

+max{0, x�
i
− Bi}

≥ mi + c,

d(x�
i
, f (��)) ≤ Bi + c − Li = Li − Ai + c = Li − xi ≤ d(xi, f (�

�)).
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Specifically, given two optimal mechanisms M and M′ implementing the same 
decision rule, with p and p′ being the corresponding implemented payment policies, 
and an agent i we say that M is less demanding to i than M′ if the sum over all type 
profiles of the payments that M assigns to i is less than the same sum computed on 
the payments assigned by M′ , i.e., 

∑
� pi(�) <

∑
� p

�
i
(�).

Next theorem then formalize that OIM is the less demanding mechanism within 
the class of direct-revelation mechanism. Note that henceforth we only consider 
mechanisms that adopt payments different from OIM, i.e., there is at least one pro-
file � and one agent i such that the payment assigned at i on profile � is different 
from the corresponding payment assigned by OIM.

Theorem 6 For every optimal OSP direct-revelation mechanism M for the facility 
location problem, if the payment policy satisfies that pi(�) ≤ 0 for every agent i and 
every profile � (i.e., the mechanism does not pay the agents), then there is an agent i 
such that OIM is less demanding to i than M.

Proof Fix a player i and recall that Ki is the set of agents whose location is known to 
i when she is queried. Let M be be an optimal OSP direct-revelation mechanism for 
facility location with payment policy p , and, assume without loss of generality that 
it is the mechanism that demands less to i, i.e., 

∑
� �i(�) = argmin(f ,p) OSP

∑
� pi(�).

Assume, by contradiction, that M is less demanding than OIM. Clearly, it cannot 
set lower non-positive payments than OIM when s

�−1 = sr+1 . Thus, we can safely 
consider that s

�−1 ≠ sr+1 . Next lemmata show some conditions that payments must 
satisfy in order for M to be OSP and to minimize the sum of payments assigned to i. 
Specifically, Lemmas 4 and 5 focus on profiles � such that xi ∈ [Ai,Bi] and Li ≠ Ri , 
Lemma 6 consider profiles � such that xi = Li = Ri , whereas Lemma 7 focuses on 
the remaining profiles.

Suppose first that Li ≠ Ri . Then let �i be the minimum cost that i pays in a profile 
� such that f (�) ≠ xi (such a profile surely exists since, by optimality of M , i is not a 
dictator), i.e., �i = min�∶� (�)≠�� ci(xi,M(�)) . We begin by proving this useful claim. 
 ◻

Claim 1 Let � be a profile such that f (�) ≠ xi and ci(xi,M(�)) = �i . If xi < f (�) , 
then for every yi ∈ (xi, min{2f (�) − xi, b}] , it turns out that ci(yi,M(�)) = �i if 
f (�) ≠ yi , and ci(yi,M(�)) ≤ �i otherwise.

Similarly, if xi > f (�) , then for every yi ∈ [max{a, 2f (�) − xi}, xi) , it turns out 
that ci(yi,M(�)) = �i if f (�) ≠ yi , and ci(yi,M(�)) ≤ �i otherwise.

Proof Since M is a direct-revelation mechanism, then i diverges on yi and xi . Then, 
since M is OSP, it must be the case that

where we used that d(yi, f (�)) ≤ d(xi, f (�)) by definition of yi.

ci(yi,M(�)) ≤ ci(yi,M(�)) = max{d(yi, f (�)), d(xi, f (�))} − pi(�)

= d(xi, f (�)) − pi(�) = ci(xi,M(�)) = �i,
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However, if f (�) ≠ yi , then, by definition of �i , it must be the case that 
ci(yi,M(�)) ≥ �i , that leaves ci(yi,M(�)) = �i as the only possible option.   ◻

Lemma 4 If Li ≠ Ri , then for every yi ∈ [Ai,Bi] , ci(yi,M(�)) = �i if f (�) ≠ yi , and 
ci(yi,M(�)) ≤ �i otherwise.

Proof Consider the following procedure: 

1. Let w = 1 , Δ0 = � , and �0 be a profile achieving cost �i.
2. Let tw = 2f (�w−1) − yw−1

i
.

3. If tw ≥ Li+Ri

2
 , consider the profile �w such that 

 and let Δw = [max{a, 2f (�w) − tw}, tw] . Otherwise consider �w such that 

 and let Δw = [tw, min{2f (�w) − tw, b}].
4. If [Ai,Bi] ⊈ Δw , set w = w + 1 and repeat from step 5.3.

Let us first prove, by induction, that for every w ≥ 0 , it holds that ci(ywi ,M(�w)) = �i . 
This is clearly true for w = 0 . Suppose now that ci(yw−1i

,M(�w−1)) = �i . If 
tw ≥ Li+Ri

2
 , then, according to Lemma  2, we have that f (�w) = Li ≠ yw

i
 . Simi-

larly, if tw <
Li+Ri

2
 , then, according to Lemma  2, we have that f (�w) = Ri ≠ yw

i
 . 

Then, by Claim 1 applied with � = �w−1 , it holds that ci(ywi ,M(�w)) = �i . In fact, 
Claim  1 actually proves that for every w ≥ 0 , and every yi ∈ Δw , it holds that 
ci(yi,M(�)) = �i if f (�) ≠ yi , and ci(yi,M(�)) ≤ �i otherwise. Hence, we are only 
left to prove that there is a w such that Δw ⊇ [Ai,Bi].

To this aim, we next we prove that for every w ≥ 1 , the size of the range Δw 
is larger than the size of the range Δw−1 . This is clearly true for w = 1 since 
|Δ0| = 0 and f (�1) ≠ t1 , from which we achieve that |Δ1| ≥ 2|f (�1) − t1| > 0 . 
Consider, instead, w > 1 . Suppose that Δw−1 = [max{a, 2f (�w−1) − tw−1}, tw−1] , 
from which we have that |Δw−1| ≥ 2tw−1 − 2f (�w−1) . Note that this only 
occurs if tw−1 ≥ Li+Ri

2
= Li +

Ri−Li

2
 and thus f (�w−1) = Li , from which 

it follows that tw = 2f (�w−1) − tw−1 ≤ Li −
Ri−Li

2
<

Li+Ri

2
 . Therefore 

Δw = [tw, min{2f (�w) − tw, b}] . If tw ≥ 2Ri − b , then min{2f (�w) − tw, b} ≠ b , and 
thus |Δw| = 2f (�w) − 2tw = 2Ri − 2tw , otherwise |Δw| = b − tw ≥ 2Ri − 2tw . Hence, 
in both cases we achieve that

yw
j
=

⎧
⎪⎨⎪⎩

xj, if j ∈ Ki;

tw, if j = i;

a, otherwise .

yw
j
=

⎧
⎪⎨⎪⎩

xj, if j ∈ Ki;

tw, if j = i;

b, otherwise .
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The case for Δw−1 = [tw−1, min{b, 2f (�w−1) − tw−1}] can be similarly proved.

The lemma then follows since the above procedure eventually considers 
Δ ⊇ [Ai,Bi].

Lemma 5 If Li ≠ Ri , then for every yi ∈ [Ai,Bi] and every i-compatible profile � 
such that f (�) = yi , it holds that ci(yi,M(�)) = �i.

Proof Suppose that that there is an i-compatible profile � with f (�) = yi and 
ci(yi,M(�)) < 𝜇i . Consider 𝛿 < min{𝜇i − ci(yi,M(�)), max{yi − Ai,Bi − yi}} . 
According to this choice of � , it must exists t ∈ [Ai,Bi] such that d(yi, t) = � . Moreo-
ver, since Li ≠ Ri by hypothesis, either t ≠ Li or t ≠ Ri . Then, according to Lemma 2, 
there is a profile �′ such that y�

i
= t and f (��) ≠ y�

i
 . Thus, by Lemma 4, it holds that 

ci(y
�
i
,M(��)) = �i.

However, since M is a direct-revelation mechanism, then i diverges on yi and y′
i
 . 

Then, since M is OSP, it must be the case that

that is absurd.   ◻

Consider now the case that Li = Ri . In this case we let �i = min�∶��=��
ci(xi,M(�)) . 

Next we prove a lower bound for �i.

Lemma 6 Let �′ be the i-compatible profile such that f (��) ≠ y�
i
 of minimum cost, 

i.e., �� = argmin�∶� (�)≠�� ci(xi,M(�)) . If Li = Ri , then for every i-compatible profile � 
such that yi = Li , it holds that ci(yi,M(�)) ≥ ci(y

�
i
,M(��)) − d(yi, y

�
i
).

Proof Suppose that that there is an i-compatible profile � with yi = Li and 
ci(yi,M(�)) < ci(y

�
i
,M(��)) − d(yi, y

�
i
) . Observe that, since Li = Ri , it must be the 

case that f (�) = yi.
Since M is a direct-revelation mechanism, then i diverges on yi and y′

i
 . Then, 

since M is OSP, it must be the case that

that is absurd.   ◻

Lemma 7 For every c > 0 , if yi = Ai − c , then for every i-compatible profile � 
ci(yi,M(�)) ≤ �i + c.

|Δw| ≥ 2Ri − 2f (�w−1) + 2tw−1 − 2f (�w−1) = 2tw−1 − 2f (�w−1)

+ 2|Ri − Li| > |Δw−1|.

𝜇i = ci(y
�
i
,M(��)) ≤ ci(y

�
i
,M(�)) = max{d(y�

i
, f (�)), d(yi, f (�))} − pi(�)

= d(y�
i
, yi) + d(yi, f (�)) − pi(�) = 𝛿 + ci(yi,M(�)) < 𝜇i,

ci(y
�
i
,M(��)) ≤ ci(y

�
i
,M(�)) = max{d(y�

i
, f (�)), d(yi, f (�))} − pi(�)

= d(y�
i
, yi) + d(yi, f (�)) − pi(�) < ci(y

�
i
,M(��)),
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If yi = Bi + c , then for every i-compatible profile � ci(yi,M(�)) ≤ �i + c.

Proof Consider yi < Ai . and let � be an i-compatible profile with xi = Ai with 
ci(xi,M(�)) = �i (it exists by Lemma 5 if Li ≠ Ri , and by definition of �i , otherwise). 
By definition of Ai , we have that xi = Ai ≤ Li . Then, by Lemma  3, we have that 
f (�) ≥ xi , and thus d(yi, f (�)) = d(yi, xi) + d(xi, f (�)) = c + d(xi, f (�)) > d(xi, f (�)).

However, since M is a direct-revelation mechanism, then i diverges on yi and xi . 
Then, since M is OSP, it must be the case that

The case for yi = Bi + c is similar.   ◻

These lemmata fix the payments for i-compatible profiles � such that yi ∈ [Ai,Bi] 
when Li ≠ Ri . As for the remaining cases, next we show how to choose the payments 
that enable the mechanism M to be optimal, OSP with monitoring, and to minimize 
the sum of payments assigned to i. In particular, Lemma  8 focuses on profiles � 
such that yi = Li = Ri . Lemma  9 focuses instead on profiles � with yi = Ai − c or 
yi = Bi + c.

Lemma 8 Let �′ be the i-compatible profile of minimum cost among the ones for which 
f (��) ≠ y�

i
 , i.e., �� = argmin�∶� (�)≠�� ci(xi,M(�)) . If there is an i-compatible profile � 

with yi = Li = Ri ci(yi,M(�)) > ci(y
�
i
,M(��)) − d(yi, y

�
i
) , then there is another direct-

revelation optimal OSP mechanism M′ that is less demanding to i than M.

Proof Consider M
� = (f , ��) as M except that it sets payments such that  

c�
i
(yi,M

�(�)) = d(yi, f (�)) − p�
i
(�) = ci(y

�
i
,M(��)) − d(yi, y

�
i
) , and for every  

�′ such that x′
i
≠ yi , it sets payments such that c�

i
(x�

i
,M

�(��)) −min�∶��=��
c�
i
(xi,M

�(�)) = ci(x
�
i
,M(��)) −min�∶��=��

ci(xi,M(�)) . Clearly, M′ is a direct-reve-
lation mechanism. Moreover, since it places the facility in the median location, it 
is optimal if it is OSP. Finally, M′ reduces the payment assigned to i at least in the 
profile �.

Hence, it is only left to show that M′ is OSP. Clearly, the OSP condition still 
holds between two profiles in which the location of i is different from yi , and 
when the real location of i is exactly yi . Next we show, that if the real location 
of i is x′

i
≠ yi , then it is not convenient for i to declare yi . That is, we prove that 

c�
i
(x�

i
,M�(��)) ≤ c�

i
(x�

i
,M�(�)) for every �′.

Since Li = Ri , it must be the case that f (�) = yi = Ai = Bi , and then either 
x�
i
= Ai − c or x�

i
= Bi + c , with c > 0 . According to Lemma  7, we have that 

c�
i
(x�

i
,M�(��)) − c�

i
(yi,M

�(�)) = ci(x
�
i
,M(��)) −min�∶��=�� ci(xi,M(�)) ≤ c . Instead,

  ◻

c(yi, f (�)) ≤ ci(yi,M(�)) = max{d(yi, f (�)), d(xi, f (�))} − pi(�)

= c + d(xi, f (�)) − pi(�) = c + �i.

c�
i
(xi,M

�(�)) = max{d(xi, f (�)), d(yi, f (�))} + pi(�) = d(xi, f (�)) − pi(�)

= d(xi, yi) + c�
i
(yi,M

�(�)) = c + c�
i
(yi,M

�(�)).
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Lemma 9 If there is � with yi = Ai − c , c > 0 , and ci(yi,M(�)) < 𝜇i + c , then there 
is another direct-revelation optimal OSP mechanism M′ that is less demanding to i 
than M.

Similarly, if there is � with yi = Bi + c and ci(yi,M(�)) < 𝜇i + c , then there is 
another direct-revelation optimal OSP mechanism M′ that is less demanding to i 
than M.

Proof By Lemmas 4, 5, and 8, we know that ci(yi,M(�)) = �i for every � such that 
yi ∈ [Ai,Bi].

Let yA
i
= maxc>0{yi = Ai − c ∶ ci(yi,M(�)) < 𝜇i + c} and 

yB
i
= minc>0{yi = Bi + c ∶ ci(yi,M(�)) < 𝜇i + c} . Denote as y∗

i
 the one closer to the 

interval [Ai,Bi] , i.e. y∗
i
= argminyi=yAi ,y

B
i
min{d(Ai, yi), d(Bi, yi)} . Henceforth, we 

assume w.l.o.g. that y∗
i
= yA

i
 . Let also �∗ = min�̂∶ŷi=y∗i

ci(ŷi,M(�̂)) . Observe that, by 
definition, it must be the case that ci(y∗i ,M(�∗)) < 𝜇i + c∗ , where c∗ = d(y∗

i
,Ai).

Consider M
� = (f , ��) as follows: for every � such that 

yi ∈ (Ai − c∗,Bi + c∗) , set payments such that c�
i
(yi,M

�(�)) = d(yi, f (�)) + p�
i
(�)

= ci(yi,M(�)) − (�i + c∗ − ci(y
∗
i
,M(�∗)) ; for every � such that yi ∈ {y∗

i
,Bi + c∗} , 

set payments such that c�
i
(yi,M

�(�)) = ci(y
∗
i
,M(�∗)) ; for every remaining profile � , 

set payments such that c�
i
(yi,M

�(�)) = ci(yi,M(�)).
Clearly, p�

i
(�) < pi(�) for every � such that yi ∈ (Ai − c∗,Bi + c∗) , whereas 

p�
i
(�) ≤ pi(�) for every other profile � . Moreover, M′ is a direct-revelation mecha-

nism, and, since it places the facility in the median location, it is optimal if it is OSP. 
Hence, it is only left to show that M′ is OSP.

It is immediate to see that the OSP condition holds if from every profile one 
moves to another profile in which the location of i is xi < y∗

i
 or xi > Bi + c∗ , and 

if from a profile in which the location of i is xi ∈ (Ai − c∗,Bi + c∗) one moves to 
another profile in which the location of i is yi ∈ (Ai − c∗,Bi + c∗) . Next we show that 
even if the real location of i is xi ≤ y∗

i
 or xi ≥ Bi + c∗ , then it is not convenient for i 

to declare yi ∈ (Ai − c∗,Bi + c∗) . That is, we prove that c�
i
(xi,M

�(�)) ≤ c�
i
(xi,M

�(�)) 
for every � and � such that xi and yi are as above.

To this aim, let ��
i
= ci(y

∗
i
,M(�∗) − c∗ . By construction, c�

i
(xi,M

�(�))��
i
 when 

xi ∈ [Ai,Bi] , c�i(xi,M
�(�)) = ��

i
+ c when xi = Ai − c or xi = Bi + c , with 0 ≤ c ≤ c∗ , 

whereas c�
i
(xi,M

�(�)) ≤ ��
i
+ c when xi = Ai − c or xi = Bi + c , with c > c∗ . Then, 

the OSP condition can be proved as in (4) and (5) with �′
i
 in place of mi .   ◻

In conclusion, a direct-revelation mechanism M that is OSP, optimal and for 
which the sum of payments assigned to i cannot be lowered must be exactly as OIM 
with �i in place of mi . However, suppose w.l.o.g. that mi = Ri − Ai and consider 
a profile � such that xi = Ai and f (�) = Ri . According to Lemma 2, such a profile 
surely exists. Moreover, as showed above, ci(xi,M(�)) = �i . Therefore, if all pay-
ments are non-positive, then
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  ◻

Theorem  6 does not rule out the existence of a non-direct-revelation mecha-
nism that is OSP with lower payments. However, in the next section we show that 
for every mechanism there is at least one instance on which it cannot set payments 
lower than the one assigned by OIM.

5.4  Payments in Non‑direct‑revelation Mechanisms can be High

We prove that for every mechanism there is at least one instance on which at least ⌈
n

2

⌉
− 1 agents incur in a very large cost, namely b − a , just as happens in OIM.

Lemma 10 For every optimal OSP mechanism with monitoring there is an instance 
of the facility location problem for which the mechanism sets payments at least as 
high as OIM.

Proof Let M be an optimal OSP mechanism for facility location with payment 
policy � and let � be an arbitrary constant. Let t0 be the first time step during the 
execution of mechanism M in which an agent diverges on types a and b − � ; call 
i0 the corresponding deviating agent. Similarly, for j > 0 , let tj be the first time step 
greater than or equal to tj−1 in which an agent, called ij , diverges on types a and b − � 
given that the first j − 1 agents that diverge on types a and b − � behave as follows: 
i0,… , i

�
 take actions according to b − � whilst i

�+1,… , ij−1 take actions according to 
a, � = min{j − 1,

n−1

2
} . Note that M may ask to more than one agent to diverge on 

types a and b − � at the same time (this explain why we allow tj to be equal to tj−1 ). 
Moreover, there may be agents ik that never diverge on types a and b − � (for which 
we set tk = ∞ ). However, these are at most n−1

2
 , otherwise M must give the same 

output on instance � = (b − �,… , b − �) and on the instance � such that yj = b − � 
if i diverges on a and b − � , and yj = a otherwise. But this contradicts the optimality 
of M.

We now show that for the following instance the payments assigned by M are at 
least as high as the payment assigned by OIM. We consider the instance � according 
to which the real position of agent ij is xj = b − � if j ≤ n+1

2
 , and xj = a , otherwise. 

It is not hard to see that OIM on this instance assigns a zero payment to every agent 
whose real position is a, and, among agents with real position b − � , only to the last 
to be queried. It assigns instead a payment of b − a to every remaining agent.

We next show that for j ≤ n−1

2
 , it must be the case that M also sets 

pM
j
(�) ≤ � − (b − a) . Let indeed t′ be the first step within mechanism M in which ij 

diverges on types b − � and b, given that the first j − 1 agents that diverge on types a 
and b − � take actions according to b − � , and the remaining agents take actions 
according to a. We set t∗ = min{t�, tj} . Consider then the following instance � : 
yj = b , yk = b − � if tk < t∗ and k ≠ j , and yk = a otherwise. Note that there are at 
most j − 1 ≤ n−1

2
− 1 agents whose location is b − � and at least n+1

2
 agents whose 

�i = ci(xi,M(�)) = d(xi, f (�)) − pi(�) ≥ d(xi, f (�)) = Ri − Ai = mi.
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location is a. Then, by optimality of M , we have that f (�) = a . Moreover, since M 
is OSP, it follows that

Since pM
j
(�) ≤ 0 , the claim then follows by having � going to 0.   ◻

The lemma above does not exclude that an indirect optimal mechanism might set 
payments to the agents smaller than OIM’s only for some specific order in which 
agents are queried. It is left open to understand if this is the case. However, we 
remark that OIM maintains OSP irrespectively of such an ordering.

6  Conclusions

We have studied the limitations of OSP mechanisms in terms of the approximation 
guarantee of their outputs. By focusing on two paradigmatic problems in the litera-
ture, machine scheduling and facility location, we have shown that OSP can yield a 
significant loss in the quality of the solutions returned. We have proposed the use of 
a novel mechanism design paradigm, namely monitoring, as a way to reconcile OSP 
with good approximations. Our positive results show how the ingredients needed for 
truthfulness with monitoring marry up the demands needed for OSP.

We leave open the problem of understanding the extent to which this parallel 
holds in general. Several additional open problems pertain the two case studies con-
sidered. For machine scheduling, it would be interesting to see whether the lower 
bound can be improved or a matching upper bound can be proved. Recent follow-up 
works [18, 19] give some answers to this question for the special case of “small” 
domains. For facility location, it is interesting to establish if indirect mechanisms 
can be more frugal for the agents. More generally, the mechanisms with monitoring 
for which we provide an OSP implementation are shown to be collusion-resistant; 
is there any way to guarantee OSP (with monitoring) without relying so heavily on 
coalitional notions of incentive-compatibility? And how hard is it to design OSP 
mechanisms that do not use any additional control on agents’ declarations? [18, 19] 
make some initial progress in these directions.

Finally, it would be interesting even to analyze whether the results in this work 
continue to hold with stronger and weaker variants of OSP, as the ones considered in 
[15, 38, 43].
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d(yj, f (�)) − pM
j
(�) ≤ max{d(yj, f (�)), d(xj, f (�))} − pM

j
(�)

⇒ pM
j
(�) ≤ � − (b − a) + pM

j
(�).
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