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Abstract
We derandomize Valiant’s (J ACM 62, Article 13, 2015) subquadratic-time algo-
rithm for finding outlier correlations in binary data. This demonstrates that it is pos-
sible to perform a deterministic subquadratic-time similarity join of high dimension-
ality. Our derandomized algorithm gives deterministic subquadratic scaling 
essentially for the same parameter range as Valiant’s randomized algorithm, but the 
precise constants we save over quadratic scaling are more modest. Our main techni-
cal tool for derandomization is an explicit family of correlation amplifiers built via a 
family of zigzag-product expanders by Reingold et al. (Ann Math 155(1):157–187, 
2002). We say that a function f ∶ {−1, 1}d → {−1, 1}D is a correlation amplifier 
with threshold 0 ≤ � ≤ 1 , error � ≥ 1 , and strength p an even positive integer if for 
all pairs of vectors x, y ∈ {−1, 1}d it holds that (i) �⟨x, y⟩� < 𝜏d implies 
�⟨f (x), f (y)⟩� ≤ (��)pD ; and (ii) �⟨x, y⟩� ≥ �d implies 

�
⟨x,y⟩
�d

�p

D ≤ ⟨f (x), f (y)⟩ ≤�
�⟨x,y⟩
d

�p

D.

Keywords Correlation · Derandomization · Outlier · Similarity search · Expander 
graph

 * Jukka Kohonen 
 jukka.kohonen@aalto.fi

 Matti Karppa 
 mattk@itu.dk

 Petteri Kaski 
 petteri.kaski@aalto.fi

 Padraig Ó Catháin 
 pocathain@wpi.edu

1 Helsinki Institute for Information Technology (HIIT), Espoo, Finland
2 Department of Computer Science, Aalto University, Espoo, Finland

http://orcid.org/0000-0003-4859-1463
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00727-1&domain=pdf


3307

1 3

Algorithmica (2020) 82:3306–3337 

1 Introduction

We consider the task of identifying outlier-correlated pairs from large collections 
of weakly correlated binary vectors in {−1, 1}d . In more precise terms, we are 
interested in the following computational problem.

Problem 1 (Outlier correlations) We are given as input two sets X, Y ⊆ {−1, 1}d 
with |X| = |Y| = n , and two thresholds, the outlier threshold 𝜌 > 0 and the back-
ground threshold 𝜏 < 𝜌 . Our task is to output all outlier pairs (x, y) ∈ X × Y  with 
�⟨x, y⟩� ≥ �d , subject to the assumption that at most q of the pairs (x, y) ∈ X × Y  sat-
isfy �⟨x, y⟩� > 𝜏d.

Remark This setting of binary vectors and (Pearson) correlation is directly 
motivated, among others, by the connection to Hamming distance. Indeed, 
for two vectors x, y ∈ {−1, 1}d we have ⟨x, y⟩ = d − 2DH(x, y) , where 
DH(x, y) = |{u = 1, 2,… , d ∶ x(u) ≠ y(u)}| is the Hamming distance between x and 
y.

A naïve way to solve Problem 1 is to compute the n2 inner products ⟨x, y⟩ for 
(x, y) ∈ X × Y  and filter out everything but the outliers. Our interest is in algo-
rithms that scale subquadratically in n, when both d and q are bounded from 
above by slowly growing functions of n. That is, we seek running times of the 
form O(n2−�) for a constant 𝜖 > 0 . Furthermore, we seek to do this without a pri-
ori knowledge of q.

Running times of the form O(n2−c�) for a constant c > 0 are immediately 
obtainable using techniques such as the seminal locality-sensitive hashing of 
Indyk and Motwani [20] and its variants (see Sect.  1.5). However, such algo-
rithms converge to quadratic running time in n unless � is bounded from below by 
a positive constant. Our interest is in algorithms that avoid such a “curse of weak 
outliers” and run in subquadratic time essentially independently of the magnitude 
of � , provided that � is sufficiently separated from � . Such ability to identify weak 
outliers from large amounts of data is useful, among others, in machine learning 
from noisy data. Our task can also be seen as a high-dimensional inner-product 
similarity join on a large number of weakly similar attributes.

One strategy to circumvent the curse of weak outliers is to pursue the follow-
ing intuition: (1) partition the input vectors into buckets of at most s vectors each, 
(2) aggregate each bucket into a single vector by taking the vector sum, and (3) 
compute the inner products between the ⌈n∕s⌉ × ⌈n∕s⌉ pairs of aggregate vec-
tors. With sufficient separation between � and � , at most q of these inner products 
between aggregates will be large, and every outlier pair is discoverable among 
the at most s × s input pairs that correspond to each large inner product of aggre-
gates. Furthermore, a strategy of this form is oblivious to q until we actually start 
searching inside the buckets, which enables adjusting � and � based on the num-
ber of large aggregate inner products.
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1.1  Randomized Amplification

Such bucketing strategies have been studied before with the help of randomization. 
In  2012, Valiant [36] presented a breakthrough algorithm that, before bucketing, 
replaces each input vector with a randomly subsampled1 version of its pth Kro-
necker power. Because of the tensor-power identity

the ratio between outlier and background correlations gets amplified to essentially its 
pth power, assuming that the sample is large enough so that sufficient concentration 
bounds hold with high probability. This amplification makes the outliers stand out 
from the background even after bucketing, which enables detection in subquadratic 
time using fast matrix multiplication.

A subset of the present authors [23] further improved on Valiant’s algorithm by 
a modified sampling scheme that simultaneously amplifies and aggregates the input 
by further use of fast matrix multiplication. With this improvement, Problem 1 can 
be solved in subquadratic time if the logarithmic ratio log

�
� = (log �)∕(log �) is 

bounded from above by a constant less than 1. Also this improved algorithm relies 
on randomization.

1.2  Explicit Amplification

In this paper we seek deterministic subquadratic algorithms. As with the earlier ran-
domized algorithms, we seek to map the d-dimensional input vectors to a higher 
dimension D so that inner products are sufficiently amplified in the process. Towards 
this end, we are interested in explicit functions f ∶ {−1, 1}d → {−1, 1}D that 
approximate the tensor-power identity (1).

Definition 1 (Correlation amplifier) Let d, D and p be positive integers, with p 
even, and let 0 ≤ � ≤ 1 and � ≥ 1 . A function f ∶ {−1, 1}d → {−1, 1}D is a correla-
tion amplifier with parameters (d,D, p, �, �) if for all pairs of vectors x, y ∈ {−1, 1}d 
we have

Remark A correlation amplifier f guarantees by (2) that correlations below 
� in absolute value stay bounded; and by (3) that correlations at least � in abso-
lute value become positive and are governed by the two-sided approximation with 

(1)⟨x⊗p, y⊗p⟩ = ⟨x, y⟩p,

(2)if �⟨x, y⟩� < 𝜏d, then �⟨f (x), f (y)⟩� ≤ (𝜏𝛾)pD ; and

(3)if �⟨x, y⟩� ≥ �d, then

�
⟨x, y⟩
�d

�p

D ≤ ⟨f (x), f (y)⟩ ≤
�
�⟨x, y⟩

d

�p

D.

1 The dimension is reduced by subsampling because the full dp-dimensional Kronecker power is too 
large to be manipulated explicitly to yield subquadratic running times.
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multiplicative error � ≥ 1 . In particular, (3) implies that correlations at least � cannot 
mask outliers under bucketing because all such correlations get positive sign under 
amplification.

It is immediate that correlation amplifiers exist. For example, take f (x) = x⊗p , 
with p even, to obtain a correlation amplifier with D = dp , � = 0 , and � = 1 by (1). 
For our present purposes, however, we seek correlation amplifiers with D substan-
tially smaller than dp . Furthermore, we seek constructions that are explicit in the 
strong2 form that there exists a deterministic algorithm that computes any individual 
coordinate of f(x) in time poly(logD, p) by accessing poly(p) coordinates of a given 
x ∈ {−1, 1}d . In what follows explicitness always refers to this strong form.

1.3  Our Results

The main result of this paper is that sufficiently powerful explicit amplifiers exist to 
find outlier correlations in deterministic subquadratic time.

Theorem 1 (Explicit amplifier family) There exists an explicit correlation ampli-
fier f ∶ {−1, 1}d → {−1, 1}2

K with parameters (d, 2K , 2� , �, �) whenever 0 < 𝜏 < 1 , 
𝛾 > 1 , and d,K,� are positive integers with

As a corollary we obtain a deterministic algorithm for finding outlier correlations 
in subquadratic time using bucketing and fast matrix multiplication. Let us write � 
for the limiting exponent of rectangular integer matrix multiplication. That is, for all 
constants 𝜂 > 0 there exists an algorithm that multiplies an m × ⌊m�⌋ integer matrix 
with an ⌊m�⌋ × m integer matrix in O(m2+�) arithmetic operations. In particular, it is 
known that 0.3 < 𝛼 ≤ 1 [25].

Theorem 2 (Deterministic subquadratic algorithm for outlier correlations) For any 
constants 0 < 𝜖 < 1,  0 < 𝜏max < 1,  0 < 𝛿 < 𝛼 , and C > 60 , there exists a determin-
istic algorithm that solves a given instance of Problem 1 in time

assuming that the parameters n, d, �, � satisfy the following three constraints

1. d ≤ n�,
2. c1n

−c2 ≤ � ≤ �max , where c1 = �
−�∕100,000
max  , c2 =

(
1 −

0.99�

4C+1

)
�−�

C
 , and

(4)2K ≥ d
(
210

(
1 − �

−1∕2
)
−1
)20𝓁+1(�

�

)60 ⋅ 2𝓁

.

(5)O

(
n
2−

0.99�(�−�)

4C+1 + qn
�+

1.99�(�−�)

4C+1

)

2 In comparison, a weaker form of explicitness could require, for example, that there exists a determinis-
tic algorithm that computes the entire vector f(x) from a given x in time D ⋅ poly(logD, p).
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3. log
�
� ≤ 1 − �.

Remark In contrast to LSH-based techniques discussed previously, the running time 
(5) remains subquadratic regardless of the magnitude of � provided that the condi-
tions of Theorem 2 are satisfied, particularly the separation of � and � in condition 
3.3 The constants in (4) and (5) have not been optimized beyond our desired goal 
of obtaining deterministic subquadratic running time when d and q are bounded by 
slowly growing functions of n. In particular, (5) gives substantially worse subquad-
ratic running times compared with the existing randomized strategies [23, 36]. The 
algorithm in Theorem 2 needs no a priori knowledge of q and is oblivious to q until 
it starts searching inside the buckets.

1.4  Overview and Discussion of Techniques

A straightforward application of the probabilistic method (Lemma 12) establishes 
that low-dimensional correlation amplifiers can be obtained by subsampling uni-
formly at random the dimensions of the tensor power x⊗p as long as the sample 
size D is large enough. Thus, in essence our Theorem 1 amounts to derandomizing 
such a subsampling strategy by presenting an explicit sample that is, up to the error 
bounds (2) and (3), indistinguishable from the “perfect” amplifier x ↦ x⊗p under 
taking of inner products.

The construction underlying Theorem  1 amounts to an �-fold composition of 
explicit squaring amplifiers ( p = 2 ) with increasingly strong control on the error 
( � ) and the interval of amplification ( [�, 1] ) at each successive composition. Towards 
this end, we require a flexible explicit construction of squaring amplifiers with 
strong control on the error and the interval. We obtain such a construction from an 
explicit family of expander graphs (Lemma 2) obtainable from the explicit zigzag-
product constructions of Reingold et  al. [34]. In particular, the key to controlling 
the error and the interval is that the expander family gives Ramanujan-like4 con-
centration �∕� ≤ 16�−1∕4 of the normalized second eigenvalue �∕� by increas-
ing the degree � . In essence, since we are working with {−1, 1}-valued vectors, by 
increasing the degree we can use the Expander Mixing Lemma (Lemma 1) and the 
Ramanujan-like concentration to control (Lemma 4) how well the restriction xG to 
the edges of an expander graph G approximates the full tensor square x⊗2 under tak-
ing of inner products.

Our construction has been motivated by the paradigm of gradually increasing 
independence [9, 14, 15, 21] in the design of pseudorandom generators. Indeed, 
we obtain the final amplifier gradually by successive squarings, taking care that the 
degree �i of the expander that we apply in each squaring i = 0, 1,… ,� − 1 increases 

3 The technical constraint c1n−c2 ≤ � only affects inputs where the dimension d grows essentially as a 
root function of n since � ≥ 1∕d.
4 Actual Ramanujan graphs (see [18, 26]) would give somewhat stronger concentration �∕� = O(�−1∕2) 
and hence improved constants in (4). However, we are not aware of a sufficiently fine-grained family of 
explicit Ramanujan graphs to comfortably support successive squaring.
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with a similar squaring schedule given by (11) and (15) to simultaneously control 
the error and the interval, and to bound the output dimension roughly by the square 
of the degree of the last expander in the sequence. Here the term “gradual” is not 
particularly descriptive since growth under successive squaring amounts to dou-
bly exponential growth in the number of squarings. Yet such growth can be seen 
as gradual and controlled in the following sense: we obtain strong amplification 
compared with the final output dimension precisely because the first � − 1 squarings 
“come for free” as �0�1 ⋯�

𝓁−2 is (up to low-order multiplicative terms) no more 
than �2

�−1
 , essentially because we are taking the sum of powers of 2 in the exponent.

The analogy with pseudorandom generators can in fact be pushed somewhat fur-
ther. Namely, a correlation amplifier can be roughly seen as a pseudorandom gen-
erator that by (3) seeks to fool a “truncated family of uniform combinatorial rec-
tangles” with further control requested by (2) below the truncation threshold � . To 
see the rough analogy, let z ∈ {−1, 1}d be the Hadamard product of the vectors 
x, y ∈ {−1, 1}d and observe that (3) seeks to approximate (with multiplicative error) 
the expectation of a uniform random entry in the dp-length Kronecker power z⊗p 
by instead taking the expectation over an explicit D-dimensional sample given by f. 
The Kronecker power z⊗p is a uniform special case (with z = z1 = z2 = ⋯ = zp ) of 
a “combinatorial rectangle” formed by a Kronecker product z1 ⊗ z2 ⊗⋯⊗ zp , and 
truncation means that we only seek approximation in cases where �∑d

u=1
z(u)� ≥ �d , 

and accordingly want constructions that take this truncation into account—that is, 
we do not seek to fool all combinatorial rectangles and accordingly want stronger 
control on the dimension D (that is, the “seed length” logD).

For a review of the state of the art in pseudorandom generators we refer to 
Gopalan et al. [14] and Kothari and Meka [24]. Our goal to obtain a small output 
dimension D roughly corresponds to optimizing the seed length of a pseudorandom 
generator.

While our explicit construction (4) does not reach the exact output dimension 
obtainable by Lemma 12, it should be observed that in our parameter range of inter-
est (with 𝛾 > 1 a constant and 0 < 𝜏 ≤ 𝜏max for a constant 0 < 𝜏max < 1 ), both (4) and 
(32) are of the form D ≥ d�−�(p) ; only the constants hidden by the asymptotic nota-
tion differ between the explicit and nonconstructive bounds. Moreover, using results 
of Alon [4] we show a lower bound (Lemma 17) on the output dimension D of any 
correlation amplifier: namely, that D ≥

1

5
(
1

��
)p , when p is in the range governed by 

(��)p ≤ 1∕100 and p ≤
(log e)�2d

8 log(
1

��
)
 . Thus, viewed as a pseudorandom generator with 

“seed length” logD , Theorem 1 essentially does not admit improvement except pos-
sibly at the multiplicative constants.

1.5  Related Work and Applications

Problem  1 is a basic problem in data analysis and machine learning admitting 
many extensions, restrictions, and variants. A large body of work exists study-
ing approximate near neighbour search via techniques such as locality-sensitive 
hashing (e.g. [5–7, 13, 20, 29, 30]), with recent work aimed at derandomization 
(see Pagh [31] and Pham and Pagh [33]) and resource tradeoffs (see Kapralov 
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[22]) in particular. However, these techniques enable subquadratic scaling in n 
only when � is bounded from below by a positive constant, whereas the algo-
rithm in Theorem 2 remains subquadratic even in the case of weak outliers when 
� tends to zero with increasing n, as long as � and � are separated. Ahle et al. [1] 
show that subquadratic scaling in n is not possible for log

�
� = 1 − o(1∕

√
log n) 

unless both the Orthogonal Vectors Conjecture and the Strong Exponential Time 
Hypothesis [19] fail.

In the context of databases and information retrieval, inner product is one 
of the widely used metrics for similarity join [1]. Apart from low-dimensional 
approaches such as trees that partition the space in one dimension at a time, exist-
ing scalable methods for high-dimensional data employ randomization, leading 
to the possibility of false negatives (missed pairs) and false positives (spurious 
pairs). Recently Pagh [31] and Pham and Pagh [33] eliminated false negatives 
completely; however, their method still has a random running time. We present 
here a completely deterministic solution.

In small dimensions, Alman and Williams [3] present a randomized algorithm 
that finds exact Hamming-near neighbours in a batch-query setting analogous 
to Problem  1 in subquadratic time in n when the dimension is constrained to 
d = O(log n) . Recently, Chan and Williams [10] show how to derandomize related 
algorithm designs; also, Alman et  al. [2] derandomize the probabilistic polyno-
mials for symmetric Boolean functions used in [3], achieving deterministic sub-
quadratic batch queries in small dimensions.

One special case of Problem  1 is the problem of learning a weight 2 parity 
function in the presence of noise, or the light bulb problem.

Problem  2 (Light bulb problem, Valiant [37]) Suppose we are given as input a 
parameter 0 < 𝜌 < 1 and a set of n vectors in {−1, 1}d such that one planted pair of 
vectors has inner product at least �d in absolute value, and all other n − 2 vectors are 
chosen independently and uniformly at random. Our task is to find the planted pair 
among the n vectors.

Remark From e.g.  the Hoeffding bound  (7) it follows that there exists a constant 
c such that when d ≥ c�−2 log n the planted pair is with high probability (as n 
increases) the unique pair in the input with the maximum absolute correlation.

For a problem whose instances are drawn from a random ensemble, we say 
that an algorithm solves almost all instances of the problem if the probability of 
drawing an instance where the algorithm fails tends to zero as n increases.

Paturi et al. [32], Dubiner [11], and May and Ozerov [27] present randomized 
algorithms that can be used to solve almost all instances of the light bulb problem 
in subquadratic time if we assume that � is bounded from below by a positive con-
stant; if � tends to zero these algorithms converge to quadratic running time in n.

Valiant [36] showed that a randomized algorithm can identify the planted cor-
relation in subquadratic time on almost all inputs even when � tends to zero as 
n increases. As a corollary of Theorem 2, we can derandomize Valiant’s design 
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and still retain subquadratic running time (but with a worse constant) for almost 
all inputs, except for extremely weak planted correlations with � ≤ n−�(1) that our 
amplifier is not in general able to amplify with sufficiently low output dimension 
to enable an overall subquadratic running time.

Corollary 1 (Deterministic subquadratic algorithm for the light bulb problem) For 
any constants 0 < 𝛿 < 𝛼 , C > 60 , 0 < 𝜌max < 1 , and 𝜅 > 1 , there exists a determinis-
tic algorithm that solves almost all instances of Problem 2 in time

assuming the parameters n, d, � satisfy the two constraints

1. 5�−2� log n ≤ d ≤ n� and
2. c1n

−c2∕� ≤ � ≤ �max,

where c1 = �
−��∕100,000
max  and c2 =

(
1 −

0.99(1−1∕�)

4C+1

)
�−�

C
.

Corollary 1 extends to parity functions of larger (constant) weight in the presence 
of noise (cf. [16, 23, 36]). This generalized version of the problem is as follows.

Problem 3 (Learning parity with noise) Let S ⊆ [v] with |S| = k be the support of 
a parity function and 0 < 𝜂 < 1 the noise level. Our task is to determine the set S by 
drawing independent random examples (x, y) such that x ∈ {−1, 1}v is chosen uni-
formly at random, and the label y ∈ {−1, 1} is y = z

∏
�∈S x(�) where z ∈ {−1, 1} is 

an independent random variable with Pr(z = −1) = �.

With no information on k, the trivial solution is to enumerate all 2v subsets of 
[v] to locate the support S. Blum et al. [8] provide a non-trivial solution which runs 
in time and sample complexity poly

(
|1 − 2�|2a , 2b

)
 for any positive integers a,  b 

with ab ≥ v ; this is 2O(v∕ log v) when � ≠ 1∕2 is a constant independent of v. If we 
assert that k is a constant independent of v, the trivial complexity drops from expo-
nential to vk , and non-trivial speed-ups seek to lower the coefficient 1 of k in the 
exponent. Randomized solutions for constant k include Valiant’s breakthrough algo-
rithm [36] and our subsequent randomized improvement [23] which runs in time 
Õ(v

𝜔+𝜖

3
k|1 − 2𝜂|−

8𝜔

9𝜖
−

4

3 ) for any constant 0 < 𝜖 < 𝜔∕3.
Our present contribution is a deterministic algorithm for learning constant-

weight parity functions with noise. Our interest is in the case where the noise level � 
approaches 1/2, and accordingly we assume that |1 − 2�| is bounded from above by a 
constant less than 1. We say that a deterministic algorithm solves almost all instances 
of Problem 3 if the probability of drawing an instance on which the algorithm fails 
tends to zero as v increases.5

O

(
n
2−

0.99(1−1∕�)(�−�)

4C+1

)

5 Observe that from an information-theoretic perspective it is a positive-but-negligible-probability event 
that the drawn examples do not uniquely identify S.
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Corollary 2 (Deterministic algorithm for learning parity with noise) For all con-
stants 0 < 𝛿 < 𝛼 , C > 60 , 𝜉 > 1 , 0 < 𝜃 < 1 , there exists a constant k0 and a deter-
ministic algorithm that for all constants k ≥ k0 draws d examples and finds the sup-
port of almost all instances of Problem 3 in time

assuming the parameters v, d, � satisfy the constraints

1. d ≥
6k

|1−2�|2(�2+1)(1−��−1)2
log v , and

2. c1v
−c2�

−2k∕2 ≤ |1 − 2�| ≤ �,

where c1 = �−(1−1∕�)∕100,000 and c2 =
(
1 −

0.99(1−1∕�)

4C+1

)
�−�

C
.

Algorithms for learning parity functions enable extensions to further classes of 
Boolean functions such as sparse juntas and DNFs (cf. [12, 28, 36]).

2  Preliminaries

All vectors in this paper are integer-valued. For a vector x ∈ ℤ
d we denote the entry 

u = 1, 2,… , d of x by x(u). For two vectors x, y ∈ ℤ
d we write ⟨x, y⟩ = ∑d

u=1
x(u)y(u) 

for the inner product of x and y. We write log for the logarithm with base 2 and ln for 
the logarithm with base exp(1).

In our proofs, we need the following bound due to Hoeffding [17, Theorem 2] which 
provides an exponentially small upper bound on the deviation of a sum of bounded 
independent random variables from its expectation.

Theorem 3 (Hoeffding [17, Theorem 2]) Let Z1, Z2,… , ZD be independent random 
variables satisfying �i ≤ Zi ≤ ui for all 1 ≤ i ≤ D , and let Z =

∑D

i=1
Zi . Then, for all 

c > 0 , the following holds:

3  Explicit Amplifiers by Approximate Squaring

This section proves Theorem 1. We start with preliminaries on expanders, show an 
approximate squaring identity using expander mixing, and then rely on repeated 
approximate squaring for our main construction. The proof is completed by some 
routine preprocessing.

(6)O

(
vk(1−0.245025(�−�)

2(1−1∕�)2(1+4C)−2)
)
,

(7)Pr(Z − E[Z] ≥ c) ≤ exp

�
−

2c2

∑D

i=1
(ui − �i)

2

�
.
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3.1  Preliminaries on Expansion and Mixing

We work with undirected graphs, possibly with self-loops and multiple edges. A 
graph G is �-regular if every vertex is incident to exactly � edges, with each self-
loop (if present) counting as one edge. Suppose that G is �-regular with vertex set V, 
and let L be a set of � labels such that the � edge-ends incident to each vertex have 
been labeled with unique labels from L. The rotation map RotG ∶ V × L → V × L is 
the bijection such that for all u ∈ V  and i ∈ L we have RotG(u, i) = (v, j) if the edge 
incident to vertex u and labeled with i at u leads to the vertex v and has the label j at 
v.

For S, T ⊆ V(G) , let us write E(S, T) for the set of edges of G with one end in S 
and the other end in T. Suppose that G has D vertices and let �1, �2,… , �D be the 
eigenvalues of the adjacency matrix of G with |�1| ≥ |�2| ≥ ⋯ ≥ |�D| . Let us say 
that a graph G is a (D,�, �)-graph if G has D vertices, G is �-regular, and |�2| ≤ � . 
For an excellent survey on expansion and expander graphs, we refer to Hoory et al. 
[18].

Lemma 1 (Expander mixing lemma, [18, Lemma 2.5]) For all S, T ⊆ V(G) we have

We work with the following family of graphs obtained from the zig-zag product 
of Reingold et al. [34]. In particular Lemma 2 gives us �∕� ≤ 16�−1∕4 , which will 
enable us to control relative inner products by increasing �.

Lemma 2 For all integers t ≥ 1 and b ≥ 10 there exists a (216bt, 24b, 16 ⋅ 23b)-graph 
whose rotation map can be evaluated in time poly(b, t).6

Proof See “Appendix”.   ◻

3.2  Main Construction

The main objective of this section is to prove the following lemma, which we will 
then augment to Theorem 1 by routine preprocessing of the input dimension.

Lemma 3 (Repeated approximate squaring) There exists an explicit correlation 
amplifier f̂ ∶ {−1, 1}2

k

→ {−1, 1}2
K with parameters (2k, 2K , 2� , �0, �0) whenever 

0 < 𝜏0 < 1 , 𝛾0 > 1 , and k,K,� are positive integers with

����
�E(S, T)� − ��S��T�

D

����
≤ �

√
�S��T�.

6 Caveat. Reingold et al. [34] work with eigenvalues of the normalized adjacency matrix (with |�1| = 1 ) 
whereas we follow Hoory et  al. [18] and work with unnormalized adjacency matrices (with |�1| = � ) 
in the manuscript proper. “Appendix” works with normalized adjacency matrices for compatibility with 
Reingold et al. [34].
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Approximate squaring via expanders For a vector x ∈ {−1, 1}D , let us write 
x⊗2 ∈ {−1, 1}D

2 for the Kronecker product of x with itself. Our construction for 
correlation amplifiers will rely on approximating the squaring identity

for vectors in {−1, 1}D . In more precise terms, let G be a (D,�, �)-graph and let 
xG ∈ {−1, 1}�D be a vector that contains each coordinate x(u)x(v) of x⊗2 with 
(u, v) ∈ V(G) × V(G) exactly once for each edge of G that joins the vertex u to 
the vertex v. Equivalently, let RotG ∶ V × L → V × L be a rotation map for G, and 
define xG for all u ∈ V  and all i ∈ L by xG(u, i) = x(u)x(v) where v ∈ V  is given by 
RotG(u, i) = (v, j) . In particular, xG has exactly �D coordinates.

Lemma 4 (Approximate squaring) For all x, y ∈ {−1, 1}D we have

Proof Let S = {u ∈ V(G) ∶ x(u) = y(u)} and let us write S̄ = V(G)⧵S . Since x, y are 
{−1, 1}-valued, we have

Observing that

and applying Lemma 1 four times, we have

  ◻

The amplifier function We now construct an amplifier function f̂  that uses � 
approximate squarings, � ≥ 1 , with the graphs drawn from the graph family in 
Lemma 2. Accordingly, we assume that all vectors have lengths that are positive 
integer powers of 2.

The input x = x̃0 ∈ {−1, 1}d0 to the amplifier has dimension d0 = 2k for a positive 
integer k. For i = 0, 1,… ,� − 1 , suppose we have the vector x̃i ∈ {−1, 1}di . Let bi be 
a positive integer whose value will be fixed later. Let ti be the unique positive integer 
with

(8)2K ≥ 2k
(
210

(
1 − �

−1
0

)
−1
)20𝓁

(
�0

�0

)40 ⋅ 2𝓁−20

.

⟨x⊗2, y⊗2⟩ = ⟨x, y⟩2,

����
⟨xG, yG⟩ − 𝛥

D
⟨x⊗2, y⊗2⟩

����
≤ 2𝜆D.

⟨xG, yG⟩ = �E(S, S)� + �E(S̄, S̄)� − �E(S, S̄)� − �E(S̄, S)�.

�S�2 + �S̄�2 − �S��S̄� − �S̄��S� = (2�S� − D)2 = ⟨x, y⟩2 = ⟨x⊗2, y⊗2⟩

����
⟨xG, yG⟩ − 𝛥

D
⟨x⊗2, y⊗2⟩

����
≤ 𝜆

�
D + 2

√
�S�(D − �S�)

�
≤ 2𝜆D.

di ≤ Di = 216biti < 216bidi.
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Note in particular that di divides Di since di is a power of 2. Let Gi be a 
(216biti , 24bi , 16 ⋅ 23bi)-graph from Lemma  2. Take Di∕di copies of x̃i to obtain the 
vector xi ∈ {−1, 1}Di . Let x̃i+1 = x

Gi

i
∈ {−1, 1}di+1 with di+1 = �iDi and �i = 24bi . 

The amplifier outputs f̂ (x) = x̃
�
 with x̃

�
∈ {−1, 1}d�.

Since the graph family in Lemma  2 admits rotation maps that can be com-
puted in time poly(b, t) , we observe that f̂  is explicit. Indeed, from the construc-
tion it is immediate that to compute any single coordinate of f̂ (x) it suffices to (i) 
perform in total 2�−1−i evaluations of the rotation map of the graph Gi for each 
i = 0, 1,… ,� − 1 , and (ii) access at most 2� coordinates of x. Since biti = O(log d

�
) 

for all i = 0, 1,… ,� − 1 , we have that we can compute any coordinate of f̂ (x) in 
time poly(log d

�
, 2�) and accessing at most 2� coordinates of x.

Parameterization and analysis Fix 𝜏0 > 0 and 𝛾0 > 1 . To parameterize the ampli-
fier (that is, it remains to fix the values bi ), let us track a pair of vectors as it proceeds 
through the � approximate squarings for i = 0, 1,… ,� − 1.

We start by observing that copying preserves relative inner products. That 
is, for any pair of vectors x̃i, ỹi ∈ {−1, 1}di we have ⟨x̃i, ỹi⟩ = 𝜈idi if and only if 
⟨xi, yi⟩ = �iDi for 0 ≤ �i ≤ 1.

An easy manipulation of Lemma 4 using the parameters in Lemma 2 gives us 
additive control over an approximate squaring via

For all inner products that are in absolute value above a threshold, we want to turn 
this additive control into multiplicative control via

Let us insist this multiplicative control holds whenever |�i| ≥ �i for the threshold 
parameter �i defined for all i = 0, 1,… ,� − 1 by

Enforcing (10) via (9) at the threshold, let us assume that

The next lemma confirms that assuming (12) gives two-sided control of inner prod-
ucts which is retained to the next approximate squaring. The following lemma shows 
that small inner products remain small.

Lemma 5 If �i ≤ |�i| , then �2
i
�−1
0

≤ �i+1 ≤ �2
i
�0 and �i+1 ≤ �i+1.

Proof From (9) and (12), we have

Observe that 1 − �−1
0

≤ �0 − 1 . Thus, from (13) we conclude that

(9)�
2
i
− 32�

−1∕4

i
≤ �i+1 ≤ �

2
i
+ 32�

−1∕4

i
.

(10)�
2
i
�
−1
0

≤ �i+1 ≤ �
2
i
�0.

(11)�i+1 = �
−1
0
�
2
i
.

(12)�
2
i
�
−1
0

≤ �
2
i
− 32�

−1∕4

i
.

(13)
|||�i+1 − �

2
i

||| ≤ 32�
−1∕4

i
≤ (1 − �

−1
0
)�2

i
≤ (1 − �

−1
0
)�2

i
.
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In the converse direction, from (13) and (11) we conclude that

  ◻

Lemma 6 If |𝜈i| < 𝜏i , then |�i+1| ≤ �2
i
�0.

Proof From (9) and (12), we have

Since 1 − �−1
0

≤ �0 − 1 , from (14) we conclude that

  ◻

Let us now make sure that (12) holds. Solving for �i in (12), we have

In particular, we can make sure that (15) and hence (12) holds by simply choosing a 
large enough �i (that is, a large enough bi).

Before proceeding with the precise choice of bi for i = 0, 1,… ,� − 1 , let us 
analyze the input–output relationship of the amplifier f̂  using Lemmas 5 and 6. 
Let x, y ∈ {−1, 1}d0 be two vectors given as input with ⟨x, y⟩ = �0d0 . The outputs 
f̂ (x), f̂ (y) ∈ {−1, 1}d� then satisfy ⟨f̂ (x), f̂ (y)⟩ = 𝜈

�
d
�
 , where the following two 

lemmas control �
�
 via �0.

Lemma 7 If |�0| ≥ �0 , then �2�
0
�
−2�+1
0

≤ �
�
≤ �2

�

0
�2

�−1
0

.

Proof Use induction on i, where Lemma 5 gives the inductive step.   ◻

Lemma 8 If |𝜈0| < 𝜏0 , then |�
�
| ≤ �2

�

0
�2

�−1
0

.

Proof From (11) we have �i = �2
i

0
�
−2i+1
0

 . Let us show by induction on i that 
|�i| ≤ �2

i

0
�2

i−1
0

 . The base case i = 0 is immediate. For i ≥ 1 , there are two 
cases to consider. First suppose that |𝜈i| < 𝜏i . Then, by Lemma  6 we have 
|�i+1| ≤ �2

i
�0 ≤ �2

i+1

0
�
−2i+1+3
0

≤ �2
i+1

0
�2

i+1−1
0

 since 𝛾0 > 1 . Next suppose that |�i| ≥ �i . 
Then, by Lemma 5 we have |�i+1| ≤ �2

i
�0 ≤ �2

i+1

0
�2

i+1−1
0

 .   ◻

Since 𝛾0 > 1 , from Lemmas  7 and 8 it now follows that f̂  meets the required 
amplification constraints (2) and (3) with p = 2� , � = �0 , and � = �0.

�i+1 ≤ �
2
i
+ (1 − �

−1
0
)�2

i
≤ �

2
i
+ (�0 − 1)�2

i
= �0�

2
i
.

�i+1 ≥ �
2
i
− (1 − �

−1
0
)�2

i
≥ �

−1
0
�
2
i
≥ �

−1
0
�
2
i
= �i+1.

(14)
|||�i+1 − �

2
i

||| ≤ 32�
−1∕4

i
≤ (1 − �

−1
0
)�2

i
.

|�i+1| ≤ �
2
i
+ (1 − �

−1
0
)�2

i
≤ �

2
i
+ (�0 − 1)�2

i
= �0�

2
i
.

(15)�i ≥
(
32(1 − �

−1
0
)−1�−2

i

)4
.
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Let us now complete the parameterization and derive an upper bound for d
�
 . For 

each i = 0, 1,… ,� − 1 , take bi to be the smallest nonnegative integer so that bi ≥ 10 
and �i = 24bi satisfies (15). Since Di ≤ 216bidi = �4

i
di , we have di+1 = �iDi ≤ �

5
i
di , 

and hence

Recall that d0 = 2k . From (15) we have that

Since �i = �2
i

0
�
−2i+1
0

 by (11), it follows that

Repeatedly taking two copies of the output as necessary, for all 2K with 2K ≥ d
�
 we 

obtain a correlation amplifier with parameters (2k, 2K , 2� , �0, �0) . This completes the 
proof of Lemma 3.   ◻

3.3  Copy‑and‑Truncate Preprocessing of the Input Dimension

We still want to remove the assumption from Lemma 3 that the input dimension is a 
positive integer power of 2. The following copy-and-truncate preprocessing will be 
sufficient towards this end.

Let x ∈ {−1, 1}d and let k be a positive integer. Define the vector x̂ ∈ {−1, 1}2
k 

by concatenating ⌈2k∕d⌉ copies of x one after another, and truncating the result to the 
2k first coordinates to obtain x̂.

Let us study how the map x ↦ x̂ operates on a pair of vectors x, y ∈ {−1, 1}d . For 
notational compactness, let us work with relative inner products 𝜈, �̂� with ⟨x, y⟩ = �d 
and ⟨x̂, ŷ⟩ = �̂�2k.

Lemma 9 For any 0 < 𝜏0 < 1 , 𝛾0 > 1 , and 2k ≥ 2d�−1
0
(1 − �−1

0
)−1 we have that

1. |𝜈| < 𝜏0 implies |�̂�| ≤ 𝛾0𝜏0,
2. |�| ≥ �0 implies 𝛾−1

0
𝜈 ≤ |�̂�| ≤ 𝛾0𝜈.

Proof Let � and t be the unique integers such that 2k + � = td with 0 ≤ � < d . Since 
we are leaving out � coordinates, we have

Suppose that |𝜈| < 𝜏0 . We have

d
𝓁
≤
(
�
𝓁−1�𝓁−2 ⋯�0

)5
d0.

�i = 24bi ≤ max
(
240, 24

(
32(1 − �

−1
0
)−1�−2

i

)4)
≤
(
210(1 − �

−1
0
)−1�−2

i

)4
.

d
�
≤ 2k

(
210

(
1 − �

−1
0

)
−1
)20�

(
�0

�0

)20(2�+1−1)

.

2−k(𝜈td − �) ≤ �̂� ≤ 2−k(𝜈td + �).

|�̂�| ≤ 2−k(|𝜈|td + �) ≤ 2−k
(
|𝜈|2k + 2�

)
≤ 𝜏0 + 21−kd.
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Observe that 1 − �−1
0

≤ �0 − 1 . Since by hypothesis

we thus have |�̂�| ≤ 𝛾0𝜏0.
For � ≥ �0 we have

Similarly, for � ≤ −�0 we have

By hypothesis we have

Thus we have both 𝛾−1
0
𝜈 ≤ �̂� ≤ 𝛾0𝜈 if � ≥ �0 , and 𝛾0𝜈 ≤ �̂� ≤ 𝛾−1

0
𝜈 if � ≤ −�0 .   ◻

3.4  Completing the Proof of Theorem 1

Let d,K,�, �, � be parameters meeting the constraints in Theorem  1, in particular 
the constraint (4). To construct a required amplifier f, we preprocess each input vec-
tor x with copy-and-truncate, obtaining a vector x̂ of length 2k . We then then apply 
an amplifier f̂ ∶ {−1, 1}2

k

→ {−1, 1}2
K given by Lemma  3. In symbols, we define 

f ∶ {−1, 1}d → {−1, 1}2
K for all x ∈ {−1, 1}d by f (x) = f̂ (x̂) . It is immediate from 

Lemmas 3 and 9 that the resulting composition is explicit.
We begin by relating the given parameters of Theorem  1 to those of Lemma  3. 

Take �0 = �1∕2 , �0 = ��−1 , and select the minimal value of k so that the constraint in 
Lemma 9 is satisfied; that is 2k is constrained as follows,

Substituting this upper bound into the bound of Lemma 3, we get a lower bound for 
2K,

Observe that an integer 2K satisfying (4) also satisfies (16). We have not attempted 
to optimise our construction, and prefer the the statement of Theorem 1 as it is rea-
sonably clean and is sufficient to prove Theorem 2.

Let us study how the map x ↦ f (x) operates on a pair of vectors x, y ∈ {−1, 1}d . 
For notational compactness, again we work with relative inner products 𝜈, �̂�,𝜙 
with ⟨x, y⟩ = �d , ⟨x̂, ŷ⟩ = �̂�2k , and ⟨f (x), f (y)⟩ = �2K . Observe that in the notation 
of the proof of Lemma 3, we have �̂� = 𝜈0 and � = �

�
.

2k ≥ 2d�−1
0
(1 − �

−1
0
)−1 ≥ 2d�−1

0
(�0 − 1)−1,

𝜈 − 2−kd ≤ 2−k(𝜈2k − d) ≤ �̂� ≤ 2−k(𝜈2k + 2d) ≤ 𝜈 + 21−kd.

𝜈 − 21−kd ≤ 2−k(𝜈2k − 2d) ≤ �̂� ≤ 2−k(𝜈2k + d) ≤ 𝜈 + 2−kd.

2k ≥ 2d�−1
0

max
(
(1 − �

−1
0
)−1, (�0 − 1)−1

)
.

2d(1 − 𝛾
−1∕2)−1𝛾𝜏−1 ≤ 2k < 4d(1 − 𝛾

−1∕2)−1𝛾𝜏−1.

(16)2K ≥ 2−8d
(
210(1 − �

−1∕2)−1
)20�+1 �

�

(
�60

�40

)2�

�20

�30
.
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Lemma 10 If |𝜈| < 𝜏 then |�| ≤ (��)2
�.

Proof First we show that |�̂�| ≤ 𝛾0𝜏 , dividing into cases as in Lemma 9. If |𝜈| < 𝜏0 
then |�̂�| < 𝛾0𝜏0 = 𝛾−1

0
𝜏 ≤ 𝛾0𝜏 . If 𝜏0 ≤ 𝜈 < 𝜏 then �̂� ≤ 𝛾0𝜈 ≤ 𝛾0𝜏 . If −𝜏 < 𝜈 ≤ 𝜏0 then 

�̂� ≥ 𝛾0𝜈 ≥ −𝛾0𝜏.
To complete the proof, we condition on |�̂�| . If |�̂�| ≤ 𝜏0 then Lemma 8 applies, and 

we have

Otherwise, 𝜏0 ≤ |�̂�| < 𝜏 and by Lemma 7 we have

  ◻

Lemma 11 If |�| ≥ � then (��−1)2� ≤ � ≤ (��)2
�.

Proof It will be convenient to split the analysis according to whether � is positive or 
negative. Suppose first that � ≥ �.

Then by Lemma 9 we have that

Since �̂� ≥ 𝜈𝛾−1
0

≥ 𝜏𝛾−1
0

= 𝜏0𝛾0 ≥ 𝜏0 , Lemma 7 applies, yielding

Now, we substitute � = �
�
 and bound �̂� as in (17),

Substituting � = �
1∕2

0
 and observing that � ≥ 1 provides the required bound

The case that � ≤ −� essentially follows from multiplying all inequalities in the pos-
itive case by −1 .   ◻

Now, f satisfies (2) and (3) with p = 2� by Lemmas 10 and 11 respectively. This 
completes the proof of Theorem 1.   ◻

|𝜙| = ||𝜈�|| ≤ 𝜏
2�

0
𝛾
2�−1
0

< (𝜏𝛾)2
�

.

0 < 𝜙 = 𝜈
�
≤ 𝜈

2�

0
𝛾
2�−1
0

≤ 𝜏
2�
𝛾
2�−1
0

≤ (𝜏𝛾)2
�

.

(17)𝛾
−1
0
𝜈 ≤ �̂� ≤ 𝛾0𝜈.

�̂�𝛾
−2�+1
0

≤ 𝜈
�
≤ �̂�

2�
𝛾
2�−1
0

.

(
��

−1
0

)2�
�
−2�+1
0

≤ � ≤
(
��

−1
0

)2�
�
2�−1
0

.

(
��

−1
)2�

≤ � ≤ (��)
2� .
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4  A Deterministic Algorithm for Outlier Correlations

This section proves Theorem 2. We start by describing the algorithm, then param-
eterize it and establish its correctness, and finally proceed to analyze the running 
time.

4.1  The Algorithm

Fix the constants �, �max, �,C as in Theorem  2. Based on these constants, fix the 
constants 0 < 𝜎 < 1 and 𝛾 > 1 . (We fix the precise values of � and � later during the 
analysis of the algorithm, and stress that �, � do not depend on the given input.)

Suppose we are given as input the parameters 0 < 𝜏 < 𝜌 < 1 and X, Y ⊆ {−1, 1}d 
with |X| = |Y| = n so that the requirements in Theorem 2 hold. We work with a cor-
relation amplifier f ∶ {−1, 1}d → {−1, 1}D with parameters (d,D, p, �, �) . (We fix 
the precise values of the parameters p and D later during the analysis of the algo-
rithm so that f originates from Theorem 1.)

The algorithm proceeds as follows. First, apply f to each vector in X and Y to 
obtain the sets Xf  and Yf  . Let s = ⌊n�⌋ . Second, partition the n vectors in both Xf  
and Yf  into ⌈n∕s⌉ buckets of size at most s each, and take the vector sum of the 
vectors in each bucket to obtain the sets X̃f , Ỹf ⊆ {−s,−s + 1,… , s − 1, s}D with 
�X̃f �, �Ỹf � ≤ ⌈n∕s⌉ . Third, using fast rectangular matrix multiplication on X̃f  and Ỹf  , 
compute the matrix Z whose entries are the inner products ⟨x̃, ỹ⟩ for all x̃ ∈ X̃f  and all 
ỹ ∈ Ỹf  . Fourth, iterate over the entries of Z, and whenever the detection inequality

holds, brute-force search for outliers among the at most s2 inner products in the cor-
responding pair of buckets. Output any outliers found.

4.2  Parameterization and Correctness

Let us now parameterize the algorithm and establish its correctness. Since 𝛾 > 1 is 
a constant and assuming that p is large enough, by Theorem 1 we can select D to be 
the integer power of 2 with

Recall that we write � for the exponent of rectangular matrix multiplication. To 
apply fast rectangular matrix multiplication in the third step of the algorithm, we 
want

so recalling that d ≤ n� and n𝜎 − 1 < s , it suffices to require that

(18)⟨x̃, ỹ⟩ > n2𝜎(𝜏𝛾)pD

1

2
d

(
𝛾

𝜏

)Cp

< D ≤ d

(
𝛾

𝜏

)Cp

.

(19)D ≤ 2
(
n

s

)�

,
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Let us assume for the time being that (1 − 𝜎)𝛼 − 𝛿 > 0 . (We will justify this assump-
tion later when we choose a value for � .) Let p be the unique positive-integer power 
of 2 such that

We will later, when fixing � and � , make sure that the right-hand side in (20) is at 
least 1, so that p exists and is positive.

Let us now consider a single entry ⟨x̃, ỹ⟩ in Z, and analyze how the correspond-
ing (at most s2 ) inner products ⟨x, y⟩ between the two buckets of input vectors 
relate to the detection inequality (18). We make two claims:

Claim 1 (background case). If all of the inner products have �⟨x, y⟩� ≤ �d , then 
(18) does not hold, so the algorithm will not search inside this pair of buckets. 
This claim will be used to control the running time. The claim follows directly 
from (2) and (3), since there are at most s2 ≤ n2� inner products, each having 
�⟨f (x), f (y)⟩� ≤ (��)pD.

Claim 2 (outlier case). If at least one of the inner products has �⟨x, y⟩� ≥ �d , 
then (18) holds, so the algorithm searches inside this pair of buckets. This guar-
antees that the outliers are detected.

Note that in the third case, namely, if some inner products have �⟨x, y⟩� > 𝜏d 
but none has �⟨x, y⟩� ≥ �d , we make no claim on whether (18) holds or not. The 
algorithm is not required to search inside such pairs of buckets (since there are no 
outliers there), but may so do without hindering our overall running time bound.

We proceed to parameterize the algorithm so that Claim 2 holds. In the outlier 
case, by (2) and (3), there is at least one inner product with ⟨f (x), f (y)⟩ ≥ (��−1)pD , 
and the remaining at most n2� inner products have ⟨f (x), f (y)⟩ ≥ −(��)pD . Thus in 
the outlier case we have

For Claim  2 we need the detection inequality (18) to hold whenever (21) holds. 
Towards this end, it suffices to require that

Rearranging and solving for p, we require that

From (20) and (22) we thus see that it suffices to have

(
�

�

)Cp

≤ n(1−�)�−� .

(20)
((1 − 𝜎)𝛼 − 𝛿) log n

2C log
𝛾

𝜏

< p ≤
((1 − 𝜎)𝛼 − 𝛿) log n

C log
𝛾

𝜏

.

(21)⟨x̃, ỹ⟩ ≥ (𝜌𝛾−1)pD − n2𝜎(𝜏𝛾)pD.

(
𝜌𝛾

−1
)p

− n2𝜎(𝜏𝛾)p > n2𝜎(𝜏𝛾)p.

(22)p >
1 + 2𝜎 log n

log
𝜌

𝜏𝛾2

.
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or equivalently,

Let us derive a lower bound for the left-hand side of (23). Fix the constant 𝛾 > 1 so 
that log � = −

� log �max

100,000
 . By our assumptions we have � ≤ �max and 1 − log

�
� ≥ � , so 

we have the lower bound

Thus, (23) holds for all large enough n when we require

Since 𝛼𝜖 < 1 , we have that (23) holds when we set

We also observe that (1 − 𝜎)𝛼 − 𝛿 > 0 , or equivalently, 𝜎 < (𝛼 − 𝛿)∕𝛼 holds for our 
choice of �.

Having now fixed � and � , we observe that in terms of assumption  2 of the 
statement of Theorem  2, we have � = c1 and (1−�)�−�

C
= c2 . Thus the assump-

tion � ≥ c1n
−c2 guarantees that the right-hand side of (20) is at least 1, which was 

required for the existence of p. This completes the parameterization of the algorithm.

4.3  Running Time

Let us now analyze the running time of the algorithm. The first and second steps run 
in time Õ(nD) since p = O(log n) by (20) and f originates from Theorem 1 and hence 
is explicit. From (19) and n𝜎 − 1 < s , we have nD ≤ 4n1+(1−�)� ≤ 4n2−� . Since (19) 
holds, the third step of the algorithm runs in time O

(
(n∕s)2+�

)
 for any constant 𝜂 > 0 

that we are free to choose. Since n∕s ≤ 2n1−� for all large enough n, we can choose 
𝜂 > 0 so that (2 + �)(1 − �) ≤ 2 − � . Thus, the first, second, and third steps together 
run in time O(n2−�) . The fourth step runs in time O(n2−� + qs2d) . Indeed, observe 
from Claim 1 in § 4.2 that the detection inequality (18) holds for at most q entries in 
Z. We have qs2d ≤ qn2�+� , which completes the running time analysis and the proof 
of Theorem 2.   ◻

p >
((1 − 𝜎)𝛼 − 𝛿) log n

2C log
𝛾

𝜏

≥
1 + 2𝜎 log n

log
𝜌

𝜏𝛾2

,

(23)
log

�

��2

log
�

�

≥

2C

log n
+ 4C�

(1 − �)� − �
.

log
𝜌

𝜏𝛾2

log
𝛾

𝜏

=
log 𝜌 − log 𝜏 − 2 log 𝛾

log 𝛾 − log 𝜏
=

1 − log
𝜏
𝜌 +

2 log 𝛾

log 𝜏

1 −
log 𝛾

log 𝜏

≥

𝜖 +
2 log 𝛾

log 𝜏max

1 −
log 𝛾

log 𝜏max

> 0.99𝜖.

0.99� ≥
4C�

(1 − �)� − �
.

� =
0.99�(� − �)

4C + 1
≤

0.99�(� − �)

4C + 0.99��
.
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5  Applications

This section proves Corollaries 1 and 2.

5.1  The Light Bulb Problem

A useful variant of the Problem 1 asks for all outlier pairs of distinct vectors drawn 
from a single set S ⊆ {−1, 1}d rather than two sets X, Y. We observe that the single-
set variant reduces to ⌈log �S�⌉ instances of the two-set variant by numbering the vec-
tors in S with binary numbers from 0 to |S| − 1 and splitting S into two sets Xi, Yi 
based on the value of the ith bit for each i = 0, 1,… , ⌈log �S�⌉ − 1.

Proof of Corollary 1 We reduce to (the single-set version of) Problem 1 and apply 
Theorem 2. Towards this end, in Theorem 2 set � = 1 − 1∕� and �max = ��

max
 . Sup-

pose we are given an instance of Problem 2 whose parameters n, d, � satisfy the con-
straints. Set � = �� . We observe that the constraints in Theorem 2 are satisfied since 
(1) d ≤ n� holds by assumption, (2) � ≤ �max holds since � = �� ≤ ��

max
 , (3) the con-

stants c1 and c2 here match those in Theorem  2, and the constraint c1n−c2∕� ≤ � 
implies c1n−c2 ≤ � , and (iv) log

�
� =

log �

log �
=

log �

log ��
= 1∕� ≤ 1 − �.

We claim that q = 1 in almost all instances of Problem 2 whose parameters sat-
isfy the constraints in Corollary 1. Indeed, by the Hoeffding bound (7) and the union 
bound, the probability that some other pair than the planted pair in an instance has 
inner product that exceeds �d in absolute value is at most

so q = 1 with high probability as n increases. The claimed running time follows by 
substituting the chosen constants and q = 1 to (5).   ◻

5.2  Learning Parities with Noise

We now generalize the result for parity functions of larger constant weight, and 
prove Corollary 2.

Proof of Corollary 2 Fix the constants 0 < 𝛿 < 𝛼 , C > 60 , 𝜉 > 1 , 0 < 𝜃 < 1 . We will 
fix the value of the constant k0 later. Let k ≥ k0 be a constant. The algorithm first 
draws d examples from a given instance of Problem 3 and then transforms these to 
two collections of vectors that we feed to the algorithm of Theorem 2 and then pro-
ceed to mimic the proof of Corollary 1.

Let us first set up some notation. For A,B ⊆ [v] , let A△ B = (A⧵B) ∪ (B⧵A) 
denote the symmetric difference of A and B. Let x = (x(1), x(2),… , x(v)) ∈ {−1, 1}v 
be a Boolean n-vector. Let xA =

∏
�∈A x(�) be the product of elements indexed by A, 

2n2 exp
(
−�2d∕2

)
≤ 2n2 exp

(
−�2� ⋅ 5�−2� log n

)
= 2n−1∕2,
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with x� = 1 . Observe that xAxB =
∏

i∈A x(i)
∏

j∈B x(j) =
∏

𝓁∈A△B x(𝓁) = xA△B . Let 

us write 
(
[n]

v

)
 for the set of all k-subsets of [v].

Suppose we are now given as input an instance of Problem 3 with noise level � 
that satisfies |1 − 2𝜂| ≤ 𝜃 < 1 . Furthermore, we assume that � is part of the input. 
(If this is not the case, at the cost of increasing time complexity, we can search for 
� using a geometric progression with limit 1/2.) With the objective of eventually 
applying Theorem 2, set

and

In particular, we have 𝜏 < 𝜌 since 0 < |1 − 2𝜂| < 1 and 𝜉 > 1 . Let d be the least pos-
itive integer that satisfies

where 0 < 𝜁 < 1∕2 is constant whose value we will fix later. Draw from the given 
instance d example–label pairs (xi, yi) ∈ {−1, 1}v × {−1, 1} with i = 1, 2,… , d . We 
use these examples to define two collections X, Y ⊆ {−1, 1}d of vectors of sizes �

v

⌊k∕2⌋

�
 and 

�
v

⌈k∕2⌉

�
 , respectively. For all k ≥ ⌈1∕(2�)⌉ and all v ≥ 2k it is 

immediate that we have

In particular, we can assume that |X|, |Y| ≤ n for n = ⌊vk(1∕2+�)⌋.
The set X consists of all the vectors

with aJ1
i
= x

J1
i

 for all i = 1, 2,… , d and J1 ∈
�

[v]

⌊k∕2⌋

�
 . The set Y consists of all the 

vectors

with bJ1
i
= x

J2
i
yi for all i = 1, 2,… , d and J2 ∈

�
[v]

⌈k∕2⌉

�
.

Let us now study the distribution of inner products between vectors in X and Y. 
We write Bin ±1(d, �) for a random variable that is the sum of d independent random 
variables, each of which takes the value −1 with probability � , and the value 1 other-
wise. Observe that the expectation of Bin ±1(d, �) is (1 − 2�)d.

(24)� = |1 − 2�|�

(25)� = �
� = |1 − 2�|�2 .

(26)d ≥ (2k + 1 + 4k�)�−2(|1 − 2�| − �)−2 log v ,

�
v

⌊k∕2⌋

�
≤

�
v

⌈k∕2⌉

�
≤ vk(1∕2+� ).

aJ1 = (a
J1
1
, a

J1
2
,… , a

J1
d
) ∈ {−1, 1}d

bJ2 = (b
J2
1
, b

J2
2
,… , b

J2
d
)



3327

1 3

Algorithmica (2020) 82:3306–3337 

Let S ⊆ [v] with |S| = k be the support of the parity function that is unknown to 
us. Recall that yi = zix

S
i
 with zi ∈ {−1, 1} getting value −1 with probability � . For all 

J1 ∈

�
[v]

⌊k∕2⌋

�
 and J2 ∈

�
[v]

⌈k∕2⌉

�
 we have

Now observe that there are two distinct cases: If J1 △ J2 ≠ S , then

If J1 △ J2 = S , then

Hence, our task of finding the support S reduces to that of locating the inner prod-
ucts with distribution Bin ±1(d, �) from among those with Bin ±1(d, 1∕2).

We now argue that our choices (24), (25), and (26) suffice for the algorithm in 
Theorem 2 to distinguish between the two cases (27) and (28) for almost all draws of 
the d examples. Here we stress that the algorithm is deterministic, the randomness is 
over the draw of the examples.

From the perspective of the algorithm in Theorem 2, it suffices that (a) no pair 
with (27) exceeds �d in absolute-value inner product, and (b) at least one of the at 
most kk = O(1) pairs with (28) has absolute-value inner product at least �d.

To control (a), from (7) we observe that

Since there are at most n2 ≤ (vk(1∕2+� ))2 = vk+2� such pairs, we observe by the union 
bound that (a) holds with high probability as v increases since

To control (b), select any fixed pair with (28). From (7) we have

⟨aJ1 , bJ2⟩ =
d�

i=1

x
J1
i
x
J2
i
yi =

d�

i=1

x
J1△J2
i

xS
i
zi =

d�

i=1

x
J1△J2△S

i
zi.

(27)⟨aJ1 , bJ2⟩ ∼ Bin ±1(d, 1∕2).

(28)⟨aJ1 , bJ2⟩ =
d�

i=1

x
J1△J2△S

i
zi =

d�

i=1

zi ∼ Bin ±1(d, �).

Pr
(
|Bin ±1(d, 1∕2)| ≥ �d

)
≤ 2 exp

(
−
�2d

2

)

≤ 2 exp

(
−
(2k + 1 + 4k�) log v

2(|1 − 2�| − �)2

)

= 2v−(2k+1+4k� )(|1−2�|−�)
−2∕2.

(29)n2 ⋅ 2v−(2k+1+4k� )(|1−2�|−�)
−2∕2

≤ 2v−(1∕2)(|1−2�|−�)
−2

.
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Thus, (b) holds with high probability as v increases.
It remains to verify the constraints for the parameters n, d, �, � in Theorem  2. 

Suppressing the constants, our choice of d in (26) is �(k) ⋅ |1 − 2�|−�(1)
⋅ log v . For 

Theorem 2 to apply, this must be bounded from above by n� = v�(k) , which holds if 
|1 − 2�| ≥ v−�(k) . This holds by assumption for sufficiently large k. Select k0 so that 
this constraint holds and k0 ≥ ⌈1∕(2�)⌉ . We can choose �max = � and � = 1 − 1∕� . 
We then have 𝜏 = |1 − 2𝜂|𝜉2 < 𝜏max < 1 by assumption, as required. Since n ≥ vk∕2 , 
we also have by assumption

as required. The constants c1 and c2 here match those in Theorem 2. Furthermore by 
the choice of � we have

as required. So the constraints of Theorem  2 are satisfied. For brevity, let 
E =

0.99�(�−�)

4C+1
 and take � = E∕4 . Thus, we have

The claimed running time (6) follows by observing that (31) subsumes the time it 
takes to construct the collections X and Y together with the time it takes to search the 
q pairs of buckets with q ≤ kk = O(1) inside the algorithm of Theorem 2.

Inserting our choices (24) and (25) into (26) and approximating upwards with 
� ≤ 1 and |1 − 2�|2�2+2(1 − ��−1)2 ≤ �2(|1 − 2�| − �)2 yields

  ◻

(30)

Pr
(
|Bin ±1(d, �) − (1 − 2�)d| ≥ (|1 − 2�| − �)d

)

≤ 2 exp

(
−
(|1 − 2�| − �)2d

2

)

≤ 2 exp

(
−
(2k + 1 + 4k�) log v

2�2

)

= 2v
−

2k+1+4k�

2�2 .

� = |1 − 2�|�2 ≥ c1
�2v−c2k∕2 ≥ c1n

−c2

log �

log �
=

log �

log ��
= 1∕� = 1 − � ,

(31)n2−E ≤
(
vk(1∕2+� )

)2−E
≤ vk(1−0.245025(�−�)

2(1−1∕�)2(1+4C)−2).

d ≥
6k

|1 − 2�|2(�2+1)(1 − ��−1)2
log v.
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6  Nonconstructive Existence and a Lower Bound

This section shows that nontrivial correlation amplifiers exist and establishes a lower 
bound on the output dimension D of any correlation amplifier. The former is done 
by a routine application of the Hoeffding bound and the latter by applying results of 
Alon [4].

6.1  Low‑Dimensional Amplifiers Exist

By combining the Hoeffding bound with the union bound, we observe that low-
dimensional amplifiers exist.

Lemma 12 (Existence) There exists a correlation amplifier 
f ∶ {−1, 1}d → {−1, 1}D with parameters (d,D, p, �, �) whenever 0 < 𝜏 < 1 , 𝛾 > 1 , 
and d, p, D are positive integers satisfying

Proof Let f ∶ {−1, 1}d → {−1, 1}D be the function which maps x onto D entries 
of x⊗p chosen independently at random. That is, each entry of the vector f(x) is the 
product of p entries of x, chosen independently and uniformly at random.

Let x, y ∈ {−1, 1}d be a fixed pair of vectors, set c = D(1 − �−p)�p , and suppose 
that the following inequality holds,

Observe that if �⟨x, y⟩� < 𝜏d then (33) implies

The final inequality holds because 2 − �−p ≤ �p is logically equivalent to 
(�p − 1)2 ≥ 0 . Similarly, if �⟨x, y⟩� ≥ �d then (33) implies the following upper bound,

(32)D ≥ 3d(�p − 1)−2
(
�

�

)2p

.

(33)
�����
⟨f (x), f (y)⟩ − D

�
⟨x, y⟩
d

�p�����
≤ c.

�⟨f (x), f (y)⟩� ≤ D

�
⟨x, y⟩
d

�p

+ D(1 − �
−p)�p

≤ D�p + D(1 − �
−p)�p

≤ (��)pD.

⟨f (x), f (y)⟩ ≤ D

�
⟨x, y⟩
d

�p

+ D(1 − �
−p)�p

≤ D

�
⟨x, y⟩
d

�p

+ D(1 − �
−p)

�
⟨x, y⟩
d

�p

≤

�
�⟨x, y⟩

d

�p

D.
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We also obtain a lower bound from (33) when �⟨x, y⟩� ≥ �d,

In fact, (33) implies conditions (2) and (3) in Definition 1. So if the function f satis-
fies (33) for all x, y ∈ {−1, 1}d , then f is a correlation amplifier. We use Theorem 3 
to bound the probability that (33) fails, and take a union bound over the range of f to 
establish a non-constructive existence result for sufficiently large D.

Define the random variable Zf = ⟨f (x), f (y)⟩ . Since f(x) is a restriction onto D 
entries of x⊗p chosen uniformly at random, we have

Observe that Zf =
∑D

i=1
Zf ,i where Zf ,i is the product of the ith entries of f(x) and f(y). 

In particular, −1 ≤ Zf ,i ≤ 1 holds for i = 1, 2,… ,D . Summing over the Zf ,i in (7), the 
probability that (33) fails to hold is bounded above by

Taking a union bound over all x, y ∈ {−1, 1}d , there exists a correlation amplifier 
with parameters (d,D, p, �, �) whenever

Solving for D, we get

Simplifying this expression and approximating ln 16 by 3 completes the proof.   ◻

6.2  Lower Bound on Output Dimension

We next show a lower bound on the output dimension D of any correlation ampli-
fier, when the other parameters d, p, � and � are given. The proof is based on taking 
a collection of N vectors xi ∈ {−1, 1}d , with all pairs below the background thresh-
old � , and then bounding the number of their images f (xi) ∈ {−1, 1}D , whose abso-
lute pairwise correlations are required to be below � = (��)p by Definition 1.

⟨f (x), f (y)⟩ ≥ D

�
⟨x, y⟩
d

�p

− D(1 − �
−p)�p

≥ D

�
⟨x, y⟩
d

�p

− D(1 − �
−p)

�
⟨x, y⟩
d

�p

≥

�
⟨x, y⟩
�d

�p

D.

E[Zf ] = D

�
⟨x, y⟩
d

�p

.

Pr
(
Zf − E[Zf ] ≥ c

)
≤ e

−
c2

2D .

22de−
c2

2D < 1.

D ≥
d ln 16

�2p(1 − �−p)
2
.
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Lemma 13 There is a collection of N = exp(�2d∕4) vectors 
x1, x2,… , xN ∈ {−1, 1}d such that �⟨xi, xj⟩� < 𝜏d for all i ≠ j.

Proof We show this by the probabilistic argument. We call a pair of vectors bad if 
�⟨xi, xj⟩� ≥ �d . Let a collection of vectors X1,X2,… ,XN be chosen uniformly at ran-
dom from {−1, 1}d . Consider a pair Xi,Xj with i ≠ j , and let Zij = ⟨Xi,Xj⟩ . Now Zij 
is a sum of d independent random variables in [−1, 1] , with E[Zij] = 0 . Applying the 
two-sided Hoeffding bound with c = �d , we observe that the pair Xi,Xj is bad with 
probability

Since there are less than N2∕2 = (1∕2) exp(�2d∕2) pairs of vectors, the expected 
number of bad pairs is less than 1. Thus in at least one collection there are no bad 
pairs.   ◻

To bound the number of the image vectors, we use a combinatorial result from 
Alon [4] to bound the rank of their correlation matrix. We will require the follow-
ing lemmas.

Lemma 14 (Alon, Lemma  9.1 [4]) Let A = (aij) be an N × N real, symmetric 
matrix with aii = 1 and |aij| ≤ � for all i ≠ j . Then rank (A) ≥ N

1+(N−1)�2
 . In particular, 

if � ≤ 1√
N

 , then rank (A) ≥ N

2
.

Lemma 15 (Alon, Lemma  9.2 [4]) Let B = (bij) be an N × N matrix with 
rank (B) = D� , and let A = (bk

ij
) , where k is a positive integer. Then 

rank (A) ≤

(
D� + k − 1

k

)
.

The next lemma is in essence Alon’s Theorem 9.3 [4], modified to avoid any 
asymptotic notation. All logarithms here are in base 2.

Lemma 16 Let B = (bij) be an N × N real, symmetric matrix with bii = 1 and 
|bij| ≤ � for all i ≠ j , where 1∕

√
N ≤ � ≤ 1∕100 , and rank (B) = D� . Then

where r = (logN)∕(2 log(1∕�)).

Proof Choose r as stated. Note that by the assumed range of � , we have r ≥ 1 . Let 
further k = ⌈r⌉ , so in particular 1 ≤ r ≤ k < r + 1.

Let A = (aij) = (bk
ij
) . Since the off-diagonal elements of B satisfy |bij| < 𝜖 , it fol-

lows from the choice of k that the off-diagonal elements of A satisfy 
�aij� ≤ �k ≤ �r = 1∕

√
N . Combining Lemmas 14 and 15, we have

Pr(�⟨Xi,Xj⟩� ≥ �d) = Pr(�Zij − E[Zij]� ≥ �d) ≤ 2 exp(−�2d∕2).

(34)D�
≥

(
r

5

)(
1

�

)2r∕(r+1)
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Taking logarithms and rearranging the inequality we obtain

implying

Observing that logN = r log(1∕�2) , we get

and, since � ≤ 1∕100 and r ≥ 1 , this implies

as stated.   ◻

Remark The parameter r measures, in a sense, the distance from the case of an 
extremely low correlation requirement � = 1∕

√
N . If r tends to infinity, the exponent 

2r∕(r + 1) approaches 2, matching the asymptotic form given by Alon [4]. However, 
with small r the exponent diminishes, reaching 1 in the limiting case r = 1 , that is, 
when � = 1∕

√
N . In the limiting case a direct application of Lemma 14 would give 

the better linear bound D� ≥ N∕2.

We can now combine Lemmas  13 and  16 to get a lower bound on output 
dimension.

Lemma 17 (Lower bound on output dimension) The output dimension of a correla-
tion amplifier with parameters (d,D, p, �, �) is bounded by

when (��)p ≤ 1∕100 and p ≤
(log e)�2d

8 log(
1

��
)
.

Proof By Lemma  13 there is a collection of N = exp(�2d∕4) vectors 
x1, x2,… , xN ∈ {−1, 1}d with correlations below � in absolute value. By Defini-
tion 1 their images ui = f (xi) ∈ {−1, 1}D have correlations below � = (��)p in abso-
lute value.

N∕2 ≤ rank (A) ≤

(
D� + k − 1

k

)
≤

(
e(D� + k − 1)

k

)k

≤

(
e(D� + r)

r

)r+1

.

log

(
1 +

D�

r

)
≥

log(N∕2)

r + 1
− log e ≥

logN

r + 1
− 2,

1 +
D�

r
≥

2(logN)∕(r+1)

4
.

1 +
D�

r
≥

1

4

(
1

�

)2r∕(r+1)

D�
≥

(
r

5

)(
1

�

)2r∕(r+1)

D ≥
1

5

(
1

��

)p
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Consider the N × N correlation matrix B = (bij) = (⟨ui, uj⟩∕D) . It is real and sym-
metric, with diagonal elements bii = 1 and off-diagonals satisfying |bij| ≤ � . We 
observe that D� = rank (B) ≤ D . Applying Lemma 16 we have

and

as claimed.   ◻

Remark At the limiting case where p =
(log e)�2d

8 log(
1

��
)
 , we have r = 1 and 

� = 1∕
√
N = exp(−t2d∕8) , and the bound (35) becomes D ≥ exp(�2d∕8) . For p 

greater than the limit, one can essentially map all of the N = exp(�2d∕4) input vec-
tors to orthogonal output vectors of dimension D ≤ 2N using a Hadamard matrix, in 
which case (2) holds for arbitrary p > 1.
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Appendix: An Expander Family

This section proves Lemma 2 following Reingold et al. [34]; we present the proof for 
completeness of exposition only with no claim of originality. Following Reingold 
et al. [34] we will work with normalized eigenvalues. To avoid confusion with the 
unnormalized treatment in the manuscript proper, we say that a graph is a [D,�, �]
-graph if the graph has D vertices, is �-regular, and |�2|∕� ≤ � . (Here |�2| is the 
unnormalized second eigenvalue as defined in the manuscript proper.)

r =
logN

2 log(1∕�)
=

(log e)�2d

8p log(
1

��
)
≥ 1,

(35)D ≥ D�
≥

(
r

5

)(
1

�

)2r∕(r+1)

≥
1

5

(
1

��

)p
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We refer to Sections 2.3 and 3.1 of Reingold et al. [34] for the definition of the 
square G2 of a graph G, the tensor product G1 ⊗ G2 of graphs G1,G2 , and the zigzag 
product G Z H of graphs G, H. The following omnibus result collects elements of 
Proposition 2.3, Proposition 2.4, Theorem 3.2 and Theorem 4.3 of [34] which will 
be sufficient to control the second normalized eigenvalue for our present purposes. 
(We choose to omit the details of the rotation maps with the understanding that they 
can be found in [34].)

Lemma 18 (Reingold et al. [34]) The following bounds hold.

1. If G is a [D,�, �]-graph, then G2 is a [D,�2, �2]-graph.
2. If G1 is a [D1,�1, �1]-graph and G2 is a [D2,�2, �2]-graph,
  then G1 ⊗ G2 is a [D1D2,�1�2, max(�1, �2)]-graph.
3. If G is a [D1,�1, �1]-graph and H a [�1,�2, �2]-graph,
  then G Z H is a [D1�1,�

2
2
, f (�1, �2)]-graph with

Let us study the following sequence of graphs. Let H be a [D,�, �]-graph. Let 
G1 = H2 , G2 = H ⊗ H , and for t = 3, 4,… let

From Lemma 18 it is easily seen that Gt is a [Dt,�2, �t]-graph with �t defined by

Lemma 19 (Reingold et al. [34, Theorem 3.3]) The rotation map RotGt
 can be com-

puted in time poly(t, logD) and by making poly(t) evaluations of RotH.

Lemma 20 If 0 ≤ � ≤ 1∕4 then �t ≤ � + 4�2 for all t ≥ 1.

Proof The conclusion is immediate for t ≤ 2 . So suppose that the conclusion holds 
up to 2t − 2 . We need to show that the conclusion holds for �2t−1 and �2t . By induc-
tion, it suffices to show that

Observing that �2 + 8�3 + 16�4 ≤ 4�2 holds for 0 ≤ � ≤ 1∕4 yields the desired con-
clusion. The proof for �2t is identical.   ◻

f (�1, �2) =
1

2

(
1 − �

2
2

)
�1 +

1

2

√(
1 − �2

2

)2
�2
1
+ 4�2

2
≤ �1 + �2.

(36)Gt =

�
G⌈ t−1

2
⌉ ⊗ G⌊ t−1

2
⌋
�2

Z H.

�1 = �
2,

�2 = �,

�2t−1 = � + �
2
t−1

, for t = 2, 3… , and

�2t = max(� + �
2
t
, � + �

2
t−1

), for t = 2, 3,… .

�2t−1 ≤ � + (� + 4�2)2 ≤ � + 4�2.
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Finally, we construct the expanders that we require in the manuscript proper.

Lemma 21 (Lemma 2 stated with normalized eigenvalue notation) For all integers 
t ≥ 1 and b ≥ 10 there exists a [216bt, 24b, 16 ⋅ 2−b]-graph whose rotation map can be 
evaluated in time poly(b, t).

Proof Take q = 2b and d = 15 in Proposition 5.3 of Reingold et  al. [34] to 
obtain a [216b, 22b, 15 ⋅ 2−b]-graph H whose rotation map can be computed in 
time poly(b) . (Indeed, observe that an irreducible polynomial to perform the 
required arithmetic in the finite field of order 2b can be constructed in determin-
istic time poly(b) by an algorithm of Shoup [35].) Let us study the sequence Gt 
given by (36). The time complexity of the rotation map follows immediately 
from Lemma  19. Since b ≥ 10 , Lemma  20 gives that �t ≤ � + 4�2 for all t ≥ 1 . 
Take � = 15 ⋅ 2−b and observe that since b ≥ 10 we have 2−b < 1∕900 . Thus, 
�t ≤ 15 ⋅ 2−b + 4(15 ⋅ 2−b)2 = 15 ⋅ 2−b + 900 ⋅ 2−2b ≤ 16 ⋅ 2−b .   ◻
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