
Algorithmica (2009) 55: 329–345
DOI 10.1007/s00453-008-9219-6

Exact Minkowksi Sums of Polyhedra and Exact
and Efficient Decomposition of Polyhedra
into Convex Pieces

Peter Hachenberger

Received: 13 November 2007 / Accepted: 18 July 2008 / Published online: 15 August 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract We present the first exact and robust implementation of the 3D Minkowski
sum of two non-convex polyhedra. Our implementation decomposes the two poly-
hedra into convex pieces, performs pairwise Minkowski sums on the convex pieces,
and constructs their union. We achieve exactness and the handling of all degeneracies
by building upon 3D Nef polyhedra as provided by CGAL. The implementation also
supports open and closed polyhedra. This allows the handling of degenerate scenarios
like the tight passage problem in robot motion planning.

The bottleneck of our approach is the union step. We address efficiency by opti-
mizing this step by two means: we implement an efficient decomposition that yields
a small number of convex pieces, and develop, test and optimize multiple strategies
for uniting the partial sums by consecutive binary union operations.

The decomposition that we implemented as part of the Minkowski sum is inter-
esting in its own right. It is the first robust implementation of a decomposition of
polyhedra into convex pieces that yields at most O(r2) pieces, where r is the num-
ber of edges whose adjacent facets comprise an angle of more than 180 degrees with
respect to the interior of the polyhedron.

Keywords Minkowski sum · Decomposition of polyhedra into convex pieces · Nef
polyhedra · Tight passage · Exact arithmetic

This work was partially supported by the Netherlands’ Organisation for Scientific Research (NWO)
under project no. 639.023.301.

P. Hachenberger (�)
Department of Computing Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands
e-mail: phachenb@win.tue.nl

mailto:phachenb@win.tue.nl

330 Algorithmica (2009) 55: 329–345

1 Introduction

The Minkowski sum of two point sets P and Q in R
d , denoted by P ⊕ Q, is de-

fined as the set {p + q : p ∈ P,q ∈ Q}. Minkowski sums are used in a wide range
of applications such as robot motion planning [19], computer-aided design and man-
ufacturing [11], penetration depth computation [18, 20], offset computation [23],
morphing [17], and mathematical morphological operations [24].

In several applications (e.g. in GIS or imaging) one deals with Minkowski sums
of two-dimensional objects, and several implementations exist. When the two objects
are non-convex polygons, two approaches are commonly used. The first approach
computes the convolution of the boundary of two polygons [14]. The other approach
decomposes both polygons into convex pieces, computes the pairwise Minkowski
sums of the pieces, and merges the pairwise sums. Both approaches have also been
studied and implemented in combination with exact geometric computation [1, 27].
The Library for Efficient Data Types and Algorithms (LEDA)1 offers an exact im-
plementation based upon the first method. The Computational Geometry Algorithm
Library (CGAL)2 offers exact implementations of both methods.

There are also many applications, however, that require the computation of
the Minkowski sums of three-dimensional objects. Examples can be found in
CAD/CAM, assembly planning, and motion planning. Implementations of the 3D
Minkowski sum exist, but they are not robust. The most efficient such implementa-
tion is probably by Varadhan and Manocha [26]. It is based upon the convex decom-
position approach as described above for the two-dimensional case. The Minkowski
sum is approximated by generating a signed distance field. If needed, an isosurface
can be extracted from the field. They guarantee the correct topology of the result, but
are limited to manifold boundaries. Although many input objects are commonly two-
manifolds, this limitation seems to be a major robustness issue, because the primitives
of the union step, i.e., the Minkowski sum of two convex pieces, are not allowed to
touch tangentially. Evans et al. [12] presented a third method, which is similar to
the approach that decomposes the polyhedra into convex pieces. They compute the
Minkowski sum by decomposing the boundaries of the two polyhedra into affine
cells, computing pairwise Minkowski sums between pairs of transversal affine cells,
and computing their union with translated versions of the original polyhedra. In com-
parison to the decomposition into convex cells, the decomposition into affine cells
produces more cells. Evans et al. implemented their method based on IBM’s poly-
hedron modeler Geometric Design Processor (GDP) [28], which is not marketed any
more. When the Minkowski sum was implemented, GDP did not support exact arith-
metic, and it is unclear whether the implementation was ever tested together with
exact arithmetic. Experimental results are not available [22]. At the moment there is
no implementation available that is robust (that is, can deal with all possible degener-
ate cases), nor is there an implementation that is exact. This is the goal of our work:
to provide a solution for the computation of Minkowski sums of 3D polyhedra that
can handle all degenerate cases and is exact.

1http://www.algorithmic-solutions.com.
2http://www.cgal.org.

http://www.algorithmic-solutions.com
http://www.cgal.org

Algorithmica (2009) 55: 329–345 331

We present the first exact implementation of the Minkowski sum of two non-
convex polyhedra. Our implementation is based on the convex decomposition ap-
proach. For the union step we use 3D Nef polyhedra [15] as provided by CGAL,
which provide exact and efficient Boolean operations and handle all degeneracies.
Our solution handles regularized solids with open or closed boundary. As a conse-
quence, it can also be applied to degenerate scenarios like the tight passage problem
in robot motion planning. The exactness of our implementation is provided by the
kernels of CGAL [5] and is not discussed in this paper.

In addition to exactness, we also emphasize efficiency. We mostly concentrate on
optimizing the time needed by the union of the pairwise Minkowski sums of convex
pieces, which is the bottleneck of the used approach. For reducing the running time of
the union it is essential to have a decomposition that yields a low number of convex
pieces. The decomposition into a minimum number of convex pieces is known to be
NP-hard [21]. More than 20 years ago Chazelle proposed a decomposition method,
which generates O(r2) convex pieces in O(nr3) time and O(nr2) space, where n

is the complexity of the polyhedron and r is the number of reflex edges, i.e., edges
whose adjacent facets form an angle larger than 180 degrees with respect to the in-
terior of the polyhedron. However, no robust implementation of this algorithm is
known. Most of the practical methods perform surface decomposition or tetrahedral
volumetric decomposition [7, 10, 16]. These methods generate O(n) convex pieces
of constant complexity.

As a part of our Minkowski sum implementation, we present the first robust im-
plementation of a decomposition of general non-convex polyhedra into O(r2) con-
vex pieces. We use Chazelle’s main idea of inserting facets that resolve reflex edges.
On the other hand, we construct the facets by a completely different method. Apart
from the technical differences, we keep the actual number of convex pieces low by
scheduling the construction of the facets in an opportune way.

To optimize the union step itself, we develop different union strategies. The union
of multiple polyhedra is done by consecutive binary union operations. Here, the order
of the union operations has a significant impact on the running time of the algorithm.
Our union strategies use different heuristics to minimize the complexity of the inter-
mediate results and to reduce the total amount of memory usage. We compare the
efficiency of the heuristics experimentally.

The paper is organized as follows. In Sect. 2 we discuss how to efficiently decom-
pose a non-convex polyhedron into convex pieces. The Minkowski sum of convex
3D polyhedra is discussed in Sect. 3. Section 4 compares multiple union strategies
and refines the most promising. Also, we perform one large experiment to get an
idea of the performance. In Sect. 5, we briefly discuss the handling of tight passage
problems. Finally, a conclusion is given in Sect. 6.

2 Decomposing a Polyhedron Into Convex Pieces

The problem of partitioning a polyhedron into convex pieces is more complex than
its two-dimensional counterpart. In general it is not possible to decompose a polyhe-
dron into simplices, i.e., into tetrahedra, without introducing Steiner points [21]. The

332 Algorithmica (2009) 55: 329–345

Fig. 1 Left: The flood wall FW(e) consists of all facets adjacent to e in the planar arrangement A(pe) of
the intersection of the polyhedron and the vertical plane pe through e. The arrangement A(pe) may also
contain previously inserted walls (dashed lines). Right: A sight wall SW(e) covers all points that can be
connected to e by a vertical edge without intersections

decomposition of a polyhedron into a minimum number of convex pieces is known
to be NP-hard [21].

A basic decomposition method was introduced and analyzed by Chazelle [6]. The
idea is to remove each reflex edge, i.e., each edge whose adjacent facets have an angle
larger than 180 degree with respect to the interior of the polyhedron, by inserting an
additional facet that cuts the angle into two parts smaller than 180 degrees. Chazelle
showed that a polyhedron with input complexity n and r reflex edges, can be decom-
posed into O(r2) convex pieces in O(nr3) time and O(nr2) space. He also provided
an example for which the bound of O(r2) convex sub-polyhedra is tight. For simple
polyhedra Chazelle and Palios presented an algorithm that yields O(n+ r2) pieces in
O(nr + r2 log r) time [8]. Bajaj and Dey gave a decomposition of polyhedra with ar-
bitrary genus that may also include voids and certain non-manifold situations. Their
algorithm yields O(r2) convex pieces in O(nr2 + r7/2) time using O(nr + r5/2)

space [3].
In this section we combine known techniques to a new decomposition algo-

rithm, which decomposes general polyhedra into convex pieces. New ideas appear
in Sect. 2.2 on how to implement the insertion of the facets that decompose the poly-
hedron. Our main goal is to achieve a decomposition into O(r2) convex pieces and
additionally keep the number of convex pieces small.

We follow the common decomposition approach of inserting only vertical facets
usually denoted as walls. A wall W(e) of some non-vertical edge e is a connected
subset of the vertical plane pe that supports e. Walls were first defined by Aronov
and Sharir [2]. Because their definition was given for a decomposition of the three-
dimensional space with respect to a set of triangles we adapt their definition to our
problem as follows: Let A(pe) be the planar arrangement of the intersection of the
polyhedron (including previously erected walls) with the vertical plane pe through e.
Then, the wall of W(e) consists of all faces of A(pe) that are incident to e and inside
the polyhedron. The left graphic of Fig. 1 illustrates the planar arrangement A(pe)

and the wall W(e).

Algorithmica (2009) 55: 329–345 333

Fig. 2 Vertical decomposition (viewed from the top). Left: Non-convex polyhedron. Middle: Non-vertical
reflex edges have been resolved by insertion of walls. Right: Vertical reflex edges have been resolved by
insertion of y-vertical walls. The polyhedron has been decomposed into convex sub-polyhedra

The convex decomposition by walls, also denoted as vertical decomposition,
works in two steps. In the first step, walls are erected for all non-vertical reflex edges.
In the second step, walls parallel to the yz-plane, further on denoted as y-vertical
walls, resolve the vertical reflex edges. Figure 2 illustrates the two steps of the verti-
cal decomposition.

Vertical decompositions have yet only been used in the decomposition of the three-
dimensional space with respect to a set of triangles. The decomposition of polyhedra
is a special case of this scenario and can therefore be solved with the same methods.
On the other hand, these methods are inefficient for polyhedra. Starting with a set of
triangles all the edges are only incident to one triangle. An edge with only one adja-
cent facet surely is an reflex edge and needs to be resolved. The early decomposition
methods inserted a wall for every triangle edge, every intersection edge of two trian-
gles, and for every vertical reflex edge left after the first two steps [2]. Later Shaul
and Halperin argued that a coarser decomposition is helpful for many applications
and introduced the partial (vertical) decomposition [25]. They also insert a wall for
every triangle edge, but then only insert further walls where it is necessary—walls
for the intersection edges of two triangles, for instance, are unnecessary. In a polyhe-
dron the number of reflex edges can be small compared to the total number of edges.
Our approach is similar to the one of Shaul and Halperin. We also use the vertical
decomposition as a basis, and insert only necessary walls.

To keep the number of convex cells small, we do not use walls as defined by
Aronov and Sharir, but walls as later given by de Berg, Guibas, and Halperin. They
define a vertical wall of e as the set of all points that can be connected to e via a
vertical segment that does not intersect a face, edge, or vertex [9]. Since they also
considered decompositions of the three-dimensional space with respect to triangles,
we adapt their definition to our setting. For us, a vertical wall is the set of points
that can be connected to e via a vertical segment that completely lies within the
polyhedron. The right graphic of Fig. 1 illustrates the definition. To distinguish the
two wall types, we further-on refer to the walls as defined by Aronov and Sharir [2]
as flood walls and to the walls as defined by de Berg, Guibas and Halperin [9] as sight
walls.

334 Algorithmica (2009) 55: 329–345

2.1 Decomposition Algorithm

Like a vertical decomposition, our algorithm performs two steps:

1. Create a sight wall for every non-vertical reflex edge.
2. For every vertical reflex edge rv find a plane p that resolves rv and create a new

facet that is the intersection of p with the cell that contains the reflex angle.

Our decomposition improves on the vertical decomposition in three points: It in-
serts only walls for reflex edges, it uses sight walls instead of flood walls in the first
step, and the walls in the second step need not be y-vertical walls.

We do not give a proof that a decomposition using sight walls never yields more
convex pieces than a decomposition using flood walls. For the asymptotic complexity
such a proof is irrelevant, because both wall types allow a decomposition into O(r2)

pieces. Instead, we first give an intuition, why sight walls usually yield better results,
and prove later that our decomposition yields at most O(r2) convex parts.

Consider the construction of two flood walls of reflex edges e and e′. Let us assume
that FW(e), if built immediately, seals a pocket in the boundary of the polyhedron.
But if the flood wall FW(e′) is built before, it may intersect e and therefore split the
pocket into two halves. Both halves of the pocket will later be sealed separately by
the walls constructed for the two halves of e (see Fig. 3). Thus, depending on the
building order of the flood walls, such a pocket can be decomposed into multiple
pieces, although fewer pieces are sufficient. Using sight walls instead, no sight wall
SW(e′) will split the pocket into two halves; vertical segments cannot intersect such
a pocket.

The distinction of the two wall types is not necessary in the second step. Apart
from the fact that the definition of sight walls does not apply to vertical edges, creating
a wall by flooding the intersection of a plane and a cell of the decomposition does
not imply the same disadvantages as in the first step. Because all reflex edges are

Fig. 3 Dependent upon the order of construction, flood walls decompose the polyhedron on the left into
three or four pieces. In the top row, a flood wall first seals the pocket in the back and then another flood
wall resolves the reflex edge on the bottom of the polyhedron (three pieces). In the bottom row, the reflex
edge on the bottom of the polyhedron is resolved first. The respective flood wall also splits the pocket in
two halves. Then the two pocket halves are sealed separately (four pieces)

Algorithmica (2009) 55: 329–345 335

Fig. 4 The upper and lower part of a wall can each separate a cell into two pieces (right). If walls are
created as an extension of a facet adjacent to a reflex edge, the wall will always divide the intersected cell
into two pieces (right)

vertical, no wall can divide a reflex edge into two parts. Thus, the order of the wall
creations does not influence the number of convex parts. However, in the second step
the vertical plane through a reflex edge is not unique and the choice of the plane can
change the number of convex parts. A y-vertical flood wall divides a cell into two or
three parts, while a flood wall along one of the two facets adjacent to the reflex edge
exactly splits one cell into two parts (see Fig. 4). It would be desirable that many
walls actually resolve two reflex edges at once. This situation equals the problem of
decomposing a polygon into a minimum number of convex parts, but it is unclear how
to apply the respective algorithms to our scenario. Clearly, the vertical reflex edges
match with reflex vertices in the polygon decomposition, but we don’t know how the
shape of the decomposed cell can be seen as a polygon.

It remains to prove the correctness of our algorithm and the complexity of the
resulting decomposition. To make the phrasing of the proof simpler, we now define
the notion of upper and lower walls. The wall W(e) of a reflex edge e may consist of
points below and points above e as illustrated by the left graphic of Fig. 4. We refer
to these two parts as the lower wall W−(e) and upper wall W+(e) of e.

Lemma 1 The sight wall SW(e) of a non-vertical reflex edge e decomposes at most
one cell into at most three pieces.

Proof Every reflex edge e can form only one reflex angle, which lies within some
cell c. According to our definition of sight walls, c is the only cell that might be
decomposed by the sight wall SW(e). If the two facets that span the reflex angle at
e are on the same side s0 of the vertical plane pe supporting e, then SW(e) consists
of an upper and a lower part and the construction of SW(e) decomposes c into up
to three parts. On side s0, there can be two sub-cells—one sub-cell above the upper
adjacent facet of e and one sub-cell below the lower adjacent facet of e. On the other
side of pe, there can only be one sub-cell (see left graphic of Fig. 4). Note that the
sight wall SW(e) often only is a subset of the intersection of pe and c. In this case c

is not decomposed by SW(e).

336 Algorithmica (2009) 55: 329–345

If the facets spanning the reflex angel at e are on the same side of pe (or one of
them is on pe), then SW(e) consists only of one part, which is completely above or
below e. The construction of SW(e) decomposes c into at most two sub-cells—one
sub-cell on either side of pe . Again, SW(e) might also cause no decomposition at all.

Most important for the correctness of this proof is the observation, that no other
boundary parts may intersect or touch the interior of SW(e). Such boundary parts
might cause additional sub-cells. Because of the definition of sight walls, SW(e)

cannot extent beyond any such intersection. Therefore such an intersection can never
be in the interior of SW(e). �

We can now prove the following theorem.

Theorem 1 Our algorithm decomposes a general polyhedron into at most O(r2)

convex pieces.

Proof To prove the correctness of a convex decomposition we need to argue that
all reflex edges get resolved. To evaluate an upper bound on the number of pieces
resulting from the decomposition, it is sufficient to argue that any wall decomposes a
cell into a constant number of pieces and then count the maximum number of inserted
walls. From Lemma 1 we already know that the insertion of every sight wall causes
the decomposition of at most one cell into at most three pieces. To prove the upper
bound on the decomposition complexity, it is left to show that we only need to insert
O(r2) vertical walls to resolve all reflex edges.

In the first step of our decomposition, we resolve all non-vertical reflex edges.
The boundary edges of a sight wall SW(e) inserted in this phase consists of e, inter-
sections with the boundary of the polyhedron, and vertical edges starting from the
endpoints of e. Only the last type of boundary edges can be new reflex edges, but
they are vertical and therefore handled in the second step. Also, they are the inter-
section edges of the walls. Since the vertical supporting facet of a non-vertical edge
is unique, the construction of the vertical walls for all non-vertical reflex edges can
only cause O(r2) intersections. Summing up, the first step inserts O(r2) walls. After-
wards, there are no non-vertical reflex edges and at most O(r2) vertical reflex edges.
The decomposition consists of at most O(r2) pieces.

In the second step, there are no non-vertical reflex edges. Thus, a new wall cannot
cut a reflex edge into two parts. Because we do not create sight walls, but flood
the whole intersection of the supporting plane and one decomposition cell, no new
reflex edges are introduced; all new edges are intersections with the boundary of the
decomposed cell. At most O(r2) walls are inserted in this step. Because of the way
we choose the supporting planes of the walls, each wall decomposes one cell into
exactly two parts. Thus, after step two, there will be no more reflex edges and we
have a decomposition of at most O(r2) pieces. �

2.2 Implementation of the Decomposition

We construct walls by walking along the future boundary of that wall and extending
the incidence structure of all the encountered boundary items. In the second step of

Algorithmica (2009) 55: 329–345 337

Fig. 5 Variation of Schönhardt’s polyhedron with a quadrangular base viewed from the side and from the
top. The diagonals of the sides are reflex edges, which are circularly dependent on one another

the decomposition, applying such a walk is simple. Given a reflex edge e, let pe be
the plane supporting the wall W(e), and let c be the cell that will be decomposed
by it. Then W(e) can be created by walking along the intersection of c with pe and
adding the necessary incidences for the new facet to each encountered item.

In the first step of the decomposition, the boundary of a wall W(e) is more com-
plex. The boundary of W(e) may not only consist of e and intersections with c, but
also of intersections with other walls. If the walls are built in random order it is not
guaranteed that those intersections exist when constructing a wall. Therefore, we can-
not just walk along the boundary. To allow using the walk, we schedule the construc-
tion of the walls in such a way that all boundary parts of a wall exist in the moment
of its construction. To do this, we must resolve mutually and cyclic dependencies.

Often, a lower wall W−(e) is part of the boundary of an upper wall W+(e′), or
vice versa. To avoid these dependencies, the lower and the upper walls are created
in two separate sessions. Starting with the lower parts, we want to sort the reflex
edges, and thereby schedule their construction, from bottom to top. In general, the
edges of a polyhedron—and the same holds for the reflex edges of a polyhedron—
cannot be sorted along a given direction; there can always be cyclic dependencies as
illustrated by Fig. 5. But, as we will see in the following, it is possible to resolve the
dependencies.

We sort the reflex edges by their lower endpoints. As a result, every pair of re-
flex edges has one of three relations. If (a) they do not overlap vertically, the sorting
schedules the edges well. The same holds, if they overlap vertically, but their pro-
jection onto the xy-plane does not intersect. If (b) they overlap vertically and their
projections onto the xy-plane intersect internally, the lower wall of one of them may
be part of the other’s boundary. Let’s assume such an edge pair e and e′, where W−(e)

is part of the boundary of W−(e′). If e has the smaller lower endpoint the schedule
works nicely; otherwise the walk cannot proceed along W−(e′)’s boundary because
W−(e) is missing. If (c) they share a common endpoint, the lower walls share a
boundary edge. Their construction is mutually dependent.

To solve the described dependency problems, we cut some reflex edges into two
or more parts and insert vertical edges from the endpoints of all reflex edges to the
bottom of the polyhedron. The inserted vertical edges exactly resemble the common
boundary parts of walls with common endpoints and therefore resolve the problem

338 Algorithmica (2009) 55: 329–345

described in (c). Before inserting the vertical edges, we search the sorted list of reflex
edges for situation (b). If we find an edge e part of the boundary of W(e′), but e′
is scheduled before e, then we cut e at the intersection point vi with the vertical
plane pe′ supporting e′ and put the two edge halves at their proper positions into the
sorted set. Later a vertical edge will also be inserted between vi and the bottom of the
polyhedron. This vertical edge exactly resembles the intersection between W−(e)

and W+(e′). Note that the split of a reflex edge performed to resolve (b) can be
unnecessary if e cannot be seen from e′. However, such a split does not introduce
an additional convex piece. The upper walls can be handled in the same way as the
lower walls.

Note that we also need to consider the degenerate case of two (or more) reflex
edges that lie in the same vertical plane. The lower wall of the upper reflex edge
of such a pair and the upper wall of the lower reflex edge have a two-dimensional
intersection. Our implementation does not need to handle this situation explicitly. The
vertical edges, which are inserted starting from the endpoints of the reflex edges, split
the degenerate reflex edges. Afterwards the endpoints of each remaining degenerate
edge pair lie exactly above one another, i.e., the vertical projection of the two edges is
identical. Since our algorithm starts by constructing all lower walls, the construction
of the upper wall of the lower edge of such an edge pair is redundant and therefore
not performed.

In the second step of the decomposition, no wall intersects a reflex edge or intro-
duces new reflex edges. Also there are no mutual and cyclic dependencies. Since we
use multiple directions, the supporting planes usually intersect and therefore the de-
composition is not unique. But the number of sub-polyhedra among all orders of wall
creation is usually constant. Only if a wall randomly resolves several reflex edges at
once, the number of sub-polyhedra decreases.

For a better overview, we sum up the implementation of our decomposition:

1. Create sight walls of non-vertical reflex edges.
(a) Create lower sight walls.

– Put all non-vertical reflex edges into list E.
– Sort E by lower endpoints of the edges.
– Cut cyclically dependent edges in E and insert the halves properly into E.
– Add vertical edges from both endpoints of every edges in E to bottom of

the polyhedron.
– For every edge e in E create a facet by applying the walk starting at e along

the boundary of SW(e).

(b) Create upper sight walls.

– Analogous to Step 1(a).

2. Create flood walls of vertical reflex edges.

The worst case running time of our implementation is not impressive since
we use kd-tree based ray shooting for the insertion of the vertical edges and for
the walk along the boundary. With a worst-case running time of O(n 3

√
n logn)

per ray-shooting query [15], the worst case running time for the decomposition is

Algorithmica (2009) 55: 329–345 339

O(n2r4 3√
nr2 lognr) while using O(nr2) space. Because of the unspectacular nature

of these bounds, we omit to prove them.
Our implementation is the first exact implementation of a decomposition of gen-

eral polyhedra into O(r2) convex pieces. It is a powerful tool that can be used for
many applications, but it is unclear whether it is the most efficient decomposition
for computing Minkowski sums. Surface decompositions and volumetric decompo-
sitions do not give a decomposition of a polyhedron into convex pieces, but might
be applicable even for non-approximate Minkowski sums. Varadhan and Manocha
successfully used surface decomposition for their approximate implementation [26].
Unfortunately, their paper does not reveal whether the decomposition is applicable
also for exact solutions. For both alternative methods there are no solutions that are
sensitive to the number of reflex edges. Polyhedra often have many reflex edges and
a decomposition into O(n) pieces can be more effective than a decomposition into
O(r2) pieces. It would also be interesting to implement a convex decomposition us-
ing a space sweep as done by Shaul and Halperin and compare it with our walk-based
implementation.

3 The Minkowski Sum of Convex Polyhedra

The Minkowski sum of two convex polyhedra is also a convex polyhedron. Further-
more, it is well known that each vertex vP⊕Q of the Minkowski sum P ⊕ Q is the
vector sum of vertices vP in P and vQ in Q [19]. Hence, a trivial solution for the
Minkowski sum of two convex polyhedra P and Q computes the convex hull of all
vector sums of vertex pairs of P and Q. This algorithm performs a convex hull com-
putation on pq vertices, where p and q are the number of vertices in P and Q. Using
CGAL’s convex_hull_3 function this algorithm runs in O(pq log(pq)) time.

A more efficient solution can be obtained by using normal diagrams. Each convex
polyhedron P has a unique dual representation NP called the Gaussian diagram or
normal diagram. It is a subdivision of the sphere into vertices, edges and faces, such
that the outward-directed normal directions of all planes supporting some item of P

constitute an item of NP . For a facet of P there is exactly one plane supporting it.
Thus, its dual item is the single point on the sphere with the same normal direction
as the supporting plane. The normal directions of the planes supporting an edge eP

of P form a great arc on the sphere. The endpoints of the great arc are dual items of
the facets incident to eP . A face fn on NP is the dual item of a vertex vp of P . fn is
bound by a convex cycle of edges and vertices, which are the dual items of the edges
and facets incident to vp . The order of the edges and vertices around fn coincides
with the order of dual items around vp .

The faces of NP⊕Q are intersections of faces of NP and NQ. Moreover, the dual
face of vP⊕Q is the intersection of the dual faces of vP and vQ with vP +vQ = vP⊕Q.
As a consequence, the overlay of NP and NQ is the normal diagram of the Minkowski
sum P ⊕ Q. Also, the exact point set of P ⊕ Q can easily be obtained by storing the
primal vertices with their respective dual face and computing the vector sums for
each face in the overlay. Thus, using the overlay of normal diagrams improves on
the trivial algorithm in two points. First, the construction of P ⊕ Q operates on the

340 Algorithmica (2009) 55: 329–345

exact set of vertices, which might be far smaller than pq . However, in the worst case,
P ⊕Q still has O(pq) vertices. And second, the incidence structure of NP⊕Q allows
us to construct P ⊕ Q from it in time linear to P ⊕ Q.

With Nef polyhedra embedded on the sphere [15] as provided by CGAL, we al-
ready have a tool that can be used to realize normal diagrams, and for which we also
have an overlay algorithm that can be reused for the Minkowski sum. The overlay
algorithm also allows to store arbitrary data with each vertex, edge, and face, and to
propagate this data properly during the overlay. The missing operations are the two
conversions between a convex three-dimensional polyhedron and its normal diagram.
Both functions are easy to implement.

Spherical Nef polyhedra are not the most efficient solution for the overlay of nor-
mal diagrams. Asymptotically, there is no essentially superior solution, but the Cubi-
cal Gaussian Map of Fogel and Halperin is clearly faster [13]. The binary operations
on spherical Nef polyhedra can handle more complex overlays than those of normal
diagrams, which are always convex arrangements; they never include nested faces
or lower dimensional features. Therefore, our overlay algorithm is obviously more
costly than needed. Apart from that, the spherical predicates are too expensive.

For the experiments of this paper, the spherical Nef polyhedra are sufficient, since
the running time of computing the Minkowski sum of the convex parts is always
much smaller than the union of these partial solutions. For a future release of our im-
plementation of non-convex Minkowski sum computations, we plan to exploit other
efficient implementations of algorithms that compute Minkowski sums of convex
polyhedra such as the one based on Cubical Gaussian Maps [13], or the one based on
Arrangement on Surfaces [4].

4 Merging a Set of Polyhedra

The union of the Minkowski sums of the convex sub-polyhedra is done by consecu-
tive binary union operations of 3D Nef polyhedra. Since the complexity of the binary
union operation depends on the complexities of both input and the result polyhedron
in equal shares, it is essential not to perform the binary operations in arbitrary order.
The trivial method for instance maintains one Nef polyhedron holding the current
intermediate result. It starts with an empty polyhedron and adds the polyhedra one
by one. This method performs very badly, since most of the union operations involve
at least one big polyhedron, namely the intermediate result. Experiments showed that
examples that can be computed in less than 10 minutes with efficient methods, run
for more than a day with the trivial approach. Clever methods merge small polyhedra
first, and try to keep intermediate results as small as possible. Since we cannot foresee
the optimal order, we develop and test different strategies.

Our first method maintains the set of all unhandled primitives and intermediate
results, and merges the two smallest polyhedra in each step. This can be realized by
a priority queue. The priority of a polyhedron is its size measured by the number of
its vertices. The priority queue is initialized with all pairwise Minkowski sums of the
convex pieces. Then, repeatedly the two smallest polyhedra are extracted from the
queue, and their union is inserted into the queue. The method terminates with the
result left as the remaining element in the queue.

Algorithmica (2009) 55: 329–345 341

Fig. 6 Example Minkowski sums. Top: cup and cup ⊕ ball. Bottom: spoon, star, and spoon ⊕ star

Our second strategy tries to merges neighboring polyhedra to reduce the size of
the intermediate results. For this purpose, we put the primitives into a queue and sort
the queue by the lexicographically smallest vertex of the primitives. In order to merge
polyhedra of the same complexity, we proceed similar to the priority queue approach.
We extract and merge the first two polyhedra, and append their result to the end of
the queue. The neighboring relation used for the sorting is maintained throughout the
whole union process. Sorting the polyhedra by their lexicographically smallest vertex
does not specify how we compare two such vertices in the sorting function. We test
three comparison types: lexicographical comparison of the coordinates, comparison
of the L1 distance from a point in a corner of the scenery, and comparison of the L2
distance from the origin.

Experimenting with larger examples, it becomes obvious that memory is a major
issue in either of the above strategies. The queue-based approach can be adapted,
such that no more than logp

2 primitives need to be stored, where p is the number of
primitives. Instead of a queue we maintain a stack. The primitives are computed and
inserted to the stack one by one. After pushing the ith primitive onto the stack, we
�log i� times pop and merge the respective top two items and push the result back onto
the stack. Note that every binary union (besides the ones after the insertion of the final
primitive) combines two polyhedra that are unions of the same number of primitives.
Although we construct primitives just before they are pushed on the stack, we also
want to sort the set of primitives in advance. For this purpose, we additionally store
all normal diagrams and a sorted list of all ordered pairs of pointers to the normal
diagrams that schedules the creation of the primitives. The list is sorted by the sum
of the smallest vertices of the respective sub-polyhedra. Again we sort with the same
three comparison types.

Table 2 summarizes the tests of the strategies. They were performed with
CGAL 3.3 on a machine with a 2.4 GHz AMD Opteron processor and 4 GB
RAM. The code was compiled with g++ 3.2 and compiler option -O2. The
Nef_polyhedron_3 template class was instantiated with the geometric kernel
Homogeneous<leda_integer>. Floating-point filtering was not used in the
experiments, because floating-point filtering is not efficient in combination with the
Nef_polyhedron_3 class, yet. Two experiments are illustrated in Fig. 6.

342 Algorithmica (2009) 55: 329–345

Table 1 Models used in the experiments

cube ball1 ball2 star spoon mushroom cup

facets 6 128 1000 24 336 448 1000

parts 1 1 1 5 186 255 774

Table 2 Performance of the different union strategies, the decomposition and the Minkowski sum of the
convex pieces. For each model the number of facets and the number of convex sub-polyhedra are listed in
Table 1. The running times are given in seconds

model1 model2 priority
queue

queue stack convex
decomp

convex
sumlexi L1 L2 lexi L1 L2

mushroom cube 170 151 151 152 147 147 149 43 14

mushroom ball1 608 529 534 545 408 415 423 43 102

spoon star 963 930 921 925 755 726 732 43 84

cup ball2 8497 415 939

The stack strategy proved to be superior to the others. This becomes clearer the
larger the examples get. The difference between the comparison types is very small.
Lexicographical comparisons show the best result. The last line of the table shows
the running time of a much bigger example.

Our experiments are far from comprehensive. There are many techniques that
might improve the running time of the union. Amongst others, we are interested
in using space-filling curves for the sorting of the primitives. These curves sort the
points of a d-dimensional space along a curve, such that points that are close in the
d-dimensional space are also close to one another on the curve. Space-filling curves
might be more suitable than the sorting functions we used so far to reflect the prox-
imity relation of the primitives.

5 Tight Passages

Computing the Minkowski sum of a tight passage scenario requires the handling of
open polyhedra. A Nef polyhedron stores set selection marks for every vertex, edge,
facet, and volume, which indicate whether the respective item is part of the polyhe-
dron. In case of an open polyhedron the marks of the boundary items are unselected.
These selection marks can additionally be stored in the normal diagram. During the
overlay operation the marks are transferred in the following way. Given normal dia-
grams NP and NQ, we consider intersecting items iP and iQ. Their intersection forms
item iP⊕Q in the overlay NP ⊕ NQ. Then, the selection mark stored with iP⊕Q can
be computed as iP ∧ iQ. This means for instance, that a vertex vP⊕Q = vP + vQ of
P ⊕ Q is selected iff vP and vQ are selected.

If we allow arbitrary selection marks for the input, i.e., each boundary part may
have a different mark, the computation of the Minkowski sum becomes more com-
plicated. The reason is, that each side of a convex sub-polyhedron may consist of

Algorithmica (2009) 55: 329–345 343

Fig. 7 A maze whose corridors have unit width, and the Minkowski sum of a unit cube and the maze

several facets, some of which are boundary parts of the input and some of which are
walls inserted by the decomposition. The selection marks of these facets can differ.
As a consequence, the selection marks cannot be handled as described above.

Fortunately, we don’t need arbitrary selection marks to handle tight passages. It
is only necessary to allow polyhedra that are either open or closed, i.e., all selection
marks of boundary items are either selected or unselected. In this situation it suffices
to ignore the selection marks of the walls. If the side of a sub-polyhedron consists
of original facets and walls, we use the uniform mark of the original facets; if there
are only walls, we can assign an arbitrary mark. Naturally, the walls must be selected
because they represent a point set inside a polyhedron. Thus, not selecting a wall
yields an unselected facet in a convex Minkowski sum pr1 that should be selected.
On the other hand, this wall is adjacent to another sub-polyhedron. Because of the
adjacency and because of the convexity of primitives, the convex Minkowski sums
computed on this other sub-polyhedron must generate a primitive pr2 that overlaps
pr1 such that the wrongly unselected facet is in the interior of pr2. The final result of
the Minkowski sum operation will not contain any of these facets.

Figure 7 shows a tight passage scenario solved with our implementation.

6 Conclusion

We have presented an exact implementation of the Minkowski sum of non-convex
polyhedra. Our implementation also supports open and closed polyhedra, which al-
lows to solve extreme scenarios like tight passage problems.

As part of our Minkowski sum, we have also presented the first robust decompo-
sition of non-convex polyhedra into O(r2) convex pieces, where r is the number of
reflex edges.

As part of future work, we want to further improve the efficiency of our imple-
mentation and release it as part of CGAL. We plan two major points of improvement.
First, we want to improve the second step of the decomposition by adapting polygon
decomposition methods for the decomposition of the cylindrical cells. Those meth-
ods would sometimes resolve two vertical reflex edges with one wall and therefore
generate fewer convex pieces. Furthermore, we plan to replace our solution for the
convex Minkowski sums by a faster approach.

344 Algorithmica (2009) 55: 329–345

Acknowledgements The author likes to thank Lutz Kettner for stimulating the work of this paper.
I thank Efi Fogel for helping me repeat the comparison of theirs and out implementation of the Minkowski
sum on convex polyhedra. I thank Liangjun Zhang and Dinesh Manocha for providing 3D models, such
that I could repeat two of the experiments in [26]. Furthermore, I woud like to thank Mark de Berg for
valuable discussions on the presented topic. Finally, I thank the anonymous reviewers of this paper, who
helped me improve the paper considerably.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski
sums. Comput. Geom.: Theory Appl. 21, 39–61 (2002)

2. Aronov, B., Sharir, M.: Triangles in space or building (and analyzing) castles in the air. Combinatorica
10(2), 137–173 (1990)

3. Bajaj, C.L., Dey, T.K.: Convex decomposition of polyhedra and robustness. SIAM J. Comput. 21(2),
339–364 (1992)

4. Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Sweeping and maintaining two-
dimensional arrangements on surfaces: A first step. In: Arge, L., Hoffmann, M., Welzl, E. (eds.)
15th European Symposium on Algorithms, ESA 07, Eilat, Israel, October 2007. Lecture Notes in
Computer Science, vol. 4698, pp. 645–656. Springer, Berlin (2007)

5. The CGAL Homepage. http://www.cgal.org/
6. Chazelle, B.: Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm. SIAM

J. Comput. 13(3), 488–507 (1984)
7. Chazelle, B., Dobkin, D., Shouraboura, N., Tal, A.: Strategies for polyhedral surface decomposition:

an experimental study. Comput. Geom.: Theory Appl. 7(5–6), 327–342 (1997)
8. Chazelle, B., Palios, L.: Triangulating a nonconvex polytope. Discrete Comput. Geom. 5, 505–526

(1990)
9. de Berg, M., Guibas, L.J., Halperin, D.: Vertical decompositions for triangles in 3-space. Discrete

Comput. Geom. 15(1), 35–61 (1996)
10. Ehmann, S.A., Lin, M.C.: Accurate and fast proximity queries between polyhedra using convex sur-

face decomposition. In: Computer Graphics Forum, Proc. Eurographics 2001, vol. 20(3), pp. 500–510
(2001)

11. Elber, G., Kim, M.-S. (eds.): Special Issue of Computer Aided Design: Offsets, Sweeps and
Minkowski Sums, vol. 31 (1999)

12. Evans, R.C., O’Connor, M.A., Rossignac, J.R.: Construction of Minkowski sums and derivatives mor-
phological combinations of arbitrary polyhedra in CAD/CAM systems. US Patent 5159512 (1992)

13. Fogel, E., Halperin, D.: Exact and efficient construction of Minkowski sums of convex polyhedra with
applications. Comput. Aided Des. 39(11), 929–940 (2007)

14. Guibas, L.J., Ramshaw, L., Stolfi, J.: A kinetic framework for computational geometry. In: 24th Sym-
posium on Foundations of Computer Science (FOCS), pp. 100–111 (1983)

15. Hachenberger, P., Kettner, L., Mehlhorn, K.: Boolean operations on 3D selective Nef complexes: Data
structure, algorithms, optimized implementation and experiments. Comput. Geom.: Theory Appl.
38(1–2), 64–99 (2007)

16. Joe, B.: A software package for the generation of meshes using geometric algorithms. Adv. Eng.
Softw. Workst. 13(5–6), 325–331 (1991)

17. Kaul, A., Rossignac, J.R.: Solid-interpolating deformations: Construction and animation of pips.
Computers & Graphics 16(1), 107–115 (1992)

18. Kim, Y.J., Otaduy, M.A., Lin, M.C., Manocha, D.: Fast penetration depth computation using raster-
ization hardware and hierarchical refinement. In: Proc. of Workshop on Algorithmic Foundations of
Robotics (2002)

19. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic, Norwell (1991)
20. Lin, M.C., Manocha, D.: Collision and proximity queries. In: Goodman, J.E., O’Rourke, J. (eds.)

Handbook of Discrete and Computational Geometry, pp. 787–808. CRC Press LLC, Boca Raton
(2004), Chap. 35

http://www.cgal.org/

Algorithmica (2009) 55: 329–345 345

21. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, New York (1987)
22. Rossignac, J.R.: Private communication (2007)
23. Rossignac, J.R., Requicha, A.A.G.: Offsetting operations in solid modelling. Comput. Aided Geom.

Des. 3(2), 129–148 (1986)
24. Rössl, C., Kobbelt, L., Seidel, H.-P.: Extraction of feature lines on triangulated surfaces using mor-

phological operators. In: Proc. of the 2000 AAAI Symp. (2000)
25. Shaul, H., Halperin, D.: Improved construction of vertical decompositions of three-dimensional

arrangements. In: SCG ’02: Proceedings of the eighteenth annual symposium on Computational
geometry, New York, NY, USA, pp. 283–292. ACM Press, New York (2002)

26. Varadhan, G., Manocha, D.: Accurate Minkowski sum approximation of polyhedral models. Graph.
Models 68(4), 343–355 (2006)

27. Wein, R.: Exact and efficient construction of planar Minkowski sums using the convolution method.
In: 14th European Symposium on Algorithms (ESA 06), pp. 829–840 (2006)

28. Wesley, M.A., Lozano-Prez, T., Lieberman, L.I., Lavin, M.A., Grossman, D.D.: A geometric model-
ing system for automated mechanical assembly. IBM J. Res. Dev. 24(1), 64–74 (1980)

	Exact Minkowksi Sums of Polyhedra and Exact and Efficient Decomposition of Polyhedra into Convex Pieces
	Abstract
	Introduction
	Decomposing a Polyhedron Into Convex Pieces
	Decomposition Algorithm
	Implementation of the Decomposition

	The Minkowski Sum of Convex Polyhedra
	Merging a Set of Polyhedra
	Tight Passages
	Conclusion
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

