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Abstract We present a 4-approximation algorithm for the problem of placing the
fewest guards on a 1.5D terrain so that every point of the terrain is seen by at least
one guard. This improves on the previous best approximation factor of 5 (see King
in Proceedings of the 13th Latin American Symposium on Theoretical Informatics,
pp. 629–640, 2006). Unlike most of the previous techniques, our method is based on
rounding the linear programming relaxation of the corresponding covering problem.
Besides the simplicity of the analysis, which mainly relies on decomposing the con-
straint matrix of the LP into totally balanced matrices, our algorithm, unlike previous
work, generalizes to the weighted and partial versions of the basic problem.

Keywords Terrain guarding · Approximation algorithms · Totally balanced
matrices · Geometric covering problems

1 Introduction

In the 1.5D terrain guarding problem we are given a polygonal region in the plane
determined by an x-monotone polygonal chain, and the objective is to find the min-

This paper combines the results of [7] and [19], which were obtained independently: the first gave a
4-approximation for the weighted version of the guarding problem and an extension to partial
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appeared in the Proceedings of the 26th International Symposium on Theoretical Aspects of
Computer Science (STACS) 2009.
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imum number of guards to place on the chain such that every point in the polygonal
region is guarded. A more complete definition of the problem is given is Sect. 2.
This kind of guarding problem and its generalizations to 3-dimensions are motivated
by optimal placement of antennas for communication networks; for more details see
[1, 4] and the references therein.

One can easily see that one point is enough to guard the polygonal region if we
are allowed to select guards anywhere in the plane. However, the problem becomes
interesting if guards can only be placed on the boundary chain. Under this restriction,
two natural versions of the problem arise: in the continuous version the guards can be
placed anywhere along the chain and all points in the terrain must be guarded, while
in the discrete version the guards and points to be guarded are arbitrary subsets of the
chain.

1.1 Previous Work

Chen et al. [4] claimed that the 1.5D-terrain guarding problem is NP-hard, but a
complete proof of the claim was never published [1, 6, 13]. They also gave a linear
time algorithm for the left-guarding problem, that is, the problem of placing the min-
imum number of guards on the chain such that each point of the chain is guarded
from its left. Based on purely geometric arguments, Ben-Moshe et al. [1] gave the
first constant-factor approximation algorithm for the 1.5D-terrain guarding problem.
Although they did not state the value of the approximation ratio explicitly, it was
claimed to be at least 6 in [13]. Clarkson et al. [5] gave constant factor approximation
algorithms for a more general class of problems using ε-nets and showed that their
technique can be used to get a constant approximation for the 1.5D-terrain guarding
problem. Most recently, King [13] claimed that the problem can be approximated
with a factor of 4, but the analysis turned out to have an error that increases the ap-
proximation factor to 5 [14].

1.2 Our Results and Outline of the Paper

The main building block of our algorithms is an LP-rounding algorithm for one-sided
guarding: a version of the problem where a guard can see either to the left or to the
right. Guided by an optimal fractional solution, we can partition the points into those
that should be guarded from the left, and those that should be guarded from right.
This turns out to be very useful information since we can show that the LPs for the
left-guarding and right-guarding problems are integral. We prove this by establishing
a connection between the guarding problem and totally balanced covering problems
that is of independent interest. Altogether, this leads to a factor 2 approximation for
one-sided guarding. Then we show how to reduce other variants of the problem to the
one-sided case by incurring an extra multiplicative factor of 2 in the approximation
ratio.

A nice feature of this framework is that the algorithms emanating from it, are
very simple applications of linear programming and are very simple to analyze. This
comes in contrast with the relatively complicated algorithms of [1, 13] whose descrip-
tion/analysis involves a fairly long list of cases. In addition, our framework allows us
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to tackle more general versions of the problem than those considered in the literature
thus far; for example, guards can have weights and we want to minimize the weight
of the chosen guards, or where we are not required to cover all the terrain, but only
a prescribed fraction of it. It seems that such variants are very difficult to deal with,
if one tries to use only geometric techniques as the ones used in [1, 13] for the basic
problem. We remark also that, for many geometric set covering problems for which
constant factor approximations exist (e.g., covering points in the plane by arbitrary
radii disks [3]), it is not clear how to extend these results to the weighted case. So this
paper gives one example where such an extension is possible.

It is worth noting that the idea of using the fractional solution to the LP-covering
problem to partition the problem into several integral subproblems has been used
before [9, 11, 20].

In the next section, we define the basic guarding problem and its variants more
formally. In Sect. 3 we focus on the left guarding problem and show that this is a
totally balanced covering problem. Section 4 shows how to get a 2-approximation for
one-sided guarding. Finally, in Sect. 5 we apply these results to obtain constant-factor
approximation algorithms for more general variants of the guarding problem.

2 Preliminaries

A terrain T is an x-monotone polygonal chain with n vertices, i.e., a piecewise linear
curve intersecting any vertical line in at most one point. Denote by V the vertices of
T and by n = |V | the complexity of the chain. The terrain polygon PT determined
by T is the closed region in the plane bounded from below by T .

For two points p and q in PT , we say that p sees q and write p ∼ q , if the line
segment connecting p and q is contained in PT , or equivalently, if it never goes
strictly below T . We will also write p < q if p lies to the left of q .

The 1.5D-terrain guarding problem for T is to place guards on T such that every
point p ∈ PT is seen by some guard. One can easily see, by the monotonicity of T ,
that any set of guards that guards T is also enough to guard PT . Henceforth we restrict
our attention to the case when the requirement is to guard all points of T .

The continuous 1.5D-terrain guarding problem is to select a smallest set of guards
A ⊆ T that sees every point in T ; in other words, for every p ∈ T there exists g ∈ A

such that g ∼ p. We also consider the following variants of this basic problem:

1. In the discrete version we are given a finite set of possible guards G ⊆ T with
weights w : G → R+ and a finite set of points N ⊆ T . The goal is to select a
minimum weight set of guards A ⊆ G to guard N .

2. In the partial version we are given a penalty function p : N → R

+ and a budget b.
The goal is to find a minimum weight set of guards such that the penalty of un-
guarded points is at most b. In the continuous variant, b is the length of T that can
be left unguarded.

3. In the one-sided guarding version the guards can see in only one of two directions:
left or right. Specifically, given 3 sets of points N , GL and GR , we want to find
sets AL ⊆ GL and AR ⊆ GR of guards such that for all p ∈ N there is g ∈ AL

such that g < p and g ∼ p, or g ∈ AR such that g > p and g ∼ p. The sets
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Fig. 1 a < b < c < d points
and terrain-free region

GL and GR , and hence AL and AR need not be disjoint. The overall cost of the
solution is w(AL) + w(AR).

This includes both the left- and right-guarding versions where guards in the
given set G can see only from the left, respectively, right (setting GL = G and
GR = ∅ we get the left-guarding problem, while setting GR = G and GL = ∅
gives the right-guarding problem).

Using a unified framework we get 4-approximations for nearly all1 of these vari-
ants. Our approach is based on linear programming, totally balanced matrices, and
the paradigm of rounding to an integral problem [9, 11]. We progressively build our
approximations by reducing each variant to a simpler problem. First, we start estab-
lishing a connection between the left-guarding problem and totally balanced matrices.
Then, we show how to use this to get a 2-approximation for the one-sided guarding.
Finally, we show how the latter implies a 4-approximation for other variants.

Throughout the paper we will make frequent use of the following property, which
was first observed by Ben-Moshe et al. [1]. For the sake of completeness we include
a proof here.

Lemma 1 [1] Let a < b < c < d be four points on T . If a ∼ c and b ∼ d , then a ∼ d .

Proof Let a, b, c, d ∈ T be points such that a < b < c < d . Notice that point b must
lie below or on ac (otherwise, b would break sight between a and c). Similarly, point
c must lie below or on bd .

Thus, line segments ac and bd must intersect in at least one point, say p (see
Fig. 1). Notice that no point of the terrain can be above ap and pd . Therefore,
a ∼ d . �

Discussion Lemma 1 will turn out to be of high importance in most of our proofs.
Namely, all of the results for the discrete cases in this paper in fact apply to any given
set of points and some interaction relation ∼ that complies with Lemma 1.

However, it is easy to see that not all points that comply with Lemma 1 can be an
instance of the 1.5D-terrain guarding (see Fig. 2).

Let S(p) = {g ∈ G | g ∼ p} be the set of guards that see point p ∈ N . Denote by
SL(p) = {g ∈ G | g < p and g ∼ p} the set of guards that see p strictly from the left,
and analogously by SR(p) the set of guards that see p strictly from the right.

1The only exception is instances of the discrete variant when G ∩ N �= ∅. Here we get a 5-approximation.
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Fig. 2 Let a, b, c, d be points such that a < b < c < d and a ∼ b, b ∼ c, c ∼ d, a ∼ d and a �∼ c, b �∼ d .
Since, b ∼ c and a �∼ c point a must lie below bc. By symmetry, point d has to be also below bc which
gives a geometric contradiction to the fact that a ∼ d

3 Left-Guarding and Totally Balanced Matrices

Even though this section deals exclusively with the left-guarding version, it should be
noted that everything said applies, by symmetry, to the right-guarding version. Recall
in this case that we are given two sets of points N,G, where each point in N has to
be guarded using only guards from G that lie strictly to its left.

Consider the following integer linear programming formulation.

minimize
∑

g∈G

wg xg (LP1)

subject to

∑

g∈SL(p)

xg ≥ 1 ∀p ∈ N

(1)
xg ∈ {0,1} ∀g ∈ G

Variable xg indicates whether g is chosen as a guard. Constraint (1) asks that
every point is seen by some guard from the left. In the following we will show that
the solution of the relaxation of (LP1) will always be integral.

Let A ∈ {0,1}|N |×|G| be a binary matrix. Call A a left-visibility matrix if it cor-
responds to the guard-point incidence matrix for some instance of the left-guarding
problem. Also, A is said to be totally balanced [2] if it does not contain a square sub-
matrix with all row and column sums equal to 2 and no identical columns. Finally,
A is in standard greedy form if it does not contain as an induced submatrix

[
1 1
1 0

]
(2)

An equivalent characterization [12] is that A is totally balanced if and only if A

can be put into greedy standard form by permuting its rows and columns.

Lemma 2 Any left-visibility matrix is totally balanced.

Proof Let A be a left-visibility matrix. We show how to put A into standard greedy
form. Permute the rows and columns of A such that the rows from top to bottom
correspond to the points ordered from left to right, and the columns from left to
right correspond to the guards ordered from right to left. Suppose that there exists an
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induced 2 × 2 sub-matrix of the form (2), whose rows are indexed by p1,p2 ∈ N ,
and whose columns are indexed by g1, g2 ∈ G. Then we have the following order:
g2 < g1 < p1 < p2. Now we apply Lemma 1 with a = g2, b = g1, c = p1 and d = p2
to arrive at the contradiction p2 ∼ g2. �

It is known that for a totally balanced matrix A, the polyhedron {x ≥ 0 : Ax ≥ 1} is
integral. Furthermore, there is an efficient purely combinatorial algorithm for finding
an optimal integral solution to (LP1) due to Kolen [16]. Indeed, in the next subsection
we show that this algorithm translates into an extremely simple procedure for the
uniform weight case, i.e., when wg = 1 for all g ∈ G.

3.1 Uniform Left-Guarding

For each point p ∈ N let L(p) denote the left-most guard that sees p. Consider the
simple greedy algorithm on the set of points N shown below: points in N are scanned
from left to right and when we find an unguarded point p, we select L(p) as a guard.

Algorithm 1 LEFT-GUARDING(T ,N,G)

1. A ← ∅
2. for p ∈ N processed from left to right do
3. if p is not yet seen by A then
4. A ← A ∪ {L(p)}
5. end if
6. end for
7. return A

The algorithm can be implemented in O(|N | log |G|) time using a procedure similar
to Graham’s scan [10] for convex-hull computation. To see that it returns an optimal
solution, let X ⊆ N be those points that force the algorithm to add a guard. Suppose,
for the sake of contradiction, that there exist two points p′ and p′′ in X that are seen
from the left by the same guard g ∈ G, in other words, g < p′ < p′′ and g ∼ p′ and
g ∼ p′′. Let g′ = L(p′), and note that g′ ≤ g. If g′ = g then g′

∼ p′′ and therefore
p′′ would have not been unguarded when it was processed. Hence g′ < g, but

Lemma 1 tells us that g′
∼ p′′ and we get a contradiction. Therefore, each guard in

G can see at most one point in X, which means |X| is a lower bound on the optimal
solution. Since the cardinality of A equals that of X, it follows that A is optimum,

and hence by, Lemma 2, it returns an optimal solution of (LP1).

Remark Note that in our definition of left-guarding or right-guarding the guard does
not see the point on which it lies. The example in Fig. 3 demonstrates that without
that condition the polyhedron is not necessarily integral any more.

4 A 2-Approximation for One-Sided Guarding

In this section we study discrete weighted one-sided guarding. Recall that in this
variant, we are given a set of points N and two sets of guards GL and GR , where
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Fig. 3 Consider the set G = {g1, g2, g3} of guards and the set N = {p1,p2,p3} of points as above.
Visibility matrix A is shown to the right of the example. Note that the guard g1 guards the point on which
it lies, i.e. g1 guards p1. Vertices of the polyhedron {x ≥ 0 : Ax ≥ 1} are (0,1,1), (1,1,0), (1,0,1) and
(1/2,1/2,1/2)

each guard in GL (respectively, GR) can only guard points from N strictly to its
right (respectively, strictly to its left). It is easy to construct examples where solving

separately the left-guarding and right-guarding problems and then taking the
minimum of these two solutions is arbitrarily far from the optimal value. The

intuition behind the algorithm is to use the LP solution to determine which points
should be guarded from the left and which should be guarded from the right.

We assume without loss of generality that each point in N can be seen by a guard on
its left or by a guard on its right. Otherwise it must be guarded by itself and the

system is infeasible, a situation which can be discovered in a preprocessing step.
We state our main result and then describe the algorithm.

Theorem 1 There is a 2-approximation algorithm for discrete one-sided guarding.

Consider the following LP for finding the optimal set of left and right guards:

minimize
∑

g∈GL

wg xg,L +
∑

g∈GR

wg xg,R (LP2)

subject to
∑

g∈SL(p)∩GL

xg,L +
∑

g∈SR(p)∩GR

xg,R ≥ 1 ∀p ∈ N

xg,L ≥ 0 ∀g ∈ GL

xg,R ≥ 0 ∀g ∈ GR

(3)

Variable xg,L indicates whether g is chosen in AL and xg,R indicates whether g is
chosen in AR . Constraint (3) asks that every point is seen by some guard, either

from the left or from the right.
The algorithm first finds an optimal fractional solution x∗ to (LP2). Guided by x∗,

we divide the points into two sets

NL =
{
p ∈ N

∣∣∣
∑

g∈SL(p)∩GL

x∗
g,L ≥ 1

2

}
, and
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NR =
{
p ∈ N

∣∣∣
∑

g∈SR(p)∩GR

x∗
g,R ≥ 1

2

}
.

Using the results from Sect. 3, we solve optimally the left-guarding problem for the
pair (NL,GL) and the right-guarding problem for the pair (NR,GR). This gives us

two sets of guards A∗
L and A∗

R . The final solution is a combination of these two.
The fractional solution allows us to bound the cost of A∗

L and A∗
R .

Lemma 3 Let A∗
L and A∗

R be optimal solutions for the pairs (NL,GL) and (NR,GR)

respectively. Then w(A∗
L) ≤ 2

∑
g∈GL

wg x∗
g and w(A∗

R) ≤ 2
∑

g∈GR
wg x∗

g .

Proof We only prove the first inequality as the second is symmetrical. Setting
xg,L = 2x∗

g we get a fractional solution for (LP1) for guarding NL. The solution x is
feasible, by definition of NL, and its cost is 2

∑
g∈GL

wg x∗
g . Therefore, the optimal

fractional solution can only be smaller than that. Lemma 2 tells us that the cost of an
optimal fractional solution is the same as the cost of an optimal integral solution,

namely, w(A∗
L). �

Since
∑

g∈GL
wg x∗

g,L + ∑
g∈GR

wg x∗
g,R is a lower bound on the cost of an optimal

solution for guarding N , it follows that the cost of (A∗
L,A∗

R) is at most twice the
optimum. To see that this is feasible, consider some point p ∈ N . Because of (3) and

our assumption that each point is seen by some guard on its left or on its right, it
must be the case that p ∈ NL or p ∈ NR . Therefore p must be covered, either from

the left by A∗
L or from the right by A∗

R .
To compute A∗

L and A∗
R we can take the fractional solution to (LP1) and turn it into

a basic, and therefore integral, solution without increasing its cost. Alternatively, we
can run Kolen’s algorithm [16] for matrices in greedy standard form. This finishes

the proof of Theorem 1.

4.1 Partial Covering

In this section we focus on the partial version of the one-sided guarding problem.

Theorem 2 There is a polynomial (2 + ε)-approximation and a quasi-polynomial
time 2-approximation for partial discrete one-sided guarding.

Our approach is based on the framework of Mestre [20]. We say A is a
one-sided-visibility matrix if it is the guard-point incidence matrix of the covering
problem defined by (LP2) for some instance of the one-sided guarding problem.

Also, A is said to be 2-separable if there exist binary matrices A1 and A2 such that
A = A1 + A2 and every matrix B formed by taking rows from A1 or A2 is totally

balanced (the ith row of B is the ith row of A1 or the ith row of A2, for all i).

Proposition 1 [20] Let A be a 2-separable matrix. Then there is a (2 + ε)-
approximation and a quasi-polynomial time 2-approximation for the partial problem
defined by A.
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Therefore, all we need to do to prove Theorem 2 is to argue that every one-sided
visibility matrix is 2-separable.

Lemma 4 Any one-sided visibility matrix is 2-separable.

Proof Let A be a one-sided visibility matrix and assume, without loss of generality,
that A has the form [C1 C2] where the columns of C1 correspond to left guards GL

and the columns of C2 correspond to the right guards GR .
Our decomposition of A uses A1 = [C1 0] and A2 = [0 C2]. Suppose that a matrix
B is formed by taking rows from A1 and A2. Let NL be the set of rows originating

from A1 and NR the set of rows originating from A2 (note that NL and NR

constitute a partition of N ). Permute the rows of B so that rows in NL appear before
rows in NR . This gives rise to the following block matrix

B ′ =
[
D1 0
0 D2

]

where the rows of D1 correspond to points in NL and its columns to left guards, and
the rows of D2 correspond to points in NR and its columns to right guards. By

Lemma 2 both D1 and D2 are totally balanced. Therefore we can permute the rows
and columns of B ′ to get a new matrix

B ′′ =
[

D′
1 0

0 D′
2

]

where D′
1 and D′

2 are in standard greedy form, which in turn implies that B ′′ is also
in standard greedy form. It follows that B ′′, B ′, and B are totally balanced. �

This finishes the proof of Theorem 2.

5 Applications

In this section we show how to use the 2-approximations for one-sided guarding to
design good approximation algorithms for more general variants.

5.1 The Continuous Case

We assume for simplicity that the weights are uniform. Recall that in this variant
guards can be placed anywhere on the terrain and we are to guard all the points. We

will reduce the problem to the discrete case, where G ∩ N = ∅. Our reduction
follows the approach of Ben-Moshe et al. [1].

Theorem 3 There is a 4-approximation algorithm for the continuous case and a
(4 + ε)-approximation for its partial version.
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Fig. 4 Example of additional
set of points/guards for a vertex
v of T . Point p is the point
selected from the essential
segment ab

Let A∗ be an optimum set of guards for a given instance T of the continuous
problem. Consider a guard g in A∗. If g is not a vertex of T then it must lie on a

segment pq of T . Suppose without loss of generality that p < q , then a left guard at
p and a right guard at q can see at least as much as g does. If g is a vertex of T then
a left guard and a right guard at g together can see the same as g does minus g itself.

Therefore there exists a solution A′ that uses only left and right guards on the
vertices of T that covers T \ V such that |A′| = 2|A∗|.

To deal with the fact that every point must be guarded, consider the line through
each pair of vertices v1, v2 ∈ V such that v1 ∼ v2 and introduce at most two new
points that see v1 and v2 at the place where the line intersects the terrain. These
points partition T into O(n2) essential segments. In the strict interior of each

segment introduce an additional point p that is responsible for the segment. Let M

be the set of all such points. (See Fig. 4 for an illustration.) The key realization is
that for every guard g ∈ V and essential segment ab, either g can see the whole

segment or nothing of it.
Hence, a feasible solution to the one-sided discrete version with GL = GR = V and

N = M also constitutes a feasible solution to the continuous case. Let A′′ be an
optimal solution for this discrete problem, and A′′′ be the solution returned by

Theorem 1. Since A′ is feasible for the discrete instance, we get
|A′′′| ≤ 2|A′′| ≤ 2|A′| = 4|A∗| and we get an overall approximation factor of 4.
For the partial version where we want at most a fraction of the length to be left
unguarded we give to each point in p ∈ M a penalty equal to the length of the

essential segment it is responsible for.
In a more realistic setting, different parts of the terrain could have different

penalties. A possible complication in this case is how to specify the penalty function
(after all, the terrain is continuous). We note that as long as we have an oracle to
compute the penalty of the essential segments, the same approach from above

should work for non-uniform penalty functions in the continuous case.

Remark The assumption that the weights are uniform can be relaxed using standard
discretization techniques at the expense of a small increase in the approximation fac-
tor. Indeed, consider a segment pq and assume that the weight function w(x) for
x ∈ pq , has r local minima in this interval. Then each segment st ⊆ pq on which
the function either monotonically increases (or monotonically decreases), say from
t1 to t2 (respectively, from t2 to t1), can be divided into log1+ε(t2/t1) sub-segments,
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where ε > 0 is an arbitrarily small constant. Now, if there is an optimal guard on
any of these sub-segments, it can be replaced by a left-guard and a right-guard at the
end-points of the sub-segment whose combined weight is at most (2 + ε) times the
weight of the original guard (in the uniform case we only pay 2). This results in an
increase in the number of candidate guards by a factor of at most 2r log1+ε(t2/t1) per
pq segment, and a loss of an additional 1 + ε in the overall approximation factor.

5.2 The Discrete Case

We consider the discrete version where we are given a set of guards G and set of
points N to guard. In this case, guards can see in both directions.

Theorem 4 There is a 4-approximation for the weighted discrete case and (4 + ε)-
approximation for its partial version when G ∩ N = ∅. Otherwise, we get 5 and
(5 + ε)-approximations respectively.

The case where G ∩ N = ∅ is easily handled by replacing a guard that can see in
both directions with a left guard and a right guard. Thus we pay a factor 2 to reduce
the general problem to one-sided guarding. This also holds for the partial version.
Notice that if G ∩ N �= ∅ then the reduction above must pay a factor of 3 since a
point guarding itself must be guarded by some other point strictly from the left or

the right, and thus it only leads to a 6-approximation. To get the ratio of 5 we need to
use yet another linear program.

minimize
∑

g∈G

wg xg (LP3)

subject to

∑

g∈S(p)

xg ≥ 1 ∀p ∈ N

xg ≥ 0 ∀g ∈ G

Let x∗ be an optimal fractional solution to (LP3). As in the one-sided case we will
let the solution x dictate which points should be self-guarded and which should be

guarded by others. Define

A0 =
{
g ∈ N ∩ G | x∗

g ≥ 1

5

}
.

We place guards at A0 at a cost of most

w(A0) ≤ 5
∑

g∈A0

wgx
∗
g . (4)

Let N ′ be the set of points in N not seen by A0 and let G′ = G \ A0. We will
construct a fractional solution for the one-sided guarding problem for N ′ and
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GL = GR = G′. For each g ∈ G′ let xg,L = xg,R = 5
4x∗

g . The fractional solution x is
feasible for (LP2) since for all p ∈ N ′

∑

g∈SL(p)∩GL

xg,L +
∑

g∈SR(p)∩GR

xg,R = 5

4

∑

g∈S(p)\{p}
x∗
g ≥ 5

4

(
1 − 1

5

)
= 1

Let (A∗
L,A∗

R) be the solution found for the one-sided problem. The cost of these sets
of guards is guaranteed to be at most twice that of x, which in turn is

5
2

∑
g∈G\A0

wgx
∗
g . Thus the overall cost is

w(A∗
L) + w(A∗

R) ≤ 5
∑

g∈G\A0

wgx
∗
g (5)

Hence, the second part of Theorem 4 follows from (4) and (5). Finally, for the partial
version we note the proof of Proposition 1 uses as a lower bound the cost of the

optimal fractional solution, so the cost of the solution returned can still be related to
the cost of x, which is necessary to get the stated approximation guarantee.

6 Concluding Remarks

We gave a 4-approximation for the continuous 1.5D terrain guarding problem as
well as several variations of the basic problem. Our results rely, either explicitly or
implicitly, on the LP formulation (LP3) for the discrete case. For the unweighted

version of the problem, there is a very simple O(|N | log |G|)-algorithm for solving
the left-guarding LP (LP1). Furthermore, at the loss of factor (1 + ε) in the

approximation ratios, one can use fast techniques for covering LPs (see e.g. [8, 21])
to solve (LP2). In particular, using the recent results of Koufogiannakis and

Young [17, 18], a (1 + ε)-approximation for (LP2) can be found in time
O(|N ||G| log(|N | + |G|)/ε2), which is only a polylogarithmic factor slower than
the purely combinatorial algorithms for the uniform weight case (see e.g. [13]).
Very recently, King [15] showed that the VC dimension of the discrete case is

exactly 4. More precisely, he showed a terrain with 4 guards and 16 points (these
sets are disjoint) such that each point is seen by a different subset of the guards. If

we have to cover the points that are seen by pairs of guards, we get precisely a
vertex cover problem on the complete graph with 4 vertices. An integral solution
must pick 3 vertices, while a fractional solution can pick a half of all vertices. It

follows that the integrality gap of (LP3) is at least 3/2, even when G ∩ N = ∅. On
the other hand, our analysis shows that the gap is at most 4. We leave as an open

problem to determine the exact integrality gap of (LP3).
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