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Abstract
A space bounded O(d∕ log d)-competitive hypercube packing algorithm with one 
active bin only is presented. As a starting point we give a simple 1-space bounded 
hypercube packing algorithm with competitive ratio (3∕2)d + O((21∕16)d) , for 
d ≥ 3.

Keywords  Bin packing · Online algorithm · Asymptotic competitive ratio · Cube · 
Hypercube · One-space bounded

1  Introduction

In the bin packing problem, we receive a sequence S of items of different sizes that 
must be packed into a finite number of bins in a way that minimizes the number 
of bins used. When all the items of S are accessible, the packing method is called 
offline. The packing method is called online, when items arrive one by one and each 
item has to be packed irrevocably into a bin before the next item is presented.

One can consider an online method with t bins available for packing at each point 
in time. It is called t-space bounded. There are three types of bins: active, open and 
closed. At each point in time, exactly t bins are declared active. At the beginning, t 
bins are declared active and the remaining bins are open (there are no closed bins). 
Each incoming item is packed into one of the active bins; the remaining open bins 
are not available at this moment. We can decide to close an active bin. The most fre-
quent reason for doing this is not enough space to pack an incoming item, however 
there may be other reasons based on the packing algorithm. When an active bin is 
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closed, a new bin from among open bins is declared active. None of the closed bins 
is used again. It is natural to expect a packing method to be less efficient with fewer 
number of active bins. An unbounded space model does not impose any limits on 
the number of active bins.

Let S be a sequence of items, let A(S) be the number of bins used by algorithm A 
and let OPT(S) be the minimum possible number of bins used to pack items from S. 
The asymptotic competitive ratio for algorithm A is defined as:

Online bin packing is a classical problem studied for more than forty years. One-
dimensional bin packing was first investigated in [27] (see also [20]), where the 
performance ratio of the First Fit algorithm was proved to be 17/10. The Next Fit 
algorithm with performance ratio not greater than 2 was discussed in [19]. Revised 
First Fit presented in [30] has performance ratio 5/3. The article also gives the lower 
bound 3/2 on the competitive ratio. The result was then improved in [3, 22] (the 
lower bound not smaller than 1.53635) and in [28], where the reader can find the 
lower bound 1.54014. First Fit and Best Fit algorithms can be found in [7]. The 
authors of the article [23] improve the upper bound to 1.61217 and give the lower 
bound 1.58333 for the class of Modified Harmonic algorithms. Seiden in [24] fur-
ther improved the upper bound to 1.58889. Moreover, the upper bound 1.5813 
was proved by Heydrich and van Stee (see [14]). Recently, the lower bound on the 
asymptotic competitive ratio of any online algorithm for bin packing was improved 
to 1.54278 (see [2]). Furthermore, an algorithm AH (Advanced Harmonic) whose 
asymptotic competitive ratio does not exceed 1.57829 was presented in [1].

Coppersmith and Raghavan in [5] presented the 2-dimensional online bin packing 
algorithm with competitive ratio 3.25. The result was later improved in [6] to 3.0625 
and in [13] to 2.7834. Further improvements can be found in [25], where the authors 
show the upper bound of 2.66013 of the asymptotic competitive ratio. Currently the 
upper bound stands at 2.5545 (see [12]).

The classical 1-dimensional result in bin packing comes from Lee and Lee [21]. 
The authors presented an online bounded-space algorithm called Harmonic with the 
lower bound with the competitive ratio �∞ ≈ 1.69103 . The authors also showed 
that there is no bounded space algorithm with performance ratio below �∞.

In the Harmonic algorithm and its improvements when the asymptotic competi-
tive ratio approaches the optimal value, the number of active bins diverges to infin-
ity. A question arises: What asymptotic competitive ratio can be achieved when the 
number of active bins is bounded above by a small natural number? This question 
was addressed by Woeginger in [29] whose Simplified Harmonic 6-space bounded 
online algorithm has competitive ratio beneath 17/10.

Let d ≥ 3 . We focus on the problem of packing d-dimensional hypercubes of the 
edge lengths not greater than 1 into a bin (a hypercube of the edge length 1).

The problem of multidimensional bin packing is discussed in [4]. Although previ-
ous studies used space bounded models, the number of active bins was usually large 
(for example, greater than 9 in [8]). The paper [8] by Epstein and van Stee gives 

R∞
A
= lim sup

n→∞

sup
S

{
A(S)

OPT(S)
| OPT(S) = n

}
.
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a space bounded multidimensional hypercube packing algorithm with competitive 
ratio O(d∕ log d) , however the number of active bins is about d∕ log d . In this paper 
we describe a hypercube packing algorithm with competitive ratio O(d∕ log d) and 
with one active bin only.

Articles [15, 17] provide optimal estimates for online packing of hypercubes to a 
single bin for d ≥ 4 : any sequence of d-dimensional hypercubes of total volume not 
greater than 21−d can be packed online into a unit hypercube. The first paper con-
cerns the case d ≥ 5 , the second d = 4 . Online packing of hyperboxes into a single 
bin is studied in [18], where the following upper bound is presented: any sequence 
of d-dimensional hyperboxes of the edge length smaller than or equal to 1 with total 
volume not greater than (3 − 2

√
2) ⋅ 3−d can be packed online into the d-dimensional 

unit hypercube.
An algorithm with competitive 2d+1 that uses only one active bin is presented in 

the article [31]. In the same paper the authors provide 1-space bounded algorithm 
for hyperbox packing with competitive ratio 4d . Algorithms with smaller competi-
tive ratios can be found in [11], where the authors give hyperbox packing methods 
with ratios (3.5)d and 12 ⋅ 3d . 1-space bounded 2-dimensional online packing algo-
rithms were studied in [32] (a 4.3-competitive algorithm) and [10] (a 3.888-compet-
itive algorithm). The 2-space bounded 3.8165-competitive algorithm can be found 
in [16]. The 3-space bounded 3.577-competitive algorithm is presented in [9].

In the first part of the paper we provide the online algorithm tt(d) (with two types 
of small items) that uses one active bin only with competitive ratio not greater than 
(3∕2)d + O((21∕16)d) which is a significant improvement of the previous result 
( 2d+1 , see [31]). The algorithm distinguishes three types of hypercubes: big, 2-small 
and 3-small. Big hypercubes are packed alone, while the last two types are packed 
starting from the opposite corners of the bin. Counting the number of 2- and 3-small 
hypercubes that could be packed together led us to Gould’s sequence and a sequence 
of its partial sums linked with odd entries in Pascal’s triangle, which we consider to 
be a fact worth noting.

The second part of the paper contains the algorithm har(d) in which about 
d∕ log d types of items are distinguished. The algorithm is a generalization of the 
tt(d) algorithm and is based on the well-known Harmonic algorithm. Instead of 
using weights we give a direct proof that also in 1-space bounded model the com-
petitive ratio O(d∕ log d) is achievable.

2 � The tt(d) Algorithm for d ≥ 3

2.1 � Types of Items

Given an item (a d-dimensional hypercube) Ci , denote by ai its edge length. Items 
are divided into types: 

1.	 Ci is big, provided ai > 1∕2;
2.	 Ci is small, provided ai ≤ 1∕2 ; 
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2.1	a small Ci is 2-small if ai belongs to 
⋃∞

n=0
(1∕3 ⋅ 2−n, 1∕2 ⋅ 2−n];

2.2	a small Ci is 3-small if ai belongs to 
⋃∞

n=0
(1∕4 ⋅ 2−n, 1∕3 ⋅ 2−n].

Each small item is either 2-small or 3-small. Items from these classes will be packed 
starting from the opposite vertices of the hypercube.

Any bin B can be partitioned into 2d congruent hypercubes called 2-cubes as well 
as into 3d congruent hypercubes called 3-cubes (see Fig. 1). Moreover, in the course 
of packing every k-cube can be partitioned into 2d n congruent hypercubes with 
the edge lengths 1∕(k ⋅ 2n) , called k-subcubes, for k ∈ {2, 3} and n ∈ {0, 1, 2,…} . 
2-cubes [3-cubes] are also called 2-subcubes [3-subcubes, respectively].

We lose no generality in assuming that B = [0, 1]d . We will define an ordering 
of 2-cubes in B . For d = 1 the bin B is the interval [0, 1] and the 2-cubes are num-
bered from left to right: 1 and 2. When the order is defined for all dimensions up to 
d − 1 , we define the order in B = [0, 1]d in such way that all d-dimensional 2-cubes 
of [0, 1]d−1 × [0, 1∕2] are numbered as in dimension d − 1 : from 1 to 2d−1 . Then the 
d-dimensional 2-cubes of [0, 1]d−1 × [1∕2, 1] are numbered from 2d−1 + 1 to 2d in the 
order borrowed from the dimension d − 1 (see Fig. 2, where d = 3).

The order of 3-cubes in B is defined in an analogous way.

Fig. 1   Partition into 2-cubes and 
3-cubes

Fig. 2   Numbering of some 2-cubes and 2-subcubes (left) and 3-cubes (right)
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Furthermore, each subcube has a number assigned to it.
Any bin B is partitioned into congruent 2-subcubes with the edge length 1/2, 

numbered from 1 to 2d . If S is the subcube with the edge length 1/2 and with num-
ber �1 ( �1 ∈ {1,… , 2d} ), then all 2-subcubes with the edge length 1∕22 (the par-
tition of S) are numbered in an arbitrary order from 2d(�1 − 1) + 1 to 2d�1 (see 
Fig. 2). Moreover, if S is the subcube with the edge length 1∕22 and with number 
�2 ( �2 ∈ {1,… , 4d} ), then all 2-subcubes with the edge length 1∕23 (the partition 
of S) are numbered in an arbitrary order from 2d(�2 − 1) + 1 to 2d�2 . Generally, 2d 
congruent 2-subcubes forming the partition of S are numbered in an arbitrary order 
from 2d(� − 1) + 1 to 2d�.

Similarly, any bin B is partitioned into congruent 3-subcubes with the edge 
length 1/3, numbered from 1 to 3d . If S is the subcube with the edge length 1/3 and 
with number �1 ( �1 ∈ {1,… , 3d} ), then all 3-subcubes with the edge length 1∕(2 ⋅ 3) 
(the partition of S) are numbered in an arbitrary order from 2d(�1 − 1) + 1 to 2d�1 
(see Fig. 2). Moreover, if S is the subcube with the edge length 1∕(2 ⋅ 3) and with 
number �2 ( �2 ∈ {1,… , 6d} ), then all 3-subcubes with the edge length 1∕(22 ⋅ 3) 
(the partition of S) are numbered in an arbitrary order from 2d(�2 − 1) + 1 to 2d�2 . 
Generally, 2d congruent 3-subcubes into which the 3-subcube with number � is 
divided are numbered in an arbitrary order from 2d(� − 1) + 1 to 2d�.

2.2 � Packing Algorithm

If Ci is a k-small item, then denote by Ki the smallest hypercube of the edge lengths 
from the set { 1

k
,
1

2k
,
1

4k
,…} into which Ci can be packed, k ∈ {2, 3} . For exam-

ple, if ai = 10∕81 ( Ci is 2-small), then Ki is a hypercube of the edge length 1/8; if 
ai = 10∕31 , then the edge length of the smallest hypercube Ki containing the 3-small 
item Ci equals 1/3.

A k-subcube of B is empty if its interior has an empty intersection with any item 
packed so far.

Algorithm tt(d) for packing of Ci into B . 

1.	 If Ci is big, then we close the active bin, open a new bin, pack Ci and close the 
bin. Then we open a new active bin.

2.	 If Ci is a 2-small item, then we pack Ci into the empty 2-subcube congruent to Ki 
with the smallest number. If there is no empty subcube, we close the active bin 
and open a new bin to pack Ci.

3.	 If Ci is a 3-small item, then we pack Ci into the empty 3-subcube congruent to Ki 
with the greatest number. If there is no empty subcube, we close the active bin 
and open a new active bin to pack Ci.

Example  We need to pack a sequence of four items C1,C2,C3,C4 according to the 
tt(3) algorithm, see Fig. 3. The edge lengths of arriving items are 1/9, 1/2, 10/81 and 
10/31.
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The first hypercube is a 3-small item. Moreover C1 = K1 and thus it is packed 
into the empty 3-subcube with the greatest number (inside the 3-cube numbered 27, 
see Fig. 2). The hypercube C2 = K2 is packed into the first 2-cube. For C3 the small-
est 2-subcube into which it can be packed is congruent to a cube K3 of the edge 
length 1/8. C3 is packed into K3 and then K3 is packed into a 2-subcube of the second 
2-cube. Finally, C4 is packed into a cube K4 of the edge length 1/3, which is then 
packed into the empty 3-cube with the greatest number, which would be the 3-cube 
with number 26.

Denote by |A| the d-dimensional volume of an item A.

Lemma 1  Suppose a 2-small item Ci was packed into a 2-subcube congruent to Ki . 
At least 

(
2∕3

)d units of volume of the 2-subcube is occupied, i.e., |Ci| ≥
(
2∕3

)d|Ki|.

Proof  Recall that Ki is congruent to the smallest 2-subcube into which Ci can be 
packed. Ci is 2-small thus its edge length is greater than 3−1 ⋅ 2−n and not greater 
than 2−n−1 for some non-negative integer n. We use that lower bound in calculations.

	�  ◻

We now give the analogous lemma for 3-small items.

Lemma 2  Suppose a 3-small item Ci was packed into a 3-subcube congruent to Ki . 
At least 

(
3∕4

)d of the 3-subcube is occupied, i.e., |Ci| ≥
(
3∕4

)d|Ki|.

Proof 
	�  ◻

Let �2 =
(
2∕3

)d , �3 =
(
3∕4

)d and let either k = 2 or k = 3 . We say that a k-sub-
cube is used for packing, provided a k-small item was packed into it.

|Ci|
|Ki|

>
(3−1 ⋅ 2−n)d

(2−n−1)d
=
(
2

3

)d

.

|Ci|
|Ki|

>
(2−n−2)d

(3−1 ⋅ 2−n)d
=
(
3

4

)d

.

Fig. 3   Four items packed 
according to the tt(3) algorithm
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Lemma 3  Assume that Ci is the first k-small item that cannot be packed into a k-
cube of a bin B by our algorithm. Denote by mk the number of k-cubes (of the edge 
lengths k−1 ) used for packing. Then the total volume of all k-small items preceding Ci 
packed into B is greater than �kmk ⋅ k

−d − |Ci|.

Proof  Let Ci be a k-small item. By the assumption, there is no empty k-subcube 
greater than or congruent to Ki , i.e., all empty k-subcubes in B are smaller than Ki . 
Furthermore, for each i = 1, 2,… there are at most 2d − 1 empty k-subcubes congru-
ent to 2−iKi . Notice that if there were 2d empty k-subcubes congruent to 2−iKi , they 
would form a whole empty k-subcube congruent to 2−i+1Ki (recall that the algorithm 
imposes packing to the subcube with the smallest number).

The total volume of empty k-subcubes in B is smaller than

By Lemmas 1 and 2 we know that the total volume of k-small items packed into B 
is greater than

	�  ◻

2.3 � 2‑Cubes Versus 3‑Cubes

Denote by n2 the number of 2-cubes used for packing and by Un2
 the union of 2-cubes 

used for packing in a bin B . Moreover, denote by n−
3
 the number of 3-cubes contained 

in B⧵Un2
.

For d = 1 we have n−
3
= 3 for n2 = 0 , n−

3
= 1 for n2 = 1 and n−

3
= 0 for n2 = 2 (see 

Fig. 4).
We want to have a relation between n−

3
 and n2 . In Lemma 4 we will present a recur-

sive formula. Clearly, n−
3
 also depends on d, thus we will use the notation n−

3
= yd(n2) 

(see Fig. 4).
The number of empty 3-cubes can be calculated directly for d = 2 (see Fig. 5):

•	 y2(0) = 32 (all 3-cubes are empty),
•	 y2(1) = 5 (exactly one 2-cube is packed),
•	 y2(2) = 31 (only one row of 3-cubes is empty),
•	 y2(3) = 1,
•	 y2(4) = 0.

(2d − 1) ⋅ (2−d + 4−d +⋯) ⋅ |Ki| = |Ki|.

𝜌k(mk ⋅ k
−d − |Ki|) = 𝜌kmk ⋅ k

−d − 𝜌k|Ki| > 𝜌kmk ⋅ k
−d − |Ci|.

Fig. 4   2-cubes and 3-cubes for d = 1



3223

1 3

Algorithmica (2020) 82:3216–3249	

If B = [0, 1]d , then all 2-cubes of B are of the form

where �i ∈ {0, 1∕2} for i = 1, 2,… , d . Moreover, all 3-cubes of B are of the form

where �i ∈ {0, 1∕3, 2∕3} for i = 1, 2,… , d . We will use the notation 
C2[�d] = C2(�1,… , �d) and C3[�d] = C3(�1,… , �d).

For d ≥ 2 the values of the sequence yd can be calculated inductively (see 
the bottom row of Fig. 5). There is a 1-1 correspondence between 3-cubes in a 
d-dimensional unit hypercube and 3-cubes in three (d − 1)-dimensional unit 
hypercubes. Assign all 3d−1 hypercubes C3[0] to 3-cubes in the first (d − 1)-dimen-
sional unit hypercube, all 3d−1 hypercubes C3[1∕3] to 3-cubes in the second (d − 1)

-dimensional unit hypercube and finally all hypercubes C3[2∕3] to 3-cubes in the 
third (d − 1)-dimensional unit hypercube (see Fig. 6, where d = 3).

If n2 ≤ 2d−1 , i.e., if no hypercube C2[1∕2] was used for packing, then all 3d−1 
hypercubes C3[2∕3] remain empty. The number of empty hypercubes C3[1∕3] as 

C2(�1,… , �d) = [�1, �1 + 1∕2] ×⋯ × [�d, �d + 1∕2],

C3(�1,… , �d) = [�1, �1 + 1∕3] ×⋯ × [�d, �d + 1∕3],

Fig. 5   2-cubes, 3-cubes for d = 2 visualised as layers

Fig. 6   3-cubes C
3
[0] , C

3
[1∕3] 

and C
3
[2∕3] in a three-dimen-

sional cube visualised as 3 lay-
ers of two-dimensional 3-cubes 
in a square
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well as the number of empty hypercubes C3[0] equals yd−1(n2) . The number of all 
empty 3-cubes is equal to 3d−1 + 2yd−1(n2).

If n2 > 2d−1 , then all 2d−1 hypercubes C2[0] were used for packing. There is no 
empty hypercube C3[0] as well as there is no empty hypercube C3[1∕3] . Let m 
be an integer such that n2 = 2d−1 + m . Obviously, exactly m hypercubes C2[1∕2] 
were used for packing. The number of empty 3-cubes is exactly the same as in the 
dimension d − 1 and equals yd−1(m).

Consequently, we get the following inductive formula

Note that the sequence yd(n2) is directly related to Gould’s sequence, what is proved 
in “Appendix 1”.

Now we give the relation between the number n2 of 2-cubes used for packing 
and the number n−

3
= yd(n2).

Lemma 4  Let n2 be the number of 2-cubes already used for packing, let Un2
 be the 

union of all 2-cubes used for packing and let n−
3
 be the number of 3-cubes contained 

in B⧵Un2
 . For d ≥ 1 and n2 ≤ 2d we get

Proof  Let

and let n−
3
= yd(n2) . We will show that

The inequality is obvious for n2 = 0, 2d−1, 2d and arbitrary d.
Notice that for d = 1 the inequality holds true.

•	 For n2 = 0, y1(0) = 3 we have R =
1

3
(8 −

5

8
⋅ 7 − 0 ⋅ 4) =

29

24
< 3 = y1(0).

•	 For n2 = 1, y1(1) = 1 we have R =
1

3
(8 −

5

8
⋅ 7 − 1 ⋅ 4) < 0 < 1 = y1(1).

•	 For n2 = 2, y1(2) = 0 we have R =
1

3
(8 −

5

8
⋅ 7 − 2 ⋅ 4) < 0 = y1(2).

The rest of the proof goes by induction. Let d ≥ 2.

Case 1 n2 < 2d−2 . By the inductive assumption,

(1)
yd(0) = 3d,

yd(n2) = 3d−1 + 2 ⋅ yd−1(n2), for n2 < 2d−1

(2)yd(n2) = yd−1(m), for n2 = 2d−1 + m, m ≤ 2d−1.

n24
d + 3dn−

3
≥ 8d −

5

8
⋅ 7d.

R =
1

3d

(
8d −

5

8
⋅ 7d − n24

d
)

yd(n2) ≥ R.
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Case 2 n2 = 2d−2.

Case 3 2d−2 < n2 < 2d−1. We can assume that d ≥ 3 (if d = 2 , then there is no 
n2 such that 20 < n2 < 21).

Clearly, n2 = 2d−2 + l for some 0 < l < 2d−2 . Consequently,

Case 4 2d − 2 ≤ n2 ≤ 2d.

If n2 = 2d , then yd(n2) = 0 > R.
If n2 ∈ {2d − 2, 2d − 1} , then yd(n2) ≥ 1 >

1

3d

(
8d −

5

8
⋅ 7d − (2d − 2) ⋅ 4d

)
≥ R.

Case 5 2d−1 ≤ n2 ≤ 2d − 3.

Observe that there are integers j and k such that 1 ≤ j ≤ d − 2 , 0 ≤ k < 2d−j−1 and 
that

yd(n2) = 3d−1 + 2yd−1(n2)

≥ 3d−1 + 2 ⋅
1

3d−1

(
8d−1 −

5

8
⋅ 7d−1 − n24

d−1
)

= R +
1

3d

(
32d−1 − 2 ⋅ 8d−1 − 2n24

d−1 +
5

8
⋅ 7d−1

)

> R +
1

3d

(
32d−1 − 2 ⋅ 8d−1 − 2 ⋅ 2d−2 ⋅ 4d−1

)

= R +
1

3d

(
3 ⋅ 9d−1 − 3 ⋅ 8d−1

)
> R.

yd(n2) = yd(2
d−2) = 3d−1 + 2yd−1(2

d−2) = 3d−1 + 2 ⋅ 3d−2 =
5

9
⋅ 3d

>
(
8

3

)d

−
5

8
⋅

(
7

3

)d

=
1

3d

(
8d −

5

8
⋅ 7d

)
> R.

yd(n2) = 3d−1 + 2yd−1(n2)

= 3d−1 + 2yd−1(2
d−2 + l)

= 3d−1 + 2yd−2(l)

≥ 3d−1 + 2 ⋅
1

3d−2

(
8d−2 −

5

8
⋅ 7d−2 − l4d−2

)

= 3d−1 + 2 ⋅
1

3d−2

(
8d−2 −

5

8
⋅ 7d−2 − (n2 − 2d−2)4d−2

)

= R +
1

3d

(
3 ⋅ 9d−1 −

7

2
⋅ 8d−1 +

155

8
⋅ 7d−2 − 2n24

d−2
)

> R +
1

3d

(
3 ⋅ 9d−1 −

9

2
⋅ 8d−1 + 2 ⋅ 7d−1

)
> R.
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Using the inductive definition of the sequence (2), i.e., yd(2d−1 + m) = yd−1(m) , for 
0 < m ≤ 2d−1 , we get

Since n2 ≥ 2d(1 − 2−j) , to prove yd(n2) ≥ R , is suffices to show the following 
inequality

i.e.,

This is equivalent to check that

where

The function fd has a local minimum at

and

Moreover, fd is continuous, decreasing on the interval (−∞, xmin] and increasing on 
[xmin,+∞).

First assume that d ∈ {2, 3,… , 11} . It is easy to ver-
ify that fd(1) = 9d−1 −

8d

2
+

5

8
⋅ 7d + 2 ⋅ 3d > 0 as well as 

fd(2) =
9d−1

3
−

8d

4
+

5

8
⋅ 7d + 2 ⋅ 3d > 0 . Since xmin < 0.3 ⋅ 11 − 1.57 < 2 , it follows 

that

n2 = 2d−1 + 2d−2 +⋯ + 2d−j + k = 2d(1 − 2−j) + k.

yd(n2) = yd(2
d−1 + 2d−2 +⋯ + 2d−j + k)

= yd−1(2
d−2 +⋯ + 2d−j + k)

= yd−2(2
d−3 +⋯ + 2d−j + k)

= ⋯ = yd−j(k)

≥ yd−j(2
d−j−1 − 1)

= 3d−j−1 + 2yd−j−1(2
d−j−1 − 1)

= 3d−j−1 + 2.

3d−j−1 + 2 ≥
1

3d

(
8d −

5

8
7d − 2d(1 − 2−j)4d

)
,

9d

3j+1
−

8d

2j
+

5

8
⋅ 7d + 2 ⋅ 3d ≥ 0.

fd(j) ≥ 0,

fd(x) =
9d

3x+1
−

8d

2x
+

5

8
⋅ 7d + 2 ⋅ 3d.

xmin = log2∕3

((
8

9

)d

3 log3 2

)
= d log2∕3

8

9
+ log2∕3(3 log3 2),

0.29d − 1.58 < xmin < 0.3d − 1.57.
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for j ∈ {1, 2,… , d − 2}.
Now assume that d ≥ 12 . For j ∈ {1, 2… , d − 2} we get

	�  ◻

2.4 � Competitive Ratio

Lemma 5  Assume that only small items are in the sequence S. The total volume of 
small items packed into any closed bin B is greater than

for d ≥ 3.

Proof  By Lemma 3 we know that the total volume of 2-small items packed into B 
is greater than �2n2 ⋅ 2−d − 2−d . Moreover, the total volume of 3-small items packed 
into B is greater than �3n3 ⋅ 3−d − 3−d . Consequently, the sum of the volumes of 
packed small items is greater than

This value, by Lemma 4, is greater than

	�  ◻

Theorem  1  The asymptotic competitive ratio of the tt(d) algorithm is not greater 
than

fd(j) ≥ min
(
fd(1), fd(2)

)
> 0

fd(j) ≥ fd(xmin) =
9d

3 ⋅ 3xmin

−
8d

2xmin

+
5

8
⋅ 7d + 2 ⋅ 3d

>
9d

3 ⋅ 30.3d ⋅ 3−1.57
−

8d

20.29d ⋅ 2−1.58
+ 0.625 ⋅ 7d

> 1.87 ⋅ (6.473)d − 2.99 ⋅ (6.544)d + 0.625 ⋅ 7d

> (6.473)d ⋅
(
1.87 − 2.99 ⋅ (1.011)d + 0.625 ⋅ (1.081)d

)

≥ (6.473)d ⋅
(
1.87 − 2.99 ⋅ (1.011)12 + 0.625 ⋅ (1.081)12

)
> 0

� =
(
1 − 5∕8 ⋅ (7∕8)d

)
⋅ (2∕3)d − 2−d − 3−d

(2∕3)dn2(1∕2)
d + (3∕4)dn3(1∕3)

d − 1∕2d − 1∕3d

= 12−d ⋅ (n2 ⋅ 4
d + n3 ⋅ 3

d) − 1∕2d − 1∕3d.

12−d ⋅
(
8d − 5∕8 ⋅ 7d

)
− 1∕2d − 1∕3d = �.

(3∕2)d + O((21∕16)d).
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Proof  Let S be a sequence of items of the total volume v, let �1 denote the number of 
big items in S and let � be the number of bins used to pack items from S according to 
the tt(d) algorithm.

Obviously, OPT(S) ≥ v as well as OPT(S) ≥ �1 . By Lemma 5 and Rule (1) from 
the description of the tt(d) algorithm we have

i.e.,

Let � = max(v, �1) . Since OPT(S) ≥ � , we get

Consequently, the asymptotic competitive ratio for tt(d) algorithm is not greater than

	�  ◻

3 � The har(d) Algorithm for d ≥ 5

In this section we describe a one-space bounded algorithm for packing d-dimen-
sional hypercubes with competitive ratio O(d∕ log d) . The har(d) algorithm is based 
on the well-known Harmonic algorithm as well as on the tt(d) algorithm and thus 
some definitions, notations and even lemmas are similar to those related to the tt(d) 
algorithm. For instance, if all the hypercubes have the edge lengths from the set 
{1∕2, 1∕4, 1∕8, 1∕16,…} , then the algorithm works exactly the same as the tt(d) 
algorithm. Some of the presented bounds are not sharp and can be improved; we 
preferred non-optimal constants rather than complicated calculations.

By a1 × a2 ×⋯ × ad we mean a hyperbox such that its edges parallel to the k-th 
axis of the coordinate system are of the length ak , for k = 1, 2,… , d . Furthermore, 
we will write ad−q × bq instead of a ×⋯ × a

⏟⏞⏞⏟⏞⏞⏟
(d−q) times

× b ×⋯ × b
⏟⏞⏞⏟⏞⏞⏟

q times

.

3.1 � Intuition About How the Algorithm Works

Different types of items are packed into different active bins by the Har-
monic algorithm. Since any unit d-dimensional hypercube can be divided into 

v >
1

2d
⋅ 𝜆1 + 𝜌 ⋅ (𝛽 − 2𝜆1 − 1),

𝛽 <
1

𝜌
v +

(
2 −

1

2d𝜌

)
𝜆1 + 1.

𝛽

OPT(S)
≤

𝛽

𝜇
<

1

𝜌
𝜇 +

(
2 −

1

2d𝜌

)
𝜇 + 1

𝜇
=

1

𝜌

(
1 −

1

2d

)
+ 2 +

1

𝜇
.

1

�

(
1 −

1

2d

)
+ 2 =

(
3

2

)d

+
(
21

16

)d

⋅

( 5

8
+ (

6

7
)d

1 −
5

8
⋅ (

7

8
)d − (

3

4
)d − (

1

2
)d

+ 2
(
16

21

)d
)
.
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2d hypercubes of the edge length 1/2 (we called such hypercubes 2-cubes, see 
Sect. 2.2), our first idea for packing with one active bin only was to place differ-
ent items into different 2-cubes instead of into many active bins. Unfortunately, 
the losses were too large.

For example, any unit hypercube can be partitioned into hypercubes of the edge 
length 1/5, but a 2-cube cannot. Any 2-cube contains only 2d hypercubes of the edge 
length equal to 1/5. Consequently, only (4∕5)d of any 2-cube is occupied by such 
hypercubes and this ratio is close to zero for large dimensions d. If hypercubes were 
packed into B1 = 1d−1 × (1∕2) , then 4/5 of B1 would be occupied. Unfortunately, 
each unit hypercube contains only two hyperboxes congruent to B1 . Therefore items 
should be packed into hyperboxes smaller than B1 but larger than 2-cubes.

In the online version of packing we do not know anything about the size of 
incoming items, so we should prepare an empty space to pack items of different 
sizes. For the items of the edge length 1/t, where t = 5, 7, 9, 11,… we will reserve 
an empty space in special hyperboxes 1d−q × (1∕2)q−1 × (1∕t) , called layers of the 
height 1/t. Let us mention that q = q(t) depends on t and that q(t1) ≥ q(t2) , pro-
vided t1 ≥ t2.

For example, the items of the edge length 1/5 will be packed into layers 
1d−4 × (1∕2)3 × (1∕5) . Such a layer contains 5d−4 ⋅ 23 hypercubes of the edge length 
1/5. This means that 64/125 of the layer is occupied by the hypercubes and this 
ratio does not depend on d. The items of the edge length 1/t, for t ∈ {7, 9} , will be 
packed into layers 1d−4 × (1∕2)3 × (1∕t) . Since 1

5
+

1

7
+

1

9
<

1

2
 , it is possible to cre-

ate three layers (of pairwise disjoint interiors) of the height 1/5, 1/7 and 1/9 in any 
hyperbox 1d−4 × (1∕2)4 . At least 64/125 of any layer of the height 1/t is occupied 
by hypercubes of the edge length 1/t. Similarly, it is possible to create eight lay-
ers 1d−5 × (1∕2)4 × (1∕t) , for t = 11, 13,… , 25 , in any hyperbox 1d−5 × (1∕2)5 (we 
have 1

11
+

1

13
+⋯ +

1

23
+

1

25
<

1

2
 ) . In a similar way, layers 1d−6 × (1∕2)5 × (1∕t) , 

for t = 27, 29,… , 69 , will be created in 1d−6 × (1∕2)6 . Generally, layers of small 
height will be created in hyperboxes with comparatively large number of edges of 
the length 1/2. The number of such hyperboxes in the active bin is relatively large. In 
any case, despite many edges of the layer are of the length 1/2, at least 64/125 of any 
layer of the height 1/t is occupied by hypercubes of the edge length 1/t.

Items (d-dimensional hypercubes) will first be packed into hypercubes, called 
m-cubes, of the edge lengths 1∕2, 1∕3, 1∕4, 1∕5, 1∕6, 1∕7,… in our main method. 
For each m-cube we describe a place in the bin into which this hypercube will be 
packed. First, we will assign an open B-box (the union of some 2-cubes). Then we 
will determine the right place in the open B-box to pack the hypercube. Some of 
m-cubes will be contained in layers created in open B-boxes. The hypercubes of the 
edge length 1/2 will be packed into open 2-cubes. The hypercubes of the edge length 
1/3 will be placed into open B-boxes 1d−3 × (1∕2)3 . Moreover, the items of the edge 
lengths 1/(2t) will be packed next to the items of the edge lengths 1/t, for t = 2, 3,….

All open hyperboxes have pairwise disjoint interiors. Moreover, all created lay-
ers have pairwise disjoint interiors.

Since hypercubes will be packed into layers 1d−q × (1∕2)q−1 × (1∕t) , where 
q ≥ 4 , we will assume that
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in this section. Let us add that it is possible to modify the algorithm and create lay-
ers also in smaller dimensions. However, such a modified algorithm would not be 
effective. Even for d = 5 the upper bound presented in Theorem 2 is distinctively 
worse than the one given in the proof Theorem 1. The aim of this paper is to present 
a one-space bounded algorithm efficient for large d.

Example  Incoming items will be packed into open hyperboxes of a proper size. Let 
d = 5 . At the beginning of the packing process three hyperboxes

are open in the active bin; the place of the bin into which these hyperboxes are con-
tained is determined by the box(d) algorithm described in Sect. 3.2. H1 will be called 
BC2-box in Sect. 3.6; hypercubes of the edge length 1∕2, 1∕4, 1∕8,… will be packed 
into it. H3 will be called BC3-box; hypercubes of the edge length 1∕3, 1∕6 , 1∕12,… 
will be packed into it. H2 will be called BL4-box; three layers of the height 1/5, 1/7 
and 1/9 are created in it.

The items of the edge lengths

are packed as on Fig. 7. The first item is placed into H1 . We will use the aux+(5) 
algorithm described in Sect.  3.4: the first item is packed in the first 2-subcube of 
the edge length 1/4 contained in H1 . The second item is placed into H3 . We will 
use the aux+(5) algorithm described in Sect.  3.4: the item is packed in the first 
subcube of the edge length 1/3 contained in H3 . The third item is packed into H1 
by the aux+(5) algorithm; it is packed into the first empty 2-subcube of H1 of the 
edge length 1/4 (see Fig.  7, left). The fourth item is packed in H2 into the layer 
[0, 1] × [1∕2, 1] × [0, 1∕2]2 × [0, 1∕5] of the height 1/5 (see Fig.  7, right). The 

d ≥ 5

H1 = [0, 1∕2]5, H2 = [0, 1] × [1∕2, 1] × [0, 1∕2]3 and H3 = [0, 1]2 × [1∕2, 1] × [0, 1∕2]2

1∕4, 1∕3, 1∕8, 1∕5, 1∕7, 1∕2, 10∕51

Fig. 7   Items in the bin
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place in the layer into which this item is packed is determined by the aux+(5) algo-
rithm described in Sect.  3.4, just the item is packed into the first hypercube of 
the edge length 1/5 contained in this layer. The next item is placed into the layer 
[0, 1] × [1∕2, 1] × [0, 1∕2]2 × [1∕5, 1∕5 + 1∕7] contained in H2 . The place in the 
layer into which this item is packed is determined by the aux+(5) algorithm: just the 
item is packed into the first hypercube of the edge length 1/7 contained in this layer 
(see Fig. 7, right). There is no empty space in H1 to pack the penultimate item of 
the edge length 1/2. We open a new BC2-box H4 = [1∕2, 1] × [0, 1∕2]4 (this place 
is determined by the box(d) algorithm) and pack the item into H4 . The last item is 
packed into the layer [0, 1]d−4 × [1∕2, 1] × [0, 1∕2]2 × [0, 1∕5] contained in H2 . The 
place in the layer into which this item is packed is determined by the har(5) algo-
rithm; just the item is packed into the second hypercube of the edge length 1/5 con-
tained in this layer.

Let us add that if all subsequent items in the sequence (eighth, ninth, ...) 
have the edge lengths 1/7, then 7 ⋅ 33 − 1 of them are packed in the layer 
[0, 1] × [1∕2, 1] × [0, 1∕2]2 × [1∕5, 1∕5 + 1∕7] contained in H2 . Then a new BL4-box 
is opened and three layers of the height 1/7 are created in it. Details of this method are 
described in the next subsections.

3.2 � B‑Boxes

As it was said in Sect. 3.1, items will be packed into open hyperboxes with pairwise dis-
joint interiors. Any hypercube of the edge length 1/2 was packed in the empty 2-cube 
with the smallest number by the tt(d) algorithm. We will present a similar method for 
hyperboxes that are the union of 2-cubes.

By a Bq-box (a B-box, for short), where q ∈ {0,… , d} , we mean 1d−q × (1∕2)q (see 
Fig. 8). Any Bq box is the union of 2d−q many 2-cubes.

For each q ∈ {0,… , d} the bin B is partitioned into 2q congruent Bq-boxes 
that are numbered as follows. The entire bin B = [0, 1]d is a B0-box and is num-
bered with 1. Two B1-boxes contained in B , i.e., hyperboxes [0, 1]d−1 × [0, 1∕2] and 
[0, 1]d−1 × [1∕2, 1] , are numbered 1 and 2, respectively. Finally, let k < d and let

X = [0, 1]k × [�k+1, �k+1 + 1∕2] ×⋯ × [�d, �d + 1∕2],

Fig. 8   Bq-boxes in the bin
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where �k+1,… �d ∈ {0, 1∕2} , be a Bk-box numbered � . X is partitioned into two con-
gruent Bk+1-boxes:

with numbers 2� − 1 and 2� , respectively.
For example, H1 = [0, 1]d−1 × [0, 1∕2] on Fig.  8 is the B1-box with num-

ber 1 and number 2 is assigned to the other B1-box B⧵H1 . Moreover, H1 con-
tains: two B2-boxes with numbers 1 and 2 as well as four B3-boxes with 
numbers 1,  2,  3 and 4, eight B4-boxes with numbers 1, 2,… , 8 and so on. 
H2 = [0, 1]d−2 × [0, 1∕2] × [1∕2, 1] is the B2-box with number 3 and number 4 is 
assigned to the B2-box B⧵(H1 ∪ H2) . H3 = [0, 1]d−3 × [0, 1∕2] × [1∕2, 1]2 is the B3

-box with number 7 and number 8 is assigned to the B3-box B⧵(H1 ∪ H2 ∪ H3).
Incoming items will be packed into open B-boxes by the har(d) algorithm 

described in Sect. 3.8. If there is no empty space, then we will open a new Bq-box 
in the place described by the following algorithm.

Let H1,H2,… be a sequence of B-boxes. A B-box of B is called empty if its 
interior is disjoint with any open B-box.

Algorithm box(d)

•	 the first open B-box is the first B-box of B that is congruent to H1;
•	 if B-boxes of B congruent to H1,… ,Hj−1 are open, then the the next open B-

box is the empty B-box of B with the smallest number that is congruent to Hj.

For example, Bd-box H1 , Bd−1-box H2 , Bd−2-box H3 and Bd box H4 are open in the 
active bin by box(d) in places shown on Fig. 7 ( d = 5 ). H1 is the first Bd-box, H2 
is the second Bd−1-box, H3 is the second Bd−2-box and H4 is the second Bd-box in 
the active bin.

Another example is illustrated on Fig. 8, where hyperboxes: B1-box H1 , B2-box 
H2 and B3-box H3 are open in places described by box(d). H1 is the first B1-box, H2 
is the third B2-box and H3 is the seventh B3-box in the active bin.

Lemma 6  Let H1,H2,… be a sequence of B -boxes. If B-boxes congruent to H1 , 
… ,Hz−1 are open in B and if there is no empty space in B to open a new B-box con-
gruent to Hz , then 

∑z−1

i=1
�Hi� > 1 − �Hz�.

Proof  Hz is a Bq-box for some q ∈ {0,… , d} . Obviously, |Hz| = 2−q . Since it is not 
possible to open a B-box congruent to Hz , there are no empty Bk-boxes in B for 
k ≤ q . There can be at most one empty Bq+1-box. Otherwise suppose there are two 
empty Bq+1-boxes X1 and X2 . These Bq+1-boxes of B are not contained in one Bq

-box, because that would make a whole empty Bq-box in B . Therefore X1 and X2 lay 
in different Bq-boxes, say X2 is in a Bq-box with a higher number than X1 is. Let X′

2
 

be the complementary half of X2 in a Bq-box they lay in. Since there is no empty Bq-
box, X′

2
 contains an open B-box. It means that a Bq+1-box X′

2
 contains an open B-box 

[0, 1]k−1 × [0, 1∕2] × [�k+1, �k+1 + 1∕2] ×⋯ × [�d, �d + 1∕2],

[0, 1]k−1 × [1∕2, 1] × [�k+1, �k+1 + 1∕2] ×⋯ × [�d, �d + 1∕2]
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and has higher number than X1 that is empty. This contradicts the box(d) algorithm. 
Therefore there is at most one empty Bq+1-box in B.

Using the above argument we obtain at most one empty Bk-box of B for each 
k ∈ {q + 1,… , d} with the interior disjoint with other empty B-boxes of B.

Finally, the empty space in B does not exceed

	�  ◻

3.3 � Layers and m‑Cubes

To prepare an empty space for incoming items of different sizes, we will create lay-
ers of the height 1/t, for t = 5, 7, 9,… in open Bq-boxes. Items of the edge lengths 
1/t, 1/(2t), 1∕(4t),… will be placed in layers of the height 1/t.

Let 10 ≤ m ≤ 2d−1 be an even number and let q ∈ {1,… , d}.
The integer m determines the number of layers of different heights. For fixed m 

only layers of the height 1∕5, 1∕7, 1∕9,… , 1∕(m − 1) can be created. For example, 
d = 5 and m = 10 on Fig. 7 and only layers of the height 1/5, 1/7 and 1/9 were cre-
ated. Ultimately, we will take m close to 4d∕ log d in the proof of Theorem 2.

By an m-cube K+ we mean a hypercube of the edge length 1∕(t ⋅ 2p) , where p ≥ 0 
is an integer and t ∈ {1, 2,… ,m} . We say then that K+ is a cube of type (t, p). When 
the value of p can be arbitrary we say that K+ is a cube of class t.

For instance, 6-cubes have the edge lengths from the set

while cubes of class 6 have the edge lengths from the set 
{

1

6
,

1

12
,

1

24
,…

}
.

Let us note that any cube of type (2n ⋅ t, p) is also of type (t, p + n) . This fact will 
be used in the description (Rule 5) of the har+(d) algorithm. For instance, the 6-cube 
of the edge length 1

32
=

1

21⋅2⋅23
=

1

2⋅23+1
 is of type (21 ⋅ 2, 3) as well as (2, 3 + 1).

By a (t,  q)-layer we mean 1d−q × (1∕2)q−1 × (1∕t) ; the value 1/t is called the 
height of the layer (see Fig. 9).

Clearly, each (2, q)-layer is a Bq-box. We emphasize the fact that in the process 
of packing we will only use layers for t being odd. In the main packing method q 
depends on t (for detailed description see Sect. 3.5): if t ∈ {5, 7, 9} , then q = 4 ; if 
t = 11 , then q = 5 ; if t = 111 , then q = 6,….

For example, (5, 4)-layer, (7, 4)-layer and (9, 4)-layer were created on Fig. 7. The 
first layer contains 5 ⋅ 23 hypercubes of the edge length 1/5. The first and the second 
hypercube are used for packing. The second layer contains 7 ⋅ 33 hypercubes of the 
edge length 1/7. The first hypercube is used for packing.

d∑

k=q+1

2−k = 2−q − 2−d < 2−q = |Hz|.

{
1,

1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

8
,
1

10
,
1

12
,
1

16
,
1

20
,
1

24
,…

}
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It is easy to see that for an odd number t any (t,  q)-layer contains (
1

2
t −

1

2

)q−1
⋅ td−q cubes of type (t,  0) (see Fig.  9, where (5,  4)-layer contains 

23 ⋅ 5d−4 hypercubes of the edge length 1/5, while (7,  4)-layer contains 33 ⋅ 7d−4 
hypercubes of the edge length 1/7 ).

Lemma 7  If q ≥ 4 and if t ≥ 2q−2 + 1 , then at least 64/125 of any (t, q)-layer is occu-
pied by cubes of type (t, 0).

Proof 
(
1

2
t −

1

2

)q−1
⋅ td−q cubes of type (t, 0) are contained in each (t, q)-layer. The 

volume of any (t, q)-layer equals 21−q ⋅ t−1 . Observe that

Since t ≥ 2q−2 + 1 , we get

If q = 4 , then (1 − 1

22+1
)3 =

64

125
 . If q ≥ 5 , then

This implies that at least 64/125 of any (t,  q)-layer is occupied by cubes of type 
(t, 0). 	�  ◻

(
1

2
t −

1

2

)q−1
⋅ td−q ⋅ t−d

21−q ⋅ t−1
=
(
1 −

1

t

)q−1

.

(
1 −

1

t

)q−1

≥

(
1 −

1

2q−2 + 1

)q−1

.

(
1 −

1

2q−2 + 1

)q−1
=

1
(
1 +

1

2q−2

)q−1 > e
−

q−1

2q−2 ≥ e
−

4

8 >
64

125
.

Fig. 9   Layers filled with m-cubes
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3.4 � Auxiliary Algorithm aux+(d)

If all items have the edge lengths from the set {1∕2, 1∕4, 1∕8,…} , then we will 
use the tt(d) algorithm described in Sect.  2. Each item will be packed into the 
proper subcube with the smallest number contained in the union of hypercubes 
of the edge length 1/2. Similarly, each item of the edge length slightly smaller 
than either 1/2 or 1/4 or 1/8, ...will be packed into the proper subcube with the 
smallest number contained in the union of hypercubes of the edge length 1/2. In 
the main packing method the items of the edge length slightly smaller than either 
1/t or 1/(2t) or 1/(4t), ...will be placed into layers of the height 1/t (for odd t ≥ 5 ). 
More precisely, the items will be packed into the union of hypercubes of the edge 
length 1/t contained in layers of the height 1/t. Therefore we need an algorithm 
that packs items into hypercubes. Our algorithm is similar to the tt(d) algorithm.

Let 10 ≤ m ≤ 2d−1 be an even number and let either 3 ≤ t ≤ m − 1 be an odd 
number or t = 2 . Moreover let p be a non-negative integer.

Consider the union UT of cubes of type (t, 0) with pairwise disjoint interiors. 
All cubes are numbered with successive positive integers (compare Fig. 2, left, 
where t = 2 ). Furthermore, 2d cubes of type (t, p) contained in the cube of type 
(t, p − 1) with number � are numbered in an arbitrary order from 2d(� − 1) + 1 to 
2d�.

Consider a sequence K+
1
,K+

2
,… of cubes of class t. We say that a cube of type 

(t, p) of UT is empty if its interior has an empty intersection with any cube packed 
so far.

Algorithm aux+(d) for packing of K+
i

 into UT.

•	 pack K+
i

 into the empty hypercube of UT with the smallest number that is con-
gruent to K+

i
.

If UT is the unit hypercube partitioned into the union of 2d many 2-cubes and if 
t = 2 , then aux+(d) works exactly the same as the tt(d) algorithm. For instance, 
the first item from the Example of Sect. 3.1 is packed by the aux+(d) algorithm 
into the first hypercube of the edge length 1/4; the third item is packed into the 
first empty hypercube of the edge length 1/8. The second item is packed by the 
aux+(d) algorithm into the first hypercube of the edge length 1/3 contained in H3 . 
The third item is packed by the aux+(d) algorithm into the first hypercube of the 
edge length 1/5 contained in the proper layer (see Fig. 7).

Lemma 8  Let St be a sequence of cubes of class t. If K+
z

 is the first hypercube from 
St that cannot be packed in UT by aux+(d) algorithm, then the total volume of hyper-
cubes packed in UT plus the volume of K+

z
 is greater than |UT |.

Proof  We proceed as in the proof of Lemma 3. Since K+
z

 is a cube of class t, there 
is p ≥ 0 such that K+

z
 is a cube of type (t, p). Clearly, there is no empty cube of type 

(t, q) in UT for any q ≤ p . Furthermore, for each q > p there are at most 2d − 1 empty 
cubes of type (t, q). The total volume of empty cubes in UT is smaller than
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This implies that the sum of the volumes of all cubes packed into UT is greater 
than |UT | −

(
t ⋅ 2p

)−d
. By |K+

z
| = (t ⋅ 2p)−d , it follows that the total volume of items 

packed in UT is greater than |UT | − |K+
z
|. 	�  ◻

3.5 � Layers in B‑Boxes

Since the series 
∑∞

j=2

1

2j−1
 is divergent, there is no space in the bin to create too 

many layers of different heights.
Clearly, the sum of the heights of layers created in any Bq-box (of the height 

1/2) is not greater than 1/2.
Since 1

5
+

1

7
+

1

9
≤

1

2
 , it follows that three layers: (5, q), (7, q) and (9, q) can be 

created in one Bq-box. Similarly, 1

11
+

1

13
+⋯ +

1

25
≤

1

2
 implies that eight layers: 

(11, q), (13, q), … , (25, q) can be created in one Bq-box.
Now we will estimate the number of layers of different heights that can be cre-

ated in Bq-boxes.
Let n3 = 3 and, for k = 4, 5… , let nk be the greatest odd number such that

This means that the layers of the height nk−1 + 2, nk−1 + 4,… , nk can be created in 
one Bq-box for any k = 3, 4,… . It is easy to check that n4 = 9, n5 = 25 , n6 = 69 , 
n7 = 189 , n8 = 515 , n9 = 1401 and n10 = 3809 . By the definition of nk we know that 
the layers: (5, q), (7, q), … , (nk, q) can be accommodated into the union of k − 3 
many Bq-boxes. It is enough now to give a lower bound for nk (see Lemma 9).

During the packing process (t,  q(t))-layers (for odd t ≥ 5 ) will be created in 
Bq(t)-boxes (see Sect. 3.6). Let us add that for large t the integer q = q(t) will be 
comparatively large, i.e., hypercubes of the edge length 1/t will be packed into 
layers with comparatively large number of edges of the length 1/2. The connec-
tion between t and q(t) is as follows. Given an odd number t ≥ 5 , let q(t) be an 
integer such that

For example,

q(5) = q(7) = q(9) = 4 ( n4−1 = 3 < 5 < 7 < 9 = n4);
q(11) = q(13) = ⋯ = q(25) = 5 ( n5−1 = 9 < 11 < ⋯ < 25 = n5),
q(27) = ⋯ = q(69) = 6 ( n6 = 69).

Lemma 9  For any integer l ≥ 4 we get nl ≥ 2l−1 − 1.

(2d − 1) ⋅ (2−d + 4−d +⋯) ⋅
(
t ⋅ 2p

)−d
=
(
t ⋅ 2p

)−d
.

1

nk−1 + 2
+

1

nk−1 + 4
+⋯ +

1

nk
≤

1

2
.

nq(t)−1 < t ≤ nq(t).
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Proof 
This implies that: n4 ≥ 7 = 23 − 1, n5 ≥ 15 = 24 − 1,… , nl+1 ≥ 2l − 1 . 	�  ◻

3.6 � Description of the har+(d) Algorithm

The main algorithm is presented in two steps. First, we give the algorithm har+(d) 
that packs only m-cubes into the unit cube B . Then we provide the final algo-
rithm har(d): a method of packing items of arbitrary sizes into B . Simply we 
will pack any item into the smallest possible m-cube and then this m-cube will be 
packed into B.

Let d ≥ 5 . Moreover, let 10 ≤ m ≤ 2d−1 be an even number.
Since some m-cubes will be packed into Bq(m−1)-boxes, i.e., hypercubes 

1d−q(m−1) × (1∕2)q(m−1) , first we show that

By the choice of q(t) (see Sect. 3.5) we know that nq(m−1)−1 < m − 1 ≤ nq(m−1) . By 
Lemma 9 we get

Since 2d−1 ≥ m , we have 2d−1 > 2q(m−1)−2 , i.e., q(m − 1) < d + 1 . Consequently, 
q(m − 1) ≤ d. This implies that it is possible to create a Bq(m−1)-box in B.

We distinguish two classes of B-boxes based on the size of items packed into 
them:

•	 BC-boxes (see Figs. 10 and 11);
•	 BL-boxes in which layers will be created (see Fig. 12).

Each time a B-box is opened it is assigned to one of those classes and we mention 
whether it is a BC- or a BL-box.

At the beginning of the process of packing the following B-boxes are open in 
B:

∞∑

j=3

1

2j − 1
=
(
1

5
+

1

7

)
+
(
1

9
+

1

11
+

1

13
+

1

15

)
+
(
1

17
+⋯ +

1

31

)
+⋯

+
(

1

2l−1 + 1
+⋯ +

1

2l − 1

)
+⋯

<
(

1

4
+

1

4
���
21 times

)
+
(
1

8
+

1

8
+

1

8
+

1

8
�����������������

22 times

)
+
(

1

16
+⋯ +

1

16
���������������

23 times

)
+⋯

+
(

1

2l−1
+⋯ +

1

2l−1
�������������������

2l−2 times

)
+⋯ =

1

2
+

1

2
+

1

2
+⋯

q(m − 1) ≤ d.

m − 1 > nq(m−1)−1 > 2q(m−1)−2 − 1.
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•	 two BC-boxes: one Bd-box called BC2-box into which hypercubes of the edge 
lengths 1∕2, 1∕4, 1∕8,… will be packed and one B3-box called BC3-box into 
which hypercubes of the edge lengths 1∕3, 1∕6, 1∕12,… will be packed;

•	 q(m − 1) − 3 many BL-boxes: one Bk-box called BLk-box, for each k = 4, 5, 
… , q(m − 1).

The place in the bin into which these q(m − 1) − 1 many B-boxes are contained is 
described by the box(d) algorithm. Just we open: one Bd-box, one B3-box, one B4

-box, ...and one Bq(m−1)-box in B in places determined by the box(d) algorithm 
(see Fig. 7, where m = 10 and q(m − 1) = q(9) = 4).

Fig. 10   Bd-box ( BC
2
-box)

Fig. 11   B
3
-box ( BC

3
-box)

Fig. 12   Layers in BL
4
-boxes for d = 5
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Into BL4-boxes the hypercubes of the edge lengths 1∕5, 1∕7, 1∕9, 1∕10, 1∕14, 
1∕18, 1∕20, 1∕28, 1∕36,… will be packed. The hypercubes of the edge lengths 
1∕11, 1∕13,… , 1∕25, 1∕22, 1∕26,… will be placed into BL5-boxes. Into BLs-boxes 
hypercubes of the edge lengths

will be packed, for s = 4, 5,… , q(m − 1) . The number of open B-boxes increases 
during the packing process.

Note that it is possible to pack m-cubes of types (2, 0) and (3, 0) into one B-
box, as in the tt(d) algorithm, however we will pack these cubes separately to 
simplify the calculations.

Three layers are created in the first open BL4-box: one (5,  4)-layer, one 
(7,  4)-layer and one (9,  4)-layer as on Fig.  12. Let us note that 5 = n3 + 2 and 
9 = n4 . Then, depending on the size of incoming items it is possible that in the 
second open BL4-box only two (5, 4)-layers were created as on Fig. 12, right. It 
is also possible that in the second open BL4-box only one (5,  4)-layer and one 
(9, 4)-layers were created (see Fig. 13).

Similarly, in the first BLk-box ( k ∈ {4, 5,… , q(m − 1)} ) the following layers are 
created: one (nk−1 + 2, k)-layer, one (nk−1 + 4, k)-layer, … , one (nk, k)-layer.

We will use the algorithm aux+(d) , therefore we enumerate m-cubes contained 
in layers. All cubes of type (t,0) contained in the created (t, q)-layer with num-
ber � are numbered in an arbitrary order from 

(
1

2
t −

1

2

)q−1
⋅ td−q ⋅ (� − 1) + 1 to (

1

2
t −

1

2

)q−1
⋅ td−q ⋅ � . Furthermore, 2d congruent hypercubes into which the cube 

of type (t, p) with number � can be partitioned are numbered in an arbitrary order 
from 2d(� − 1) + 1 to 2d�.

Algorithm har+(d) for packing of K+
i

 into B.
Let K+

i
 be a cube of type (t, p). All Bq-boxes of B are numbered as in Sect. 3.2. 

1.	 If (t, p) = (1, 0) , i.e., K+
i

 is a hypercube of the edge length 1, then we close the 
active bin, open a new bin, pack K+

i
 and close the bin. Then we open a new active 

bin.

1∕(ns−1 + 2), 1∕(ns−1 + 4),… , 1∕ns, 1∕(2ns−1 + 4), 1∕(2ns−1 + 8),… , 1∕(2ns),…

Fig. 13   Layers in three BL
4

-boxes
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2.	 If (t, p) = (2j, n) , for some j ≥ 1 and n ≥ 0 , then K+
i

 is packed into the union of 
cubes of type (2, 0) contained in the union of open BC2-boxes according to the 
aux+(d) algorithm.

	   If it is impossible, we open in B a new BC2-box: an empty Bd-box with the 
smallest number (compare the box(d) algorithm). If there were v open BC2-boxes 
so far, then the number assigned to the cube of type (2, 0) that is the open BC2

-box is v + 1 . We pack K+
i

 into this cube by the aux+(d) algorithm.
3.	 If (t, p) = (2j ⋅ 3, n) = (3, j + n) , for some j, n ≥ 0 , then K+

i
 is packed into the union 

of cubes of type (3, 0) contained in open BC3-boxes according to the aux+(d) 
algorithm.

	   If it is impossible, we open in B a new BC3-box: an empty B3-box with the 
smallest number (compare the box(d) algorithm). If there were w open BC3-boxes 
so far, then the cubes of type (3, 0) contained in the open BC3-box are numbered 
from w ⋅ 3d−3 + 1 to (w + 1) ⋅ 3d−3 . We pack K+

i
 by the aux+(d) algorithm.

4.	 If t is an odd number greater then 3 and p ≥ 0 is arbitrary, then K+
i

 is packed into 
the union of cubes of type (t, 0) contained in the union of (t, q(t))-layers created 
in open BLq(t)-boxes by aux+(d) algorithm.

	   If it is impossible, we create a new (t, q(t))-layer in an open BLq(t)-box (as low 
with respect to xd-axis as possible). If there were u created layers of the height 1/t 
so far, then the cubes of type (t, 0) contained in the created layer are numbered 
from u ⋅

(
1

2
t −

1

2

)q(t)−1
⋅ td−q(t) + 1 to (u + 1) ⋅

(
1

2
t −

1

2

)q(t)−1
⋅ td−q(t) . We pack K+

i
 

by the aux+(d) algorithm. If it is impossible, we open a new BLq(t)-box: an empty 
Bq(t)-box with the smallest number (compare the box(d) algorithm) and create at 
the bottom of this box (with respect to xd-axis) a new (t, q(t))-layer to pack K+

i
.

5.	 If t is an even number but not a power of 2 and p ≥ 0 is arbitrary, then there is 
an odd number t1 and an integer s such that K+

i
 is also of type (t1, s + p) . If t1 = 3 , 

then K+
i

 is packed as described in Rule (3) into BC3-boxes. If t1 ≥ 5 , then K+
i

 is 
packed as described in Rule (4) into BLq(t1)-boxes.

6.	 If there is no empty m-cube in open B-boxes to pack K+
i

 and if there is no empty 
space in B to open a new B-box, we close the active bin and open a new bin to 
pack K+

i
.

3.7 � Packing Density

In this subsection we will show that the total volume of m-cubes packed into each 
closed bin is greater than 1/9.

Assume that m-cubes were packed into B by the algorithm aux+(d) and that B 
is closed.

Lemma 10  Denote by vbc the total volume of BC-boxes (contained in a closed bin 
B ) into which at least one m-cube was packed. The total volume of m -cubes packed 
in BC-boxes is greater than 8

27

(
vbc − 2−3 − 2−d

)
.
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Proof  Each BC2-box is a cube of type (2,  0) (see Fig.  10). Each BC3-box 
(of the volume 2−3 ) contains 3d−3 cubes of type (3,  0) of the total volume 
3d−3 ⋅ 3−d = 3−3 =

(
2

3

)3
⋅ 2−3 (see Fig. 11).

Denote by b2 the number of open BC2-boxes and by b3 the number of open BC3-
boxes. From among open BC2-boxes the first b2 − 1 boxes are called basic, provided 
b2 ≥ 2 . Moreover, from among open BC3-boxes the first b3 − 1 boxes are called 
basic, provided b3 ≥ 2 . Clearly, vbc = b2 ⋅ 2

−d + b3 ⋅ 2
−3 . The total volume of basic 

boxes is greater than or equal to (b2 − 1) ⋅ 2−d + (b3 − 1) ⋅ 2−3. The total volume of 
cubes of type (2, 0) and (3, 0) contained in basic boxes is greater than

By Lemma 8, the sum of the volumes of m-cubes packed in basic boxes plus the vol-
umes of the first m-cubes packed in the last BC2 - and BC3-boxes is greater than the 
total volume of basic boxes. Consequently, the total volume of all m-cubes packed in 
BC-boxes is greater than 

(
2

3

)3
⋅

(
vbc − 2−d − 2−3

)
 . 	�  ◻

Lemma 11  Denote by vbl the total volume of BL -boxes (contained in a closed bin 
B ) into which at least one m-cube was packed. Then the total volume of m-cubes 
packed in BL-boxes is greater than 192

625
vbl −

64

625
.

Proof  Each BL-box is a Bk-box for some k ∈ {4, 5… , q(m − 1)}.
Since nq(t)−1 < t ≤ nq(t) and both t and nq(t)−1 are odd numbers, it follows that 

t ≥ nq(t)−1 + 2 . By Lemma 9 we get

This means, by Lemma 7, that at least 64/125 of any (t, q(t))-layer is occupied by 
cubes of type (t, 0).

For k ∈ {4, 5,… , q(m − 1)} denote by bk the number of open BLk-boxes. If 
bk ≥ 2 , then the first bk − 1 boxes are called basic. Observe that at least 3/5 of any 
basic BLk-box is occupied by layers. The reason is that the height of the highest layer 
that can be created in any Bq-box is not greater than 1∕5 . Since in any basic BLk-box 
there is no space to create a new layer, the sum of the heights of all layers contained 
in any basic BLk-box is greater than 1

2
−

1

5
=

3

10
 (see Fig. 13). This implies that the 

total volume of all layers created in a BLk-box is greater than 3

10
⋅ (

1

2
)k−1 . This vol-

ume divided by the volume 2−k of a BLk-box gives the desired ratio.
Finally we estimate the total volume of packed m-cubes.
Let t ∈ {4, 5,… , q(m − 1)} . Among all (t,  q(t))-layers created in BL-boxes, the 

last (t, q(t))-layer is called not-full and the remaining layers are full. Since there is at 
most one not-full layer of each size, by the choice of nk we deduce that the sum of 
volumes of not-full layers is smaller than

(b2 − 1) ⋅ 2−d +
(
2

3

)3

⋅ (b3 − 1) ⋅ 2−3 ≥
(
2

3

)3

⋅

(
(b2 − 1) ⋅ 2−d + (b3 − 1) ⋅ 2−3

)

=
(
2

3

)3

⋅

(
vbc − 2−d − 2−3

)
.

t ≥ nq(t)−1 + 2 > 2q(t)−2 − 1 + 2 = 2q(t)−2 + 1.
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The total volume of basic BL-boxes is greater than

The total volume of created layers is greater than 3
5
(vbl − 1∕8) . The total volume of 

full layers is greater than 3
5
(vbl − 1∕8) −

1

8
 . Since at least 64/125 of any (t, q(t))-layer 

is occupied by cubes of type (t, 0), by Lemma 8 we deduce that the total volume of 
packed m-cubes is greater than

	�  ◻

Lemma 12  If d ≥ 5 , then the total volume of m -cubes packed into each closed bin 
B is greater than 1/9.

Proof  By Lemma 6 we get that

where vbl denotes the sum of the volumes of all open BL-boxes and vbc denotes the 
sum of the volumes of all open BC-boxes (there is no empty space in B to open a Bk

-box for some k ≥ 3).
If vbc >

13

24
 , then by Lemma 10 we obtain that the total volume of packed m-cubes 

is greater than

If vbc ≤
13

24
 , by Lemmas 10 and 11 we deduce that the total volume of packed items 

is greater than

	�  ◻

(
1

5
+

1

7
+

1

n4

)
⋅ 2−3 +

(
1

11
+⋯ +

1

n5

)
⋅ 2−4 +⋯

+
(

1

nq(m−1)−1 + 1
+⋯ +

1

nq(m−1)

)
⋅ 2−q(m−1)

<
1

2
⋅ 2−3 +

1

2
⋅ 2−4 +⋯ +

1

2
⋅ 2−q(m−1) <

1

8
.

vbl − (2−4 + 2−5 +⋯ + 2−q(m−1)) > vbl − 1∕8.

(
3

5
(vbl − 1∕8) −

1

8

)
⋅

64

125
=

192

625
vbl −

64

625
.

vbc + vbl > 1 − 2−3 = 7∕8,

8

27

(
13

24
−

1

8
−

1

32

)
>

1

9
.

8

27

(
vbc −

1

8
−

1

32

)
+

192

625
vbl −

64

625
>

8

27
vbc −

5

108
+

192

625

(
7

8
− vbc

)
−

64

625

= −
184

16875
vbc −

5

108
+

104

625
≥ −

184

16875
⋅

13

24
−

5

108
+

104

625
>

1

9
.
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3.8 � Algorithm har(d)

Let 10 ≤ m ≤ 2d−1 be an even number. Moreover let C1,C2,… be a sequence of 
items (hypercubes). For each Ci from the sequence let K+

i
 be the smallest m-cube 

containing Ci . For example, if Ci is a hypercube of the edge length greater than 
1/2, then K+

i
 is the unit hypercube (a cube of type (1, 0)).

An m-cube K+
i

 is big, provided its edge length is greater than 1/m; in that case 
we say also that the item Ci is big. Clearly, any big cube K+

i
 is a cube of type (t, 0) 

for t ∈ {1, 2,… ,m − 1} ; we say also that in that case Ci is a big t-item.
An m-cube K+

j
 is small, provided its edge length is not greater than 1/m; in that 

case we say also that the item Cj is small.
For example: big 4-cubes have the edge lengths from the set {1, 1∕2, 1∕3} while 

small 4-cubes have the edge lengths from the set {1∕4, 1∕6, 1∕8, 1∕12, 1∕16,…}. 
Moreover, for m = 4 each item Ci of the edge length greater than 1/4 is big (the 
smallest 4-cube containing Ci has the edge length from the set {1, 1∕2, 1∕3} ) 
while each item of the edge length not greater than 1/4 is small. Another exam-
ple: big 6-cubes have the edge lengths from the set {1, 1∕2, 1∕3, 1∕4, 1∕5} while 
small 6-cubes have the edge lengths from the set

For m = 6 each item Ci of the edge length greater than 1/6 is big.

Lemma 13  If Ci is a small item, then |Ci|∕|K+
i
| >

(
m∕(m + 2)

)d.

Proof  Big m-cubes have the edge lengths from the set

Small m-cubes have the edge lengths of the form

Since K+
i

 is the smallest small m-cube containing Ci , it follows that

	�  ◻

{1∕6, 1∕8, 1∕10, 1∕12, 1∕16, 1∕20, 1∕24, 1∕32, 1∕40,…}.

{
1,

1

2
,… ,

1

m∕2
,

1

m∕2 + 1
,

1

m∕2 + 2
,… ,

1

m − 1

}
.

1

m
=

1

2 ⋅
m

2

,
1

m + 2
=

1

2
(
m

2
+ 1

) , 1

m + 4
=

1

2
(
m

2
+ 2

) , … ,

1

2m
,

1

2m + 4
=

1

4
(
m

2
+ 1

) , 1

2m + 6
, …

|Ci|
|K+

i
|
>

(m + 2)−d

m−d
=
(

m

m + 2

)d

.
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Algorithm har(d) for packing of Ci into B.

•	 First find the smallest m-cube K+
i

 containing Ci . Then pack K+
i

 together with 
Ci ⊂ K+

i
 by the algorithm har+(d).

3.9 � Competitive Ratio O(d∕ logD)

Let 10 ≤ m ≤ 2d−1 be an even number.

Lemma 14  If d ≥ 5 , then the asymptotic competitive ratio of the har(d) algorithm is 
not greater than 9

((
m+2

m

)d
+ m − 1

)
.

Proof  Let S be a sequence of items of the volume v, let �j denote the number of big 
j-items in S and let � be the number of bins used to pack items from S according to 
the har(d) algorithm. In particular, �1 is equal to the number of hypercubes of the 
edge lengths greater than 1/2 (big 1-items) and �2 denotes the number of hypercubes 
of the edge lengths greater than 1/3 but not greater than 1/2.

Two items of the edge lengths greater than 1/2 cannot be packed into one bin. 
This implies that OPT(S) ≥ �1 . Moreover, 2d + 1 items of the edge lengths greater 
than 1/3 cannot be packed into one bin also. For example, if �2 = 2d + 1 , then 
OPT(S) > 1 ; if �2 = 2 ⋅ 2d + 1 , then OPT(S) > 2 ; Thus OPT(S) ≥ �2∕2

d . Finally, 
jd + 1 items of the edge lengths greater than 1∕(j + 1) cannot be packed into one bin. 
Consequently, OPT(S) ≥ �j ⋅ j

−d for j ≥ 1.
Let

Since OPT(S) ≥ v as well as OPT(S) ≥ �j ⋅ j
−d for j ≥ 1 , it follows that

If � − 2�1 − 1 ≤ 0 , then

Consider the case when 𝛽 − 2𝜆1 − 1 > 0.
Each big t-item was packed into a big cube of type (t, 0). The total volume of big 

cubes of type (t, 0) containing a big t-item equals �t ⋅ t−d while the total volume of 
big t-items is greater than �t ⋅ (t + 1)−d.

The last bin from among � bins can be almost empty. Only one bin (from among 
� bins) can be almost empty. By the description of the har(d) algorithm (Rule 1) 
we deduce that in two consecutive bins only one small item and only one 1-big 
item can be packed. Consequently, in 2�1 bins the average occupation can be close 
to 2−d−1 . We will omit the volume of items packed into these 2�1 + 1 bins in our 
computations.

� = max(v, �1, �2 ⋅ 2
−d, �3 ⋅ 3

−d,… , �m−1 ⋅ (m − 1)−d).

OPT(S) ≥ �.

�

OPT(S)
≤

2�1 + 1

�
≤

2� + 1

�
= 2 +

1

�
.
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By Lemma 12 we know that the sum of the volumes of packed m-cubes is greater 
than

From among these m-cubes there are big cubes as well as small cubes. The total vol-
ume of big m-cubes of edges not greater than 1/2 is equal to

If � ≤ 9�1 + 9vC + 1 , then

Consider the case when 𝛽 > 9𝜆1 + 9vC + 1.
The total volume of big items is greater than

This value is relatively small compared to 2�1 + vC and we will omit it in our 
computations.

The total volume of small m-cubes is greater than

By Lemma 13 we deduce that the total volume of small items is greater than

Consequently, the total volume v of packed items is greater than

i.e.,

1

9
(� − 2�1 − 1).

vC = �2 ⋅ 2
−d + �3 ⋅ 3

−d +⋯ + �m−1 ⋅ (m − 1)−d.

�

OPT(S)
≤

9�1 + 9vC + 1

�

=
9� + 9

(
�2 ⋅ 2

−d + �3 ⋅ 3
−d +⋯ + �m−1 ⋅ (m − 1)−d

)
+ 1

�

≤
9� + 9(� +⋯ + �) + 1

�
= 9(m − 1) +

1

�
.

vB = �1 ⋅ 2
−d + �2 ⋅ 3

−d +⋯ + �m−1 ⋅ m
−d.

1

9
(� − 2�1 − 1) − vC.

(
m

m + 2

)d

⋅

(
1

9
(� − 2�1 − 1) − vC

)
.

v >vB +
(

m

m + 2

)d

⋅

(
1

9
(𝛽 − 2𝜆1 − 1) − vC

)

≥

(
m

m + 2

)d

⋅

(
1

9
(𝛽 − 2𝜆1 − 1) − 𝜆2 ⋅ 2

−d − 𝜆3 ⋅ 3
−d −⋯ − 𝜆m−1 ⋅ (m − 1)−d

)

≥

(
m

m + 2

)d

⋅

(1
9
⋅ (𝛽 − 1) − 𝜆1 − 𝜆2 ⋅ 2

−d − 𝜆3 ⋅ 3
−d −⋯ − 𝜆m−1 ⋅ (m − 1)−d

)
,
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As a consequence,

This means that the asymptotic competitive ratio of the har(d) algorithm is not 
greater than 9

((
m+2

m

)d
+ m − 1

)
 . 	�  ◻

Theorem 2  If d ≥ 5 , then the asymptotic competitive ratio of the har(d) algorithm is 
not greater than 9

�√
d +

4d

log d
+ 1

�
.

Proof  Similarly as in the proof of Theorem 2.2 in [8] take as m the even number 
such that

By Lemma 14 we get that the asymptotic competitive ratio of the har(d) algorithm 
is not greater than

	�  ◻

Corollary 1  The asymptotic competitive ratio of the har(d) algorithm is O(d∕ log d).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
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𝛽 <9 ⋅
((

m + 2

m

)d

v + 𝜆1 + 𝜆2 ⋅ 2
−d + 𝜆3 ⋅ 3

−d +⋯ + 𝜆m−1 ⋅ (m − 1)−d
)
+ 1.

�

OPT(S)
≤

�

�
≤

9 ⋅
((

m+2

m

)d
� + � +⋯ + �

)
+ 1

�
= 9 ⋅

((m + 2

m

)d
+ m − 1

)
+

1

�
.

4d∕ log d < m ≤ 2 + 4d∕ log d.

9
��

1 +
2

m

�d
+ m − 1

�
< 9

��
1 +

2 log d

4d

�d
+ 2 +

4d

log d
− 1

�

< 9
�
e(log d)∕2 +

4d

log d
+ 1

�

= 9
�
(elog d)1∕2 +

4d

log d
+ 1

�

= 9
�√

d +
4d

log d
+ 1

�
.
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Appendix 1: The Reverse 2‑Cubes Versus 3‑Cubes Sequence and Its 
Increments

Let n ≥ 0 , we define y(n) to be an increasing sequence made from yd(2d − n) , i.e.,

and for arbitrary n ≥ 2 let d be the smallest integer greater than or equal to log2 n , 
then

Let x(n) be the sequence of increments of y(n)

We will prove that the sequence x(n) is a Gould’s sequence, see [26].

Fact 1  The sequence x(n) starts with 1 and can be defined inductively:
When the first 2d elements of the sequence x(n) are given, the next 2d elements are 

defined

Proof  Let d ≥ 0 and 0 < l ≤ 2d.

y(0) = 0, y(1) = 1,

y(n) = yd(2
d − n).

x(n) = y(n) − y(n − 1) for n ≥ 1.

x(2d + l) = 2 ⋅ x(l), for 0 < l ≤ 2d.

Fig. 14   The parity of elements of Pascal’s triangle: a circle indicates an odd number, a filled circle—an 
even number
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	�  ◻

The immediate consequence of the fact is that the sequence x(n) can be created 
in the following way

1 the first element is 1, multiply by 2 and combine
1 | 2 multiply it by 2 and combine
1 2 | 2 4 multiply by 2 and combine
1 2 2 4 | 2 4 4 8 multiply by 2 and combine
1 2 2 4 2 4 4 8 | 2 4 4 8 4 8 8 16 …

The above pattern can also be recognised in Pascal’s triangle as in Fig. 14, see 
also [26].
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