
Algorithmica (2008) 51: 81–98
DOI 10.1007/s00453-007-9056-z

Treewidth Lower Bounds with Brambles

Hans L. Bodlaender · Alexander Grigoriev ·
Arie M.C.A. Koster

Received: 22 December 2005 / Accepted: 6 November 2006 / Published online: 6 October 2007
© Springer Science+Business Media, LLC 2007

Abstract In this paper we present a new technique for computing lower bounds for
graph treewidth. Our technique is based on the fact that the treewidth of a graph G

is the maximum order of a bramble of G minus one. We give two algorithms: one
for general graphs, and one for planar graphs. The algorithm for planar graphs is
shown to give a lower bound for both the treewidth and branchwidth that is at most a
constant factor away from the optimum. For both algorithms, we report on extensive
computational experiments that show that the algorithms often give excellent lower
bounds, in particular when applied to (close to) planar graphs.

Keywords Treewidth · Lower bound · Bramble · Planar graph · Grid minor ·
Approximation algorithm

Communicated by Prof. Dr. Susanne Albers.

This work was partially supported by the Netherlands Organisation for Scientific Research NWO
(project Treewidth and Combinatorial Optimisation) and partially by the DFG research group
“Algorithms, Structure, Randomness” (Grant number GR 883/9-3, GR 883/9-4).

H.L. Bodlaender
Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089,
3508 TB Utrecht, The Netherlands
e-mail: hansb@cs.uu.nl

A. Grigoriev (�)
Department of Quantitative Economics, University of Maastricht, P.O. Box 616,
6200 MD Maastricht, The Netherlands
e-mail: a.grigoriev@ke.unimaas.nl

A.M.C.A. Koster
Zuse Institute Berlin (ZIB), Takustraße 7, 14195 Berlin-Dahlem, Germany
e-mail: koster@zib.de

82 Algorithmica (2008) 51: 81–98

1 Introduction

Motivation In many applications of the notion of treewidth, it is desirable that we
can compute tree decompositions of small width of given graphs. Unfortunately, find-
ing a tree decomposition of minimum width and determining the exact treewidth are
NP-hard; see [3]. Much research has been done in recent years on the problem to
determine the treewidth of the graph: this includes a faster exponential time algo-
rithm [20], a theoretically optimal but due to the large constant factor hidden in the
O-notation impractical linear time algorithm for the fixed parameter case [5], a poly-
nomial time algorithm for graphs with polynomially many minimal separators [13], a
branch and bound algorithm [22], preprocessing methods [9, 11], upper bound heuris-
tics [2, 15, 27], and lower bound heuristics [10, 14, 28, 29, 31]. An overview with
many references can be found in [7].

In this paper, we focus on lower bound methods for treewidth. Lower bound al-
gorithms are interesting and useful for a number of different reasons. When running
a branch and bound algorithm to compute the treewidth of a graph, see e.g. [22], a
good lower bound helps to quickly cut off branches. Lower bounds inform us on the
quality of upper bounds. Also, a high lower bound can tell that we should not aim for
a solution of a problem on a certain graph instance with treewidth techniques: Sup-
pose we decide we want to solve a certain problem on a given graph with a dynamic
programming algorithm on a tree decomposition. If we have a large lower bound for
the treewidth of that graph, we know in advance that this dynamic programming al-
gorithm will use much time and memory, and hence we should direct our attention to
trying different methods. Finally, better lower bounds for treewidth sometimes help
to obtain further reductions in the size of graphs obtained by preprocessing [11].

In recent years, several treewidth lower bound methods have been found and eval-
uated. A trivial lower bound for the treewidth is the minimum degree of a vertex.
Better lower bounds are obtained by looking at the minimum degrees of induced sub-
graphs or of graphs obtained by contractions, see [10]. Often slightly better than the
minimum degree is a lower bound by Ramachandramurthi [31], which is (for non-
complete graphs) the minimum over all pairs of non-adjacent vertices v, w, of the
maximum degree of v and w. Another lower bound, found by Lucena [29] and ana-
lyzed in [8], is based on maximum cardinality search. Combining these bounds with
contractions gives often considerable improvements [10, 28]. Further improvements
can be obtained by using these techniques in combination with a method introduced
by Clautiaux et al. [14], based upon adding edges between vertices that have many
common neighbors or disjoint paths between them [12].

The experiments carried out in [10, 28] show that for several graphs, the existing
lower bound methods give good bounds that are often close and in several cases equal
to the actual treewidth. However, there are classes of graphs where each of these
methods yields a rather small lower bound that is far away from the real treewidth.
For instance, this holds for planar graphs or graphs that are in a certain sense close
to being planar, e.g., graphs obtained by taking the union of a small number of TSP-
tours on a point set in the plane [16]. The reason that the above mentioned techniques
appear to fail for these graphs mostly is due to the fact that all these methods in a
certain sense are (minimum) degree-based, and (close to) planar graphs always have
vertices of small degree, cf. [41].

Algorithmica (2008) 51: 81–98 83

For planar graphs, Seymour and Thomas [38] presented an O(n2) time algorithm
computing a minimum branchwidth. Branchwidth of a graph is a lower bound for
the treewidth, and moreover, the branchwidth of a graph approximates the treewidth
within a factor of 3/2, see Robertson and Seymour [34]. Unfortunately, the algo-
rithm of Seymour and Thomas requires a substantial, although polynomial, amount
of memory, so it runs out of memory even for the medium size graphs (from 2000
nodes), see [24, 25]. In the later two papers, Hicks proposed another algorithm that
at cost of slowing down the algorithm of Seymour and Thomas makes it “memory
friendly”. The algorithm of Hicks runs in time O(n3) and can deal with graphs up to
15000 nodes.

Since the known algorithms for a treewidth lower bound are either slow, or not
memory friendly, or provide a bad quality bound, we were searching for a new
method using a different principle that works well for graphs that are planar or close
to planar. In this paper, we present such a different method, based on the notion of
bramble (for the first time, brambles appeared in [37] with the name screens).

Notations and Preliminaries Throughout this paper, G = (V ,E) denotes an undi-
rected simple graph. We use many of the standard graph theoretic notions in the usual
way, like path, connected subgraph, etc. For a subset S ⊆ V of the vertices, we denote
with N(S) the neighbors of S that are outside S, i.e., N(S) = {w ∈ V \ S : {v,w} ∈
E,v ∈ S}. With G[S] we denote the subgraph of G induced by S ⊆ V . Instead of
G[V \ S] we also write G \ S.

The vertex connectivity of non-adjacent vertices v,w ∈ V in G is defined as the
minimum size of a vertex set S ⊂ V such that v and w are in different components
of G \ S. By Menger’s Theorem [30], the number of vertex disjoint paths between v

and w equals the vertex connectivity. The vertex connectivity of a pair v,w and the
vertex disjoint paths can be computed by maximum flow techniques, see e.g. [1].

The notions of tree decomposition and treewidth were first defined by Robertson
and Seymour [33]. Several other, equivalent notions, have been proposed by many
different authors, see e.g., [6].

Definition 1.1 A tree decomposition of a graph G = (V ,E) is a pair ({Xi | i ∈ I },
T = (I,F)), with {Xi | i ∈ I } a family of subsets of V and T a tree, such that

• ⋃
i∈I Xi = V ,

• For all {v,w} ∈ E, there is an i ∈ I with v,w ∈ Xi , and
• For all v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} forms a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ I }, T = (I,F)) is maxi∈I |Xi | − 1. The
treewidth of a graph G, tw(G), is the minimum width among all tree decompositions
of G.

A graph H is a minor of G, if H can be obtained from G by a series of zero or
more vertex deletions, edge deletions, and edge contractions. It is well known that if
H is a minor of G, then the treewidth of H is at most the treewidth of G.

A notion closely related to treewidth is the branchwidth of a graph, also introduced
by Robertson and Seymour [34, 35].

84 Algorithmica (2008) 51: 81–98

Definition 1.2 A branch decomposition of a graph G = (V ,E) is a pair (T =
(I,F), σ), with T a ternary tree (a tree where every non-leaf node has degree 3)
with |E| leaves, and σ a bijection from E to the set of leaves of T .

The order of an edge f ∈ F is the number of vertices v ∈ V , for which there exist
adjacent edges {v,w}, {v, x} ∈ E, such that the path in T from σ(v,w) to σ(v, x)

uses f .
The width of branch decomposition (T = (I,F), σ), is the maximum order over

all edges f ∈ F . The branchwidth of a graph G, bw(G), is the minimum width over
all branch decompositions of G.

Robertson and Seymour [34] proved that max{bw(G),2} ≤ tw(G) + 1 ≤
max{�3bw(G)/2�,2}. One easily can convert a branch decomposition into a tree
decomposition such that the respective widths fulfill these inequalities.

We next give the definitions of bramble and related notions, following the termi-
nology of Reed [32].

Definition 1.3 Let G = (V ,E) be a graph. Two subsets W1,W2 ⊆ V are said to touch
if they have a vertex in common or E contains an edge between them (W1 ∩ W2 	= ∅
or there is an edge {w1,w2} ∈ E with w1 ∈ W1, w2 ∈ W2). A set B of mutually
touching connected vertex sets is called a bramble. A subset of V is said to cover B
if it is a hitting set for B (i.e., a set which intersects every element of B.) The order
of a bramble B is the minimum size of a hitting set for B. The bramble number of G

is the maximum order of all brambles of G.

The relationship between the bramble number and the treewidth was obtained by
Seymour and Thomas [37]:

Theorem 1.4 (Seymour and Thomas [37]) Let k be a non-negative integer. A graph
has treewidth k if and only if it has bramble number k + 1.

For a short proof of this theorem we refer to Bellenbaum and Diestel [4].

Corollary 1.5 Given a bramble B of order k in a graph G, tw(G) ≥ k − 1.

So, finding a high order bramble immediately implies getting a good lower bound for
the treewidth. Unfortunately, determining the order of a bramble, is also NP-hard; it
follows directly from the NP-hardness of the minimum hitting set problem [21] by
taking a complete graph G and the collection of subsets as the bramble.

A class of graphs for which the bramble of maximum order can be constructed
easily is the class of grid graphs. It is folklore that an x by x grid has treewidth x; see
e.g., Fig. 1 for a bramble of order x + 1. We have one set that contains all vertices on
the bottom row, one set that contains all vertices on the last column except the last
one, and (x − 1)2 crosses, each consisting of the first x − 1 vertices of one of the first
x − 1 rows and the first x − 1 vertices of one of the first x − 1 columns. A set that
covers the bramble must contain at least x − 1 vertices to cover the crosses, and one
vertex in each of the other two sets.

Algorithmica (2008) 51: 81–98 85

Fig. 1 Illustrating a bramble of
a grid

In this paper, we therefore restrict our search to brambles for which the order can
be computed easily, due to the construction of the bramble. In Sect. 2 we construct
brambles for general graphs; and in Sect. 3 a more sophisticated, though fast, algo-
rithm for planar graphs is presented. The latter algorithm is a constant approximation
algorithm for both treewidth and branchwidth of planar graphs. In Sect. 4, we report
on computational results, showing the effectiveness of the brambles as lower bound
for treewidth in those cases that the graph is (close to) planar. We finish the paper
with some concluding remarks.

2 Brambles in General Graphs

In this section, we present Algorithm A1. Algorithm A1 gets as input an arbitrary
undirected graph G, finds several brambles of G or of minors of G, and outputs the
best treewidth lower bound found this way.

First, in an initialization step, the set of vertices is split in a number of level sets,
V0, . . . , VR (with R defined within the initialization). For simplicity, the level sets are
called by their levels. In the basic step, a number of brambles is constructed, and their
order is computed. The maximum order encountered is recorded and returned at the
end.

Before we can give a detailed description of the algorithm, we have to introduce
some additional notation. Given a subset S ⊆ V of the vertices with G[S] not con-
nected, we call a set T a connectivity closure of S in G if G[S ∪ T] is connected. If
G is not connected, there does not exist a connectivity closure of S in G.

A, not necessarily minimal, connectivity closure is provided by the following pro-
cedure: Let T := ∅ in the beginning. Construct a bidirectional graph D = (V ,A) with
two arcs for every edge in E. For (v,w) ∈ A, define a length of 0 if v,w ∈ S ∪ T and
1 otherwise. Now, compute the shortest path from an arbitrary vertex v ∈ S ∪ T to all
other vertices in S. The distance between two vertices is either zero or at least two.
If the length of a path between v and w is at least two, v and w are in two different
components of G[S ∪ T], and the distance minus one is the minimum number of
vertices required to connect both components. Now, let w be a vertex for which the
distance is minimum among those with distance at least two. We add the vertices on
the (v,w)-path to T and restart the procedure from the construction of D, until no
distance between vertices of S ∪ T exceeds zero.

Now, we are ready to define the algorithm.

86 Algorithmica (2008) 51: 81–98

Algorithm A1

Initialization.

1. Take an arbitrary vertex r in V . Define V0 := {r}. Set k := 1.
2. Let V ′

k = N(Vk−1) \ {⋃k−1
i=0 Vi} be the vertices adjacent from Vk−1 that are not

part of the existing subsets. If G[V ′
k] is connected, then Vk := V ′

k . Otherwise, we

search for a connectivity closure V ′′
k of V ′

k in G \ {⋃k−1
i=0 Vi}. If such a closure

exists, let Vk := V ′
k ∪ V ′′

k . If there is no connectivity closure for the set V ′
k , then

redefine Vk−1 := V \ {⋃k−2
i=0 Vi} and go to Step 3 of the initialization. In all other

cases, set k := k + 1 and return to the beginning of Step 2.
3. Set R := k. Add to the graph a dummy vertex q; connect all vertices from the

level R − 1 to q; and define VR := {q}.
4. Initialize an integer variable bestlow to -1.

Basic Step. For all 1 ≤ i ≤ j ≤ R − 1 do the following.

1. Let Gi,j be the graph resulting from G after contraction of the first i levels
V0, . . . , Vi−1 into vertex si and contraction of the last R − j levels Vj+1, . . . , VR

into vertex tj .
2. Let cij be the vertex connectivity of the pair (si , tj) in Gi,j . Moreover, let P�,

� = 1, . . . , cij , denote the internal vertices of cij vertex disjoint paths between si
and tj .

3. Define Bi,j as follows. Let {si} be an element of Bi,j . For all i ≤ k ≤ j and
1 ≤ � ≤ ci,j let the set Vk ∪ P� be an element of Bi,j .

4. Set bestlow to the maximum of bestlow and min{ci,j , j − i + 1}.
Output. Output LB1 = bestlow. STOP.

Notice, that the procedure described in Step 2 of the initialization is a classical
Breadth-First-Search (BFS) extended with taking connectivity closures. Moreover,
note that for 1 ≤ i ≤ j ≤ R − 1, the vertices si and tj are not adjacent in Gi,j by
definition of the level sets, and thus the vertex connectivity is defined for these vertex
pairs.

Theorem 2.1 The set Bi,j ,1 ≤ i ≤ j ≤ R − 1, is a bramble of Gi,j \ {tj }. The order
of this bramble equals min{ci,j + 1, j − i + 2}.

Proof Take any pair i, j such that 1 ≤ i ≤ j ≤ R − 1 and consider the corresponding
graph Gi,j . Let us check whether all conditions in the definition of brambles are
satisfied for the set Bi,j .

First of all, let us verify that each element of Bi,j induces a connected set. From
initialization we know that each level is a connected set. The paths P� constructed in
the basic step of A1 are clearly connected and each of those paths crosses all levels
in Gi,j . Hence a union of any level and any path forms a connected set.

Secondly, all elements of Bi,j are mutually touching: all unions of level and path
are touching {si}, and again all paths from the basic step in A1 pass through all levels
in Gi,j . Therefore, Bi,j is a bramble for Gi,j .

Algorithmica (2008) 51: 81–98 87

Let C ⊂ V be a vertex set that determined the vertex connectivity of the pair si , tj .
Clearly, C ∪ {si} forms a cover for the constructed bramble. A set of representative
vertices, one from each level k, i ≤ k ≤ R − j , together with si also form a cover
for the constructed bramble. Thus, the order of the bramble is at most min{ci,j + 1,
j − i + 2}. Since the levels are non-intersecting, the paths constructed at the basic
step of A1 are vertex disjoint, and the bramble contains all combinations of these
levels and paths, the order of the bramble is at least min{ci,j + 1, j − i + 2}, which
completes the proof. �

Note that, although Gi,j is a minor of G if j < R − 1, the bramble cannot be
extended with subset {tj } since si and tj are not touching.

Corollary 2.2 For each graph G, LB1 ≤ tw(G).

Proof By Theorem 2.1, each time bestlow is increased, it is set to the order of a
bramble of a graph Gi,j minus one. By Corollary 1.5, this value is a lower bound on
the treewidth of Gi,j , and as Gi,j is a minor of G, this is also a lower bound on the
treewidth of G. �

Theorem 2.3 Algorithm A1 can be carried out in O(n3m) time on a graph G with
n vertices and m edges.

Proof Computing the partition of V into the level sets requires at most R construc-
tions of a connectivity closure. The proposed procedure for this takes at most n com-
putations of shortest paths from a source to all other nodes in the graph. Each compu-
tation of a shortest path can be done in O(n + m) time. We can use a straightforward
implementation of Dijkstra’s algorithm (see [1, pp. 108–112]), and note that, because
all edge lengths are 0 or 1, the values in the priority queue that are not ∞ differ by at
most one. Thus, each of the O(n+m) extract-min or update operations to the priority
queue can be done in O(1) time, and the total time of this shortest path computation
costs O(n + m) time. Hence, the initialization requires at most O(Rnm) time.

In the basic step of the algorithm we compute c vertex disjoint (s, t)-paths in a
graph, that can be done in O(nm) time; see [1, pp. 273–277]. Together with enumer-
ation over all possibilities for i and j , it brings the time complexity of the basic step
up to O(R2nm). Since R ≤ n, we have that the total running time of A1 is at most
O(n3m), as required. �

At cost of an additional multiplicative factor of n we can find a root vertex r for
the BFS that provides the best lower bound for the treewidth, cf. Sect. 4.

3 Brambles in Planar Graphs

Algorithm A1 can be significantly improved in running time when the input graph
is restricted to be planar. Given an embedding of Gi,j \ {si, tj }, the vertex disjoint
paths P� can be viewed as layers in the graph, with the remaining vertices laying

88 Algorithmica (2008) 51: 81–98

between (below/above) these layers. Since every level set Vi is connected as well and
all paths intersect with Vi , the vertices in between the layers can be contracted either
to the layer above or below. If we further contract vertices on a path that belong to the
same level set Vi , the resulting graph contains a cij by j − i + 1 grid, and hence the
treewidth of Gi,j is at least min{cij , j − i +1}. The need for a root vertex r , however,
causes that for grid graphs the treewidth may not be reached by Algorithm A1.

In this section we present a different algorithm that searches for grid minors in
planar graphs more directly. Algorithm A2 below finds brambles in several minors of
a connected planar graph G. In the initialization step, we partition the vertices on the
exterior face in North, East, West, and South. In the basic step, the algorithm builds
grid minors of G for which we know how the maximum order bramble looks like. Al-
gorithm A2 outputs the largest lower bound due to the grid minors and corresponding
brambles it has met.

Algorithm A2

Input. A planar embedding of G with no edge crossings. It is well known that such
an embedding can be constructed in linear time (e.g., the O(n + m) algorithm by
Hopcroft and Tarjan [26]).

Initialization. Let F be the exterior face of the embedding and let f be the length of a
single closed clockwise walk along F . Since G is a simple graph, f ≥ |F | ≥ 3. Let
North, East, South, and West be four paths on F (possibly atomic if F is a simple
cycle on 3 vertices) being sequential parts of a closed clockwise walk along F such
that North has one common endpoint with East, East has one common endpoint
with South, South with West, and finally West with North. Moreover, let the lengths
of these four paths be roughly the same, i.e., the length may vary by at most one
vertex being either �f/4� + 1 or �f/4� + 1. Notice that such paths always exist and
can be found in linear time. We add in the exterior four dummy vertices N ,E,S ,
and W and connect them to all vertices in North, East, South, and West respectively.
Further in the paper we always refer to the vertices incident to N ,E,S,W as to
North, East, South and West, respectively; and we denote Dummy = {N ,E,S,W}.
Finally, we set integer variable bestlow to −1.

Basic step. We view the algorithm as a rooted search tree with a root corresponding
to the graph constructed in the initialization. At each node of the search tree we
perform the following steps.

1. Given a node i in the tree and the planar graph Gi = (Vi,Ei) associated with
this node. Let ci be the vertex connectivity of (N ,S) in graph Gi \ {E,W} and
di the vertex connectivity of (W,E) in Gi \ {N ,S}. Find ci vertex disjoint paths
connecting N and S , and di vertex disjoint paths connecting W and E . Clearly,
Gi \ Dummy contains a ci × di grid as a minor, and therefore it contains also a
bi × bi grid as a minor, where bi = min{ci, di}. Create an order bi + 1 bramble
Bi for this bi × bi grid as described in Section 1. Set bestlow to the maximum of
bestlow and bi .

2. If bi = ci , we create the child nodes of i as follows. Let Ci ⊂ Vi be a vertex set
determining the vertex connectivity of (N ,S) in Gi \ {E,W}. Further in the text
we refer to such a set as a separator. The graph Gi \ (Ci ∪ {E,W}) has at least

Algorithmica (2008) 51: 81–98 89

two components, one containing N and another containing S . Notice that there
can be other components eventually separated by Ci from both N and S . For
each component we create a child node in the search tree and construct the graph
associated with this child node as follows.

Let G
q
i be a component in Gi \ (Ci ∪ {E,W}). Consider the exterior face X

of G
q
i \ Dummy. Now, like in the initialization, we define four paths North, East,

South, and West in a single closed clockwise walk along X. If a vertex v ∈ X

belongs to North in Gi , let this vertex belong to North in G
q
i as well. In the

similar way we leave the vertices which are already assigned to East, South, and
West in Gi in the corresponding paths in G

q
i .

Yet unassigned vertices in X we assign to the paths in such a way that, again,
the paths (possibly atomic) become sequential parts of a closed clockwise walk
along X such that North has one common endpoint with East, East has one
common endpoint with South, South with West, and West with North. Finally, we
connect N to North, E to East, S to South, and W to West. Let the resulting graph
be a graph associated with a child node of i corresponding to component G

q
i .

3. If di < ci , we similarly create the child nodes with respect to the vertex connec-
tivity of (E,W).

4. We recurse on the child nodes unless the number of non-dummy vertices in the
graph associated with the node becomes less or equal to the current value of
bestlow.

Output. Output LB2 = bestlow. STOP.

Theorem 3.1 The lower bound LB2 on the treewidth of a planar graph can be ob-
tained by Algorithm A2 in time O(n2 logn).

Proof We already observed that for any node i in the search tree, bi is the size of a
side of a square grid minor in G. Since the treewidth of a square grid is equal to the
size of a side of the grid, we directly have that bestlow = maxi bi is a lower bound on
the treewidth of G.

Notice that the initialization requires only linear time. In the basic step of the
algorithm we compute two vertex connectivities in a planar network, which can be
done in O(n logn) time; see Theorem 8.8 in [1, p. 265]. Then we create the child
nodes in the search tree basically determining the connected components in a graph
which takes linear time. Therefore, the basic step of the algorithm requires O(n logn)

time.
We perform the basic step for all nodes of the search tree. Let us argue that the

number of nodes in this tree is at most n. Consider leaf nodes of the tree. By construc-
tion, the vertex sets of the graphs associated with all leaf nodes are mutually disjoint.
Now, consider the immediate parent node of some nodes. The graph associated with
this parent node contains a vertex set of G (determining the vertex connectivity of
two dummy vertices at a certain basic step of the algorithm) which is removed from
all child nodes. Therefore, moving up to the root, in each parent node we find at least
one vertex which is not present in any of its children. Since the number of vertices in
V is n, we conclude, that the search tree has size at most n.

90 Algorithmica (2008) 51: 81–98

Fig. 2 Graph and rooted tree of Algorithm A2 (trivial child nodes are left out)

Thus, applying the basic step to all nodes of the tree, we have the total running
time of A2 at most O(n2 logn), as required. �

It is noticeable that Algorithm A2, besides estimation of the treewidth, approxi-
mates another parameter of the planar graph, namely the size of a side in the largest
grid minor. It is well known that planar graphs having a large treewidth must have
also a large grid as a minor; see e.g. [17, 19, 36]. The following theorem and corol-
lary present the algorithmic consequences of this fact.

Theorem 3.2 For any planar graph G, the lower bound on the treewidth returned by
Algorithm A2 satisfies the inequality b/4 ≤ LB2 ≤ b, where b is the size of a side in
the largest square grid minor in G.

Proof Let M be the largest square grid minor in G with the size of a side b. By con-
struction, LB2 is the size of a side in a square grid minor of G. Therefore, inequality
LB2 ≤ b always holds. Thus, it remains to prove the lower bound for LB2.

Consider a node i in the search tree such that Gi contains at least b2/2 vertices of
M and each of its children contains at most b2/2 vertices of M . Notice that such a
node does always exist otherwise we have a contradiction to the stoppage criteria of
the algorithm.

In each node of the search tree, the graphs associated with its child nodes are some
connected components in G \S where S consists of at most four vertex cuts obtained
in the parent nodes (at most two vertex cuts determining (N ,S) connectivity and
at most two vertex cuts determining (E,W) connectivity). Let Si be the union of
these vertex cuts determining the child nodes of i, i.e. the child nodes of i are some
connected components in G \ Si . By definition of node i, we have that G \ (Vi ∪ Si)

Algorithmica (2008) 51: 81–98 91

contains at most b2/2 vertices of M and each of the child nodes of i contains also at
most b2/2 vertices of M .

For a graph G′ = (V ′,E′), let us refer to a subset S ⊆ V ′ as to balanced separator
of G′ if each connected component in G′ \ S has at most |V ′|/2 vertices. It is well
known that a minimum balanced separator in a b × b grid graph has size b, see e.g.
[18] (the size of a minimum balanced separator is also known as the vertex bisection
of the graph). From observation above we have that Si ∩ M is a balanced separator
in M , and therefore |Si | ≥ b. Since Si consists of at most 4 vertex cuts, one of these
cuts must have size at least b/4 that completes the proof. �

From Theorem 3.2 and the result by Robertson, Seymour, and Thomas [36] that
every planar graph of treewidth tw(G) has an �(tw(G)) × �(tw(G)) grid graph as a
minor, we deduce the following corollary.

Corollary 3.3 Algorithm A2 is a constant approximation algorithm for the treewidth
and for the branchwidth of planar graphs.

Proof From Theorem 3.2 we have that S = �(LB2). From the result by Robertson,
Seymour, and Thomas [36], we have that tw(G) = �(bw(G)) = �(S) = �(LB2),
where bw(G) is the branchwidth of graph G. �

We complete this section with a brief discussion of advantages and disadvantages
of Algorithm A2 in comparison with the known approximation algorithms for the
treewidth on planar graphs. Seymour and Thomas have shown that the branchwidth
of a planar graph can be computed in polynomial time [38]. By the result of Robert-
son and Seymour [34] that each branch decomposition can be converted to a tree
decomposition with width at most 3/2 times the width of the branch decomposi-
tion (cf. Sect. 1), we directly have a polynomial time approximation algorithm for
treewidth of planar graphs with ratio 3/2.

The decision version of the algorithm of Seymour and Thomas [38] runs in O(n2)

time. A version that also constructs branch decompositions of optimal width uses
more time; recently, Gu and Tamaki [23] showed this can be done in O(n3) time. If
we want to obtain lower bounds on the treewidth, we only need to run the decision
version. However, an important disadvantage of the Seymour and Thomas algorithm
is that it is not memory friendly and even for the medium size graphs it easily runs
out of memory; see [24, 25]. Recently, Hicks in [25] made several attempts to get
a memory friendly algorithm based on the Seymour and Thomas ideas. He derived
two memory friendly algorithms with running time O(n3). Clearly, the machinery
of Algorithm A2 does not require much of memory resources and the algorithm has
nearly the same running time as Seymour and Thomas’ algorithm, and better running
time than Hicks’ algorithm. The disadvantage of Algorithm A2 is its worse perfor-
mance ratio in comparison to the other algorithms. On the other hand, Algorithm A2
eventually estimates another important parameter of a planar graph, namely the size
of a side in the largest square grid minor. Moreover, the version of Algorithm A2 that
also constructs a square grid minor with the size of a side at least 1/4 of the side size
in the largest grid minor, runs in the same O(n2 logn) time.

92 Algorithmica (2008) 51: 81–98

4 Computational Experiments

In order to compare in practice the quality of Algorithms A1 and A2 with previously
studied treewidth lower bounds, these algorithms have been implemented in C++ and
tried out on a collection of input graphs. In this section, we report on the obtained re-
sults for two selected sets of instances as well as for grid graphs. The first set contains
a number of general graphs, that have been used in previous studies [10, 28] and orig-
inate from different applications like probabilistic networks, frequency assignment,
and vertex coloring. The second set of instances consists of planar graphs that have
been used by Hicks [24, 25] before. From both sets we selected some instances that
are representative for the whole set and/or show an interesting behavior. The CPU
times reported are in seconds and obtained on a Linux-operated PC with 3.0 GHz
Intel Pentium 4 processor. Some extensive experimental results can be found on [39].

Algorithm A1 Algorithm A1 for general graphs has been tested on both the selected
planar and non-planar graphs. In the implementation, we skip a graph Gi,j , whenever
j − i + 1 is not larger than the current value of bestlow, as such graphs cannot help
to increase the lower bound. This speeds up the algorithm considerably.

For grid graphs, Algorithm A1 can be analyzed. The best result can be achieved by
taking all vertices as root vertex r once. Now consider an x × x grid (i.e., treewidth
equals x). For this instance, the maximum is achieved when taking r the mid point
of a side of the grid (without loss of generality we assume that x is an odd number).
Here, the BFS level Vi , 1 ≤ i ≤ x/2, is a path of length 4i + 1 and the BFS level Vi ,
x/2 < i ≤ x − 1 is simply a column/row of the grid (i.e., for a vertex r at the border
of the grid, the sets Vi are defined by all vertices on distance i measured in the L∞-
norm). In graph Gi,x−1, 1 ≤ i ≤ �x/2�, there are min{4i − 1, x} vertex disjoint paths
between si and tx−1. In graph Gi,x−1, �x/2� ≤ i ≤ x − 1, there are exactly x vertex
disjoint paths between si and tx−1. Therefore, the value bestlow will be updated with
min{4i − 1, x − i}. Thus, maximizing the minimum over i, we derive that at the end
of the algorithm the value bestlow is at least �4(x − 1)/5�, i.e., roughly 4/5 of the
treewidth. This explains the value of 19 for 25 × 25 grid reported in Table 2.

The additional O(n) complexity of the algorithm can be reduced in practice by
sorting or limiting the number of root vertices. In principle the algorithm has to be
executed for only one of the vertices for which the maximum is achieved. However,
we cannot select on this value before computing it. Experiments have shown that
the eccentricity of a vertex is a reasonable criterion to sort/limit the root vertices.
The eccentricity ε(v) of a vertex v is the maximum depth of a breadth first search
with v as root, cf. [40] and hence the best lower bound with root r is limited by
ε(r). Figure 3 shows exemplarily for two planar graphs the eccentricity and LB1 for
all possible root vertices, sorted by decreasing eccentricity with LB1 as tiebreaker
(highest first). If the best bound achieved so far is at least ε(r) for some r ∈ V , we
do not have to run algorithm A1 with r as root. By sorting the vertices according to
decreasing eccentricity, the number of root vertices for which the algorithm should
be executed to obtain the best LB1 is limited in our computations this way. Figure 3
in fact indicates that the computation times can be reduced further by limiting the
number of root vertices to those with high eccentricity, since it is very unlikely that
vertices with ε(v) not close to the maximum achieve the maximum LB1.

Algorithmica (2008) 51: 81–98 93

Fig. 3 LB1 and eccentricity for all possible root vertices, sorted according to decreasing eccentricity with
LB1 as tiebreaker (highest first)

Table 1 Results for Algorithm A1 on selected non-planar graphs. The last five instances are subproblems
within the tour merging algorithm for TSP [16] and are close to planar. They have been pre-processed by
the rules in [11] to reduce the size of the graphs

Instance |V | |E| δC CPU LB1 CPU UB

link 724 1738 11 0.02 7 89.95 13

munin1 189 366 10 0.00 4 2.19 11

munin3 1044 1745 7 0.01 4 195.35 7

pignet2 3032 7264 38 0.12 5 3456.77 135

celar06 100 350 11 0.00 3 1.50 11

celar07pp 162 764 15 0.01 3 19.40 18

graph04 200 734 20 0.02 5 0.38 55

school1 385 19095 122 0.59 3 46.22 188

school1-nsh 352 14612 106 0.39 3 45.34 162

zeroin.i.1 126 4100 50 0.04 2 0.30 50

fl3795-pp 1433 3098 6 0.04 6 1501.53 13

fnl4461-pp 1528 3114 5 0.05 14 4703.67 33

pcb3038-pp 948 1920 5 0.03 12 383.77 25

rl5915-pp 863 1730 5 0.02 10 470.76 23

rl5934-pp 904 1800 5 0.02 12 378.17 23

Table 1 reports the results for non-planar graphs. For comparison a contraction de-
generacy δC(G) lower bound [10] is reported as well. Other recently studied bounds,
like MCSLB [8, 29] are outperformed by this bound or require significantly more
time for a slightly better bound. See also [39].

Different behavior can be observed: for the graphs originating from probabilistic
networks, frequency assignment, and coloring, LB1 is outperformed by the contrac-
tion degeneracy, both in time and value. For the graphs originating from a solution
approach for the traveling salesman problem, LB1 is significantly higher than δC(G).
It is known that these graphs are close to planar, which restricts the contraction de-
generacy to exceed small values (i.e., δC(G) ≤ 5+γ (G), where γ (G) is the genus of

94 Algorithmica (2008) 51: 81–98

Ta
bl

e
2

R
es

ul
ts

fo
r

A
lg

or
ith

m
s
A

1
an

d
A

2
on

se
le

ct
ed

pl
an

ar
gr

ap
hs

.A
tim

e
lim

it
of

10
00

se
co

nd
s

is
se

tf
or

st
ar

tin
g

A
lg

or
ith

m
A

1
w

ith
di

ff
er

en
tr

oo
ts

.F
or

so
m

e
gr

ap
hs

,
no

or
ig

in
al

co
or

di
na

te
s

w
er

e
av

ai
la

bl
e

In
st

an
ce

|V
|

|E
|

δ
C

C
PU

L
B

1
C

PU
#r

oo
ts

W
ith

ou
tc

oo
rd

in
at

es
W

ith
co

or
di

na
te

s

L
B

2
C

PU
#n

od
es

L
B

2
C

PU
#n

od
es

β
(G

)
−

1

ei
l5

1
51

14
0

5
0.

00
6

0.
02

51
3

0.
03

16
4

0.
03

10
7

lin
10

5
10

5
29

2
5

0.
00

6
0.

54
10

5
6

0.
08

19
5

0.
06

19
7

ch
13

0
13

0
37

7
5

0.
01

7
0.

59
13

0
5

0.
11

27
5

0.
11

27
9

pr
14

4
14

4
39

3
5

0.
00

7
1.

14
14

4
6

0.
10

23
5

0.
10

25
8

kr
oB

15
0

15
0

43
6

5
0.

01
8

0.
62

15
0

5
0.

15
29

7
0.

12
24

9

ts
p2

25
22

5
62

2
5

0.
01

10
5.

44
22

5
7

0.
20

36
9

0.
15

28
11

pr
22

6
22

6
58

6
5

0.
00

5
9.

51
22

6
5

0.
22

44
5

0.
22

46
6

a2
80

28
0

78
8

5
0.

01
7

8.
08

28
0

6
0.

28
52

−
−

−
12

pr
29

9
29

9
86

4
5

0.
01

8
36

.8
3

29
9

6
0.

32
52

6
0.

27
51

10

rd
40

0
40

0
11

83
5

0.
01

11
12

.7
7

40
0

9
0.

55
51

10
0.

45
45

16

pc
b4

42
44

2
12

86
5

0.
01

12
14

.3
6

44
2

9
0.

50
54

−
−

−
16

u5
74

57
4

17
08

5
0.

02
14

12
.4

0
57

4
10

0.
83

65
11

0.
72

61
16

p6
54

65
4

18
06

5
0.

02
7

20
4.

77
65

4
6

0.
77

11
8

7
0.

75
11

0
9

d6
57

65
7

19
58

5
0.

02
13

32
.0

0
65

7
12

1.
16

66
11

0.
88

63
21

pr
10

02
10

02
29

72
5

0.
03

16
22

5.
91

10
02

12
1.

79
98

12
1.

40
99

20

Algorithmica (2008) 51: 81–98 95

Ta
bl

e
2

(C
on

ti
nu

ed
)

In
st

an
ce

|V
|

|E
|

δ
C

C
PU

L
B

1
C

PU
#r

oo
ts

W
ith

ou
tc

oo
rd

in
at

es
W

ith
co

or
di

na
te

s

L
B

2
C

PU
#n

od
es

L
B

2
C

PU
#n

od
es

β
(G

)
−

1

rl
13

23
13

23
39

50
5

0.
04

17
12

9.
43

13
23

12
3.

38
14

6
13

2.
39

12
4

21

d1
65

5
16

55
48

90
5

0.
06

20
34

4.
24

16
55

18
2.

63
12

0
19

2.
56

10
3

28

rl
18

89
18

89
56

31
5

0.
06

18
87

2.
70

18
89

12
4.

94
19

4
14

3.
51

16
7

21

u2
15

2
21

52
63

12
5

0.
09

23
10

19
.7

4
35

23
4.

01
12

5
22

3.
55

12
6

30

pr
23

92
23

92
71

25
5

0.
09

21
10

07
.6

8
15

0
15

6.
05

18
4

16
5.

78
18

8
28

pc
b3

03
8

30
38

91
01

5
0.

10
25

10
06

.8
0

13
89

24
10

.1
2

16
3

24
8.

94
14

9
39

fl3
79

5
37

95
11

32
6

5
0.

12
16

10
10

.4
7

82
1

16
12

.0
3

32
1

14
11

.0
9

36
7

24

fn
l4

46
1

44
61

13
35

9
5

0.
17

35
10

14
.6

9
68

2
29

23
.5

2
19

4
30

16
.8

3
19

7
47

rl
59

34
59

34
17

77
0

5
0.

22
32

10
28

.3
5

45
7

29
29

.5
6

29
9

26
33

.7
4

32
3

40

pl
a7

39
7

73
97

21
86

5
5

0.
30

23
10

54
.5

9
23

20
45

.5
3

62
9

25
38

.5
0

59
0

32

us
a1

35
09

13
50

9
40

50
3

5
0.

53
42

11
75

.8
3

53
34

14
5.

82
60

5
42

10
5.

91
56

2
62

br
d1

40
51

14
05

1
42

12
8

5
0.

59
50

11
88

.4
3

57
40

15
6.

91
51

4
37

13
4.

97
53

4
67

d1
51

12
15

11
2

45
31

0
5

0.
68

54
12

18
.6

3
70

44
21

6.
76

51
3

41
15

5.
99

53
9

–

d1
85

12
18

51
2

55
51

0
5

0.
88

61
13

51
.5

4
28

50
25

1.
71

56
6

39
25

7.
73

65
7

–

gr
id

25
x2

5
62

5
12

00
5

0.
02

19
56

.4
3

62
5

23
0.

53
40

25
0.

83
40

24

96 Algorithmica (2008) 51: 81–98

G [41]). As was hoped for, the new lower bound turns out to be profitable for exactly
those instances, closing the gap to the best known upper bound UB substantially.

Table 2 shows the results of Algorithm A1 for planar graphs. The number of
restarts of the algorithm with other roots is restricted by an overall time limit of 1000
seconds. This limit does not include the computation of the eccentricity; the reported
CPU times includes this limit. The column “#roots” displays the number of restarts
within the time limit. Experiments have shown that further restarts have a very lim-
ited effect on the returned lower bound. For these graphs, the same behavior as for
close to planar graphs can be observed: the lower bound is substantially increased.

Algorithm A2 For grid graphs, the result of Algorithm A2 depends on the way the
exterior face is partitioned. If the partition matches exactly the sides of the grid, the
algorithm returns the size of the smallest side which is in fact the treewidth. If the
partition is unlucky in the sense that each side of the grid is partitioned among two
of the extra vertices, the returned value can drop to half the treewidth. This can be
avoided easily by rotating the partition and rerunning the algorithm.

Table 2 also shows the lower bound LB2 computed by algorithm A2. Results are
presented with and without usage of the original coordinates. If no coordinates are
used, the longest face of the computed planar embedding is taken as initial outer face.
With coordinates, the outer face is computed by a “walk around” starting at the vertex
with lexicographic highest coordinates. The face is partitioned in (roughly) equally
sized parts North, East, South, and West. Rotation has not been applied for these
instances. The results with or without coordinates are inconsistent. In some cases it
is advantageous to have coordinates, in other cases it is not.

Comparison Comparing LB1 and LB2, there is no clear winner. In some cases LB2
is better than LB1, but more often it is slightly worse. Since the computation time of
LB1 is the sum of a number of restarts as well as the eccentricity computation, it is
difficult to compare the algorithms in this respect.

The 3/2-approximation algorithm of Seymour and Thomas [38] for planar graphs
computes in fact the branchwidth β(G). It is well-known that the β(G)− 1 is a lower
bound on the treewidth. The values reported in Table 2 are taken from Hicks [24].
In all cases, this lower bound is higher than LB1 and LB2, as is the computational
effort, cf. [24]. For the two largest graphs, Hicks did not report the branchwidth; for
other large graphs the computational effort is significantly higher than that of our
algorithms. Where memory consumption is in issue in the Ratcatcher algorithms of
Hicks, our algorithms have moderate space requirements.

5 Concluding Remarks

The treewidth of a graph can be characterized by the notion of brambles, introduced
by Seymour and Thomas [38]. In this work, we developed bramble construction al-
gorithms as to bound the treewidth from below. The constructed brambles turn out to
be profitable, both in theory and practice, for graphs that are (close to) planar. These
results complement previously studied treewidth lower bounds that turned out to be
good for graphs that are far from planar.

Algorithmica (2008) 51: 81–98 97

The brambles searched for in this paper have structures that allow easy construc-
tion and order computation. An interesting question for further research is whether
more such structures exist. These may perhaps lead to new lower bound algorithms
for treewidth. Experiments (see e.g., [39]) reveal that for many instances, taken from
applications, there still are significant gaps between the best upper and lower bounds,
especially for graphs that are (close to) planar; thus, while this paper makes a useful
step, the quest for better algorithms for determining or approximating the treewidth
of such graphs remains.

Acknowledgements We thank Illya Hicks for providing us with the planar graphs for our experiments,
and an anonymous referee for pointing out a faster running time for the initialization step of Algorithm A1.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Pren-
tice Hall, New York (1993)

2. Amir, E.: Efficient approximations for triangulation of minimum treewidth. In: Proceedings of the
17th Conference on Uncertainty in Artificial Intelligence, pp. 7–15, 2001

3. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM
J. Algebr. Discrete Methods 8, 277–284 (1987)

4. Bellenbaum, P., Diestel, R.: Two short proofs concerning tree-decompositions. Comb. Probab. Com-
put. 11, 541–547 (2002)

5. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25, 1305–1317 (1996)

6. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209,
1–45 (1998)

7. Bodlaender, H.L.: Discovering treewidth. In: Vojtás̆, P., Bieliková, M., Charron-Bost, B. (eds.) SOF-
SEM 2005: Theory and Practive of Computer Science: 31st Conference on Current Trends in Theory
and Practive of Computer Science. Lecture Notes in Computer Science, vol. 3381, pp. 1–16. Springer,
Berlin (2005)

8. Bodlaender, H.L., Koster, A.M.C.A.: On the Maximum Cardinality Search lower bound for treewidth.
In: Hromkovic̆, J., Nagl, M., Westfechtel, B. (eds.) Proc. 30th International Workshop on Graph-
Theoretic Concepts in Computer Science WG 2004. Lecture Notes in Computer Science, vol. 3353,
pp. 81–92. Springer, Berlin (2004)

9. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete Math. 306, 337–350
(2006)

10. Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. In: Albers,
S., Radzik, T. (eds.) Proceedings 12th Annual European Symposium on Algorithms, ESA2004. Lec-
ture Notes in Computer Science, vol. 3221, pp. 628–639. Springer, Berlin (2004)

11. Bodlaender, H.L., Koster, A.M.C.A., Eijkhof, F.v.d: Pre-processing rules for triangulation of proba-
bilistic networks. Comput. Intell. 21(3), 286–305 (2005)

12. Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. J. Graph
Algorithms Appl. 10(1), 5–49 (2006)

13. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J.
Comput. 31, 212–232 (2001)

14. Clautiaux, F., Carlier, J., Moukrim, A., Négre, S.: New lower and upper bounds for graph treewidth.
In: Rolim, J.D.P. (ed.) Proceedings International Workshop on Experimental and Efficient Algorithms,
WEA 2003. Lecture Notes in Computer Science, vol. 2647, pp. 70–80. Springer, Berlin (2003)

15. Clautiaux, F., Moukrim, A., Négre, S., Carlier, J.: Heuristic and meta-heuristic methods for computing
graph treewidth. RAIRO Oper. Res. 38, 13–26 (2004)

16. Cook, W., Seymour, P.D.: Tour merging via branch-decomposition. INFORMS J. Comput. 15(3),
233–248 (2003)

17. Demaine, E.D., Hajiaghayi, M.: Graphs excluding a fixed minor have grids as large as treewidth,
with combinatorial and algorithmic applications through bidimensionality. In: Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA2005, pp. 682–689, 2005

98 Algorithmica (2008) 51: 81–98

18. Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34, 313–356
(2002)

19. Diestel, R., Jensen, T.R., Gorbunov, K.Y., Thomassen, C.: Highly connected sets and the excluded
grid theorem. J. Comb. Theory Ser. B 75, 61–73 (1999)

20. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-
in. In: Proceedings of the 31st International Colloquium on Automata, Languages and Programming,
pp. 568–580, 2004

21. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-
Completeness. Freeman, New York (1979)

22. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of the 20th An-
nual Conference on Uncertainty in Artificial Intelligence UAI-04, pp. 201–208, Arlington, Virginia,
USA. AUAI Press (2004)

23. Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n3) time. In: Proceedings
of the 32nd International Colloquium on Automata, Languages and Programming. Lecture Notes in
Computer Science. Springer, Berlin (2005)

24. Hicks, I.V.: Planar branch decompositions I: the Ratcatcher. INFORMS J. Comput. 17, 402–412
(2005)

25. Hicks, I.V.: Planar branch decompositions II: the cycle method. INFORMS J. Comput. 17, 413–421
(2005)

26. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21, 549–568 (1974)
27. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: computational experiments. In:

Broersma, H., Faigle, U., Hurink, J., Pickl, S. (eds.) Electronic Notes in Discrete Mathematics, vol. 8,
pp. 54–57. Elsevier, Amsterdam (2001)

28. Koster, A.M.C.A., Wolle, T., Bodlaender, H.L.: Degree-based treewidth lower bounds. In: Nikolet-
seas, S.E. (ed.) Proceedings of the 4th International Workshop on Experimental and Efficient Algo-
rithms WEA 2005. Lecture Notes in Computer Science, vol. 3503, pp. 101–112. Springer, Berlin
(2005)

29. Lucena, B.: A new lower bound for tree-width using maximum cardinality search. SIAM J. Discrete
Math. 16, 345–353 (2003)

30. Menger, K.: Zur allgemeinen Kurventheorie. Fund. Math. 10, 96–115 (1927)
31. Ramachandramurthi, S.: The structure and number of obstructions to treewidth. SIAM J. Discrete

Math. 10, 146–157 (1997)
32. Reed, B.A.: Tree Width and Tangles, a New Measure of Connectivity and Some Applications. LMS

Lecture Note Series, vol. 241, pp. 87–162. Cambridge University Press, Cambridge (1997)
33. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7,

309–322 (1986)
34. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory

Ser. B 52, 153–190 (1991)
35. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Ser.

B 63, 65–110 (1995)
36. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theory Ser.

B 62, 323–348 (1994)
37. Seymour, P.D., Thomas, R.: Graph searching and a minimax theorem for tree-width. J. Comb. Theory

Ser. B 58, 239–257 (1993)
38. Seymour, P.D., Thomas, R.: Call routing and the Ratcatcher. Combinatorica 14(2), 217–241 (1994)
39. Treewidthlib, http://www.cs.uu.nl/people/hansb/treewidthlib (2004)
40. West, D.B.: Introduction to Graph Theory. Prentice Hall, New York (2001)
41. Wolle, T., Koster, A.M.C.A., Bodlaender, H.L.: A note on contraction degeneracy. Technical Report

UU-CS-2004-042, Institute of Information and Computing Sciences, Utrecht University, Utrecht, The
Netherlands (2004)

	Treewidth Lower Bounds with Brambles
	Abstract
	Introduction
	Motivation
	Notations and Preliminaries

	Brambles in General Graphs
	Brambles in Planar Graphs
	Computational Experiments
	Algorithm A1
	Algorithm A2
	Comparison

	Concluding Remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

