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Abstract
We investigate the problem of computing the number of linear extensions of a given
n-element poset whose cover graph has treewidth t . We present an algorithm that
runs in time Õ(nt+3) for any constant t ; the notation Õ hides polylogarithmic factors.
Our algorithm applies dynamic programming along a tree decomposition of the cover
graph; the join nodes of the tree decomposition are handled by fast multiplication of
multivariate polynomials. We also investigate the algorithm from a practical point of
view. We observe that the running time is not well characterized by the parameters
n and t alone: fixing these parameters leaves large variance in running times due to
uncontrolled features of the selected optimal-width tree decomposition. We compare
two approaches to select an efficient tree decomposition: one is to include additional
features of the tree decomposition to build a more accurate, heuristic cost function; the
other approach is to fit a statistical regression model to collected running time data.
Both approaches are shown to yield a tree decomposition that typically is significantly
more efficient than a random optimal-width tree decomposition.
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1 Introduction

The concept of a partially ordered set, or poset for short, formalizes the idea that
an element of a ground set may precede, or “be smaller than,” some other element,
however allowing some pairs of elements be incomparable. The concept plays a fun-
damental role in various areas of mathematics, with applications in theoretical and
applied computer science. In this paper, we will consider a particular computational
problem associated with partial orders, namely the problem of counting the so-called
linear extensions of a given poset. The problem has applications in numerous areas,
for example, in sequence analysis [24], sorting [29], preference reasoning [23], convex
rank tests [26], partial order plans [27], and learning graphical models [28,34].

To formulate the problem more formally, consider a poset (V ,≺) formed by an
n-element set V and an irreflexive and transitive binary relation ≺ on V , called a
partial order. Another partial order < on V is a linear extension of ≺ if it contains
≺ and for any distinct elements x, y ∈ V either x < y or y < x . The problem of
counting linear extensions (#LE) asks for the number of linear extensions of a given
poset; #LE is equivalent to the problem of counting the topological sorts of a given
directed (acyclic) graph.

Findings an efficient algorithm for #LE seems unlikely, as the problem is #P-
complete [11]. However, #LE admits a fully polynomial randomized approximation
scheme [13]. Currently, the best known asymptotic bounds for the expected running
time are O(ε−2n3 log2 � log n) [6] and O(ε−2n5 log2 n) [32], where � is the number
of linear extensions and ε the allowed relative error (with any constant success proba-
bility). These schemes, while polynomial in n and ε−1, become prohibitively slow in
practice if, say, one requires an accuracy of ε = 0.01 and n is around one hundred.

Exact and parameterized algorithms offer an alternative paradigm to design prac-
tical algorithms for the problem. If we measure the complexity of an algorithm by
the required number of arithmetic operations, which is a common practice in the lit-
erature, the best known worst-case bound is O(2nn), achieved by a simple dynamic
programming algorithm. For several special instance classes better bounds are known:
O(nww) for width-w posets, O(n2) for series–parallel posets [25], and O(n2) also
for posets whose cover graph is a forest [5]; the cover graph of a poset (V ,≺) is the
directed graph (V , E) where the edge set E is the transitive reduction of ≺ (a.k.a.
Hasse diagram). If parameterized by the treewidth of the cover graph, t , the problem
can be solved with O(nt+3) arithmetic operations by an inclusion–exclusion algo-
rithm [18]. On the other hand, the problem parameterized by t is W[1]-hard [14], and
so it seems difficult to find an algorithm that would run in time O( f (t)nd) for some
computable function f and constant d.

In this article, we investigate whether there exist faster exact algorithms for #LE,
parameterized by the treewidth of the cover graph. We are interested in the worst-case
asymptotic time complexity as well as the running time on moderate-size instances in
practice. This article extends a preliminary version of the work published in a confer-
ence proceedings [19]; in the next two subsectionswe introduce ourmain contributions
and highlight the features that are new in the present article.
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1.1 Theoretical Contributions

Throughout this paper, we write Õ( f ) and Ω̃( f ) as shorthands for f · logO(1) f and
f / logO(1) f , respectively; in other words, the notations hide factors that are polylog-
arithmic in its argument. Our main result is the following:

Theorem 1 The linear extensions of a given n-element poset can be counted with
Õ(t ! nt+3) bit-operations, where t is the treewidth of the cover graph of the poset.

We state the bound in terms of bit-complexity to emphasize the fact that the dom-
inating computations deal with addition and multiplication of large integers. Indeed,
the bounds stated in the previous paragraphs refer to the number of arithmetic oper-
ations with O(n log n)-bit integers. Thus, in particular, for any constant t our bound
improves the previous bound of Kangas et al. [18] by a factor of n, up to polyloga-
rithmic factors. For large n and small t the improvement is relatively significant; for
instance, for t = 2 the bound is reduced from Õ(n6) to Õ(n5). For large t , however,
the present bound is inferior due to the factor t !. It turns out that we can, in fact, get
rid of this factor under certain assumptions that are relatively mild in practice, while
too complicated theoretically to be included in a succinct theorem statement.

Perhaps more interestingly, our algorithm is radically different from the inclusion–
exclusion algorithm. In the latter, the idea is to view a linear extension as a bijective
mapping and then remove the global bijectivity constraint by inclusion–exclusion,
similarly to previous applications to matrix permanent [31], Hamiltonian path [20],
and set partitioning [21], but incurring only a polynomial overhead.Once the bijectivity
constraint is removed, what remains is a collection of simpler subproblems with local
constraints. The subproblems can be handled by standard routines that exploit small
treewidth [7,12]; see Sect. 2.2 for some additional details.

The present algorithm, in contrast, takes care of the bijectivity constraint within
dynamic programming along a tree decomposition and is, with this respect, similar to a
folklore t O(t)n-time algorithm for the Hamiltonian path problem. However, #LE being
W[1]-hard one may expect it to require a significantly larger dynamic programming
table. We give a formulation, where each node of a tree decomposition is associated
with O(nt+1) counts. This formulation leads to a challenge: a step in the dynamic
program that combines two (or more) arrays of such counts appears to require, in the
worst case, a quadratic number of arithmetic operations, Θ(n2t+2), if implemented
in a straightforward manner. Fortunately, we discover that the key ingredient of the
step takes a form of multidimensional convolution, which we can compute efficiently
using known results for fast multiplication of multivariate polynomials.

Concerning space complexity we only make a couple of observations here: Both
our algorithm and the inclusion–exclusion algorithm by Kangas et al. [18] require
Õ(nt+2) bits of space. One could reduce this by a factor about linear in n by carry-
ing the computations modulo several small relative primes and constructing the final
output using the Chinese remainder theorem. For comparison, the simple dynamic
programming algorithm also requires lots of space, Ω̃(2n) bits.

In addition to some minor changes in exposition, the present article gives a more
detailed treatment of the needed result for multiplication of multivariate polynomials.
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Specifically, we include the calculations omitted in the preliminary version [19] and
also correct a minor error in the statement of the needed result (Fact 2, Sect. 2).

1.2 Empirical Contributions

We also address the practical value of the algorithm. Given that the present algorithm
is technically more convoluted than the inclusion–exclusion algorithm, it is natural to
ask, whether the obtained improvement in the asymptotic worst case time requirement
is reflected as significant expedition in practice. Our interest is particularly in instances
where t is small (at most four) and n ranging up to a few hundred.

A well known challenge in practical implementation of tree-decomposition based
algorithms is that finding an optimal-width tree decomposition may be insufficient for
minimizing the computational cost: the running time of the dynamic programming
algorithm can be sensitive to the shape of the tree decomposition. Bodlaender and
Fomin [9] addressed this issue from a theoretical viewpoint by studying the complex-
ity of finding a tree decomposition that minimizes a sum of costs associated with each
node of a tree decomposition. In their f -cost framework the cost of a node is allowed
to depend only on thewidth of the node (i.e., the size of the associated bag; see Sect. 2).
Recently, Abseher et al. [1,2] presented a more general and more practical heuristic
approach. Their htd library [1] allows a user to generate a variety of optimal-width
tree decompositions and also (locally) optimize a given cost function. Moreover, they
proposed and evaluated [2] a method to learn an appropriate cost function, or regres-
sion model, from empirical running time data on a collection of “training” instances.
The method can be viewed as an instantiation of the method of empirical hardness
models [22] for the algorithm selection problem [30].

Following these ideas we have implemented and tested our algorithm for #LE using
a collection of synthetically generated instances (posets) together with a variety of tree
decompositions generated by htd for each instance. We will report on and discuss
our observations, which suggest that selecting the tree decomposition using a learned
regression model can make a difference, at least for the smallest treewidth (t = 2):
compared to themedian running time over generated tree decompositions, the selected
one typically yields almost an order-of-magnitude speedup.

The present work extends the preliminary study [19] with two additions. First, we
include a direct comparison to an implementation of the inclusion–exclusion algo-
rithm, VEIE [18]. Second, we also include in the experiments a new heuristic cost
function, and show that its performance is competitive to that of the learned model.

1.3 Organization

The rest of this article is organized as follows. Some basic terminology, notation,
and facts are given in Sect. 2. Section 3 is devoted to proving Theorem 1. In Sect. 4
we describe some implementation details and report on empirical results. Section 5
concludes by summarizing and discussing the main observations.
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2 Preliminaries

We denote byN the set of natural numbers {0, 1, 2, . . .}. For two sets S andU wewrite
SU for the set of functions fromU to S. If m ∈ N we write [m] for the set {1, . . . ,m}.
By Sm we denote the set of m-tuples a = (ai )mi=1 with ai ∈ S. The restriction of a
function α : U → S to a subset A ⊂ U is defined in the standard manner and denoted
by α|A; conversely, we say that α is an extension of α|A. We also denote by αv �→i the
extension of α that we obtain by mapping an added element v /∈ U to i . We use the
Iverson’s bracket notation: for a proposition P , the expression [P] evaluates to 1 if P
is true, and to 0 otherwise.

Let a = (a1, . . . , ak) ∈ N
k . We denote a! := a1! · · · ak ! and |a| := a1 + · · · + ak .

Since |a|!/a! is a multinomial coefficient, we have the following.

Fact 1 If a is a tuple of nonegative integers, then a! divides |a|!.
Another fact we need concerns the complexity of multiplying two multivariate

polynomials. We assume that a polynomial is represented by a list of its coefficients.
It is well known that the multiplication takes nearly linear time when parameterized
by the sum of themaximum degrees. We derive the following formulation of the result
from a more general bound by van der Hoeven and Lecerf [33, Cor. 1] in Appendix.

Fact 2 Twok-variate polynomialswhosemaximumdegrees sumup to n ≥ k andwhose
coefficients are Õ(n)-bit integers can be multiplied with Õ(nk+1) bit-operations.

While the above result will suffice for proving Theorem 1, it does not exploit the
property that the multivariate polynomials we encounter are, in fact, sparse in the
sense that they have a total degree at most n. Also in this case, multiplication only
requires nearly linear time, now amounting to Õ

((n+k
k

)
nk

)
bit-operations, assuming a

sufficiently large prime p (exponential in n) and a primitive element of the finite field
Fp are given for free [33, Cor. 4]. This assumption is, however, relatively strong: we
do not know, whether it can be satisfied within the time complexity bound, or even
in time polynomial in n, without some number theoretic hypotheses. On the other
hand, the needed numbers only depend on n and finding them can be considered as
a precomputation that is efficient in practice; for further details, see the discussion of
by van der Hoeven and Lecerf [33, Sect. 5.3]. The improved bound for multiplying
sparse multivariate polynomials saves a factor of about k!, which suffice for reducing
the factor t ! in the bound of Theorem 1, as mentioned in the previous section.

2.1 Tree Decomposition

Definition 1 (Tree decomposition) A tree decomposition of a graph G = (V , E) is a
pair (T , B) where T = (I , F) is a tree and B maps each node x ∈ I to a bag Bx ⊆ V
such that

1. for each v ∈ V , the node set {x ∈ I : v ∈ Bx } induces a nonempty subtree of T ,
2. for each uv ∈ E , there exists a node x ∈ I with u, v ∈ Bx .

Thewidth of the tree decomposition is the largest bag sizeminus one, maxx∈I |Bx |−1,
and the treewidth of a graph is the minimum width over all its tree decompositions.
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For a graph of treewidth t , we can find a tree decomposition of width t in time
t O(t3)n using Bodlaender’s algorithm [8] or in time Õ(nt+2) using the approach of
Arnborg et al. [4].

A tree decomposition is rooted if the edges of the tree are directed so that there is a
unique node, the root, that has no parent. Clearly, one obtains a rooted tree decompo-
sition by simply choosing one node as the root and directing the edges accordingly.

Definition 2 (Nice tree decomposition) A rooted tree decomposition (T , B) of a graph
G = (V , E) is nice if each node x of T is of one of the following types:

(leaf) x has no children and |Bx | = 1;
(introduce) x has a unique child y and Bx = By ∪ {v} for some v ∈ V \By ;
(forget) x has a unique child y and Bx = By\{v} for some v ∈ By ;
(join) x has exactly two children y, z and Bx = By = Bz .

We can convert a given tree decomposition of width t and O(n) nodes into a nice
tree decomposition of width t and O(tn) nodes in time t O(1)n [10].

2.2 Counting Linear Extensions via Inclusion–Exclusion

Kangas et al. [18] showed that the number of linear extensions of a poset (V ,≺)whose
cover graph is G = (V , E) is given by the formula

n∑

k=1

(
n

k

)
(−1)n−k

∑

τ

∏

uv∈E
[τ(u) < τ(v)],

where τ runs over all functions from V to [k].
Supposing G has treewidth t , it is well known that there is an elimination ordering

v1, . . . , vn of the vertices, such that when removing the vertices from the graph in
this order and always connecting the neighbors of the removed vertex, the size of the
largest clique in each obtained graph is t+1. The n-dimensional inner summation over
the variables τ(vi ), for i ∈ [n], can be processed iteratively along such an ordering,
the i th one-dimensional summation over τ(vi ) requiring O(ni kt+1) additions and
multiplications of O(n log n)-bit numbers, for some n1, . . . , nn that sum up to O(n).
In total, the evaluation of the inclusion–exclusion formula thus requires Õ(nt+4) bit-
operations. We omit a more detailed treatment of the algorithm, as the method applied
for computing the inner summation is standard. (The original analysis of Kangas et
al. [18] uses a looser bound of ni = O(n) for each i , arriving at a bound that is larger
by a factor of n.)

3 The Algorithm: Proof of Theorem 1

We implement a standard recipe of tree-decomposition based algorithms. The outline
of the algorithm is as follows.

A1 Compute the cover graph of the input poset.
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A2 Find a minimum-width nice tree decomposition of the cover graph.
A3 Run dynamic programming over the nice tree decomposition.

We will next consider each step in detail. We will see that the last step dominates
our asymptotic running time bounds.

3.1 Computing the Cover Graph

The cover graph G = (V , E) is obtained by computing the transitive reduction of the
input poset (V ,≺). The transitive reduction can be computed in time O(|V | · |≺|) =
O(n3) [3], which is O(nt+2) for all t ≥ 1.

3.2 Finding aMinimum-Width Nice Tree Decomposition

As mentioned in Sect. 2, if the cover graph has treewidth t , then a width-t nice tree
decomposition of the cover graph can be found in Õ(nt+2) time.

3.3 Dynamic Programming

Suppose now that a width-t nice tree decomposition (T , B) of the cover graph G is
available. Our idea will be to associate each node of T with an array of numbers such
that (i) the numbers at the root node are sufficient for computing the number of linear
extensions and (ii) the array of a node can be computed from the arrays of its child
nodes.

The following notation will be useful. Denote by Vx the set of vertices covered by
the subtree of T rooted at x , that is, Vx is the union of the bags By of nodes y to which
there is a directed path from x . Write nx for the size |Vx | and Ex for set of edges in
the induced graph G[Vx ].

Now, for each node x ∈ T and injection α ∈ [nx ]Bx , define �x (α) as the number
of bijections π ∈ [nx ]Vx such that π(v) = α(v) for all v ∈ Bx , and π(u) < π(v)

whenever uv ∈ Ex . In other words, �x (α) is the number of ways to extend α to a linear
extension of the induced poset (Vx ,≺ ∩(Vx ×Vx )), where we view a linear extension
as a bijection from Vx to [nx ] that satisfies the ordering constraints.

We begin by showing that the values �x (α) are sufficient for computing the number
of linear extensions of the poset, that is, they satisfy the listed conditions (i) and (ii).
After that we consider the time requirement of computing the values �x (α) for each
node of the nice tree decomposition.

Consider first the root node.

Lemma 1 (Root) We have �(V ) = ∑
α �r (α), where α runs over all injections in

[nx ]Br .
Proof Since Vr = V , Er = E , and nr = n, we have that

∑

α

�r (α) =
∑

π

∏

uv ∈E
[π(u) < π(v)] = �(V ),
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where α and π run over all injections in [n]Br and [n]V , respectively. ��
Next we will show separately for each node type of the nice tree decomposition,

how the values �x (α) are determined by the corresponding values for the child node
or child nodes of x . For all but join nodes the results are immediate, and we omit the
proofs.

Lemma 2 (Leaf) If x is a leaf node, then �x (α) = 1 for the unique injection α in
[nx ]Bx .

For an introduce node, we simply restrict the injection α to the bag of its child and
check that the ordering constraint holds.

Lemma 3 (Introduce) If x is an introduce node with child y and Bx = By ∪ {v}, then

�x (α) = �y(α|By )
∏

u∈Bx
uv ∈E

[α(u) < α(v)].

For a forget node, we extend the injection α to the bag of its child by mapping the new
vertex to some value that is not in the image of α.

Lemma 4 (Forget) If x is a forget node with child y and Bx = By\{v}, then

�x (α) =
∑

a∈[ny ]\α(Bx )

�y(α
v �→a).

To handle a join node, we introduce some convenient notation. Let α be an injection
from a k-element set S to a range of integers [m]. Label the elements of S so that
α(v1) < · · · < α(vk). For i = 1, . . . , k − 1, denote by αi the number of integers
between α(vi ) and α(vi+1), that is, αi := α(vi+1) − α(vi ) − 1; in addition, denote
α0 := α(v1) − 1 and αk := m − α(vk). Observe that α0 + · · · + αk = m − k.
Furthermore, if β is another injection from S′ to [m′], write β ∼ α if β and α specify
the same linear order on S ∩ S′, that is, β(u) < β(v) if and only if α(u) < α(v) for
all u, v ∈ S ∩ S′.

Lemma 5 (Join) If x is a join node with children y and z, then

�x (α) =
∑

β

∑

γ

[α ∼ β ∼ γ ]
|Bx |∏

i=0

[αi = βi + γi ]
(

αi

βi

)
�y(β) �z(γ ),

where β and γ run over all injections in [ny]By and [nz]Bz , respectively.
Proof By definition,

�x (α) =
∑

π

∏

uv∈Ex

[π(u) < π(v)],
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where π runs over all bijections from Vx to [nx ] that extend α. Observe that by the tree
decomposition properties, the sets Vy\Bx and Vz\Bx are disjoint and their union is
Vx\Bx . Thus we may represent any bijection π : Vx → [nx ] that extends α uniquely
by a pair of injections β ′ : Vy → [nx ] and γ ′ : Vz → [nx ] whose restrictions to Bx

are equal to α and whose images β ′(Vy) and γ ′(Vz) cover [nx ]. We get that

�x (α)=
∑

β ′

∑

γ ′

[
β ′(Vy) ∪ γ ′(Vz)=[nx ]

] ∏

uv∈Ey

[
β ′(u)<β ′(v)

] ∏

uv∈Ez

[
γ ′(u) < γ ′(v)

]
,

where β ′ and γ ′ run over all injections that extend α in [nx ]Vy and [nx ]Vz , respectively.
Consider then a mapping that “compresses” any such injection β ′ into a bijection

β ′′ : Vy → [ny] by letting β ′′(v) := |{u ∈ Vy : β ′(u) ≤ β ′(v)}|; let γ ′′ denote the
bijection obtained similarly from an injection γ ′. Let β denote the restriction of β ′′ to
Bx and γ the restriction of γ ′′ to Bx . We have that β ′ and γ ′ extend α if and only if
β ∼ α and γ ∼ α. Thus we get that

�x (α)=
∑

β ′′
β∼α

∑

γ ′′
γ∼α

|Bx |∏

i=0

[αi=βi+γi ]
(

αi

βi

) ∏

uv∈Ey

[
β ′′(u)<β ′′(v)

] ∏

uv∈Ez

[
γ ′′(u)<γ ′′(v)

]
,

where β ′′ and γ ′′ run over all bijections in [ny]By and [nz]Bz , respectively. The product
of the binomial coefficients

(
αi
βi

)
is the number of pairs (β ′, γ ′) that map to the same

pair (β ′′, γ ′′), that is, the number of interleavings of the βi + γi elements to the range
of αi elements.

To complete the proof, it suffices to write the summation over β ′′ as a double-
summation: the outer summation being over all injections β : By → [ny] and the
inner summation being over all bijections β ′′ : Vy → [ny] that extend β; similarly for
the summation over γ ′′. ��

Example 1 (Join in a tree) Consider the example illustrated in Fig. 1. The cover graph
is a tree with vertex set V = {a, b, c, d, e, f , g}. In a nice tree decomposition (not
shown) the root node x is a join of nodes y and z, with By = Bz = Bx = {c, f }.
The vertex sets associated with the nodes are Vx = V , Vy = {a, c, d, e, f }, and
Vz = {b, c, f , g}. For the shown injection α, the value of �x (α) is obtained by a
sum of �y(β) · �z(γ ) over valid pairs (β, γ ), multiplied by the number of possible
interleavings, which is given by a product of binomial coefficient. Shown is one pair
(β, γ ), for which �y(β) = 1 and �z(γ ) = 1 and the number of interleavings is equal
to

(2
1

)(2
2

)(1
0

) = 4.

It remains to bound the running time of the algorithm.

Lemma 6 (Time complexity) Given a width-t nice tree decomposition of the cover
graph of an n-element poset, the linear extensions can be counted with Õ(t ! nt+3)

bit-operations.
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a

c

e

d

f b

g

Injection 1 2 3 4 5 6 7
α a b c d e f g
β a c d e f
γ b c f g

Fig. 1 An illustration of the recurrence for a join node with bag {c, f }; see Example 1 for a description

Proof Let x be a node in the nice tree decomposition. For brevity, denote k := |Bx |. If
x is a leaf node, introduce node, or forget node, then the values �x (α) for all injections
α ∈ [nx ]Bx can clearly be computed using O(knk) = O(tnt+1) basic operations,
some of which are additions of two O(n log n)-bit numbers, thus using Õ(nt+2) bit-
operations (observe that the factor t is O(log nt+2) and can thus be omitted).

Consider then the remaining case: x is a join node. Let y and z be the two children
of x . Recall that Bx = By = Bz .

Represent an injection α in [nx ]Bx as a pair (σ, a), where a = (ai )
k+1
i=1 with ai =

αi−1 and σ is a bijection from Bx to [k] that captures the specified linear order, that is,
σ(u) < σ(v) if α(u) < α(v). Clearly, the mapping α �→ (σ, a) is a bijection when we
require that ai ∈ N and |a| = nx − k. Using this representation and Lemma 5, write

�x (σ, a) =
∑

b

∑

c

k+1∏

i=1

[ai = bi + ci ]
(
ai
bi

)
�y(σ,b) �z(σ, c),

where b and c run over Nk+1. By writing �′
x (σ, a) := �x (σ, a)/a!, we get the convo-

lution form

�′
x (σ, a) =

∑

a=b+c

�′
y(σ,b) �′

z(σ, c).

To treat this as a multiplication of multivariate polynomials, consider a fixed bijec-
tion σ and let Px (r1, . . . , rk) be the k-variate polynomial where the coefficient of
ra11 · · · rakk equals n! · �′

x (σ, a); we define Py and Pz similarly. Note that k variables
suffice, since ak+1 is determined by the fixed |a|. Here we multiplied by the facto-
rial n! to get integer coefficients (by Fact 1, since n ≥ |a|, |b|, |c|). We have that
n! · Px = Py Pz , that is, we obtain Px by multiplying Py and Pz and dividing each
coefficient of the resulting polynomial by n!.

We bound the bit-complexity of the polynomial multiplication using Fact 2. The
total degrees of the polynomials are at most n−k. Each coefficient of the polynomials
is a Õ(n)-bit integer. Thus the multiplication takes Õ(nk+1) bit-operations.

Multiplying the obtained bound by the number of bijections σ , we get that all
�x (σ, a) can be computed using Õ(k! nk+1) = Õ(t ! nt+2) bit-operations.

Since there are O(tn) nodes in the nice tree decomposition, Õ(t ! nt+3) bit-
operations suffice in total. ��
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4 Experiments

In this section we present an empirical study. We first describe our implementation of
the algorithm and the test instances used in the experiments. Then we show how the
performance on the algorithm depends on the way we choose the tree decomposition.

4.1 Implementation

We have implemented the algorithm of Sect. 4 in a C++ program Countle.1 For
multiplication of polynomials we used the C library FLINT [17], which offers fast
multiplication of univariate polynomials; to this end, we transformed the multivariate
polynomials into univariate polynomials using an appropriate Kronecker substitution,
as detailed in the next paragraph. We decided to not employ the asymptotically faster
algorithmmentioned after Fact 2, because it has been observed to run faster only when
the total degree (which is less than n in our case) is large, say, several hundreds [33,
Table 7]. For finding an optimal tree decomposition we used the C++ library htd [1].
We ran all experiments on machines with Intel Xeon E5540 CPUs.

Two implementation details are worth mentioning. First, we transformed the mul-
tivariate polynomials into univariate polynomials using the following Kronecker
substitution. Separately for each node x of the tree decomposition and the considered
vertex ordering (bijection)σ ,we encoded a k-variate polynomial in variables r1, . . . , rk
as a univariate polynomial in variable s by substituting r j := s(d1+1)···(d j−1+1), where
each di is an upper bound for the degree of ri in the polynomial. Using knowledge
associated with the node x and ordering σ , we aimed at determining a value di that is
smaller than the trivial upper bound nx − k. To this end, we set di to the sum of the
largest realized exponents of ri in the already computed polynomials for the two child
nodes of x .

Second, we wish to ignore any impossible ordering σ at a node x of the tree
decomposition, and so save both time and space. The key observation is that, even if
the value �x (σ, a) is nonzero, we can ignore it if σ assigns some two vertices in the
bag Bx an order that violates the partial order ≺, that is, for some u, v ∈ Bx we have
u ≺ v and σ(u) > σ(v).

4.2 Instances

Wegenerated random instances (posets) of different sizes for small values of treewidth
t . We varied the number of elements n from 10 to 199 (t = 2), 109 (t = 3), and 59
(t = 4). For each pair (t, n) we generated 5 posets; following Kangas et al. [18], we
let each poset be a “grid tree,” constructed by randomly joining t-by-t grids along the
(boundary) edges, orienting the edges so that no directed cycles are introduced, and
finally taking the transitive closure.

1 Countle is free and publicly available at https://bitbucket.org/samsalo/countledist/.
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4.3 Growth andVariation of Running Times

The running timeof Countlemaybe sensitive to the particular (nice) tree decomposi-
tion selected. Therefore, we ran the program on 50 optimal-width tree decompositions,
which we generated using htd; we checked that for every encountered instance, htd
indeed generated tree decompositions of optimal width. We allowed each individual
run to take up to 20min of CPU time and 30GB of memory.

We examined the scaling of Countle in terms of the number of elements n and
treewidth t . We observed that, while the growth of the running time follows the rate
suggested by the worst case bound, there is significant variance in the running times
for any fixed (n, t), due to differences in the five posets and the 50 tree decompositions
per poset (compare median to best in Fig. 2). Compared to an implementation of the
inclusion–exclusion algorithm by Kangas et al. [18], VEIE, we find that Countle
is an order of magnitude faster. For example, Countle can solve a typical (median)
poset with a typical (median) tree decomposition in about 20 s if n = 100 and t = 2,
or if n = 50 and t = 3, while VEIE requires about 200s on such instances. The
same pattern also holds for t = 4; we note, however, that such posets can actually be
handled faster by another, exponential time algorithm of Kangas et al. [18, Fig. 8].
VEIE does not optimize the shape of the tree decomposition beyond its width and, in
fact, the analysis of Sect. 2.2 suggests that the algorithm is not very sensitive to the
shape of the tree decomposition.

4.4 Selecting Among Optimal-Width Tree Decompositions

Thenwe investigatedwhether one can efficiently select a near-optimal tree decomposi-
tion from a collection of generated candidates. The observed variance in running times
suggests that, if successful, this could lead to a significant expedition of Countle,
by up to one order of magnitude. For constructing a “selector” we implemented and
compared two approaches.

One is themachine learningmethod of Abseher et al. [2].We applied it in a straight-
forward manner, as follows:

C1 We collected a data set of measured running times for multiple pairs of posets and
tree decompositions. We used the procedure described in the previous section,
except that we used a single poset (instead of five) for each combination of n and
t . If a run was not completed within the 20-min time limit, we simply discarded
the instance (and thus introduced some bias).

C2 We computed for each tree decomposition the values of several features, such as
statistics of bag sizes (by node type), node depths (by node type), and distances
between join nodes; for a full feature list, see Abseher et al. [2].

C3 We fitted a multivariate linear regression model, separately for each t = 2, 3, 4,
with the features as the predictor variables and the logarithm of the running time
as the response variable.We used themachine learning softwareWEKA 3.6.13
[16] with default options.
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Fig. 2 The running time of
Countle (s) on random “grid
tree” posets of treewidth 2, 3,
and 4, with a varying number of
elements n. For each poset, we
generated 50 optimal-width tree
decompositions and collected
the median running time and the
running times for the best tree
decomposition and the tree
decompositions proposed by the
machine learning method
(“selected”) and by the memory
heuristic (“memHeur”). For
comparison, the running times
of VEIE [18] are also shown.
The shown values are the
medians of these five statistics
over five independent posets for
each value of n.
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To select a tree decomposition for a given new poset, we first generated 50 candidate
tree decompositions for the poset, and then selected the one for which the model
predicted the shortest running time.

The other approach is to “handcraft” a heuristic cost function based on a smaller
set of features of the tree decomposition. Our cost function, we callmemory heuristic,
is simply a sum of node-wise costs. Specifically, for each node x , we define its cost as
px

( nx|Bx |
)
nx log2 nx , where px is the number of orderings σ of Bx compatible with the

poset; this cost is an upper bound (up to a constant factor) of the memory requirement
of the corresponding dynamic programming step, obtained from the algorithm in a
straightforward manner. The rationale is that for each node the memory requirement
is well aligned with the time requirement and that the node-wise bounds are more
accurate than the worst case bound over all nodes.

We observe (Fig. 2) that, for t = 2, the learned model almost always selects a top-3
tree decomposition,whichyields a nearly as short running timeas the best among the50
tree decompositions. For t = 3 the performance degrades: the model is usually able to
select a top-10 tree decomposition, which yields a running time that is systematically
better than for a typical (median) tree decomposition, yet not quite achieving the
performance of the best among the generated candidates. For t = 4 the performance
degrades further, yet being better than by selecting a random tree decomposition. In
more quantitative terms, the proportions of tree decompositions (among 50) better than
the selected one were 2.5%, 12%, 28% for t = 2, 3, 4, respectively; these numbers
are medians of averages over 5 test posets (one per fixed n and t).

Thememory heuristic is seen to achieve almost as good performance as themachine
learning method for t = 2 and t = 3 (Fig. 2). For t = 4, however, memory heuristic
is inferior and even yields tree decompositions that are worse than a random (median)
tree decomposition.

5 Concluding Remarks

We have presented a new tree-decomposition based algorithm for counting linear
extensions. The algorithm relies on fast multiplication of multivariate polynomials,
thus differing radically from the inclusion–exclusion approach of Kangas et al. [18].
For any constant treewidth t the obtained asymptotic speedup is about linear in the
number of elements n.

A question not settled here is whether one could save another factor of n, that is,
solve the problem in time Õ(nt+2). The present authors find this question particularly
intriguing for two reasons: one is that for finding an optimal-width tree decomposition,
the best known time complexity bound is Õ(nt+2), assuming we let t grow at least
logarithmically in n. The other reason is that for posets whose cover graph is a tree
(t = 1), Atkinson’s [5] algorithm takes—at least seemingly—a different approach and
runs in time Õ(n3). Furthermore, Atkinson’s algorithm is monotonic in the sense that
all arithmetic operations are carried out with nonnegative numbers. This is in sharp
contrast to both the present algorithm and the inclusion–exclusion algorithm, which
crucially rely on a richer algebraic structure.
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Our empirical study confirmed that the improvement in the asymptotic bound con-
sistently transfers to the running times measured in practice. That said, the observed
speedup, forn aroundonehundred,was byoneorder ofmagnitude rather than two.This
“leak” of efficiency can, at least in part, be explained by the present algorithm’s higher
sensitivity to the shape of the selected tree decomposition. Indeed, we observed that
the best of 50 generated tree decompositions typically yields a 5- to 10-fold speedup
in relation to an average (i.e., median) tree decomposition.

We also showed that there is an efficient way to select the best or close-to-best tree
decomposition using a linear regression model that was fitted to a collected data set
of instances along with the measured running times, following the machine learning
method of Abseher et al. [2]. However, we observed that the performance of the
regression method rapidly degraded as the treewidth t increases. This suggests that
the general-purpose method may not suit well for the problem of counting linear
extensions. A potential reason for suboptimal performance is that the default set of
features [2] does not include perhaps the most informative quantity associated with
a node x in a tree decomposition, namely the term nkx (or some variant of it), which
combines the size k of the bag of x with the number of vertices in the subtree rooted at x .
This issue could be addressed by extending the feature set accordingly, or, potentially,
by using some nonlinear regression model. On the other hand, we did inspect how
well a single feature can predict a well-performing tree decomposition. We observed
that for t = 2 and t = 3 the average depth of join nodes alone yielded predictions
that were almost as good as the predictions by the full regression model with all the
features.

We also experimented with a simpler solution for selecting a good tree decomposi-
tion.Wemanually constructed a heuristic function that adds up estimated contributions
of each tree decomposition node. For each node x , our estimate relied on three param-
eters: the above mentioned k and nx and the number of possible permutations of the
element in the bag of the node, px ≤ k!. This cost function goes beyond the f -cost
framework [9], in which the contribution of each node can only depend on the size
of the bag. We observed that for t = 2 and t = 3 this heuristic yielded almost as
good tree decompositions as the machine learning method. But for t = 4 neither this
method was able to find tree decomposition substantially better than an average one.

Since the best tree decomposition was seen to yield an order-of-magninute shorter
running times than the median tree decomposition, it remains as an obvious challenge
for future research to construct or learn a more accurate cost function. That being
said, it has to be admitted that the presented tree decomposition based algorithm is
practical only for very small treewidth, t ≤ 3: for t = 4 already, a quite different,
worst-case exponential-time algorithm is expected to be faster in practice [18, Fig. 8];
that algorithm is generally the faster, the denser the poset (i.e., the cover graph) is.
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Appendix: Proof of Fact 2

We will need the following notation. We consider polynomials in variables z1, . . . , zk
with integer coefficients. We index a monomial by the tuple of its degrees e =
(e1, . . . , ek). The support of a polynomial P is the set of tuples e for which the
coefficient Pe of the corresponding monomial in P is non-zero. We denote by dP the
size of the smallest Cartesian product of the form ×k

i=1{0, 1, . . . , ni } that contains the
support of P . Furthermore, we denote hP := maxe lPe , where for any integer i we
write li := �log2(|i | + 1)� = Õ(log |i |) for its bit-size.

Finally, we let μ(l) denote the number of bit-operations needed to multiply two
integers of bit-size at most l; we have that μ(l) = O

(
l(log l)2log

∗ l) [15], which is
Õ(l).

Proposition 1 (Cor. 1 of vanderHoeven andLecerf [33])Given P, Q ∈ Z[z1, . . . , zk],
we can compute R = PQ with

O
(
μ(h dR) + kμ(log dR) + (dP + dQ) log dR

)
(1)

bit-operations, where h := hP + hQ + lmin{dP ,dQ}.

Weapply this result to twopolynomials P, Q ∈ Z[z1, . . . , zk]with Õ(n)-bit integer
coefficients, n ≥ k, and maximum degrees at most nP and nQ such that nP +nQ ≤ n.
Clearly the maximum degree of R = PQ is at most n. Thus we have that dP ≤
(nP + 1)k , dQ ≤ (nQ + 1)k , and dR ≤ (n + 1)k . Consequently, h = Õ(n).

By Proposition 1 we get that R can be computed with

Õ
(
h(n + 1)k + k2 log(n + 1) + (n + 1)k

) = Õ
(
nk+1)

bit-operations. This completes the proof of Fact 2.
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