
Algorithmica (2008) 51: 239–263
DOI 10.1007/s00453-007-9111-9

Generating Cut Conjunctions in Graphs
and Related Problems

Leonid Khachiyan · Endre Boros · Konrad Borys ·
Khaled Elbassioni · Vladimir Gurvich ·
Kazuhisa Makino

Received: 9 February 2006 / Accepted: 6 November 2006 / Published online: 27 October 2007
© Springer Science+Business Media, LLC 2007

Abstract Let G = (V ,E) be an undirected graph, and let B ⊆ V ×V be a collection
of vertex pairs. We give an incremental polynomial time algorithm to generate all
minimal edge sets X ⊆ E such that every pair (s, t) ∈ B of vertices is disconnected in
(V ,E � X), generalizing well-known efficient algorithms for generating all minimal
s-t cuts, for a given pair s, t of vertices. We also present an incremental polynomial
time algorithm for generating all minimal subsets X ⊆ E such that no (s, t) ∈ B is

This research was partially supported by the National Science Foundation (Grant IIS-0118635), by
DIMACS, the National Science Foundation’s Center for Discrete Mathematics and Theoretical
Computer Science, and by the Scientific Grant-in-Aid from the Ministry of Education, Science,
Sports and Culture of Japan.
Our friend and colleague, Leonid Khachiyan passed away with tragic suddenness while we were
preparing this manuscript.

L. Khachiyan
Department of Computer Science, Rutgers University, 640 Bartholomew Road, Piscataway, NJ
08854-8003, USA

E. Boros (�) · K. Borys · V. Gurvich
RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08854-8003, USA
e-mail: boros@rutcor.rutgers.edu

K. Borys
e-mail: kborys@rutcor.rutgers.edu

V. Gurvich
e-mail: gurvich@rutcor.rutgers.edu

K. Makino
Department of Mathematical Informatics, Graduate School of Information and Technology,
University of Tokyo, Tokyo, 113-8656, Japan
e-mail: makino@mist.i.u-tokyo.ac.jp

K. Elbassioni
Max-Planck-Institut für Informatik, Saarbrücken, Germany
e-mail: elbassio@mpi-sb.mpg.de

mailto:boros@rutcor.rutgers.edu
mailto:kborys@rutcor.rutgers.edu
mailto:gurvich@rutcor.rutgers.edu
mailto:makino@mist.i.u-tokyo.ac.jp
mailto:elbassio@mpi-sb.mpg.de

240 Algorithmica (2008) 51: 239–263

a bridge in (V ,X ∪ B). Both above problems are special cases of a more general
problem that we call generating cut conjunctions for matroids: given a matroid M

on ground set S = E ∪ B, generate all minimal subsets X ⊆ E such that no element
b ∈ B is spanned by E � X. Unlike the above special cases, corresponding to the
cycle and cocycle matroids of the graph (V ,E ∪ B), the more general problem of
generating cut conjunctions for vectorial matroids turns out to be NP-hard.

Keywords Cut conjunction · Cut generation · Graph · Matroid · Multicut

1 Introduction

Given a graph G = (V ,E) and two vertices s, t ∈ V , the two-terminal cut generation
problem calls for listing all minimal subsets of edges whose removal disconnects s

and t . This problem is known to be solvable in O(Nm + m + n) time and O(n + m)

space [16], where n and m are the numbers of vertices and edges in the input graph,
and N is the total number of cuts. In this paper, we study the following natural exten-
sion of this problem:

Generating Cut Conjunctions in Graphs
Input: An undirected graph G = (V ,E), and a collection B = {(s1, t1), . . . ,

(sk, tk)} of k pairs of vertices si , ti ∈ V

Output: The list of all minimal edge sets X ⊆ E such that for all i = 1, . . . , k,
vertices si and ti are disconnected in G′ = (V ,E � X)

Note that for i �= j , si and sj , or si and tj , or ti and tj may coincide. We call a
minimal edge set X ⊆ E for which all pairs of vertices (si , ti) ∈ B are disconnected
in the subgraph G′ = (V ,E � X), a minimal B-cut, or simply a cut conjunction if B

is clear from the context.
Let F denote the family of all minimal B-cuts. Observe that each edge set X ∈ F

must indeed be the union of some minimal si–ti cuts for i = 1, . . . , k, justifying
the name “cut conjunction”. Note also that not all unions of minimal si–ti cuts for
i = 1, . . . , k are minimal B-cuts. Figure 1 depicts a graph with the number of minimal
sk–tk cuts not bounded polynomially in |V | and |F |, showing that the generation of
cut conjunctions cannot be efficiently reduced to two-terminal cut generation.

Without any loss of generality we can assume for each i = 1, . . . , k that (i) the
pair of vertices si and ti are in the same connected component of G, since otherwise
the pair (si , ti) could simply be deleted from B without changing the problem, and
(ii) vertices si and ti are not adjacent in G, since otherwise the edge si ti would belong
to all cut conjunctions.

When B is the collection of all pairs of distinct vertices drawn from some vertex
set V ′ ⊆ V , minimal B-cuts are known as multiway cuts, see e.g., [7, 17]. The opti-
mization problem of finding a minimum weight multiway cut is known to be NP-hard
for |V ′| ≥ 3 [4]. On the other hand, the generation of multiway cuts is a special case
of the generation of cut conjunctions in graphs, which turns out to be tractable, in the
sense it is defined at the end of this section.

Algorithmica (2008) 51: 239–263 241

Fig. 1 Minimal B-cuts contain exactly one edge of each pair siui and ui ti , for i = 1, . . . , k − 1, thus we

have |F | = 2k−1. On the other hand, the number of minimal sk–tk cuts is more than 2(k−1)2
, so it is not

polynomial in |V | = k2 + k and |F |

It will be convenient to consider generating cut conjunctions of graphs in the con-
text of the more general problem of generating cut conjunctions of (vectorial) ma-
troids. In what follows we assume familiarity with matroid theory (see e.g., [10, 18]
for a thorough introduction).

Generating Cut Conjunctions in Matroids
Input: A matroid M on ground set S and a set B ⊆ S

Output: The list of all maximal sets X ⊆ A
def= S � B that span no element of B

When M is the cycle matroid of a graph G = (V ,E∪B), where E∩B = ∅, we can
let S = E ∪ B , and then by definition, an edge set Y ⊆ A = E spans b = (si , ti) ∈ B

if and only if Y contains an si–ti path. This means that a maximal edge set Y ⊆ E

spans no edge b ∈ B in the matroid M if and only if X = E � Y is a minimal B-cut
in the graph (V ,E). Thus, the problem of generating cut conjunctions in graphs is a
special case of the problem of generating cut conjunctions in matroids.

Let r : S → Z_+ be the rank function of a matroid M on S. The dual matroid M∗
on S is defined by the rank function r∗(X) = r(S � X) + |X| − r(S), see e.g., [18].
In particular, Y ⊆ A = S � B spans b ∈ B in M∗ if and only if r∗(Y ∪ {b}) = r∗(Y),
which is equivalent to r(X ∪ B) = r(X ∪ (B � {b})) + 1. This means that generating
cut conjunctions for the dual matroid M∗ is equivalent to the following generation
problem:

242 Algorithmica (2008) 51: 239–263

Generating Cut Conjunctions in the Dual Matroid
Input: A matroid M on ground set S and a subset B ⊆ S

Output: The list of all minimal sets X ⊆ A
def= S �B such that each element b ∈ B

is spanned by X ∪ (B � {b})

In particular, when M is the cycle matroid of a graph G = (V ,E) (and conse-
quently, M∗ is the cocycle matroid of G), the dual formulation can be restated as
follows:

Generating Bridge-Avoiding Extensions in Graphs
Input: An undirected graph G = (V ,E) and a collection of edges B ⊆ E

Output: The list of all minimal edge sets X ⊆ E � B such that no edge b ∈ B is a
bridge in G′ = (V ,B ∪ X)

Note that in all of the mentioned generation problems, the output, F , may consist
of exponentially many sets, in terms of the input size. Therefore we measure the
running time of generation algorithms in both the input and output size. A generation
algorithm may output an element of F any time during its execution. A generation
algorithm runs in incremental polynomial time if it outputs K elements of F (or all,
if |F | < K) in time polynomial in the input size and K . A generation algorithm runs
with polynomial delay if it outputs K elements of F (or all) in time polynomial in
the input size and linear in K (see e.g., [8, 9]).

2 Main Results

We show that all of the above generation problems for graphs can be solved in incre-
mental polynomial time. Let G = (V ,E) be a graph, |V | = n, |E| = m, and k = |B|.

Theorem 1 For every K we can generate K (or all, if there are no more than K) cut
conjunctions of G in O(K2 log(K)nm2 + K2k(n + m)m2) time.

Theorem 2 For every K we can generate K (or all, if there are no more than K)
bridge-avoiding extensions of G in O(K2 log(K)m2 + K2m2(n + m)) time.

In contrast, we recall that generating cut conjunctions in matroids is an NP-hard
problem:

Proposition 3 ([2]) Let M be a vectorial matroid defined by a collection S of n-
dimensional vectors over a field of characteristic zero or of large enough character-
istic (at least 8n), let B be a subset of S and let F be the family of all maximal subsets

of A
def= S � B that span no vector b ∈ B . Given a subfamily X ⊆ F , it is NP-hard to

decide if X �= F .

Algorithmica (2008) 51: 239–263 243

In addition to indicating that generating cut conjunctions in vectorial matroids is
NP-hard, the above result also implies that the dual formulation is NP-hard, too. This
follows from the fact that the dual M∗ of an explicitly given vectorial matroid M

over a field F is again a vectorial matroid over the same field. Moreover, an explicit
representation for M∗ can be obtained efficiently from the given representation of M

(see [12]).
As stated in Proposition 3, our NP-hardness result for generating cut conjunctions

in vectorial matroids is valid over sufficiently large fields. In particular, the complex-
ity of generating cut conjunctions in binary matroids remains open. We can only show
that this problem is tractable for |B| = 2:

Proposition 4 Let M be a binary matroid on ground set S and let B = {b1, b2} ⊆ S.

All maximal subsets X of A
def= S � B that span neither b1 nor b2 can be generated

in incremental polynomial time.

Finally, it is worth mentioning that generating cut conjunctions in binary matroids
includes, as a special case, the well-known hypergraph dualization problem [5, 6]:

Generating Minimal Transversals of a Hypergraph
Input: A hypergraph H.
Output: The list of all minimal transversals (equivalently, maximal independent

sets) of H.

To see this inclusion, let us consider the following construction. Let B be the
n × |H| binary matrix whose columns are the characteristic vectors of the hyper-
edges of H, and let I be the n × n identity matrix. Letting M = [I,B] and denoting
by A the columns set of I , we can readily identify each maximal subset of A that
spans no columns of B with a maximal independent vertex set of H. This shows that
generating cut conjunctions for a binary matroid is at least as hard as generating all
maximal independent sets for a hypergraph. The theoretically fastest currently avail-
able algorithm for hypergraph dualization generates all maximal independent sets in
incremental quasi-polynomial time [6].

The remainder of the paper is organized as follows: In the next section we describe
a general approach for generation problems. We prove Theorems 1 and 2 respectively
in Sects. 4 and 5. In Sect. 6 we prove Proposition 4, and for completeness we include
the proof of Proposition 3 in the Appendix (an alternative proof can be found in [2]).

3 The X − e + Y Method

In this section we present a technique which is a variant of the so called supergraph
approach that has been used in the literature for instance, to generate all minimal
feedback vertex and arc sets [13], minimal s–t cuts [16], minimal spanning trees
[14], and minimal blockers of perfect matchings in bipartite graphs [3]. To explain the
method briefly, a supergraph is a strongly connected directed graph G whose vertices

244 Algorithmica (2008) 51: 239–263

are the objects that we would like to generate. We can arrive to such a directed graph
by appropriately defining the out-neighborhood of each object. Once we have an
efficient way of generating such a neighborhood, and they define a strongly connected
directed graph, then we can generate all objects simply by traversing G.

In this section we present a variant of this general approach, which we call the
X − e + Y method. To formulate this method, let us consider a general framework
for generation problems. Let E be a finite set and πE : 2E → {0,1} be a monotone
Boolean function, i.e., one for which X ⊆ Y implies πE(X) ≤ πE(Y). We shall as-
sume that πE(∅) = 0 and πE(E) = 1. Let us then define a family F as follows

F = {X | X ⊆ E is a minimal set satisfying πE(X) = 1},
and consider the goal of generating all sets belonging to F .

This goal can be achieved by the following X − e + Y method. To simplify no-
tation, we write in the sequel X ∪ e and X � e instead of X ∪ {e} and X � {e},
respectively.

First we fix an arbitrary linear order ≺ on elements of E and define a projection
� : {X ⊆ E | πE(X) = 1} → F by �(X) = X � Z, where Z is the lexicographically
first subset of X, with respect to ≺, such that πE(X�Z) = 1 and πE(X�(Z∪e)) = 0
for every e ∈ X � Z. We can compute �(X) by deleting one by one in their ≺ order
the elements of X, whose removal does not change the value of πE(X). This requires
evaluating the function πE exactly |X| times.

We next introduce a directed graph G = (F ,E) on vertex set F . We define the
neighborhood N(X) of a vertex X ∈F as follows

N(X) = {�((X � e) ∪ Y) | e ∈ X,Y ∈ YX,e},
where YX,e is defined by

YX,e = {Y | Y is a minimal subset of E � X satisfying πE((X � e) ∪ Y) = 1}.
In other words, for every set X ∈F and for every element e ∈ X we extend X � e

in all possible minimal ways to a set X′ = (X � e) ∪ Y for which πE(X′) = 1 (since
X ∈ F , we have πE(X � e) = 0), and introduce each time a directed arc from X

to �(X′). We call the obtained directed graph G the supergraph of our generation
problem.

Lemma 5 For all subsets X ∈ F , elements e ∈ X and sets Y ∈ YX,e we have
�((X � e) ∪ Y) � (X � e) = Y .

Proof By the minimality of Y , we have πE((X � e) ∪ (Y � y)) = 0 for every y ∈ Y .
Thus �((X � e) ∪ Y) must contain Y , and by definition, it cannot contain any other
elements outside X � e. �

Proposition 6 The supergraph G = (F ,E) is strongly connected.

Proof Let X,X′ ∈F be two vertices of G. We show by induction on |X � X′| that G
contains a directed path from X to X′. If X � X′ = ∅ then X ⊆ X′, but since X′ is
minimal, X = X′ must follow.

Algorithmica (2008) 51: 239–263 245

Suppose that |X � X′| > 0. We show that there is a neighbor X′′ of X such
that |X′′

� X′| is smaller than |X � X′|. For this, we choose an arbitrary el-
ement e ∈ X � X′. Since (X � e) ∪ X′ contains X′ and πE(X′) = 1, we have
πE((X�e)∪X′) = 1 by the monotonicity of πE . Hence there is a minimal nonempty
set Y ⊆ X′

� X such that πE((X � e) ∪ Y) = 1. Now let X′′ = �((X � e) ∪ Y) be a
neighbor of X. By Lemma 5, we have X′′ = (X � (Z ∪ e)) ∪ Y . Thus |X′′

� X′| ≤
|X � (X′ ∪ e)| < |X � X′|. �

Since G is strongly connected, by performing a breadth-first search in G we can
generate all elements of F . Thus, given a procedure that generates all elements of
YX,e for every X ∈ F and e ∈ X, the procedure Transversal(G), defined below, gen-
erates all elements of F .

Traversal(G)

Find the initial vertex X0 ← �(E), initialize a queue Q = ∅ and a dictionary of
output vertices D = ∅.
Perform a breadth-first search of G starting from X0:

1 output X0 and insert it to Q and to D
2 while Q �= ∅ do
3 take the first vertex X out of the queue Q
4 for every e ∈ X do
5 for every Y ∈ YX,e

6 compute the neighbor X′ ← �((X � e) ∪ Y)

7 if X′ /∈D then output X′ and insert it to Q and to D

Lemma 7 If Y and Y ′ are distinct elements of YX,e, then they produce different
neighbors of X in G in line 6.

Proof First we observe that for every Y ∈ YX,e we have �((X � e) ∪ Y) = ((X �

(Z ∪e))∪Y , where Z is the lexicographically first subset of X �e, with respect to ≺,
such that πE((X � (Z ∪ e)) ∪ Y) = 1 and πE((X � (Z ∪ e ∪ f)) ∪ Y) = 0 for every
f ∈ X � (Z ∪ e). By the minimality of Y , we have πE((X � e) ∪ (Y � y)) = 0 for
every y ∈ Y . Thus �((X � e) ∪ Y) must contain Y . Also note that by minimality of
Y , we obtain X � e and Y are disjoint.

Hence for Y and Y ′, distinct elements of YX,e, we have �((X � e) ∪ Y) = (X �

(Z ∪ e)) ∪ Y and �((X � e) ∪ Y ′) = (X � (Z′ ∪ e)) ∪ Y ′. Since �((X � e) ∪ Y)

contains Y , �((X � e) ∪ Y ′) contains Y ′, X � e and Y are disjoint, X � e and Y ′ are
disjoint and Y �= Y ′ we obtain �((X � e) ∪ Y) �= �((X � e) ∪ Y ′). �

Proposition 8 Assume that there is a procedure that outputs K elements of YX,e

in time φ(K,E) and there is an algorithm evaluating πE in time γ (E). Then
Traversal(G) outputs K elements of F in time O(K2|E|2γ (E) + K2 log(K)|E|2 +
K|E|φ(K,E)).

246 Algorithmica (2008) 51: 239–263

Proof Let X ∈ F and e ∈ X. Note that we output a vertex of the supergraph G every
time we insert it to the queue Q and each vertex of G is inserted to the queue Q and
removed from Q only once. Thus to generate K elements we repeat the while loop
of lines 2–7 at most K times. As |X| < |E| we repeat the for loop of lines 4–7 at
most |E| times. By Lemma 7 we repeat the for loop of lines 5–7 at most K times
(otherwise we generate more than K distinct neighbors). Generating K elements of
YX,e takes φ(K,E) time.

We repeat lines 6, 7 at most K2|E| times. Recall that evaluating Project takes
|E|γ (E) time. We can implement the dictionary D as a balanced binary search tree.
Then the operations FIND and INSERT in D require at most a logarithmic number of
comparisons, where each comparison takes O(|E|) time. This implies that executing
lines 6, 7 a single time takes O(|E|γ (E) + log(K)|E|) time.

Thus the time Traversal(G) needs to output K elements is O(K2|E|2γ (E)+
K2 log(K)|E|2 +K|E|φ(K,E)). �

To illustrate the X − e + Y method, let us consider the following problem
from [1]:

Path Conjunctions Generation Problem
Input: An undirected graph G = (V ,E) and a collection B = {(s1, t1), . . . ,

(sk, tk)} of k vertex pairs si , ti ∈ V

Output: The list of all minimal edge sets X ⊆ E such that ti is reachable from si
in (V ,X) for all i = 1, . . . , k

We call such edge set X a path conjunction. As shown in [1] path conjunctions
can be generated in incremental polynomial time. Here we show that the X − e + Y

method provides a simple alternative algorithm. More precisely, for every K we can
generate K (or all, if their number is less than K) path conjunctions of a given graph
in O(K2 log(K)m2 + K2m2k(n + m)) time, where as before n and m denote the
number of vertices and edges of G, respectively.

First, we define a Boolean function πE as follows: for a subset X ⊆ E let

πE(X) =
{

1, every ti is reachable from si in (V ,X);

0, otherwise.

Clearly π is monotone and F = {X | X ⊆ E is a minimal set satisfying πE(X) = 1}
is the family of all minimal path conjunctions. We can test if ti is reachable from si
applying breadth first search. Thus γ (E) = O(k(n + m)). We next show that we can
generate K (or all) elements of YX,e in φ(K,E) = O(Km + n + m) time.

Let X ∈ F . We observe that X is a collection of vertex-disjoint trees T such that
for each vertex pair (si , ti) there is a tree containing both si and ti . Removing an
edge e from X splits a tree T ∈ T containing e into two subtrees T ′, T ′′. By the
minimality of X there is at least one pair of B with one vertex belonging to T ′ and
the other to T ′′.

Let G′ be the graph obtained from G by contracting each tree of T �T and T ′, T ′′
into a vertex, and let u and v denote the vertices of G′ corresponding to T ′ and T ′′.

Algorithmica (2008) 51: 239–263 247

A minimal edge set Y restores that every ti is reachable from si in (V , (X � e) ∪ Y)

if and only if Y is a path from u to v in G′.
Thus YX,e is the family of all u–v paths in G′, where G′ has at most n vertices and

m edges. K paths between two vertices in a graph can be generated via backtracking
in O(Km+n+m) time [11]. Consequently, by Proposition 8 Traversal(G) generates
K (or all) path conjunctions in O(K2 log(K)m2 + K2m2k(n + m)) time.

4 Proof of Theorem 1

In this section we apply the X − e + Y method to the generation of all cut conjunc-
tions.

Given a graph G = (V ,E), a collection B = {(s1, t1), . . . , (sk, tk)} of k pairs of
vertices si , ti ∈ V , and a subset X ⊆ E, we define a Boolean function π as follows:
for a subset X ⊆ E let

π(X) =
{

1, si is disconnected from ti in (V ,E � X) for all i = 1, . . . , k;

0, otherwise.

Clearly, π is monotone, and F = {X | X ⊆ E is a minimal set satisfying π(X) = 1}
is the family of all cut conjunctions of G.

In Sect. 4 we use the following notation. Let U be a subset of vertices of G,
let F be a subset of edges of G, and let G′ = (V ′,E′) and G′′ = (V ′′,E′′) denote
subgraphs of G (i.e., V ′,V ′′ ⊆ V and E′,E′′ ⊆ E). We denote by G[U] a subgraph

of G induced on the vertex set U . Then G−U
def= G[V �U] is a graph obtained from

G by deleting all the vertices of U and their incident edges, G − F
def= (V ,E � F) is

obtained by deleting all the edges of F from E and G−G′ def= G−V ′. We also define

G + U
def= (V ∪ U,E), G + F

def= (V ,E ∪ F), and G′ + G′′ def= (V ′ ∪ V ′′,E′ ∪ E′′).

4.1 Characterization of Cut Conjunctions

It will be convenient to define a cut to be a set of edges E(G1, . . . ,Gl) = ⋃
i �=j {uv ∈

E : u ∈ Gi, v ∈ Gj } where G1, . . . ,Gl are induced subgraphs of G such that their
vertex sets partition V , and Gi is connected for each i = 1, . . . , l.

Let B = {(s1, t1), . . . , (sk, tk)} be a set of distinct source-sink pairs of G. A B-cut
is a cut E(G1, . . . ,Gl) such that, for each i, si and ti do not belong to the same Gj .
If the set B is clear from the context we shall call the minimal B-cut a cut conjunc-
tion. The following characterization of cut conjunctions follows directly from their
definition.

Proposition 9 Let E(G1,G2, . . . ,Gl) be a B-cut. Then, E(G1,G2, . . . ,Gl) is a
minimal B-cut if and only if for every x, y ∈ {1, . . . , l} with x �= y, if there is an
edge of G between Gx and Gy then there must exist a source-sink pair (si , ti) with
exactly one vertex in Gx and the other in Gy (see Fig. 2).

248 Algorithmica (2008) 51: 239–263

Fig. 2 Minimal B-cut
E(G1,G2,G3,G4). The
dashed lines are the edges of the
B-cut

Fig. 3 Graph G − (X � b)

contains two (X � b)-conflicting
pairs (s4, t4) and (s7, t7)

4.2 Reduction

In this section we reduce the problem of generating all elements of YX,e to generating
all cut conjunctions in a graph of a simpler structure.

Let F be a subset of edges of G and let (si , ti) ∈ B . Suppose that si and ti are in
the same component of G − F . Then we say that (si , ti) is F -conflicting.

Let X = E(G1,G2, . . . ,Gl) be a minimal B-cut of G and let b ∈ X. The removal
of b from X reconnects some two components, Gx and Gy , of G − X, where one
endpoint of b is in Gx and the other in Gy . Thus G − (X � b) contains at least one
(X � b)-conflicting pair (see Fig. 3). Hence generating all minimal sets Y ⊆ E � X

which restore the property that no si is connected to ti , is equivalent to generating all
minimal B ′-cuts in the graph Gx +Gy + b where B ′ is the set of (X � b)-conflicting
pairs.

Let L = Gx and R = Gy . We can always relabel the (X � b)-conflicting pairs to
guarantee that the conflicting si ’s are in L and the conflicting ti ’s are in R. We denote
the resulting graph by H(X,b) (see Fig. 4). Note that we have reduced our generation
problem to listing all cut conjunctions in H(X,b). As we discuss in the next section,
the latter problem can be efficiently solved by traversing an appropriately defined
supergraph of cut conjunctions of H(X,b).

Algorithmica (2008) 51: 239–263 249

Fig. 4 Graph H(X,b) with all
sources in L and sinks in R

Fig. 5 Minimal B-cut
E(M,L1,L2,R1). Dashed
lines are the edges of the B-cut

4.3 Generating Cut Conjunctions in H(X,b)

In this section we describe an algorithm of generating cut conjunctions of the graph
H(X,b) defined at the end of Sect. 4.2. We apply the supergraph approach, i.e.,
we define the neighborhood operation on cut conjunctions of H(X,b) so that the
supergraph, whose vertices are these cut cunjunctions, is strongly connected, then we
describe an algorithm of traversing this supergraph and analyze the complexity of the
algorithm.

Let H = H(X,b) = (V ,E) be the graph defined at the end of Sect. 4.2, that is:

• H = L + R + b,
• b = vLvR is a bridge (note that vL can be a source and vR can be a sink, but b �= si ti

for all i),
• L contains the sources s1, . . . , sk′ , and
• R contains the sinks t1, . . . , tk′ (see Fig. 4).

Note that H is connected and the number k′ of the vertex pairs in H is at most the
number k of the vertex pairs in G.

4.3.1 Characterization of Cut Conjunctions of H

Let B = {(s1, t1), . . . , (sk′ , tk′)} and let K = E(G1, . . . ,Gl) be a cut conjunction
of H , such that K �= {b}. Without loss of generality, assume that b is in G1. Note
that every other Gj is contained either in L or in R (since Gj is connected and all
paths from L to R go through b). We denote by M = G1 the component contain-
ing b and call it the root component of K . The other components will be called leaf
components of K . Denote the Gj ’s contained in L by L1, . . . ,Lm and those in R by
R1, . . . ,Rn (see Fig. 5).

Proposition 10 All edges of K = E(M,L1, . . . ,Lm,R1, . . . ,Rn) lie between the
root and leaf components. Hence M uniquely determines the leaf components of K .

250 Algorithmica (2008) 51: 239–263

Fig. 6 Cut conjunction K in
(q2-a)

Fig. 7 B-cut D in (q2-a)

Proof Suppose that there is an edge e ∈ K between two leaf components. Since there
is no edge between Li and Rj , we can assume that e connects Li and Lj . But Li and
Lj contain only sources. Thus, by Proposition 9 , K is not minimal, a contradiction. �

4.3.2 Supergraph of Cut Conjunctions of H

Now we define the digraph H, the supergraph of cut conjunctions of H . The vertex
set of H is the family of all cut conjunctions of H other than {b}. For each cut con-
junction K = E(M,L1, . . . ,Lm,R1, . . . ,Rn) of H we define its out-neighborhood
to consist of all cut conjunctions which can be obtained from K by the following
sequence of steps (see example in Fig. 11):

(q1) Choose a vertex v incident to e ∈ K such that v /∈ {vL, vR}. Depending on v we
have the following three cases.

(q2-a) Suppose v is in a leaf component of K and M + v + e does not contain a
source-sink pair (si , ti). Without loss of generality, assume that v ∈ Rj and either v

is not a sink, or v = ti and si �∈ M (see Fig. 6).
Let W1, . . . ,Wp be the components of Rj −v, and let M̂ = M +v+⋃

u∈M{uv ∈ E}.
Then

D = E(M̂,L1, . . . ,Lm,R1, . . . ,Rj−1,W1, . . . ,Wp,Rj+1, . . . ,Rn)

is a B-cut. Note that we have moved v from Rj to M . Removing v from Rj splits
Rj into components W1, . . . ,Wp (see Fig. 7). In (q3) we may remove some edges
of D to obtain a minimal B-cut.

(q2-b) Suppose v is in a leaf component of K and M + v + e contains a source-
sink pair (si , ti). Without loss of generality, assume that v ∈ Rj and v = ti , si ∈ M

and vL �= si (if vL = si we do not allow to include ti to M). Let W1, . . . ,Wp be
the components of Rj − ti and let U1, . . . ,Ur be the components of M − si not
containing b. Denote M̂ = (M + ti +⋃

u∈M{uti ∈ E})− (si +U1 +· · ·+Ur). Then

D = E(M̂,L1, . . . ,Lm, si,U1, . . . ,Ur ,R1, . . . ,Rj−1,W1, . . . ,Wp,Rj+1, . . . ,Rn)

Algorithmica (2008) 51: 239–263 251

Fig. 8 B-cut D in (q2-b)

Fig. 9 Cut conjunction K in
(q2-c)

Fig. 10 B-cut D in (q2-c)

is a B-cut. Note that we have moved ti from Rj to M . To restore the property that
no si is connected to ti , we have removed si from M . Removing v from Rj splits Rj

into components W1, . . . ,Wp , and removing si from M splits M into components
U1, . . . ,Ur and M̂ , the component containing b (see Fig. 8). In (q3) we may remove
some edges of D to obtain a minimal B-cut.

(q2-c) Suppose v ∈ M − {vL, vR}. Without loss of generality, assume that v is adja-
cent to Lj (see Fig. 9). Note that v �∈ {t1, . . . , tk′ }.
Let U1, . . . ,Ur be the components of M − v not containing b, and let M̂ = M −
(v + U1 + · · · + Ur). Then

D = E

(
M̂,L1, . . . ,Lj−1,Lj + v

+
⋃
u∈Lj

uv∈E

uv,Lj+1, . . . ,Lm,U1, . . . ,Ur ,R1, . . . ,Rn

)

is a B-cut. Note that we have moved v from M to Lj splitting M into components
U1, . . . ,Ur and M̂ (see Fig. 10). In (q3) we may remove some edges of D to obtain
a minimal B-cut.

(q3) Let D = E(G1, . . . ,Gl) be the B-cut obtained in the previous step. Choose the
lexicographically first two sets Gx and Gy such that there is an edge e ∈ D connect-
ing Gx and Gy and there is no (D �e)-conflicting pair. Replace Gx and Gy in D by
Gx + Gy . Repeat until no such pair exist, thus the resulting B-cut is minimal. Let
K ′ = E(M ′,L′

1, . . . ,L
′
m′,R′

1, . . . ,R
′
n′) be the resulting cut conjunction. Then K ′

is a neighbor of K in H.

252 Algorithmica (2008) 51: 239–263

Fig. 11 Consider the graph H above and the cut conjunction K = E(M,L1,R1,R2) = E({s1, s2,

s4, u, vL, vR, t3, v}, {s3}, {t1, t4}, {t2}). Then K ′ = E(M ′,L′
1,R′

1) = E({s2, vL, vR, t1, t3, t4, v},
{s1, s3, s4, u}, {t2}) is a neighbor of K obtained by moving t1 to M

Algorithmica (2008) 51: 239–263 253

Fig. 12 Cut conjunction K1.
Solid lines are the K1-solid
edges, dashed lines are the
K1-dashed edges

Proposition 11 The supergraph H is strongly connected.

To prove Proposition 11 we need two lemmas.
Let K1, K3 be cut conjunctions and let M1, M3 be their root components. We

call the vertices of M3 blue vertices, and all other vertices green vertices. Let K be an
induced subgraph of H, whose vertices are the cut conjunctions with root components
containing all the blue vertices. Note that K has at least one vertex, namely K3.

Lemma 12 There exists a cut conjunction K2 ∈ K such that there is a path from K1
to K2 in H.

Proof Let T be an arbitrary spanning tree of M3 containing the bridge b. For a B-
cut D of H with M as its root component, we partition the edges of T into two
groups. Edges that form a contiguous part within M will be called D-solid edges,
and the remaining edges will be called D-dashed edges. More precisely, we call an
edge e of T a D-solid edge, if

• e ∈ M ,
• e is reachable from b by using only edges of T that are in M .

Otherwise e is called a D-dashed edge (see Fig. 12). Note that b is a D-solid edge.
We denote the set of D-solid edges by SD and the set of D-dashed edges by DD .
Clearly, |SD| + |DD| = |T |.

Let K1 = E(M1,L1, . . . ,Lm,R1, . . . ,R
1
n). We will show by induction on the

number of K1-solid edges |SK1 | that there is a path from K1 to K2.
If |SK1 | = |T |, then M1 contains the spanning tree T of blue vertices. Hence

K1 ∈ K.
If |SK1 | < |T |, then there exists a K1-dashed edge vw between two blue vertices

v and w such that v is in a leaf component of K1, w ∈ M1 and w is incident to a
K1-solid edge. Without loss of generality, suppose that v ∈ Rj (see Fig. 12). Such
an edge exists because K1-dashed and K1-solid edges form the spanning tree of blue
vertices.

We now show that K ′
1, a neighbor of K1, obtained by moving the blue vertex v

from the leaf to the root component, has |SK ′
1
| ≥ |SK1 | + 1. Depending on v there are

two cases.
Case 1: v is not a sink or v = ti and si �∈ M1. Let D be the B-cut obtained in (q2-a)

and MD be its root component. Recall that MD = M1 + v + ⋃
u∈M{uv ∈ E}. Thus

SD contains all K1-solid edges. Since MD contains both v and w, vw is a D-solid
edge, so |SD| = |SK1 | + 1. In (q3) MD can only merge with leaf components, hence
|SK ′

1
| ≥ |SD|. This implies that |SK ′

1
| ≥ |SK1 | + 1.

254 Algorithmica (2008) 51: 239–263

Fig. 13 Cut conjunction K2.
The solid lines are K2-solid
edges, the dashed lines are
K2-dashed edges

Case 2: v = ti , si ∈ M . Note that ti is a blue vertex, so si must be green, since
M3 does not contain any source-sink pair, and in particular si cannot be an endpoint
of b. Let D be the B-cut obtained in (q2-b) and MD be its root component. Recall
that MD = (M1 + ti + ⋃

u∈M{uti ∈ E}) − (si + U1 + · · · + Ur), where U1, . . . ,Ur

are the components of M − si not containing b.
Observe that in (q2-b) we did not remove any K1-solid edge from M1. Since si

is a green vertex, all edges incident to si do not belong to T . Edges in U1, . . . ,Ur

and incident to these components are also not K1-solid, because all paths from b to
U1, . . . ,Ur , which use edges of T that are in M1, must go through si . Thus |SD| =
|SK1 | + 1.

In (q3) MD can only increase its size after merging with leaf components, hence
|SK ′

1
| ≥ |SD|. This implies that |SK ′

1
| ≥ |SK1 | + 1. �

Lemma 13 For every K2 ∈K there is a path from K2 to K3 in K.

Proof Let W1, . . . ,Wq be the leaf components of K3 and T1, . . . , Tq be arbitrary
spanning trees of W1, . . . ,Wq . Recall that vertices of W1, . . . ,Wq are called green
vertices.

For every leaf Wj there is at least one source-sink pair (si , ti) such that one of si
and ti belongs to Wj and the other to the root component of K3. Choose one such
source or sink for every Wj and denote this set by P = {p1, . . . , pq}.

Let D = E(M,G1, . . . ,Gl) be a B-cut of H such that all vertices of P are in the
leaf components. Let e ∈ Ti for some i ∈ {1, . . . , q}. We call e a D-solid edge if there
is j ∈ {1, . . . , l} such that e ∈ Gj , pi ∈ Gj and e is reachable from pi by using only
edges of Ti that are in Gj . Otherwise e is called a D-dashed edge (see Fig. 13). We
denote the set of D-solid edges by SD and the set of D-dashed edges by DD . Note
that |SD| + |DD| = |T1| + · · · + |Tq |.

Let K2 = E(M2,L1, . . . ,Lm,R1, . . . ,Rn). Recall that M3 is the root component
of K3 and its vertices are called blue vertices. Since M3 ⊆ M2, all elements of P

must belong to leaf components of K2 and thus the notion of K2-solid edges is well
defined. We will show by induction on the number of K2-solid edges |SK2 |, that there
is a path in K from K2 to K3 (note that since this path is in K, the root components
of vertices on that path must contain all the blue vertices).

If |SK2 | = |T1| + · · · + |Tq |, all green vertices are in leaf components, so M2 con-
tains only blue vertices, thus M2 = M3 and by Proposition 10, we have K2 = K3.

Algorithmica (2008) 51: 239–263 255

If |SK2 | < |T1| + · · · + |Tq |, then there exists a K2-dashed edge e = vw between
two green vertices v and w such that w is in a leaf component, v ∈ M2 and w is
incident to a K2-solid edge or w = pi . Without loss of generality, suppose that e ∈ Ti

and w ∈ Lj (see Fig. 13). Such an edge exists because K2-dashed and K2-solid edges
form a spanning forest of green vertices.

We show that K ′
2, a neighbor of K2 obtained by moving v from M2 to Lj , has

|SK ′
2
| ≥ |SK2 | + 1 and K ′

2 ∈K.

Let D = E(M̂,L1, . . . ,Lj +v, . . . ,Lm,U1, . . . ,Ur ,R1, . . . ,Rn) be the B-cut ob-
tained in (q2-c). Recall that M̂ = M2 − (v + U1 + · · · + Ur), where U1, . . . ,Ur are
the components of M2 −v not containing b. Note also that U1, . . . ,Ur cannot contain
any blue vertices, since M2 contains M3, which is connected, thus removing a green
vertex v cannot disconnect any blue vertex from b. Hence M3 ⊆ M̂ . Since in (q3) M̂

can only increase its size, the root component of K ′
2 contains M3.

Since Lj + v contains both v and w, e is a D-solid edge. Thus |SD| = |SK2 | + 1.
In (q3) only leaf components not containing vertices of P can merge with M̂ . Since
these leaf components do not contain any solid edges, we obtain |SK ′

2
| ≥ |SD|. This

implies that |SK ′
2
| ≥ |SK2 | + 1. �

Proof of Proposition 11 Let K1 and K3 be arbitrary cut conjunctions and K be the
induced subgraph of H defined above. By Lemma 12 there is a path in H from K1 to
some cut conjunction K2 in K. By Lemma 13 there is a path from any cut conjunction
of K to K3. The proposition follows. �

4.3.3 Algorithm of Generating Cut Conjunctions of H

Since H is strongly connected we can generate all cut conjunctions of H by perform-
ing a breadth-first search in H. Recall that a root component uniquely determines the

Traversal(H)

Find an initial root component M0: M0 ← {vL, vR}, repeat adding adjacent and
nonconflicting vertex to M0 until no such vertex exists.
Initialize a queue Q← ∅ and a dictionary of visited vertices D ← ∅.
Perform a breadth-first search of H starting from M0:

1 output the cut conjunction X0 corresponding to M0, insert M0 to Q and to D
2 while Q �= ∅ do
3 take the first vertex M out of the queue Q
4 find the sets N1 and N2 of vertices adjacent to M and V � M

6 for every vertex v ∈ N1 ∪ N2 do
7 if v ∈ N1 then M ′ ← M ∪ v

else M ′ is the set of vertices reachable from vL in H [M � v]
8 add adjacent and nonconflicting vertex to M ′, repeat until no such

vertex exists
9 if M ′ /∈ D then

output M ′ corresponding to M ′, insert it to Q and to D

256 Algorithmica (2008) 51: 239–263

cut conjunctions of H . Thus we generate root components but we output the corre-
sponding cut conjunctions.

We say that a vertex is nonconflicting to a root component M if M ∪ v does not
contain a source-sink pair.

Proposition 14 Traversal(H) generates K (or all) cut conjunctions of H in
O(K log(K)nm) time, where n and m are the number of vertices and edges of H ,
respectively.

Proof Since H is connected, we have n ≤ m.
We assume that we have a binary vector of length k′ associated to a root compo-

nent indicating that the root component contains the ith source or sink. Thus we can
test if a vertex is nonconflicting to a root component in O(1) time.

Finding an initial root component M0 using a breadth-first search takes in O(m)

time.
Since a vertex is removed from Q every time we execute the while loop and it

will never be reinserted to Q, the while loop is executed at most K times. Note that
computing sets N1 and N2 takes O(m) time and |N1 ∪N2| ≤ n. Thus we perform the
for loop at most n times.

Computing M ′ takes O(m) time, checking if M ′ is in the dictionary takes
O(log(K)m) (we implement D as a balanced binary search tree) and finding the
cut conjunction corresponding to M ′ takes O(m) time.

Thus Transversal(H) generates K (or all) cut conjunctions in O(K log(K)nm)

time. �

4.4 Complexity

In this section we utilize Proposition 8 to analyze the total running time of the proce-
dure Transversal(G). Let n = |V |, m = |E|.

Since using a breadth-first search one can test if an edge set is a cut conjunction in
O(k(n + m)) time, we have γ (E) = O(k(n + m)). As H has at most n vertices and
m edges and by Proposition 14 we obtain φ(K,E) = O(K log(K)nm).

By Proposition 8 procedure Transversal(G) generates K (or all) cut conjunctions
in O(K2 log(K)nm2 +K2k(n+m)m2) time. This completes the proof of Theorem 1.

5 Proof of Theorem 2

We apply the X − e + Y method to the generation of all minimal bridge-avoiding
extensions.

It will be convenient to assume in this section that the input graph G = (V ,E)

may contain parallel edges, i.e., that G is a multigraph. For a nonempty set B ⊆ E

we define a Boolean function π as follows: for a subset X ⊆ E � B

π(X) =
{

1, no b ∈ B is a bridge in (V ,X ∪ B);

0, otherwise.

Algorithmica (2008) 51: 239–263 257

Clearly π is monotone. Then F = {X | X ⊆ E � B is a minimal set satisfying
π(X) = 1} is the family of all minimal bridge-avoiding extensions of B .

We show that generating elements of YX,e is equivalent to generating all directed
paths between a pair of vertices in some explicitly given directed multigraph.

Let X ∈ F and e ∈ X. We define B ′ = {b1, . . . , bk} to be the subset of edges of B

that are bridges in (V ,B ∪ (X � e)).

Claim 15 There is a path in (V ,B ∪ (X � e)) containing all edges of B ′.

Proof First observe that for each edge bi ∈ B ′ there is a cycle Ci in (V ,B ∪ X) con-
taining e and bi . Suppose bi ∈ Ci �Cj for some i, j ∈ {1, . . . , k}. Then there is a cycle
C′ consisting of some edges of Ci and Cj such that bi ∈ C′ and e /∈ C′. Note that C′
is also the cycle in (V ,B ∪ (X � e)). Thus bi is not a bridge in (V ,B ∪ (X � e)),
a contradiction. Hence there is a cycle in (V ,B ∪ X) containing {b1, . . . , bk} and e,
and consequently, edges of this cycle without e form a path in (V ,B ∪ (X � e)). �

We next construct the multigraph G′ = (V ′,E′) from (V ,E � e) by contracting
all edges in (B �B ′)∪ (X � e). By Claim 15 the edges of B ′ form a path in G′. Note
that edges if G and G′ are in the one to one correspondence. Moreover no edge b ∈ B

is a bridge in (V ,B ∪ (X � e) ∪ Y), where Y ⊆ E � (X ∪ B), if and only if no edge
b ∈ B ′ is a bridge in (V ′,B ′ ∪ Y ′), where Y ′ is the set of edges of G′ corresponding
to Y . Thus the general generation problem for cut conjunctions in cocycle matroids
reduces to the special case of the same problem for multigraphs in which B is a path.

Let u1, . . . , uk+1 denote the k + 1 vertices on the path B ′ = {b1, . . . , bk} in G′.
We can assume without loss of generality that bi = uiui+1 for i = 1, . . . , k. We next
consider the directed multigraph G̃′ = (V ′, Ẽ′) obtained from the multigraph G′ =
(V ′,E′) by replacing the undirected path B ′ by the directed path B̃ ′ = u1 ← u2 ←
·· · ← uk ← uk+1 and by adding two opposite arcs u → v and v → u for each of the
remaining edges uv ∈ E′

� B ′.
We show that no edge b ∈ B ′ is a bridge in (V ′,B ′ ∪ Y ′), where Y ′ ⊆ E′

� B ′ if
and only if there is a u1–uk+1 dipath corresponding to Y ′ in G̃′.

If no edge b ∈ B ′ is a bridge in (V ′,B ′ ∪Y ′), then for each i = 1, . . . , k there must
exist a path P ⊆ Y ′ such that

(P ′) P and B ′ are edge disjoint and
(P ′′) the vertex set of P contains exactly two vertices uα,uβ of B ′ such that α ≤ i

and β ≥ i + 1.

By the minimality of Y ′ we conclude that

Y ′ = P1 ∪ · · · ∪ Ps (1)

for some paths P1, . . . ,Ps satisfying conditions (P ′) and (P ′′) above, where no two
distinct paths in the above decomposition have a common vertex outside of B ′. De-
noting by uαi

and uβi
the intersection of the vertex set of Pi with B ′, we can also

assume without loss of generality that

u1 = α1 < α2 ≤ β1 < α3 ≤ β2 < α4 ≤ · · · < αs ≤ βs−1 < βs = uk+1, (2)

258 Algorithmica (2008) 51: 239–263

Fig. 14 Subgraph (V ′,B ′ ∪ Y ′)

Fig. 15 Directed path in G̃′

where some pairs of consecutive paths Pj and Pj+1 may have the same endpoint
on B ′ (see Fig. 14).

From the above discussion it follows that there exists a one to one correspondence
between all minimal sets Y ′ admitting decomposition (1) which satisfies (2) and all
directed paths from u1 to uk+1 in G̃′ (see Fig. 15).

We next utilize Proposition 8 to analyze the total running time of the procedure
Transversal(G). Let n and m be the number of vertices and edges of G, respectively.

Since one can find all bridges in G in O(n + m) time, we have γ (E) = O(n + m)

[15]. Note that contracting an edge takes O(n + m) time, thus we can construct
G̃′ in O(m(n + m)) and G̃′ has at most n vertices and 2m arcs. As K paths be-
tween a given pair of vertices can be generated via backtracking in O(Km + n + m)

time [11], we obtain φ(K,E) = Km + m(n + m). By Proposition 8 the proce-
dure Transversal(G) generates K (or all) minimal bridge-avoiding extensions in
O(K2 log(K)m2 + K2m2(n + m)) time. This completes the proof of Theorem 2.

6 Proof of Proposition 4

Let us consider a binary matroid M on ground set S = A ∪ B , where B = {b1, b2}.
As we mentioned in the Introduction, it is enough to consider the dual formulation of
the cut conjunction problem:

Generate all minimal subsets X ⊆ A
def= S � B such that X ∪ {b2} spans b1 and

X ∪ {b1} spans b2 in the dual matroid M∗.

To see that this generation problem is tractable, we show first that for a subset X of A,
b1 is a linear combination of vectors of X ∪ {b2} and b2 is a linear combination of

Algorithmica (2008) 51: 239–263 259

vectors of X ∪ {b1} if and only if b1 + b2 is a linear combination of vectors of X.

If
∑
a∈Y

a = b1 + b2, where Y ⊆ X, then
∑
a∈Y

a + b1 = b2

and
∑
a∈Y

a + b2 = b1.

Conversely, we consider X ⊆ A such that b1 is a linear combination of X ∪ {b2} and
b2 is a linear combination of X ∪ {b1}. Depending on whether these linear combina-
tion include b2 and b1, respectively, we have two cases:

Case 1: b2, b1 do not appear in either of the linear combinations. Thus
∑

a∈X1
a =

b1,
∑

a∈X2
a = b2, where X1,X2 ⊆ X. Then

∑
a∈(X1∪X2)�(X1∩X2)

a = b1 + b2.
Case 2: suppose b2 appears in the first linear combination. Thus

∑
a∈Y a + b2 =

b1, where Y ⊆ X. Then
∑

a∈Y a = b1 + b2.
Hence X is a minimal subset of A such that X ∪ {b2} spans b1 and X ∪ {b1} spans

b2 in M∗ if and only if X is a minimal subset of A spanning b1 +b2 in the matroid on
ground set A ∪ {b1 + b2}. Thus our problem reduces to the generation of all circuits
containing b1 + b2 in the matroid on ground set A ∪ {b1 + b2}, which can be done in
incremental polynomial time [2].

Remark 16 A similar simplification does not work for |B| > 2. For instance, for
B = {b1, b2, b3}, the facts that bi is a linear combination of vectors of X ∪ {B � bi},
for i = 1,2,3, do not imply that b1 + b2 + b3 is a linear combination of vectors of X.
Consider e.g., the vectors a1 = (1,1,0,0), a2 = (1,0,1,0), a3 = (0,1,1,0), b1 =
(1,0,0,1), b2 = (0,1,0,1) and b3 = (0,0,1,1) in 4-dimensions (mod 2) satisfying
b1 = a1 + b2 = a2 + b3, b2 = a1 + b1 = a3 + b3, b3 = a2 + b1 = a3 + b2, but b1 +
b2 + b3 = (1,1,1,1) is not in the linear space spanned by a1, a2, and a3.

Appendix: Proof of Proposition 3

For the sake of completeness we present the proof of Proposition 3. An alternative
proof can be found in [2].

Let M be a vectorial matroid on ground set S, let B ⊆ S and let F be the family of

all maximal subsets of A
def= S �B that span no vector b ∈ B . In this section we show

that given a subfamily X ⊆ F , it is NP-hard to decide whether X �= F . We reduce
our problem from the well known 3-satisfiability.

Let φ = C1 ∧C2 · · ·∧Cm be a given CNF on n variables with exactly three literals
per clause. We may represent the sets A and B as matrices. We let

A = (�ax̄1 , �ax̄2, . . . , �ax̄n, �ax1 , �ax2, . . . , �axn),

where �ax̄i and �axi are (n + 1)-dimensional vectors defined as

(�ax̄i)j =
{

1, if i = j ;

0, otherwise,
(�axi)j =

{
1, if i = j or i = n + 1;

0, otherwise.

260 Algorithmica (2008) 51: 239–263

For every clause Cp = li1 ∨ li2 ∨ li3 , where lij ∈ {xij , x̄ij }, and α ∈ {0, . . . , n − 3}, we
define

�bp,α = 4n�ali1 + 2n�ali2 + n�ali3 + �f p + α�e,
where �f p and �e are (n + 1)-dimensional vectors defined as

(�f p)i =
{

0, if i ∈ {i1, i2, i3, n + 1};
1, otherwise,

and �e = (0, . . . ,0,1)T .

Then B = (�bp,α), for p = 1, . . . ,m and α = 0, . . . , n − 3 (see Example 17).

Example 17 Consider φ = C1 ∧ C2 = (x1 ∨ x̄2 ∨ x3)(x1 ∨ x̄4 ∨ x̄5). Then A =
(�ax̄1 , �ax̄2, . . . , �ax̄5 , �ax1, �ax2 , . . . , �ax5), i.e.,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and B = {�b1,0, �b1,1, �b1,2, �b2,0, �b2,1, �b2,2}, where

�b1,α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 · 5

2 · 5

5

1

1

4 · 5 + 5 + α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and �b2,α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5

1

1

4 · 5

2 · 5

5 + α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Claim 18 For each i ∈ {1, . . . , n}, A � {�ax̄i , �axi } is a maximal subset of A spanning
no �b ∈ B .

Proof Observe that all vectors of A � {�ax̄i , �axi } have ith entry zero and every
�b ∈ B has all entries nonzero. Both A � {�ax̄i } and A � {�axi } span all b ∈ B , since
rank(A � {�ax̄i }) = rank(A � {�axi }) = n + 1. Thus A � {�ax̄i , �axi } is maximal subset
of A spanning no �b ∈ B . �

Let X = {A � {�ax̄1, �ax1}, . . . ,A � {�ax̄n, �axn}} ⊆ F . We shall call elements of
F � X nontrivial. Let H be a family of subsets of A of the form (�al1 , �al2, . . . , �aln),
where li ∈ {xi, x̄i}, i.e. subsets of A that contain exactly one of each pair �ax̄i , �axi , for
i ∈ {1, . . . , n}.

Claim 19 Every nontrivial element X of F belongs to H.

Algorithmica (2008) 51: 239–263 261

Proof X is a maximal subset of A spanning no �b ∈ B and is not a subset of an
element of X , thus X must contain at least one of each pair �ax̄i , �axi . Suppose that for
some j , X contains both �ax̄j , �axj . Then rank(X) = n + 1, thus X spans all �b ∈ B ,
a contradiction. Hence X contains exactly one of �ax̄i , �axi , for i ∈ {1, . . . , n}. �

Now let X = (�al1 , �al2, . . . , �aln) ∈ H and �x = (x1, . . . , xn) be an assignment of φ.
We define a bijection between elements of H and assignments of φ as follows: xi = 0
if and only if �axi ∈ X, xi = 1 if and only if �ax̄i ∈ X.

Claim 20 X is nontrivial element of F if and only if �x is a satisfying assignment
of φ.

Proof Let X be nontrivial element of F . By Claim 19, X ∈ H, so there exists an
assignment �x corresponding to X. Suppose that �x is not a satisfying assignment, then
�x does not satisfy a clause Cp = li1 ∨ li2 ∨ li3 . Thus li1 , li2 , li3 are assigned 0. Then
{�ali1 , �ali2 , �ali3 } ∈ X. Let α = ∑

j �∈{i1,i2,i3}(1 − xj) be the number of 0’s in entries of
�x different than i1, i2, i3.

Then
∑

i �∈{i1,i2,i3} �ali = �f + α�e, hence �bp,α = 4n�ali1 + 2n�ali2 + n�ali3 +∑
i �∈{i1,i2,i3} �ali . Thus �bp,α is spanned by X, a contradiction (see Example 21).
Now let �x be a satisfying assignment. We will show that X spans no b ∈ B .

Choose �bp,α = (b1, . . . , bn+1) ∈ B corresponding to the clause Cp = li1 ∨ li2 ∨ li3 .
Observe that X = (

In�r
)
, where In is n × n identity matrix and �r = (rl1 , . . . , rln) is a

n-dimensional vector. Then the system In �y = (b1, . . . , bn) has a unique solution

yi = bi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4n, if i = i1;

2n, if i = i2;

n, if i = i3;

1, otherwise.

However the linear combination, with coefficients yi , of entries of the last row of
A cannot be equal to bn+1, the last entry of �bp,α , for any α ∈ {0, . . . , n − 3} (see
Example 22), because

• the linear combination is
∑

i=1...n yirli = 4nri1 + 2nri2 + nri3 + β , where β =∑
i �∈{i1,i2,i3}(1 − xi) is the number of zero entries of �x different than i1, i2, i3,

• bn+1 = 4n(�ali1)n+1 + 2n(�ali2)n+1 + n(�ali3)n+1 + α,
• there is at least one index j of {i1, i2, i3} such that it satisfies (�alj)n+1 �= rj (since

�x is a satisfying assignment, it must satisfy every clause).

Hence X is nontrivial element of F . �

262 Algorithmica (2008) 51: 239–263

Example 21 Let φ, A, B be as defined in Example 17. A nonsatisfying assignment
�x = (0,1,0,0,1) of φ corresponds to

X = (�ax1 , �ax̄2, �ax3 , �ax4, �ax̄5) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

�x does not satisfy the first clause x1 ∨ x̄2 ∨ x3, number of 0’s not in the first, second
or third entry of �x is 1, thus X spans �b1,1:

4 · 5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 2 · 5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 · 5

2 · 5

5

1

1

4 · 5 + 5 + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Example 22 A satisfying assignment �x = (1,0,0,0,1) of φ corresponds to

X = (�ax̄1 , �ax2, �ax3 , �ax4, �ax̄5) =
(

I5

�r

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Choose

�b1,α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

b3

b4

b5

b6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 · 5

2 · 5

5

1

1

4 · 5 + 5 + α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Algorithmica (2008) 51: 239–263 263

corresponding to the first clause x1 ∨ x̄2 ∨x3. Then the system I5 �y = (b1, . . . , b5) has
a unique solution

�y =

⎛
⎜⎜⎜⎜⎜⎜⎝

4 · 5

2 · 5

5

1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

However
∑

i=1,...,5 yirli = 2 · 5 + 5 + 1 �= 4 · 5 + 5 + α = b
1,α
6 , for any α ∈ {0,1,2}.

Thus X does not span �b1,0, �b1,1, �b1,2. Similarly X does not span �b2,0, �b2,1, �b2,2.

References

1. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Generating paths and cuts in multi-
pole (di)graphs. In: Fiala, J., Koubek, V., Kratochvil, J. (eds.) Mathematical Foundations of Computer
Science MFCS, Prague, Czech Republic, August 22–27, 2004. Lecture Notes in Computer Science,
vol. 3153, pp. 298–309. Springer, Berlin (2004)

2. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: On the complexity of some enu-
meration problems for matroids. SIAM J. Discrete Math. 19(4), 966–984 (2005)

3. Boros, E., Elbassioni, K., Gurvich, V.: Transversal hypergraphs to perfect matchings in bipartite
graphs: characterization and generation algorithms. J. Graph Theory 53(3), 209–232 (2006)

4. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of
multiway cuts. In: Proceedings of the 24th ACM Symposium on Theory of Computing, pp. 241–251
(1992)

5. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems.
SIAM J. Comput. 24, 1278–1304 (1995)

6. Fredman, M., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms.
J. Algorithms 21, 618–628 (1996)

7. Hu, T.C.: Multicomodity network flows. Oper. Res. 11, 344–360 (1963)
8. Johnson, D.S., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett.

27, 119–123 (1988)
9. Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets NP-

hardness and polynomial-time algorithms. SIAM J. Comput. 9, 558–565 (1980)
10. Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)
11. Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing cycles, paths, and spanning trees.

Networks 5, 237–252 (1975)
12. Schrijver, A.: Combinatorial Optimization Polyhedra and Efficiency, vol. B. Springer, Berlin (2003).

p. 654
13. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feedback problems.

Discrete Appl. Math. 117(1–3), 253–265 (2002)
14. Shioura, A., Tamura, A.: Efficiently scanning all spanning trees of an undirected graph. J. Oper. Res.

38, 331–344 (1995)
15. Tarjan, R.: A note on finding the bridges of a graph. Inf. Process. Lett. 2, 160–161 (1974)
16. Tsukiyama, S., Shirakawa, I., Ozaki, H., Ariyoshi, H.: An algorithm to enumerate all cutsets of a

graph in linear time per cutset. J. Assoc. Comput. Mach. 27, 619–632 (1980)
17. Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)
18. Welsh, D.J.A.: Matroid Theory. Academic, London (1976)

	Generating Cut Conjunctions in Graphs and Related Problems
	Abstract
	Introduction
	Main Results
	The X-e+Y Method
	Proof of Theorem 1
	Characterization of Cut Conjunctions
	Reduction
	Generating Cut Conjunctions in H(X,b)
	Characterization of Cut Conjunctions of H
	Supergraph of Cut Conjunctions of H
	Algorithm of Generating Cut Conjunctions of H

	Complexity

	Proof of Theorem 2
	Proof of Proposition 4
	Appendix: Proof of Proposition 3
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

