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Abstract It has been observed in many places that constant-factor approximable
problems often admit polynomial or even linear problem kernels for their decision
versions, e.g., VERTEX COVER, FEEDBACK VERTEX SET, and TRIANGLE PACK-
ING. While there exist examples like BIN PACKING, which does not admit any kernel
unless P = NP, there apparently is a strong relation between these two polynomial-
time techniques. We add to this picture by showing that the natural decision versions
of all problems in two prominent classes of constant-factor approximable problems,
namely MIN F+�1 and MAX NP, admit polynomial problem kernels. Problems in
MAX SNP, a subclass of MAX NP, are shown to admit kernels with a linear base set,
e.g., the set of vertices of a graph. This extends results of Cai and Chen (J. Comput.
Syst. Sci. 54(3): 465–474, 1997), stating that the standard parameterizations of prob-
lems in MAX SNP and MIN F+�1 are fixed-parameter tractable, and complements
recent research on problems that do not admit polynomial kernelizations (Bodlaender
et al. in J. Comput. Syst. Sci. 75(8): 423–434, 2009).

Keywords Combinatorial optimization · Kernelization · Parameterized complexity

1 Introduction

Approximation and kernelization are two major ways of coping with NP-hardness
in polynomial time. The former relaxes the exactness requirement to that of finding
good approximate solutions. The latter, as a formulation of preprocessing, shrinks the
instance to a guaranteed size in terms of some difficulty parameter. For approximate
solutions to a problem it is quite desirable to get solutions within a constant-factor
of the optimum, or even arbitrarily good approximations in polynomial time through
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Table 1 Approximation ratio and size of problem kernels for some optimization problems

Approximation ratio Kernel size

VERTEX COVER 2 [24] O(k) [11]

CONNECTED VERTEX COVER 2 [38] not polynomial [13]

FEEDBACK VERTEX SET 2 [3] O(k2) [40]

BIN PACKING 1.5 [39] none unless P = NP [22]

MINIMUM FILL-IN O(opt) [34] O(k2) [34]

TREEWIDTH O(
√

log opt) [17] not polynomial(a) [7]

(a)Treewidth does not admit a polynomial kernelization unless there is an and-distillation algorithm for
all NP complete problems [7]. Though unlikely, this is not known to imply a collapse of the polynomial
hierarchy

polynomial-time approximation schemes. In the world of preprocessing, polynomial
kernelizations with a guaranteed size polynomial in the parameter are often the first
goal, later aiming for stronger and stronger bounds down to linear kernels. Consid-
ering these two polynomial-time techniques it is only natural to study the relation
between them.

This paper seeks to further the understanding of the relation between constant-
factor approximation and polynomial kernelizations. This is motivated by the large
number of problems that both techniques were successfully applied to so far, e.g.,
VERTEX COVER, MAX SAT, FEEDBACK VERTEX SET, and TRIANGLE PACKING;
see Table 1 for approximability and kernelization results for some well-known prob-
lems. Let us point out that there do exist examples that rule out a general equivalence
of these two notions, e.g., CONNECTED VERTEX COVER or BIN PACKING. Both
problems have constant-factor approximation algorithms but none of them admits a
polynomial kernel: The former admits a O(2.761knc)-time algorithm [33], and hence
a kernel of size O(2.761k),1 but it has no kernel of polynomial size unless the poly-
nomial hierarchy collapses [13]. The latter does not even admit a polynomial-time
algorithm for k = 2 unless P = NP, by an immediate reduction from PARTITION [22].
Consider also the MINIMUM FILL-IN problem, which has a polynomial kernel but
the best known ratio is O(opt) [34]. Since a general result is ruled out we take the
natural approach of considering subclasses of the class of all constant-factor approx-
imable problems (APX), namely MIN F+�1 and MAX NP.

Our Work We prove that the standard parameterizations of problems in MIN F+�1
and MAX NP admit polynomial kernelizations. This extends results of Cai and
Chen [8] who showed that the standard parameterizations of all problems in
MIN F+�1 and MAX SNP (a subclass of MAX NP) are fixed-parameter tractable;
or equivalently admit some (possibly exponential) kernelization. Interestingly per-
haps, both our results rely on the Sunflower Lemma due to Erdős and Rado [15].

1By a folklore result: run the algorithm for O(nc+1) steps, it will either provide the correct answer (and

we return a yes- or no-instance of constant size) or if it does not finish then it follows that n < 2.761k and
we have the kernel.
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Related Work Kernelization has received significant interest over the last fifteen
years, maturing from a technique to prove fixed-parameter tractability into its own
field of research. In the literature there exist a significant number of positive re-
sults; we will only highlight a few from recent years, namely a kernel with O(k)

vertices for VERTEX COVER by Chen et al. [11], a O(k2) vertices kernel for FEED-
BACK VERTEX SET by Thomassé, and a O(kd−1) vertices kernel for d-HITTING

SET by Abu-Khzam [1]. Recently Bodlaender et al. [7] presented the first negative
results concerning the existence of polynomial kernelizations for some natural fixed-
parameter tractable problems. Using the notion of a distillation algorithm and results
due to Fortnow and Santhanam [21], they were able to show that the existence of
polynomial kernelizations for so-called compositional parameterized problems im-
plies a collapse of the polynomial hierarchy to the third level. These seminal results
led to an increased interest in polynomial lower bounds for kernelization as well as
in polynomial kernelizations as a good way of understanding efficient preprocess-
ing (and possibly ruling it out by means of polynomial lower bounds). A follow-up
paper by Bodlaender et al. [5] proposed the application of polynomial-time transfor-
mations, that allow only a polynomial increase in the parameter, to transfer lower
and upper bounds between problems. A number of papers already apply the frame-
work of Bodlaender et al. [5, 7] to obtain polynomial lower bounds for a variety of
problems. e.g., [13, 18, 28]. An important contribution to kernelization lower bounds
was made by Dell and van Melkebeek [12], who showed, amongst others, that FEED-
BACK VERTEX SET does not admit a kernelization to size O(k2−ε) unless the poly-
nomial hierarchy collapses, i.e., there may be a kernelization with O(k) vertices but
the number of O(k2) edges is essentially optimal. Another interesting recent devel-
opment are meta results for kernelization due to Bodlaender et al. [6] and Fomin et
al. [20]. They obtain linear and polynomial kernels for graph problems definable in
extensions of monadic second order logic when restricted to planar, bounded genus,
or H -minor-free graphs, given certain additional properties like finite integer index
or quasi-compactness. Furthermore, two recent papers obtain complete classifications
of three parameterized constraint satisfaction problems into admitting or not admit-
ting polynomial kernels depending on the language of permitted constraints [29, 30].
For more background on kernelization we refer to the recent surveys on kerneliza-
tion given by Guo and Niedermeier [23] as well as by Bodlaender [4]. In an earlier
paper, Mahajan et al. [31, 32] studied MAX SNP problems and observe that kernel-
izations follow from the fact that NP-hard problems in MAX SNP have guaranteed
lower bounds for the optimum value, motivating them to study these problems pa-
rameterized above such lower bounds. Cai and Huang [9] showed that all problems
in MAX SNP admit fixed-parameter approximation schemes.

MIN F+Π1 and MAX NP Two decades ago Papadimitriou and Yannakakis [37] ini-
tiated the syntactic study of optimization problems to extend the understanding of
approximability. They introduced the classes MAX NP and MAX SNP as natural
variants of NP based on Fagin’s [16] syntactic characterization of NP. Essentially
problems are in MAX NP or MAX SNP if their optimum value can be expressed as
the maximum number of tuples for which some existential, respectively quantifier-
free, first-order formula holds. They showed that every problem in these two classes
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is approximable to within a constant factor of the optimum. Arora et al. comple-
mented this by proving that no MAX SNP-complete problem has a polynomial-time
approximation scheme, unless P = NP [2]. Contained in MAX SNP there are some
well-known maximization problems, such as MAX CUT, MAX q -SAT, and INDE-
PENDENT SET on graphs of bounded degree. Its superclass MAX NP also contains
MAX SAT amongst others.

Kolaitis and Thakur generalized the approach of examining the logical definabil-
ity of optimization problems and defined further classes of minimization and max-
imization problems [26, 27]. Amongst others they introduced the class MIN F+�1
of problems whose optimum can be expressed as the minimum weight of an assign-
ment (i.e., number of ones) that satisfies a certain universal first-order formula. They
proved that every problem in MIN F+�1 is approximable to within a constant factor
of the optimum. In MIN F+�1 there are problems like VERTEX COVER, d-HITTING

SET, and TRIANGLE EDGE DELETION.

Organization of the Paper Section 2 covers the definitions of the classes MIN F+�1
and MAX NP, as well as the necessary details from parameterized complexity. In
Sects. 3 and 4 we present polynomial kernelizations for the standard parameteriza-
tions of problems in MIN F+�1 and MAX NP respectively. Section 5 summarizes
our results and poses some open problems.

2 Preliminaries

Logic and Complexity Classes A (relational) vocabulary is a set σ of relation sym-
bols, each having some fixed integer as its arity. Atomic formulas over σ are of the
form R(z1, . . . , zt ) where R is a t-ary relation symbol from σ and the zi are vari-
ables. A literal is an atomic formula or the negation of an atomic formula. The set
of quantifier-free (relational) formulas over σ is the closure of the set of all atomic
formulas under negation, conjunction, and disjunction. A formula in conjunctive nor-
mal form is a conjunction of disjunctions of literals, called clauses. A formula in
disjunctive normal form is a disjunction of conjunctions of literals, called disjuncts.

Definition 1 (MIN F+�1, MAX NP) A tuple A = (A,R1, . . . ,Rt ) where A is a
finite set and each Ri is an ri -ary relation over A is called a finite structure of
type (r1, . . . , rt ).

Let Q be an optimization problem on finite structures of type (r1, . . . , rt ).

(a) The problem Q is contained in MIN F+�1 if its optimum on finite struc-
tures A = (A,R1, . . . ,Rt ) of type (r1, . . . , rt ) can be expressed as

optQ(A) = min
S

{|S| : (A, S) |= (∀x ∈ Acx ) : ψ(x, S)},

where S is a single relation symbol and ψ(x, S) is a quantifier-free for-
mula in conjunctive normal form over the vocabulary {R1, . . . ,Rt , S} on vari-
ables {x1, . . . , xcx }. Furthermore, ψ(x, S) is positive in S, i.e., S does not occur
negated in ψ(x, S).
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(b) The problem Q is contained in MAX NP if its optimum on finite structures A =
(A,R1, . . . ,Rt ) of type (r1, . . . , rt ) can be expressed as

optQ(A) = max
S

∣
∣
{

x ∈ Acx : (A, S) |= (∃y ∈ Acy ) : ψ(x,y, S)
}∣
∣ ,

where S = (S1, . . . , Su) is a tuple of si -ary relation symbols Si and ψ(x,y, S) is
a quantifier-free formula in disjunctive normal form over the vocabulary {R1, . . . ,

Rt , S1, . . . , Su} on variables {x1, . . . , xcx , y1, . . . , ycy }.

The definition of MAX SNP is similar to that of MAX NP but without the exis-
tential quantification of y, i.e., optQ(A) = maxS |{x : (A, S) |= ψ(x, S)}|.

Remark 1 Since the formulas ψ depend only on the problem Q they are of constant
length with respect to inputs A. Thus there is no strict need to require normal forms,
but the chosen ones fit the quantification nicely, e.g., we can view (∀x) : ψ(x, S) as a
large conjunctive normal form.

Example 1 (MINIMUM VERTEX COVER) Let G = (V ,E) be a finite structure of
type (2) that represents a graph by a set V of vertices and a binary relation E over V

as its edges. The optimum of MINIMUM VERTEX COVER on structures G can be
expressed as:

optVC(G) = min
S⊆V

{|S| : (G,S) |= (∀(u, v) ∈ V 2) : (¬E(u,v) ∨ S(u) ∨ S(v))}.

This implies that MINIMUM VERTEX COVER is contained in MIN F+�1.

Example 2 (MAXIMUM SATISFIABILITY) Formulas in conjunctive normal form can
be represented by finite structures F = (F,P,N) of type (2,2): Let F be the set of
all clauses and variables, and let P and N be binary relations over F . Let P(x, c)

be true if and only if x is a literal of the clause c and let N(x, c) be true if and only
if ¬x is a literal of the clause c. The optimum of MAX SAT on structures F can be
expressed as:

optMS(F ) = max
T ⊆F

|{c ∈ F : (F , T ) |= (∃x ∈ F) :

(P (x, c) ∧ T (x)) ∨ (N(x, c) ∧ ¬T (x))}|.
Thus MAX SAT is contained in MAX NP.

For a detailed introduction to MIN F+�1, MAX NP, and MAX SNP we refer
the reader to [26, 27, 37]. An introduction to logic and complexity can be found
in [36].

Parameterized Complexity Parameterized complexity provides a multivariate anal-
ysis of combinatorially hard problems, considering at least one additional parameter
of input instances apart from their size. This allows a more fine-grained analysis of
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the required runtimes than the mere statement of NP-hardness could provide. In the
following we give the necessary formal definitions, namely fixed-parameter tractabil-
ity, standard parameterizations, and kernelization.

Definition 2 (Parameterized problem, Fixed-parameter tractability) A parameterized
problem p-Q over the alphabet � is a subset of �∗ × N; the second component is
called the parameter.

A parameterized problem p-Q is fixed-parameter tractable if there exists an al-
gorithm A, a polynomial p, and a computable function f : N → N such that A

decides (x, k) ∈ p-Q in time f (k) · p(|x|). FPT is the class of all fixed-parameter
tractable problems.

Definition 3 (Standard parameterization) Let Q be a maximization (minimization)
problem. Its standard parameterization is defined as p-Q := {(A, k) | optQ(A) ≥ k}
(respectively p-Q := {(A, k) | optQ(A) ≤ k} for minimization problems).

Basically, the standard parameterization of an optimization problem is its decision
version, asking whether the optimum is at least k (respectively at most k), parameter-
ized by k.

Definition 4 (Kernelization) Let p-Q ⊆ �∗ ×N be a parameterized problem over �.
A polynomial-time computable function K : �∗ × N → �∗ × N is a kernelization
of p-Q if there is a computable function h : N → N such that for all (x, k) ∈ �∗ × N,
and letting (x′, k′) := K((x, k)), we have

1. (x, k) ∈ p-Q ⇔ (x′, k′) ∈ p-Q as well as
2. |x′| ≤ h(k) and k′ ≤ h(k).

We call h the size of the problem kernel (x′, k′). The kernelization K is polynomial
if h is a polynomial. We say that p-Q admits a (polynomial) kernelization if there
exists a (polynomial) kernelization of p-Q.

Essentially, a kernelization is a polynomial-time data reduction that comes with a
guaranteed upper bound on the size of the resulting instance in terms of the parameter.

For an introduction to parameterized complexity we refer the reader to [14, 19, 35].

Hypergraphs and Sunflowers A hypergraph is a tuple H = (V ,E) consisting of a
finite set V , its vertices, and a family E of subsets of V , its edges. A hypergraph has
dimension d if each edge has cardinality at most d . A hypergraph is d-uniform if each
edge has cardinality exactly d .

Definition 5 (Sunflower) Let H be a hypergraph. A sunflower of cardinality r is a
set F = {f1, . . . , fr} of edges of H such that every pair has the same intersection C,
i.e., for all 1 ≤ i < j ≤ r : fi ∩ fj = C. The set C is called the core of the sunflower,
the disjoint sets fi \ C are called petals.

The following lemma is the beautiful Sunflower Lemma due to Erdős and
Rado [15].
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Lemma 1 (Sunflower Lemma) Let k, d ∈ N and let H be a d-uniform hypergraph
with more than kd · d! edges. Then there is a sunflower of cardinality k + 1 in H. For
every fixed d there is an algorithm that computes such a sunflower in time polynomial
in |E(H)|.

We give a short sketch of its algorithmic proof. The idea is to greedily select dis-
joint sets. If at least k + 1 sets are found then they form a sunflower with core C = ∅.
Otherwise all other sets must intersect the at most dk elements of the selected sets.
Then the search continues among those sets that contain the most frequent element,
i.e., occurring in at least |E(H)|/dk sets. This terminates after d − 1 rounds since
each time an element is selected for the core, which contains at most d − 1 elements.

The following corollary is an immediate extension to d-dimensional hypergraphs.

Corollary 1 The same holds for d-dimensional hypergraphs with more than kd ·d! ·d
edges.

Proof For some d ′ ∈ {1, . . . , d}, H has more than kd · d! ≥ kd ′ · d ′! edges of cardinal-
ity d ′. Let Hd ′ be the d ′-uniform subgraph induced by the edges of cardinality d ′. We
apply the Sunflower Lemma on Hd ′ and obtain a sunflower F of cardinality k + 1 in
time polynomial in |E(Hd ′)| ≤ |E(H)|. Clearly F is also a sunflower of H. �

3 Polynomial Kernelization for MIN F+�1

The class MIN F+�1 was introduced by Kolaitis and Thakur in a framework of
syntactically defined classes of optimization problems [26]. In a follow-up paper they
showed that every problem in MIN F+�1 is constant-factor approximable [27]. We
will prove that the standard parameterization of any problem in MIN F+�1 admits a
polynomial kernelization.

Let us fix some optimization problem Q from MIN F+�1 that takes as input
finite structures of type (r1, . . . , rt ). Accordingly let R1, . . . ,Rt be relation symbols
of arity r1, . . . , rt . Since Q ∈ MIN F+�1 there is a cS -ary relation symbol S and a
quantifier-free formula ψ(x, S) in conjunctive normal form such that:

1. the formula ψ(x, S) is positive in S, i.e., there are no literals ¬S(x1, . . . , xcS
) and

2. the optimum value of Q on input A of type (r1, . . . , rt ) can be expressed as

optQ(A) = min
S⊆AcS

{|S| : (A, S) |= (∀x ∈ Acx ) : ψ(x, S)}.

We denote by s the maximum number of occurrences of S in any clause of ψ(x, S).
This value plays a crucial role in our kernelization bound. For the polynomial kernel-
ization we consider the standard parameterization of Q, denoted by p-Q:

Input: A finite structure A of type (r1, . . . , rt ) and an integer k.
Parameter: k.
Task: Decide whether optQ(A) ≤ k.
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We will see that, given an instance (A, k), deciding whether optQ(A) ≤ k is equiv-
alent to deciding an instance of s-HITTING SET, defined as follows:

Input: A hypergraph H = (V ,E) of dimension s and an integer k.
Parameter: k.
Task: Decide whether H has a hitting set of size at most k, i.e., S ⊆ V , |S| ≤ k, such

that S has a nonempty intersection with every edge of H.

The following definition formalizes the procedure of plugging in a specific tu-
ple x ∈ Acx into ψ(x, S). That way all occurrences of relation symbols Ri can be
evaluated, as they are part of the input (A, k), leaving only literals S(·).

Definition 6 Let A = (A,R1, . . . ,Rt ) be a finite structure of type (r1, . . . , rt ) and
let x ∈ Acx . We define ψx(S) to be the formula obtained in the following way:

1. Replace all variables x1, . . . , xcx by the chosen elements of A.
2. Replace all literals Ri(z) and ¬Ri(z) by 1 (true) or 0 (false) depending on

whether z is contained in Ri (note that z is a concrete tuple from Ari by Step 1).
3. Delete all clauses that contain a 1 and delete all occurrences of 0.

Observe that application of Definition 6 yields an equivalent formula in the sense
that (A, S) |= ψ(x, S) if and only if (A, S) |= ψx(S), since we only replace literals
according to the input. It is easy to see that ψx(S) is a formula in conjunctive nor-
mal form on literals S(z) for some z ∈ AcS ; there are at most s literals per clause.
A formula ψx(S) can have empty clauses when all literals Ri(·), ¬Ri(·) in a clause
are evaluated to 0 and there are no literals S(·). In that case, no assignment to S can
satisfy the formula ψx(S), or equivalently ψ(x, S). Thus (A, k) is a no-instance and
we may reject it or return a dummy no-instance of constant size. Note that clauses
of ψx(S) cannot contain contradicting literals since ψ(x, S) is positive in S. Hence-
forth we assume all clauses of formulas ψx(S) to be nonempty.

We continue by defining a mapping � from finite structures A to hypergraphs H.
Then we show that (A, k) is a yes-instance for p-Q if and only if (�(A), k) is a
yes-instance for s-HITTING SET.

Definition 7 Let A be an instance of Q. We define �(A) := H with H = (V ,E).
We let E be the family of all sets e = {z1, . . . , zp} such that (S(z1) ∨ · · · ∨ S(zp)) is
a clause of a ψx(S) for some x ∈ Acx . We let V be the union of all sets e ∈ E.

The hypergraphs H obtained from the mapping � have dimension s since
each ψx(S) has at most s literals per clause. The following lemma establishes the
equivalence of (A, k) and (H, k) = (�(A), k).

Lemma 2 Let A = (A,R1, . . . ,Rt ) be a finite structure of type (r1, . . . , rt ) and let k

be an integer. Then (A, k) is a yes-instance of p-Q if and only if (�(A), k) is a
yes-instance of s-HITTING SET.

Proof It suffices to show that for all S ⊆ AcS :

(A, S) |= (∀x ∈ Acx ) : ψ(x, S) if and only if S is a hitting set for �(A).
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Let H = �(A) = (V ,E) and let S ⊆ AcS :

(A, S) |= (∀x ∈ Acx ) : ψ(x, S)

⇐⇒ (A, S) |= (∀x ∈ Acx ) : ψx(S)

⇐⇒ (∀x ∈ Acx ) : each clause of ψx(S) has a literal S(z) for which z ∈ S

⇐⇒ S has a nonempty intersection with every set e ∈ E

⇐⇒ S is a hitting set for H = (V ,E).

Since the number of ones in the assignment to S, i.e., the number of tuples z ∈ AcS

with S(z) = 1, translates directly to the cardinality of the hitting set and vice versa,
the lemma follows. �

Our kernelization will consist of the following three steps:

1. Map the given instance (A, k) for p-Q to an equivalent instance (H, k) =
(�(A), k) for s-HITTING SET according to Definition 7 and Lemma 2.

2. Use a polynomial kernelization for s-HITTING SET on (H, k) to obtain an equiv-
alent instance (H′, k) with size polynomial in k.

3. Use (H′, k) to derive an equivalent instance (A′, k) of p-Q. That way we will be
able to conclude that (A′, k) is equivalent to (H, k) and hence also to (A, k).

There are two kernelizations for s-HITTING SET: one by Flum and Grohe [19]
based on the Sunflower Lemma due to Erdős and Rado [15] and a recent one by Abu-
Khzam [1] based on crown decompositions. For our purpose of deriving an equivalent
instance for p-Q, these kernelizations have the drawback of shrinking sets during the
reduction, since we need to find an equivalent instance of p-Q afterwards. To shrink
edges we would need to shrink clauses of the formula ψ(x, S), but we may only
change the instance (A, k). Fortunately we are able to modify Flum and Grohe’s
kernelization to use only edge deletions.

Remark 2 Crown decompositions frequently produce the strongest kernelization re-
sults by virtue of proving certain decisions to be optimal, usually independent of the
solution size k. Kernelization based on sunflowers makes use of the solution size,
showing that certain decisions are forced.

The sunflower-based kernelization for s-HITTING SET uses the fact that a sun-
flower of cardinality greater than k forces an element of its core to be selected; recall
that the petals are pairwise disjoint. Thus such a sunflower may be replaced by its
core. In our case the idea is to shrink sunflowers from size at least k + 2 down to
size k + 1. This way the selection of an element from the core is still forced, but we
are able to reduce the size of our instance without shrinking of edges.

Theorem 1 There exists a polynomial kernelization of s-HITTING SET that, given
an instance (H, k), computes an instance (H∗, k) such that E(H∗) ⊆ E(H), H∗
has O(ks) edges, and the size of (H∗, k) is O(ks) as well.
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Proof Let (H, k) be an instance of s-HITTING SET, with H = (V ,E). If H contains
a sunflower F = {f1, . . . , fk+1} of cardinality k + 1 then every hitting set of H must
have a nonempty intersection with the core C of F or with the k + 1 disjoint sets f1 \
C, . . . , fk+1 \ C. Thus every hitting set of at most k elements must have a nonempty
intersection with C.

Now consider a sunflower F = {f1, . . . , fk+1, fk+2} of cardinality k + 2 in H
and let H′ = (V ,E \ {fk+2}). We show that the instances (H, k) and (H′, k) are
equivalent. Clearly every hitting set for H is also a hitting set for H′ since E(H′) ⊆
E(H). Let S ⊆ V be a hitting set of size at most k for H′. Since F \ {fk+2} is a
sunflower of cardinality k + 1 in H′, it follows that S has a nonempty intersection
with its core C. Hence S has a nonempty intersection with fk+2 ⊇ C too. Thus S is a
hitting set of size at most k for H, implying that (H, k) and (H′, k) are equivalent.

We turn this fact into a kernelization, by starting with H∗ = H and by repeating
the following step while H∗ has more than (k + 1)s · s! · s edges. By Corollary 1 we
obtain a sunflower of cardinality k + 2 in H∗ in time polynomial in |E(H∗)|. We
delete an edge of the detected sunflower from the edge set of H∗, thereby reducing
the cardinality of the sunflower to k + 1. Thus, by the argument from the previous
paragraph, we maintain that (H, k) and (H∗, k) are equivalent. Furthermore E(H∗) ⊆
E(H) and H∗ has no more than (k + 1)s · s! · s ∈ O(ks) edges. Since we delete an
edge of H∗ in each step, there are O(|E(H)|) steps, and the total time is polynomial
in |E(H)|. Deleting all isolated vertices from H∗ yields a size of O(s · ks) = O(ks)

since each edge contains at most s vertices. �

The following lemma proves that every s-HITTING SET instance that is “sand-
wiched” between two equivalent instances must be equivalent to both.

Lemma 3 Let (H, k) be an instance of s-HITTING SET and let (H∗, k) be an equiv-
alent instance with E(H∗) ⊆ E(H). Then for any H′ with E(H∗) ⊆ E(H′) ⊆ E(H)

the instance (H′, k) is equivalent to (H, k) and (H∗, k).

Proof Observe that hitting sets for H can be projected to hitting sets for H′ (i.e.,
restricted to the vertex set of H′) since E(H′) ⊆ E(H). Thus if (H, k) is a yes-
instance then (H′, k) is a yes-instance too. The same argument holds for (H′, k)

and (H∗, k). Together with the fact that (H, k) and (H∗, k) are equivalent, this proves
the lemma. �

Now we are well equipped to prove that p-Q admits a polynomial kernelization.
The main remaining difficulty lies in finding an instance of p-Q that is equivalent to
the kernelized s-HITTING SET instance that we already know how to obtain. It is in
fact easier to find an instance of p-Q that is equivalent to a sandwiched instance.

Theorem 2 Let Q ∈ MIN F+�1. The standard parameterization p-Q of Q admits
a polynomial kernelization.

Proof Let (A, k) be an instance of p-Q. By Lemma 2 we have that (A, k) is a yes-
instance of p-Q if and only if (H, k) = (�(A), k)) is a yes-instance of s-HITTING
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SET. We apply the kernelization from Theorem 1 to (H, k) and obtain an equivalent s-
HITTING SET instance (H∗, k) such that E(H∗) ⊆ E(H) and H∗ has O(ks) edges.

Recall that every edge of H, say {z1, . . . , zp}, corresponds to a clause (S(z1) ∨
· · · ∨ S(zp)) of ψx(S) for some x ∈ Acx . Thus for each edge e ∈ E(H∗) ⊆ E(H) we
can select a tuple xe such that e corresponds to a clause of ψxe (S). Let X be the
set of the selected tuples xe for all edges e ∈ E(H∗). Let A′ ⊆ A be the set of all
components of tuples xe ∈ X, ensuring that X ⊆ A′cx . Let R′

i be the restriction of Ri

to A′ and let A′ = (A′,R′
1, . . . ,R

′
t ).

Let (H′, k) = (�(A′), k). By definition of � and by construction of H′ we
know that E(H∗) ⊆ E(H′) ⊆ E(H) since X ⊆ A′cx ⊆ Acx . Thus, by Lemma 3,
we have that (H′, k) is equivalent to (H, k). Furthermore, by Lemma 2, (H′, k) is
a yes-instance of s-HITTING SET if and only if (A′, k) is a yes-instance of p-Q.
Thus (A′, k) and (A, k) are equivalent instances of p-Q.

We conclude the proof by giving an upper bound on the size of (A′, k) that is
polynomial in k. The set X contains at most |E(H∗)| ∈ O(ks) tuples. These tuples
have no more than cx · |E(H∗)| different components. Hence the size of A′ is O(cx ·
ks) = O(ks). Thus the size of (A′, k) is O(ksm), where m is the largest arity of a
relation Ri , i.e., m = max{r1, . . . , rt }. Thus (A′, k) is an instance equivalent to (A, k)

with size polynomial in k, since cx , s, and m are constants independent of the input. �

4 Polynomial Kernelization for MAX NP

Papadimitriou and Yannakakis introduced MAX SNP as well as its superclass
MAX NP and showed that every problem from these classes is constant-factor ap-
proximable [37]. We show that the standard parameterization of any MAX NP prob-
lem admits a polynomial kernelization.

Again let us fix some problem Q ∈ MAX NP. Let (r1, . . . , rt ) be the type of
input structures for Q and let R1, . . . ,Rt be matching relation symbols. By def-
inition of MAX NP there is a tuple of relation symbols S = (S1, . . . , Su) of ar-
ity s1, . . . , su and a formula ψ(x,y, S) in disjunctive normal form over the vocab-
ulary {R1, . . . ,Rt , S1, . . . , Su} such that for all finite structures A of type (r1, . . . , rt )

the optimum value of Q on input A can be expressed as

optQ(A) = max
S

|{x ∈ Acx : (A, S) |= (∃y ∈ Acy ) : ψ(x,y, S)}|.

Let s be the maximum number of occurrences of relations S1, . . . , Su in any dis-
junct of ψ(x,y, S). The standard parameterization p-Q of Q is the following prob-
lem:

Input: A finite structure A of type (r1, . . . , rt ) and an integer k.
Parameter: k.
Task: Decide whether optQ(A) ≥ k.

We define formulas ψx,y(S) similarly to Definition 6 in Sect. 3.

Definition 8 Let A = (A,R1, . . . ,Rt ) be a finite structure of type (r1, . . . , rt ), let x ∈
Acx , and let y ∈ Acy . We define ψx,y(S) to be the formula obtained by the following
steps:
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1. Replace all variables x1, . . . , xcx , y1, . . . , ycy by the chosen elements of A.
2. Replace all literals Ri(z) and ¬Ri(z), for some z ∈ Ari , by 1 (true) or 0 (false)

depending on whether z is contained in Ri .
3. Delete all disjuncts that contain a 0 and delete all occurrences of 1; note the dif-

ference to Definition 6 through using a different normal form.
4. Delete all disjuncts that contain contradicting literals Sj (z),¬Sj (z) since they

cannot be satisfied.

We explicitly allow empty disjuncts that are satisfied by definition for the sake of
simplicity (they occur when all literals in a disjunct are evaluated to 1).

It is easy to see that ψ(x,y, S) and ψx,y(S) are equivalent for any choice of x, y,
and S , i.e., (A, S) |= ψ(x,y, S) iff (A, S) |= ψx,y(S). Moreover, we can compute
all formulas ψx,y(S) for x ∈ Acx , y ∈ Acy in polynomial time, since cx , cy , and the
length of ψ(x,y, S) are constants independent of A.

Definition 9 Let A = (A,R1, . . . ,Rt ) be a finite structure of type (r1, . . . , rt ).

(a) We define XA ⊆ Acx as the set of all tuples x such that (∃y) : ψx,y(S) holds for
some S :

XA = {x : (∃S) : (A, S) |= (∃y) : ψx,y(S)}.
(b) For x ∈ Acx we define YA(x) as the set of all tuples y such that ψx,y(S) holds for

some S :

YA(x) = {y : (∃S) : (A, S) |= ψx,y(S)}.

The sets XA and YA(x) can be computed in polynomial time because the num-
ber of tuples x ∈ Acx respectively y ∈ Acy is polynomial in the size of A and the
formula ψ(x,y, S) is of constant length independent of A.

Lemma 4 Let (A, k) be an instance of p-Q. If |XA| ≥ k · 2s then optQ(A) ≥ k,
i.e., (A, k) is a yes-instance.

Remark 3 In the following proof we consider assignments to variables of the for-
mulas ψx,y(S). We point out that assigning true or false to some variable Si(z) cor-
responds to including or excluding, respectively, the tuple z in Si . Note that there
are

∑u
i=1 |A|si variables, one for each possible tuple of a relation Si of arity si .

Proof of Lemma 4 We follow Papadimitriou and Yannakakis’ [37] proof for the fact
that all problems in MAX NP are constant-factor approximable. For each x ∈ XA
we fix a tuple y ∈ YA(x) such that ψx,y(S) is satisfiable. This yields m = |XA| for-
mulas, say ψ1, . . . ,ψm. Now, for each formula ψi let fi denote the fraction of all
assignments to S (i.e., inclusion or exclusion of tuples z in the relations Sj ) that
satisfies ψi .

We will create an assignment that satisfies at least
∑

fi formulas ψi . Let y be a
variable that has not been assigned yet. We assume that 	 variables are unassigned
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at that point and that
∑

f ′
i ≥ ∑

fi , where the fractions f ′
i are with respect to as-

signments to these 	 remaining variables. For i ∈ {1, . . . ,m}, let pi and ni denote the
fraction of assignments to the remaining variables that satisfies ψi in which y is set to
true or false, respectively. Thus there are 2	(pi + ni) assignments which satisfy ψi .
Assign true to y if

∑
pi ≥ ∑

ni ; else, assign false. We show that the sum of frac-
tions f ′

i never decreases (always taking f ′
i to be with respect to the remaining unas-

signed variables): If y is set to true, then 2	pi assignments to the other 	−1 variables
satisfy ψi , which corresponds to a fraction of 2	pi/2	−1 = 2pi . Thus if

∑
pi ≥ ∑

ni

then
m

∑

i=1

2pi ≥
m

∑

i=1

pi +
m

∑

i=1

ni ≥
m

∑

i=1

f ′
i ≥

m
∑

i=1

fi.

Note that
∑m

i=1 2pi is the sum of fractions of satisfying assignments taken with re-
spect to the remaining 	− 1 variables. Similarly for the case that

∑
pi <

∑
ni and y

is assigned false. Thus the sum of fractions never decreases.
When all variables are assigned a value, f ′

i is equal to 1 if ψi is satisfied and 0
else. Thus, this assignment satisfies at least

∑
f ′

i ≥ ∑
fi formulas ψi (recall that

each satisfied formula contributes a tuple to the solution).
It is easy to see that fi ≥ 2−s for each formula ψi . Since ψi is satisfiable there

exists a satisfiable disjunct. To satisfy a disjunct of at most s literals, at most s vari-
ables need to be assigned accordingly. Since the assignment to all other variables can
be arbitrary this implies that fi ≥ 2−s . Thus we have that

∑
fi ≥ m · 2−s . There-

fore |XA| = m ≥ k · 2s implies that the assignment satisfies at least k formulas, i.e.,
that optQ(A) ≥ k. �

Henceforth we assume that |XA| < k · 2s . The remaining and more involved part
is to bound and reduce the size of the sets YA(·). Note the difference between XA
and sets YA(·): every tuple x ∈ XA can add to the solution value, whereas tuples y ∈
YA(x) only provide different ways of satisfying (∃y ∈ Acy ) : ψx,y(S). Hence our goal
is to shrink the sets YA(x) without harming satisfiability. We consider (∃y ∈ Acy ) :
ψx,y(S) on the level of single disjuncts.

Definition 10 Let (A, k) be an instance of p-Q with A = (A,R1, . . . ,Rt ). For x ∈
Acx we define DA(x) as the set of all disjuncts of ψx,y(S) over all y ∈ YA(x).

To reduce the size of sets DA(x), which will lead to a decreased number of tu-
ples in YA(x), we again make use of the Sunflower Lemma. We will see that large
sunflowers among disjuncts in DA(x) represent redundant ways of satisfying (∃y ∈
Acy ) : ψx,y(S). The size of each DA(x) is bounded by the size of YA(x) ⊆ Acy times
the number of disjuncts of ψ(x,y, S) which is a constant independent of A. Thus the
size of each DA(x) is bounded by a polynomial in the input size.

The following definition of intersection and sunflowers among disjuncts treats dis-
juncts like sets of literals.

Definition 11 We define the intersection of two disjuncts as the conjunction of all
literals that occur in both disjuncts. A sunflower of a set of disjuncts is a subset such
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that each pair of disjuncts in the subset has the same intersection (modulo permutation
of the literals).

Definition 12 A partial assignment is a set L of literals such that no literal is the
negation of another literal in L. A formula is satisfiable under L if there exists an
assignment that satisfies the formula and each literal in L, i.e., there is an extension
of the partial assignment L that satisfies F (as well as, naturally, all literals in L).

The following lemma is the basis of our data reduction. It shows that satisfiability
under small partial assignments can be maintained in a reduced set of disjuncts.

Lemma 5 Let (A, k) be an instance of p-Q. For each x ∈ Acx there exists a
set D∗

A(x) ⊆ DA(x) of cardinality O(ks) such that:

1. For every partial assignment L of at most sk literals, D∗
A(x) contains a disjunct

satisfiable under L, if and only if DA(x) contains a disjunct satisfiable under L.
2. D∗

A(x) can be computed in time polynomial in |A|.

Proof Let A = (A,R1, . . . ,Rt ) be a finite structure of type (r1, . . . , rt ), let x ∈ Acx ,
and let DA(x) be a set of disjuncts according to Definition 10. We compute the
set D∗

A(x) starting from D∗
A(x) = DA(x) and successively shrinking sunflowers

while the cardinality of D∗
A(x) is greater than (sk + 1)s · s! · s.

We compute a sunflower of cardinality sk + 2, say F = {f1, . . . , fsk+2}, in time
polynomial in |D∗

A(x)| using Corollary 1. We delete a disjunct of F , say fsk+2,
from D∗

A(x). Let O and P be copies of D∗
A before respectively after deleting fsk+2.

Observe that F ′ = F \ {fsk+2} is a sunflower of cardinality sk + 1 in P . Let L be a
partial assignment of at most sk literals and assume that no disjunct in P is satisfiable
under L. This means that for each disjunct of P there is a literal in L that contradicts
it, i.e., a literal that is the negation of a literal in the disjunct. We focus on the sun-
flower F ′ in P . There must be a literal in L, say 	, that contradicts the intersection of
at least two disjuncts of F ′, say f and f ′, since |F ′| = sk + 1 and |L| ≤ sk. There-
fore 	 is the negation of a literal in the intersection of f and f ′, i.e., the core of F ′.
Thus 	 contradicts also fsk+2 and we conclude that no disjunct in O = P ∪ {fsk+2}
is satisfiable under the partial assignment L. The reverse argument holds since all
disjuncts of P are contained in O . Thus each step maintains the desired property (1).

At the end D∗
A(x) contains no more than (sk + 1)s · s! · s ∈ O(ks) disjuncts. The

computation takes time polynomial in the size of A since the cardinality of DA(x) is
bounded by a polynomial in the size of A and a disjunct is deleted in each step. �

As in the previous section we are able to generate a kernelized instance of an-
other problem, that is easier to handle. The sets D∗

A(x) describe a possibly different
formula for each x, however, it is more convenient to view them as an image of the
original instance on which it is easier to draw conclusions. Again, we will use the
“sandwiching” trick.

Lemma 6 Let (A, k) be an instance of p-Q with A = (A,R1, . . . ,Rt ) and let x ∈
Acx . Let D′

A(x) be a subset of DA(x) such that D∗
A(x) ⊆ D′

A(x) ⊆ DA(x). For any
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partial assignment L of at most sk literals it holds that DA(x) contains a disjunct
satisfiable under L if and only if D′

A(x) contains a disjunct satisfiable under L.

Proof Let L be a partial assignment of at most sk literals. If DA(x) contains
a disjunct satisfiable under L, then, by Lemma 5, this holds also for D∗

A(x).
For D∗

A(x) and D′
A(x) this holds since D∗

A(x) ⊆ D′
A(x). The same is true for D′

A(x)

and DA(x). �

Theorem 3 Let Q ∈ MAX NP. The standard parameterization p-Q of Q admits a
polynomial kernelization.

Proof The proof is organized in three parts. First, given an instance (A, k) of p-Q,
we construct an instance (A′, k) of p-Q in time polynomial in the size of (A, k). In
the second part, we prove that (A, k) and (A′, k) are equivalent. In the third part, we
conclude the proof by showing that the size of (A′, k) is bounded by a polynomial
in k. We recall the assumption that |XA| < k · 2s , based on Lemma 4.

(I) Let (A, k) be an instance of p-Q. We use the sets DA(x) and D∗
A(x) according

to Definition 10 and Lemma 5. Recall that DA(x) is the set of all disjuncts of ψx,y(S)

for every y ∈ YA(x). Thus, for each disjunct d ∈ D∗
A(x) ⊆ DA(x), we can select

a yd ∈ YA(x) such that d is a disjunct of ψx,yd
(S). Let Y ′

A(x) ⊆ YA(x) be the set
of these selected tuples yd . Let D′

A(x) be the set of all disjuncts of ψx,y(S) for y ∈
Y ′

A(x). Since D∗
A(x) contains some disjuncts of ψx,y(S) for y ∈ Y ′

A(x) and DA(x)

contains all disjuncts of ψx,y(S) for y ∈ YA(x) ⊇ Y ′
A(x), we have that D∗

A(x) ⊆
D′

A(x) ⊆ DA(x).
For each x this takes time O(|D∗

A(x)| · |Y ∗
A(x)|) ⊆ O(ks · |A|cy ). Computing Y ′

A(x)

for all x ∈ Acx takes time O(|A|cx · ks · |A|cy ), i.e., time polynomial in the size
of (A, k) since k is never larger than |A|cx .2

Let A′ ⊆ A be the set of all components of x ∈ XA and y ∈ Y ′
A(x) for all x ∈ XA.

This ensures that XA ⊆ (A′)cx and Y ′
A(x) ⊆ (A′)cy for all x ∈ XA. Let R′

i be the
restriction of Ri to A′ and let A′ = (A′,R′

1, . . . ,R
′
t ).

(II) We will now prove that optQ(A) ≥ k if and only if optQ(A′) ≥ k, i.e.,
that (A, k) and (A′, k) are equivalent. Assume that optQ(A) ≥ k and let S =
(S1, . . . , Su) such that |{x : (A, S) |= (∃y) : ψ(x,y, S)}| ≥ k. This implies that there
must exist tuples x1, . . . ,xk ∈ Acx and y1, . . . ,yk ∈ Acy such that S satisfies ψxi ,yi

(S)

for i = 1, . . . , k. Thus S must satisfy at least one disjunct in each ψxi ,yi
(S) since these

formulas are in disjunctive normal form. Accordingly let d1, . . . , dk be disjuncts such
that S satisfies the disjunct di in ψxi ,yi

(S) for i = 1, . . . , k. We show that there ex-
ists S ′ such that:

|{x : (A′, S ′) |= (∃y) : ψ(x,y, S ′)}| ≥ k.

For p = 1, . . . , k we apply the following step: If yp ∈ Y ′
A(xp) then do nothing. Oth-

erwise consider the partial assignment L consisting of the at most sk literals of the
disjuncts d1, . . . , dk . The set DA(xp) contains a disjunct that is satisfiable under L,
namely dp . By Lemma 6, it follows that D′

A(xp) also contains a disjunct satisfiable

2That is, (A, k) is a no-instance if k > |A|cx since k exceeds the number of tuples x ∈ Acx .
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under L, say d ′
p . Let y′

p ∈ Y ′
A(xp) such that d ′

p is a disjunct of ψxp,y′
p
(S). Such a y′

p

can be found by selection of D′
A(xp). Change S in the following way to satisfy the

disjunct d ′
p . For each literal of d ′

p of the form Si(z) add z to the relation Si . Similarly
for each literal of the form ¬Si(z) remove z from Si . This does not change the fact
that S satisfies the disjunct di in ψxi ,yi

(S) for i = 1, . . . , k since, by selection, d ′
p is

satisfiable under L. Then we replace yp by y′
p and dp by d ′

p . Thus we maintain that S
satisfies di in ψxi ,yi

(S) for i = 1, . . . , k.
After these steps we obtain S as well as tuples x1, . . . ,xk , y1, . . . ,yk with yi ∈

Y ′
A(xi ), and disjuncts d1, . . . , dk such that S satisfies di in ψxi ,yi

(S) for i = 1, . . . , k.
Let S ′ be the restriction of S to A′. Then we have that (A′, S ′) |= ψxi ,yi

(S ′) for i =
1, . . . , k since A′ is defined to contain the components of tuples x ∈ XA and of all
tuples y ∈ Y ′

A(x) for x ∈ XA. Hence xi ∈ {x : (A′, S ′) |= (∃y) : ψ(x,y, S ′)} for i =
1, . . . , k. Thus optQ(A′) ≥ k.

For the reverse direction assume that optQ(A′) ≥ k. Since A′ ⊆ A it follows that

{x : (A′, S ′) |= (∃y) : ψ(x,y, S ′)} ⊆ {x : (A, S ′) |= (∃y) : ψ(x,y, S ′)}.

Thus |{x : (A, S ′) |= (∃y) : ψ(x,y, S ′)}| ≥ k, implying that optQ(A) ≥ k. There-
fore optQ(A) ≥ k if and only if optQ(A′) ≥ k. Hence (A, k) and (A′, k) are equiva-
lent instances of p-Q.

(III) We conclude the proof by providing an upper bound on the size of (A′, k)

that is polynomial in k. For the sets Y ′
A(x) we selected one tuple y for each disjunct

in D∗
A(x). Thus |Y ′

A(x)| ≤ |D∗(x)| ∈ O(ks) for all x ∈ XA. The set A′ contains the
components of tuples x ∈ XA and of all tuples y ∈ Y ′

A(x) for x ∈ XA. Thus

|A′| ≤ cx · |XA| + cy ·
∑

x∈XA

|Y ′
A(x)|

≤ cx · |XA| + cy · |XA| · O(ks)

< cx · k · 2s + cy · k · 2s · O(ks) = O(ks+1).

For each relation R′
i we have |R′

i | ≤ |A′|ri ∈ O(k(s+1)ri ). Thus the size of (A′, k)

is bounded by O(k(s+1)m), where m is the largest arity of a relation Ri . �

For MAX SNP there is a fairly immediate stronger kernelization that relies on
Lemma 4.

Corollary 2 Let Q ∈ MAX SNP. The standard parameterization p-Q of Q admits
a polynomial kernelization with a linear bound on the size of the base set of the
obtained finite structure.

Proof Let Q ∈ MAX SNP be an optimization problem on finite structures of
type (r1, . . . , rt ). Let S = (S1, . . . , Su) be a tuple of relation symbols of ar-
ity s1, . . . , su. Finally let ψ(x, S) be a formula in disjunctive normal form such that
the optimum value of Q on a finite structure A of type (r1, . . . , rt ) can be expressed
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as

optQ(A) = max
S

|{x : (A, S) |= ψ(x, S)}|.
Now, let (A, k) be an instance of p-Q, with A = (A,R1, . . . ,Rt ). Similarly to Defi-
nition 9, we consider the set XA of all tuples x such that ψx(S) holds for some S :

XA = {x : (∃S) : (A, S) |= ψx(S)}.
By Lemma 4, if |XA| ≥ k · 2s then optQ(A) ≥ k and we may accept A as a yes-
instance. Otherwise |XA| ∈ O(k) and by restricting A to those elements that occur
in elements of XA we obtain A′ with |A′| ∈ O(k). Also restricting the relations Ri

to A′ we obtain an equivalent instance A′ = (A′,R′
1, . . . ,R

′
t ) of total size O(km)

where k = max{r1, . . . , rt }. �

5 Conclusion

We have constructively established that the standard parameterizations of problems
in MIN F+�1 and MAX NP admit polynomial kernelizations. Thus a strong rela-
tion between constant-factor approximability and polynomial kernelizability has been
showed for two large classes of problems. It remains an open problem to give a more
general result that covers all known examples (e.g., FEEDBACK VERTEX SET). It
might be profitable to consider closures of MAX SNP under reductions that preserve
constant-factor approximability. Khanna et al. [25] proved that APX and APX-PB
are the closures of MAX SNP under PTAS-preserving reductions and E-reductions,
respectively. Since both classes contain BIN PACKING which does not admit a poly-
nomial kernelization, this leads to the question whether polynomial kernelizability or
fixed-parameter tractability are maintained under restricted versions of these reduc-
tions.

Furthermore, it would be interesting to see whether polynomial lower bounds sim-
ilar to the results of Dell and van Melkebeek [12] can be proven. It is easy, however,
to construct artificial examples with almost redundant relations of high arity being
part of the finite structures, so the focus may have to be on exhibiting meaningful
families of problems in MIN F+�1 and MAX NP and showing lower bounds for
them.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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