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Abstract
Ultracentrifugation is an attractive method for separating full and empty capsids, exploiting their density difference. Changes 
of the serotype/capsid, density of loading material, or the genetic information contained in the adeno-associated viruses 
(AAVs) require the adaptation of the harvesting parameters and the density gradient loaded onto the centrifuge. To streamline 
these adaptations, a mathematical model could support the design and testing of operating conditions.
Here, hybrid models, which combine empirical functions with artificial neural networks, are proposed to describe the sepa-
ration of full and empty capsids as a function of material and operational parameters, i.e., the harvest model. In addition, 
critical quality attributes are estimated by a quality model which is operating on top of the harvest model. The performance 
of these models was evaluated using test data and two additional blind runs. Also, a “what-if” analysis was conducted to 
investigate whether the models’ predictions align with expectations.
It is concluded that the models are sufficiently accurate to support the design of operating conditions, though the accuracy 
and applicability of the models can further be increased by training them on more specific data with higher variability.

Keywords  Hybrid model · Ultracentrifugation · AAV · Full/empty capsids

Introduction

Adeno-associated virus (AAV) has become a widely used 
gene therapy vector, as its genetic payload (therapeutic 
gene) can be easily substituted to address different diseases, 
enabling a platform approach. Furthermore, different sero-
types are used which allow targeting different cells inside 
the human body [1, 2]. However, during the production of 
the virus capsids, not all capsids are filled with the DNA 
insert, i.e., there are full and empty capsids (and perhaps 
even partially filled or double filled ones). To ensure drug 

product efficacy and minimize immunogenicity and toxic-
ity, separation of full and empty and enrichment of the full 
capsids becomes necessary [3, 4].

One possible way of separating full and empty capsids is 
by ultracentrifugation, since the empty and full capsids have 
a difference in density [5–7]. For this purpose, the semi-
purified virus material is loaded together with a density 
gradient medium into the ultracentrifuge, centrifuged, and 
then carefully harvested, such that the density gradient can 
be exploited for separation. Whenever the serotype or insert 
is changed, the density gradient medium (DGM) solutions 
and harvesting parameters must be adapted using insert and 
system scale related ranges to allow for good separation (i.e., 
starting from standard conditions the parameters are modi-
fied whenever serotype or insert change to obtain a good 
separation). The objective is to streamline the adaptation 
using a mathematical model describing the process behavior 
and to simulate the process behavior for different conditions 
before running a final selection experimentally, significantly 
reducing the experimental effort.

Models for analytical ultracentrifugation [8–10] or 
for nanoparticle separation [11–13] have been reported 
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previously. These models are typically based on the momen-
tum balance for a particle

with m the mass of the particle, x the distance of the particle 
to the rotation center, t the centrifugal runtime, Fc the cen-
trifugal force, Fb the buoyancy, and Ff  the reverse viscous 
resistance [14]. After the start-up of the ultracentrifuge, the 
state of uniform motion without acceleration is reached, 
wherefore Fc = Fb + Ff  . In principle, this equation could be 
used to determine the position of empty and full capsids (as 
well as sedimentation coefficients), but it will require knowl-
edge about the particle masses, densities, and shapes as well 
as the viscosity and density of the DGM (which changes 
from the rotation center to the outside and with time). In the 
absence of this knowledge as well as the absence of meas-
urements for different runtimes, the model proposed in the 
following focuses on the developed steady state, where the 
reverse viscous resistance (a function of particle velocity) 
is zero (as the particles are no longer moving), and hence, 
Fc = Fb . Knowledge about the general shape of the particle 
distributions [10] is used to model their shape and position 
based on material attributes and tested process conditions. 
To the best of our knowledge, to date, no mathematical 
model for this process has been reported.

The article is structured as follows. In Sect. "Process and 
model", the experimental set-up and modeling methodology 
are described; in Sect. "Results and discussion", we present 
and discuss the results obtained for the proposed modeling 
approach and we showcase the models’ capabilities using 
a what-if analysis. In Sect. "Conclusions", the conclusions 
are presented.

Process and model

In this section, first, the experimental set-up is described; 
then, the structure of the proposed modeling workflow is 
discussed.

Experimental set‑up

Process equipment: Two different ultracentrifugation units, 
CC40S™ (Hitachi Koki) and AW PROMATIX 1000™ (Alfa 
Wassermann), displayed in Fig. 1, were used for the process 
runs. The goal is to use the smaller unit for process develop-
ment and then transfer the operating conditions to the larger 
unit and scale-up the process.

Process runs: An overview of the runs considered in 
this study is shown in Table 1; note that they have been 
performed using: (i) the two different centrifuges; (ii) 

(1)m ⋅

d2x

dt2
= Fc − Fb − Ff ,

three different AAV serotypes (henceforth named as “A”, 
“B”, “C”); and (iii) different transgene lengths (z-scores 
are reported for confidentiality reasons). Furthermore, 
Table 1 reports the information of which experiments were 
exploited for model training and testing.

Operation and initial conditions: The operating conditions 
and additional features, such as the key quality attributes of 

Fig. 1   Photos of: a CC40S™ (Hitachi Koki); b AW PROMATIX 
1000™ (Alfa Wassermann)

Table 1   Overview of the experiments considered in this study (equip-
ment + product features), their use in the training or test partition

Exp ID Train/test Equipment Serotype Insert length 
(z-scores)

#1 Train CC40S A 0.5132
#2 Train CC40S B −1.7234
#3 Test CC40S B −0.1702
#4 Train CC40S B −0.1702
#5 Train CC40S B −0.1702
#6 Train CC40S B 0.8885
#7 Test CC40S B 0.8885
#8 Train CC40S B −0.1702
#9 Train CC40S A 0.4460
#10 Train CC40S A 0.5132
#11 Train CC40S B 0.9094
#12 Train CC40S B 0.9094
#13 Train CC40S B 0.9094
#14 Train CC40S B 0.9094
#15 Train CC40S B 0.8885
#16 Train CC40S A 0.4460
#17 Test CC40S A 0.4460
#18 Train CC40S A 0.4460
#19 Train PROMATIX 1000 B −1.7234
#20 Train PROMATIX 1000 B −1.7234
#21 Train PROMATIX 1000 B −1.7234
#22 Test CC40S B −1.7234
#23 Train CC40S C 0.1842
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the inlet product (i.e., serotype volume/density of the loaded 
material, the transgene length inside the capsid), are differ-
ent for each run and reported in Table 2, hereafter referred 
to as Z variables. The Z variables that can be manipulated 
are the flowrate, the volumes of the low-, mid-, high-DGM 
solutions. The Z variables that are determined by the preced-
ing process step are volume load, density load, as well as the 
two OD peak areas. Those Z variables that are scale-specific 
were scaled using the total core volume, aiming at rendering 
the model scale independent.

Operation of the centrifuges: The centrifuge rotor is filled 
with the DGM as well as the process intermediate coming 
from the preceding step (column chromatography step). As 
the centrifuge accelerates, the density gradient changes from 
a vertical gradient to a radial gradient before reaching target 
speed. Subsequently, the centrifuge is operated at constant 
rotational speed for a given amount of time (depending on 
serotype and process intermediate density); both serotype-
specific operating modes deliver consistent separation per-
formance across the reported process runs. Differences in 
runtime can be ignored during the modeling workflow, as it 
is implicitly considered with the changes in serotype.

After finishing the targeted separation time, the centrifuge 
is decelerated, its content changes back to vertical gradi-
ent, and the material is evacuated from the centrifuge using 
a pump, measured by PAT systems (see Harvest measure-
ments section) and it is automatically fractionated, hereafter 
referred to as harvest.

Harvest measurements: The following measurements 
were recorded during the harvest of each run: (i) mixture 
density ( � ; [°Bx]); (ii) optical mixture density at two dif-
ferent wavelengths ( OD254 and OD280 ; [AU]), provided by 
online PAT sensors. Figure 2 shows an actual example of 
the profiles recorded during the harvest from one of the 

experimental runs. The density, measured in Brix degrees 
(°Bx), shows the characteristic monotonically decreasing 
profile of the DGM, whereas the two OD signals present two 
peaks, the first one (left) corresponding to the full AAVs and 
the second one (right) corresponding to the empty AAVs. 
Note that the distance between the peaks can vary (up to the 
point where the two peaks overlap into one) depending on 
the chosen operating conditions, and the more the peaks are 

Table 2   List of operating conditions and additional features, referred to as Z variables

a Here “Scaled” means that the Z variables showing “yes” are scaled by the total core volume reported for each experiment, which renders them 
independent of the scale of operation

Name Description u.o.m. Scaleda

Flowrate The volumetric flowrate at which the mixture is extracted from the centrifuge L h−1 yes
lowDGMVol Volume of low density DGM loaded into the centrifuge mL yes
midDGMVol Volume of mid density DGM loaded into the centrifuge mL yes
highDGMVol Volume of high density DGM loaded into the centrifuge mL yes
Initial density Average density of all the material in the centrifuge at the start of the run (DGM solution + loaded 

material)
g mL−1 no

Vol_Load Volume of loaded material mL yes
Density_Load Density of loaded material g mL−1 no
OD254_PeakArea Peak area of the load material at 254 nm, divided by dilution factor and multiplied by the ratio of 

Vol_Load and volume used for measurement
AU mL no

OD280_PeakArea Peak area of the load material at 280 nm, divided by dilution factor and multiplied by the ratio of 
Vol_Load and volume used for measurement

AU mL no

Insert length size of the genetic payload packed into the capsid bp [base pair] no

Fig. 2   An example of the online measurements performed during an 
experimental run: the density gradient curve (blue solid line), and 
the optical density (OD) detected at 254  nm (red line) and 280  nm 
(green line). The peaks registered for both the two OD correspond to 
the volume at which the maximum amount of full and empty capsids 
is eluted by the ultracentrifuge, respectively; the vertical black dotted 
lines point out the sampling intervals of fractionation for CQA analy-
sis and evaluation. The actual values are not explicitly reported for 
confidentiality reasons (color figure online)
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distant from each other, the more efficient the separation 
between the target product and the product-derived impuri-
ties (empty AAVs).

Critical quality attributes: As can be seen in Fig. 2, frac-
tions with predefined size have been collected during the 
harvesting process with an automated system at preset time 
intervals using dedicated harvest pump, and offline measure-
ments on each product fraction were performed to evalu-
ate the following Critical Quality Attributes (CQAs): (i) 
genome-containing AAV particles presence measured by 
polymerase-chain-reaction (PCR [vg mL−1]), (ii) full/empty 
ratio measured by analytical anion exchange chromatogra-
phy (F/E [−]), and (iii) AAV capsid presence measured by 
enzyme-linked immunosorbent assay (ELISA [cp mL−1]).

Model development

The experimental data described in the previous paragraph 
were used to build, in a sequential way,1 the following mod-
els: (i) density gradient model; (ii) optical density mod-
els (one at 254 nm, one at 280 nm); (iii) CQA models (to 
describe PCR titer, full-to-empty capsid ratio (F/E ratio), 
ELISA titer), which we found to be most efficient and whose 
interlinks are schematically shown in Fig. 3.

Step 1: the density gradient model

The purpose of using this model is to describe the density 
gradient during harvesting after the separation procedure. It 
assumed that a steady state was reached during the centrifu-
gal separation, i.e., acceleration and velocity of the particles 
in radial direction is zero, wherefore buoyant and centrifugal 

force for the particles are equal. Also, the density gradient 
is assumed to be fully developed and prolongation of the 
runtime would not result in changes in the density gradi-
ent. We assumed that the density � [g cm−3] profile can be 
approximated by an inverse sigmoid function (see Fig. 4a) 
and investigated the appropriateness of this function for the 
reported runs prior to this study. The function is:

(2)� = �Max − Δ�
1

1 + e−kd(v−vd)

Fig. 3   Schematic view of the modeling interactions and interplay

Fig. 4   a Qualitative representation of the inverse sigmoid function 
used to approximate the density profile. b Block diagram. The white 
block represents the semi-empirical function used to describe the 
density (ρ), whereas the black block represents the data-driven mod-
eling step for unknown parameters’ estimation

1  As the optimal density model depends on the density gradient esti-
mation and as the multiple CQA model depends on the estimation of 
the optical density and density gradient models, the models were built 
successively starting from the density gradient model.
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where �Max [g cm−3] is the maximum density (registered 
at the beginning of the process), Δ�=�Max−�Min [g cm−3] is 
the difference between the maximum density and the density 
at the end of the experiment, vd [−] is the normalized evacu-
ated volume corresponding to the sigmoid curve’s point of 
inflection, and kd [−] is the function decay coefficient.

In this study, the values of the parameter set θρ = [ �Max , 
Δρ , vd , kd] have been estimated by a feedforward artificial 
neural network (NN) which is function of the Z variables 
reported in Table 2 and the normalized evacuated volume 
v (as reported in Fig. 4b). Note that the input values for the 
NN were normalized by subtracting the mean and dividing 
with the standard deviation of the Z variables in the training 
data. The NN architecture consists of a single hidden layer 
with tangential hyperbolic activation functions (nodes). The 
nodes of the input and output layers are linear. The num-
ber of nodes in the hidden layer was systematically varied 
and the “optimal” number was selected as the one with the 
smallest architecture presenting a sufficiently low RMSE on 
the training data. The weights of the NN were identified 
by: (i) minimizing a weighted least square loss function for 
the training set using a stochastic gradient descent approach 
which was initialized 40 times from random values and (ii) 
choosing from the 40 initialization the 10 models perform-
ing best on the training set, which were for subsequent pre-
dictions aggregated, yielding a bootstrap-aggregated hybrid 
model.

The hybrid model and its analytical derivatives were 
implemented in Matlab® R2022a. Due to the “static” nature 
of the model, the computations could be accomplished using 
matrix computations. The computational time for training of 
a bootstrap-aggregated hybrid model with a fixed number 
of nodes in the hidden layer took about 15 min on an AMD 
Ryzen™ 9 5900HX processor with 64.0 GB RAM.

Step 2: the optical density models

This model describes the distributions of full and empty 
capsid particles after separation, assuming that the distri-
butions have a Gaussian function shape and that buoyant 
and centrifugal force for the particles are equal at harvest. 
The distributions can be observed through the optical den-
sity profiles at 254 nm and 280 nm during harvest. Hence, 
both optical density profiles are approximated by a second 
degree mixed Gaussian function as reported in Fig. 5; in 
practice, we assumed that: (i) both 254 nm and 280 nm 
signals can be described as two superimposed Gaussian 
functions representing the evacuation of full capsids (first 
peak) and empty capsids (second peak); (ii) the position 
of the two peaks is approximately located at the same elu-
tion volume for both 254 nm and 280 nm optical density 
signals. The final functions are expressed as:

In Eq. 3, P254,f [AU] and P254,e [AU] represent the peak 
magnitude of the OD at 254 nm related to products with 
full and empty capsids, respectively; �254,f  [−] and �254,e 
[−] are the values of normalized evacuated volume at 
which peaks occur for full and empty capsids; and �254,f  
[−] and �254,e [−] are the standard deviations of the two 
Gaussian curves (a similar description applies for Eq. 4, 
referring to 280 nm optical density). Note that, due to 
assumption (ii) described in this paragraph, we have 
�254,f = �280,f  and �254,e = �280,e , so the vector of unknown 
parameters is θOD = [ P254,f  , �254,f  , �254,f  , P254,e , �254,e , �254,e , 
P280,f ,�280,f  , P280,e , �280,e].

Similarly to density model’s parameters, the values of 
the parameter set θOD are the output of a neural network 

(3)

OD254 =P254,f ���

[

−1
2

(v − �254,f

�254,f

)2
]

+ P245,e���

[

−1
2

(v − �254,e

�254,e

)2
]

(4)

OD280 =P280,f ���

[

−1
2

(v − �280,f

�280,f

)2
]

+ P280,e���

[

−1
2

(v − �280,e

�280,e

)2
]

Fig. 5   a Qualitative representation of the function used to approxi-
mate the particle distributions observed through the optical density 
profile at 254 and 280 nm. b Block diagram. The white block repre-
sents the semi-empirical function used to describe the optical density 
profile at 254 and 280  nm), whereas the black block represents the 
data-driven modeling step for unknown parameters’ estimation
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(NN); in this case, the NN is function of: the Z variables 
reported in Table 2 and the density values predicted by the 
density gradient model, as shown in the block diagram in 
Fig. 5b; NN architecture consists again of a single hidden 
layer of hyperbolic tangential nodes and the optimal number 
of nodes, weights, and bootstrap-aggregated hybrid model 
structure was determined as described before for the den-
sity gradient model. The optical density hybrid model was 
implemented in Matlab® R2022a in the same fashion as 
the density gradient model, taking about the same amount 
of time for training.

Step 3: CQA models

This step consists of two sub-steps (see Fig. 3): (Step 3a) 
preprocessing of predicted profiles from both density gra-
dient model and optical density models; (Step 3b) model 
calibration.

Step 3a: During the preprocessing step, the predicted sig-
nals of density, optical density at 254 nm, and optical den-
sity at 280 nm are exploited to calculate their average value 
corresponding to each fraction extracted during harvest; in 
practice (see Fig. 6), given the values of the evacuated vol-
umes (vi and vi+1) between two fractions (i and i + 1), we 
estimated the value of the desired predicted feature yfrac,i as:

Step 3b: During the calibration step, the preprocessed 
data (i.e., the calculated fractions values of density gradient, 
OD254, OD280) and the insert length values are used as 
input to train a simple feedforward neural network model for 
each CQA (see Fig. 6b). Note that, in this case, we adopted 
a split ratio 90:10 for fraction measurements train/validation 
sets generation. Furthermore, we used square root transfor-
mation of the raw CQAs’ values, which helped to “normal-
ize” their distributions, originally characterized by positive 
skewness.

After training, all models were evaluated on the test set 
partition (see Table 1) as well as an additional data set com-
prising 2 runs, referred to as blind set. All computations 
were performed in Matlab® R2022a on an AMD Ryzen™ 
9 5900HX processor with 64.0 GB RAM. Density gradient 
and optical density models were calibrated using an imple-
mentation of the Adam optimization algorithm [15] with a 
learning rate of 1e-3 and 1000 iterations, whereas fitcrnet 
Matlab® internal function was used to fit the three CQA 
models.

(5)yfrac,i =
1

vi+1 − vi

i+1

∫
i

ydv.

Fig. 6   a Qualitative represen-
tation of the preprocessing 
substep (Step 3a) to calculate 
the fraction values for the opti-
cal density profiles predicted 
in Step 2. Note that the same 
procedure is applied to the den-
sity gradient profile predicted 
in Step 1. b Block diagram. The 
black blocks represent the data-
driven modeling approach used 
to estimate CQAs from the frac-
tion values of optical density 
and density gradient calculated 
in (Step 3a)
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Results and discussion

In this section, we first present and discuss the model per-
formance in terms of goodness-of-fit; then, we evaluate the 
model prediction performance through two additional runs, 
exploring unknown zones of the design space. Finally, we 
perform simulations to assess the validity of model predic-
tions from a physical point of view when perturbing key 
operating conditions.

Density gradient model

The predicted and measured density gradient values are 
shown over the evacuated volume in Fig. 7. Furthermore, 
we show the scores of each batch when projected by the first 
and second principal component using Principal Component 
Analysis (PCA, see Fig. 8a). Inspection of the predicted pro-
files show that all density gradient profiles are well modeled, 
although some runs show higher uncertainty in prediction; 
in particular:

•	 Training runs #10, #11, #12, #13 show more uncertainty 
both at the start and the end of the run. This seems to be 
explained by the runs’ conditions as visually apparent 
from Fig. 8, i.e., #10 is the run performed at the high-
est OD_PeakAreas, whereas runs #11, #12, and #13 are 

performed using high insert length values (see Table 1 
for reference to the z-scores).

•	 Test runs #3 and #22 show both higher discrepancy 
between measured and predicted values, especially dur-
ing the second half of the run; as becomes apparent from 
Fig. 8a, the behavior on these runs can be explained by 
the position of these two batches in the score plot, far 
from the origin and distant from other batches more than 
the other two test runs (#3 and #17).

The position and width of the full and empty capsid peaks 
can be expected to be directly impacted by the density gra-
dient, for conditions where the buoyancy and centrifugal 
forces are equal (see Eq. 1). Hence, the gradient density 
model performance will also impact that of the optical 
density model (as can be seen in case of run 22 or for the 
what-if scenarios described below). In light of this, it seems 
particularly important to assess the model predictions in 
combination with the relative run position in the PCA score 
plot. It seems that those runs of the test set, which can be 
observed to be particularly close in the score plot, exhibit 
low prediction errors. However, the density gradient of run 
22 which falls in between the scores of runs #2, 4, and 8 
is not as well predicted. While overall, the performance of 
the density gradient model is very satisfactory in terms of 
goodness-of-fit and prediction performance on the test set, 

Fig. 7   Measured (black points) 
and predicted density gradient 
values (blue solid line for train-
ing data and red solid line for 
test data) over evacuated vol-
ume. The shaded area represents 
the prediction interval of the 
model (color figure online)
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the predictions for conditions that exhibit PCA scores that 
are distant from those that the model was trained on, should 
be assessed with care.

Optical density models

The model predictions for OD254 and OD280 are shown in 
Fig. 9 and Fig. 10, respectively. Inspection of the plots shows 
that:

•	 The model can predict the peak magnitude for all the 
experimental runs.

•	 The prediction intervals contain the actual profiles in 
their entirety for more than 94% of the runs; nevertheless, 
the identification of the zone of eventual split between 
full and empty particles (peaks separation) is still not 
performed for all the runs.

•	 The uncertainty in density gradient prediction (see §3.1) 
reported for exp. #3, #11, #12, and #13 propagates to 
optical density models, as demonstrated by the breadth 
of the prediction intervals in Fig. 9 and Fig. 10. Never-
theless, the actual trends are properly described by the 
predicted profiles.

•	 Run #23 (and #1, to a lesser extent) shows high pre-
diction uncertainty; as shown in Fig. 8a-b, experiment 
#23 is performed at high lowDGMVol values but low 
OD_PeakAreas (around 1 order of magnitude of dif-

ference with respect to all the other runs performed at 
similar lowDGMVol values).

•	 Test runs are predicted in a satisfactory way. Runs #3 
and #22 present higher prediction uncertainty: this 
result could have been expected given the marginal 
positions of these two runs in the scores plot reported 
in Fig. 8.

The predicted positions of empty and full capsid peaks 
by the two optical density models should help to under-
stand whether the process conditions (before running the 
experiment) should be tweaked to achieve a better separa-
tion of the peaks. In light of this objective, the prediction 
of the relative position of the mean and the width of the 
peaks is important. Though it can be seen that the predic-
tion of the exact shape of the two peaks could be signifi-
cantly improved, the width of the peak(s) is very well cap-
tured, allowing to understand the separation performance. 
Hence, overall, the performance of the two optical density 
models is satisfactory in terms of goodness-of-fit and pre-
diction performance. A further step in model refinement 
could be to perform additional runs in the unknown design 
space regions to reduce the model prediction uncertainty 
and improve peak separation modeling, and/or to weight 
the residuals in the loss function in a different way.

Fig. 8   PCA analysis on NN input variables for the train and test runs. 
a Scores plot (blue and red points represent the samples related to 
train and test data, respectively; grouped by batch); b loadings plot. 

Note that the exploited features for PCA are the Z variables and the 
normalized volume, since they are the inputs to the neural network 
used to model the density gradient (color figure online)
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Fig. 9   Measured (black points) 
and predicted OD254 values 
(blue solid line for training 
data and red solid line for test 
data) over evacuated volume. 
The shaded area represents the 
prediction interval of the model 
(color figure online)

Fig. 10   Measured (black points) 
and predicted OD280 values 
(blue solid line for training 
data and red solid line for test 
data) over evacuated volume. 
The shaded area represents the 
prediction interval of the model 
(color figure online)
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CQA models

The fitting ability of the 3 CQAs models can be assessed in 
Fig. 11a, b, and c. We can see that PCR and ELISA titers 

(Fig. 11 a, c) do not exhibit significant bias, whereas F/E 
ratio (Fig.  11b) shows some underpredictions at lower 
amount of F/E ratio and some overpredictions at higher val-
ues; this behavior can be due to the uncertainty in optical 

Fig. 11   CQA models. Predicted vs measured data for: a qPCR, b F/E ratio, c ELISA (blue samples for training data and red samples for test 
data). Actual values are not reported for confidentiality reasons (color figure online)
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density peaks’ predictions propagating to F/E ratio model. 
However, these data correspond to only around 10% of the 
total samples, whereas the model provides very accurate 
performance for all the other samples. It is interesting to 
note that the prediction performance of the optical density 
models, which could be improved with respect to the pre-
diction of the exact shape of the peak(s), does not seem to 
significantly deteriorate the prediction performance of the 
CQA models. This might be due to the fact that: 1) an inte-
gration is performed on the predicted optical density (which 
might level out over- and underpredictions); and 2) the over-
all width and position of the peaks is captured. Hence, the 
models’ predictions can be used to judge the separation 
performance and over, the models’ performance are accept-
able, as long as the run conditions are not too different as 
discussed for the gradient density model.

Design space exploration

The prediction performance of density gradient and optical 
density models was evaluated on two additional blind runs, 
with the aim to explore different zones of the design space, 
henceforth named as EXT-1 and EXT-2. We report the scores 
of each batch when projected by the first and second prin-
cipal component using PCA (see Fig. 12) to get qualitative 

information about the relative position of each run with 
respect to the runs used for model training/test. We see that 
run EXT-1 was performed at operating conditions quite simi-
lar to the ones used to train the existing models, whereas run 
EXT-2 is far apart from the space origin; in particular, EXT-2 
marginal position is due (see Fig. 8b) to significantly higher 
values of OD254_PeakArea/OD280_PeakArea than the ones 
reported for all the other runs.

The predicted values for the two runs are reported in 
Fig. 13. The comparison between the results leads to the 
conclusion that the trained models exhibit less uncertainty 
in prediction for EXT-1 (Fig. 13a, b, c) than for EXT-2 
(Fig. 13d, e, f), since the trained models’ performance can 
be expected to decrease in case of extrapolation from the 
training conditions. Moreover, the uncertainty on density 
gradient prediction increases with the normalized evacuated 
volume for both runs. This result is likely to be related to the 
low number of runs used for model training with levels of 
OD254_PeakArea/OD280_PeakArea comparable to EXT-2.

What‑if analysis

Defining the quality parameters and operating conditions 
adopted for run EXT-1 as “base case”, we performed the 
following “what-if analysis” tasks, to compare the simulated 

Fig. 12   Projection on the space generated by the first and second 
principal component using PCA analysis on density gradient model’s 
NN input variables of: a run EXT-1 and b run EXT-2. Note that the 

exploited features for PCA are the Z variables and the normalized 
volume and the loadings are the same reported in Fig. 8b
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profiles when altering the volume of midDGM solution 
loaded into the centrifuge (midDGMVol case study).

We compared the predictions obtained using the actual 
midDGMVol for EXT-1 with the ones obtained after simu-
lating 4 different scenarios, generated by modifying the 
actual midDGMVol (from −50% to + 50% of the origi-
nal value). Note that, in each scenario, a corresponding 
increase/reduction of highDGMVol was implemented to 
obtain the same initial density.

The results, reported in Fig. 14, show that the higher the 
quantity of midDGMVol (lower highDGMVol), the lower 
the gradient start density, and the more shifted to the left 
the optical density profiles. As the overall DGMVol would 
be lower, wherefore the gradient start density as well as 
the overall evolution would be shifted to left, this is in 
line with what is expected. Moreover, peaks’ separation in 
optical density (see Fig. 14b and c) is less detectable when 
reducing midDGMVol. As the width and the position of 
the peaks are directly impacted by the density gradient, a 

less pronounced slope of the density gradient will result 
into a less good separation of the particles. Hence, the 
observations of the “what-if” analysis are in line with the 
expected behavior, but no experimental runs were per-
formed to further check the predictions.

Conclusions

In this project, we proposed a novel modeling approach 
to describe separation of full and empty virus capsids by 
ultracentrifugation, with main attention on density gradient 
and optical densities prediction reliability. The main results 
obtained from this study were the following:

1.	 A trained set of linked models that can describe: (i) the 
evolution in time of the gradient density and full and 
empty capsid particle distributions as observed by opti-
cal density (OD), as well as (ii) Critical Quality Attrib-

Fig. 13   Predictions of normalized density and optical density for: a, b, c run EXT-1, d, e, f run EXT-2. The red solid lines represent the pre-
dicted profiles, whereas the shaded green areas represent the prediction interval throughout the run (color figure online)
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utes (CQA) values, just exploiting a reduced number 
of key operating conditions and raw material quality 
information.

2.	 A valuable solution in case of scale-up across differ-
ent ultracentrifugation units and change of formulated 
product (different serotypes/different size of genomic 
payload packed into the capsids).

The proposed models were trained and tested with real 
experimental data, showing good prediction fidelity on aver-
age. The results from the “what-if” analysis underpin the 
physical meaning of models’ predictions despite the hybrid 
nature of each model. Further steps in models’ refinement 
could be obtained using more experimental data at best per-
formed at different conditions (as an example, loaded cap-
sid particle material for which high OD Peak Area values 

Fig. 14   What-if analysis: midDGMVol case study. Predicted profiles of: a normalized density, b optical density at 254 nm, and c optical density 
at 280 nm
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are observed); finally, defining a more precise way to iden-
tify the actual starting point of the harvest (and, if needed, 
recording measurements till the end of the harvest) could 
further enhance the current model performances and reduce 
prediction uncertainty due to signal shifting.

In principle, the model could be transferred for the mod-
eling of other ultracentrifuge applications, perhaps helping 
to streamline the separation development of nanoparticles, 
gene vectors, or other micro-carriers.
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