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Abstract
Heme, found in hemoproteins, is a valuable source of iron, an essential mineral. The need for an alternative hemoprotein 
source has emerged due to the inherent risks of large-scale livestock farming and animal proteins. Corynebacterium glutami-
cum, regarded for Qualified Presumption of Safety or Generally Recognized as Safe, can biosynthesize hemoproteins. C. 
glutamicum single-cell protein (SCP) can be a valuable alternative hemoprotein for supplying heme iron without adversely 
affecting blood fat levels. We constructed the chemostat culture system to increase hemoprotein content in C. glutamicum 
SCP. Through adaptive evolution, hemoprotein levels could be naturally increased to address oxidative stress resulting from 
enhanced growth rate. In addition, we used several specific plasmids containing growth-accelerating genes and the hemA 
promoter to expedite the evolutionary process. Following chemostat culture for 15 days, the plasmid in selected descendants 
was cured. The evolved strains showed improved specific growth rates from 0.59  h−1 to 0.62  h−1, 20% enhanced resistance to 
oxidative stress, and increased heme concentration from 12.95 µg/g-DCW to 14.22–15.24 µg/g-DCW. Notably, the putative 
peptidyl-tRNA hydrolase-based evolved strain manifested the most significant increase (30%) of hemoproteins. This is the 
first report presenting the potential of a growth-acceleration-targeted evolution (GATE) strategy for developing non-GMO 
industrial strains with increased bio-product productivity.
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Introduction

Iron helps prevent anemia, fetal development, oxygen trans-
port, energy metabolism, muscle function, immune system, 
and the reduction of restless leg syndrome [1–4]. Iron is 
consumed as non-heme iron, present in animal and plant 
foods, and heme iron, found primarily in animal foods. The 
absorption of non-heme iron is influenced by various dietary 
components such as phytates, oxalates, polyphenols, and 

tannins, resulting in a variable bioavailability of approxi-
mately 1–10%. In contrast, heme iron absorption remains 
almost unaffected by dietary components, allowing for high 
bioavailability of up to 40% [5–9].

Heme iron is ingested in the form of hemoproteins, such 
as hemoglobin and myoglobin, found in animal foods. Red 
meat, especially from mammals such as cattle and pigs, is 
the richest source of hemoproteins. It also stimulates gastric 
acid production, promoting non-heme iron absorption [5–7]. 
However, animal proteins can harm blood fat levels and 
intestinal microbiota [10–16]. Large-scale livestock farming 
for red meat significantly contributes to global warming and 
environmental pollution, including soil, water, and air pollu-
tion. Therefore, it is a serious issue that must be addressed 
for reasons related to animal ethics and public health and for 
the continuation of humanity [17–24]. Considering the nutri-
tional importance of heme iron and the challenges associated 
with its sourcing, various alternative hemoprotein sources 
should be developed for all individuals, including those who 
face barriers accessing meat or are vegetarian.
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Leghemoglobin from nitrogen-fixing root nodules of 
leguminous plants is one of the alternative hemoproteins. 
However, direct extraction of leghemoglobin from roots 
demands substantial soil space for large-scale soybean cul-
tivation. Furthermore, harvesting poses risks of soil erosion 
and the release of stored carbon. To overcome this, research-
ers conducted to express leghemoglobin in yeast through 
genetic modification, and Impossible Foods has finally suc-
ceeded in commercializing it [25]. Microbial-based single-
cell proteins (SCP) can be promising replacement hemo-
protein candidates [26–28]. Corynebacterium glutamicum, 
classified for Qualified Presumption of Safety (QPS) or 
Generally Recognized as Safe (GRAS) microorganism, can 
biosynthesize hemoproteins [29–31]. Previous studies have 
revealed that C. glutamicum heme-SCP has health benefits 
by positively influencing intestinal microbiota and blood fat 
levels in pet dog or obese mouse models [32, 33]. Hemopro-
teins in C. glutamicum contribute to microbial growth and 
resistance against oxidative stress. These proteins include 
cytochrome c oxidase, cytochrome P450, catalase, peroxi-
dase, cytochrome bd oxidase, and nitrite reductase [34–36]. 
Thus, the hemoprotein synthesis level is correlated with the 
microbe’s growth rate and antioxidant capacity [37, 38]. 
Chemostat culture systems enable the selection of strains 
exhibiting improved growth rates through adaptive evolu-
tion [39].

In this study, we applied C. glutamicum carrying a spe-
cific genetic combinational plasmid to chemostat cultures. 
The plasmid in selected descendants was subsequently 
cured. Through a comparative analysis of oxidative stress 
resistance and heme concentration among the evolved 
strains, we evaluated the effect of evolution on increasing 
hemoprotein synthesis.

Materials and methods

Mouse study

Rearing and diet

Five-week-old male mice (C57BL/6N) were housed in the 
facility, where access to food and drink was not restricted, 
and the lighting was adjusted to 12 h each day (07:00 to 
19:00). AIN93-G was used as a normal diet (ND). The C. 
glutamicum heme-SCP (5 g, dried biomass of hemoprotein-
rich bacterial cells, purchased from Hemolab Ltd. Co., 
Seoul, South Korea) was blended with AIN93-G (1 kg) to 
prepare the ND with 0.05% C. glutamicum heme-SCP diet. 
The prepared diets (ND or ND with 0.05% C. glutamicum 
heme-SCP) were administered to each mouse group (n = 3) 
for 4 weeks. Throughout the test, body weight and intake of 
food and water were measured every 3 days.

Autopsy

Mice were anesthetized by  CO2 gas, and blood samples 
were taken from the abdominal aorta. The blood sam-
ple was placed at 18 °C for 30 min and then centrifuged 
(1,200 × g, 15 min, 4 °C) to separate the serum. The serum 
samples were stored in a deep freezer until analyses. The 
levels of triglyceride (TG), total cholesterol (T-chol), high-
density lipoprotein-cholesterol (HDL-c), and low-density 
lipoprotein-cholesterol (LDL-c) in the serum were meas-
ured using an autoanalyzer (model 7600II; Hitachi, Tokyo, 
Japan) in a biochemical institutional facility (Korea Non-
clinic Test Support Center, Seongnam, South Korea). Data 
were expressed as the mean difference, 95% confidence 
interval (CI), and effect size. The effect size was calculated 
as Cohen’s d value; a small effect corresponds to Cohen’s 
d around 0.2. A medium effect corresponds to Cohen’s d 
around 0.5. A large effect corresponds to Cohen’s d, around 
0.8 or higher.

Bacterial strains, media, and batch culture

Corynebacterium glutamicum ATCC13032 (American Type 
Culture Collection) was used for the wild type (WT) of the 
experimental evolution. The MCGC minimal medium was 
used for all C. glutamicum culture [40]. All cases of C. glu-
tamicum cultures were performed at 30 °C and 200 rpm. C. 
glutamicum stock cells were pre-cultured with 20 mL vol-
ume in a 100 mL baffled flask to optical density (OD) 1–2 
at 600 nm. The main culture was incubated with 50 mL vol-
ume in a 250 mL bottom baffled flask (Duran GL45, Duran 
Inc., Germany). The initial  OD600 of the main culture was 
adjusted to 0.1 using a pre-culture solution. Biomass was 
estimated by measuring  OD600 and converting it into g-DCW 
(dry cell weight)/L unit by the coefficient of 0.3.

Plasmids construction

Cloning and transformation followed the method described 
by Sambrook et al. [41]. using Escherichia coli DH10B 
(Invitrogen Inc., USA). The genomic DNA of C. glutami-
cum ATCC13032 was employed for the cloning of various 
genetic elements, including the hemA promoter (PhemA: 
100 bp upstream from hemA), the gene encoding the iron-
siderophore ABC transporter substrate-binding protein 
(SBP, GenBank: AUI01500.1), the cold-shock protein A 
(CspA, GenBank: AUH99802.1), the putative peptidyl-
tRNA hydrolase (Pth, GenBank: AUI01932.1), and the 
helix-turn-helix transcriptional regulator (RamA, GenBank: 
AUI01965.1). Each coding region was amplified using the 
polymerase chain reaction (PCR) method, and PCR prod-
ucts were digested by restriction enzyme. The informa-
tion of primer sequence and restriction enzyme are listed 
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in Table S1. The promoter-probe shuttle vector pSK1Cat 
was used for cloning [42]. First, the PhemA fragment was 
inserted into the vector cut with BamHI and SalI using T4 
DNA ligase. Then, the SBP or cspA fragment was inserted 
into PhemA-pSK1Cat cut with SalI and PstI. The Pth or 
ramA fragment was inserted into PhemA-pSK1Cat cut only 
with SalI (Fig. S1). The constructed plasmids were trans-
formed into the C. glutamicum by electroporation [43]. Plas-
mids and strains are listed in Table S2.

Chemostat culture for adaptive evolution

The chemostat culture system was established as follows: 
a 250 mL bottom baffled flask equipped with a screw cap 
(3-Port, For id. Φ3.2 mm Tubing), rigid PTFE tubing, and 
flexible silicon tubing for the inlet and outlet, and 0.2 µm 
PTFE membrane filter for airflow. The pre-culture solu-
tion was inoculated (initial  OD600 = 0.1) without inlet/out-
let feedings. After 5 h of the incubation, pumps for inlet 
feedings were started with a dilution rate of 0.55  h−1. The 
culture volume was maintained by extracting culture at an 
equivalent flow rate as the fresh medium feed. Feed rates 
were gradually increased throughout the continuous culture 
steps, taking care to avoid excessive dilution. This allows for 
the persistence of only the population with faster doubling 
times within the culture vessel. As each feeding reservoir 
was exhausted, it was replaced with a new reservoir in asep-
tic conditions.

Plasmid curing

The pre-culture solution of the plasmid harboring strain was 
inoculated into MCGC medium containing 0.003% sodium 
dodecyl sulfate and incubated at 37 °C and 200 rpm for 24 h. 
Dilute the culture medium appropriately, spread it on MCGC 
agar medium, and culture it at 30 °C to obtain a single col-
ony. Then, spiked on MCGC agar medium and MCGC agar 
medium containing kanamycin, and culture it at 30 °C to 
screen for plasmid cured colony.

Analytical method

Cells were harvested to have an OD of approximately 40 in 
a screw-capped tube by centrifugation (10,000×g at 4 °C 
for 5 min). The cell pellet was washed once with phosphate-
buffered saline (PBS; 1x, pH 7.4). The washed cell pellet 
was used for subsequent analysis.

Oxidative stress resistance test

Oxidative stress resistance was determined by measuring 
residual intracellular reactive oxygen species (ROS) using 
2′,7′-dichlorofluorescein diacetate (DCFH-DA). DCFH-DA 

stock solution was prepared by dissolving it at 10 mM in 
dimethyl Sulfoxide. The stock solution was diluted to 10 µM 
in PBS. Add 1 mL of 10 µM DCFH-DA solution to the 
washed pellet and suspend. Incubate the suspension at 30 °C 
and 200 rpm for 1 h to facilitate the conversion of DCFH-DA 
into its fluorescent DCF form in the presence of ROS. After 
the incubation, cell pellets were collected by centrifugation 
(10,000×g at 4 °C for 5 min). The cell pellet was washed 
once with PBS to remove any extracellular DCFH-DA and 
suspended at 1 mL of PBS. The DCF fluorescence signal 
was measured using fluorescence spectrophotometry (Syn-
ergy Mx, BioTek, USA) with excitation at 485 nm and emis-
sion at 530 nm, using a 96-well plate.

Heme measurement

Heme was unbound and extracted from the bacterial hemo-
proteins using modified actone:HCl extraction methods [44]. 
The washed bacterial cell pellet was mixed with 1 mL of 
acetone:HCl (80:20) and 0.2 g of glass beads (212–300 µm), 
followed by homogenization for 30 s using a bead beater 
(FastPrep-24™ 5G bead beating system, MP Biomedicals, 
USA). After resting for 1 min, homogenization was repeated 
five more times. Subsequently, the lysate was incubated at 
− 20 °C for 20 min. Cell debris in lysate was removed by 
centrifugation (17,000×g, at 4 °C for 10 min), and the super-
natant was used for measuring intracellular heme.

Heme amount was determined by measuring UV-absorb-
ance using high-performance liquid chromatography (HPLC 
Agilent 1100) equipped with reverse-phase C18 column 
(C18, 3.5 μm, 150 mm × 4.6 mm, SunFire™). The tempera-
ture of the column oven was set at 40 °C. The mobile phase 
was composed of solvent A (methanol:acetonitrile = 10:90) 
and B (0.5% (v/v) trifluoroacetic acid in HPLC grade water). 
A linear gradient method (20–95%) of solvent A was applied 
for 0 to 7 min. The flow rate was maintained at 1 mL/min for 
a total analysis time of 10 min. The chromatogram peak of 
heme at about 6.7 min retention time was detected at a wave-
length of 398 nm. The calibration curve was constructed 
using (0.01–1.5) µM hemin solution in acetone:HCl (80:20).

Results and discussion

Hemoprotein in C. glutamicum

While hemoprotein-rich red meat should be consumed for 
optimal iron intake [5–7], animal protein carries the inher-
ent risk of increasing blood fat levels [10–13]. However, C. 
glutamicum heme-SCP supplementation did not adversely 
affect blood fat levels in the mice cohort of this study. Com-
pared to fed ND only, supplementation with 0.05% C. glu-
tamicum heme-SCP reduced blood TG (− 0.03 mmol/L, 
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95% CI − 0.056, − 0.005), T-Chol (− 0.328 mmol/L, 95% 
CI − 0.513, − 0.142), HDL-c (− 0.101 mmol/L; 95% CI 
− 0.11, − 0.091), and LDL-c (− 0.023 mmol/L; 95% CI 
− 0.037, − 0.008). Notably, reductions in T-chol and LDL-c 
showed large effect sizes with absolute d values of over 0.8 
(Table 1). Although we could not make a conclusive dis-
cussion due to the small number of replicates (n = 3), the 
outcomes correspond with the previous study [33]. There-
fore, C. glutamicum heme-SCP can be a valuable alternative 
hemoprotein for supplying heme iron.

Increasing the hemoprotein content per cell is essential 
to enhance the value of C. glutamicum heme-SCP as an 
alternative hemoprotein source. Hemoproteins in C. glu-
tamicum are associated with both growth rate and oxidative 
stress management, suggesting that their levels could vary 
depending on the microbial growth state [34–38]. The heme 
concentration in C. glutamicum peaked during the mid-log 
phase at 4–5 h (Fig. 1a). Bacterial cells within the mid-log 
phase experience severe oxidative stress due to a near-max-
imal specific growth rate arising from abundant nutrients 
in the medium. Therefore, the cause of the peak heme con-
centration can be attributed to the high hemoprotein levels 
[34–38]. In addition, a positive correlation was observed 
between the instantaneous specific growth rate and heme 
concentrations throughout the entire growth phase (Fig. 1b). 
Consequently, higher concentrations of hemoproteins can be 
obtained from cells with a faster specific growth rate.

Positive feedback and growth‑acceleration‑targeted 
evolution (GATE)

Chemostat culture, established with a progressively increas-
ing media replacement rate, can select evolved strains with 
improved specific growth rates through adaptive evolution 
[39]. To enhance the effect of evolution, we introduced the 
concept of GATE. A specific genetic combinational plas-
mid was employed for improving hemoprotein levels in the 
evolutionary process. We constructed PhemA-SBP, PhemA-
cspA, PhemA-Pth, and PhemA-ramA by combining genes 
encoding proteins that accelerate the specific growth rate 
and the PhemA (Fig. S1). Expression products of growth-
accelerating genes (SBP, CspA, Pth, RamA) have been veri-
fied to accelerate growth rates in previous studies [39, 45]. 
PhemA, serving as the trigger for these genes, originated 

from the hemA promoter. The expression product of hemA 
is an enzyme with the highest Gibbs free energy. It may also 
be a bottleneck because it catalyzes the initial step of the 
heme synthesis pathway [31]. Therefore, amplification of 
PhemA activation can be crucial for increasing hemoprotein 
production. When these plasmids are transformed into a C. 
glutamicum, a positive feedback loop could be formed in 
which an increase in hemoprotein also enhances the growth 
rate (Fig. 2). This mechanism could provide a competitive 

Table 1.  Comparison of TG, 
T-Chol, HDL-c, and LDL-c in a 
mouse model (n = 3) depending 
on diet

ND only ND with 0.05% C. glu-
tamicum heme-SCP

Mean difference (95% CI) Cohen’s d

TG 0.81 ± 0.12 0.78 ± 0.10 − 0.03 (− 0.056, − 0.005) − 0.276
I-Chol 1.89 ± 0.48 1.56 ± 0.31 − 0.328 (− 0.513, − 0.142) − 0.833
HDL 1.09 ± 0.19 0.99 ± 0.18 − 0.101 (− 0.11, − 0.091) − 0.535
LDL-c 0.11 ± 0.03 0.09 ± 0.02 − 0.023 (− 0.037, − 0.008) − 0.883

Fig. 1  a Growth curves and heme concentrations of C. glutamicum. 
b  Heme concentration of C. glutamicum depends on the specific 
growth rate (µ). Open circles indicate log  (OD600), and closed circles 
indicate heme concentration
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advantage in adaptive evolution, facilitating the natural 
selection of mutants showing increased hemoprotein levels.

Since the functional mechanisms of SBP, CspA, Pth, and 
RamA are different [39, 45], the degree of growth accel-
eration by positive feedback will vary. Thus, we initiated a 
growth competition among strains within the same culture 
to readily select evolved ones showing the most enhanced 
growth rates. Following a 15-day chemostat culture, strains 
PhemA-cspA, PhemA-Pth, and PhemA-ramA survived, but 
the strain containing PhemA-SBP was eliminated (Fig. 3). 
Elimination of the PhemA-SBP-containing strain was prob-
ably due to an excessive iron uptake leading to intractable 
oxidative stress levels [45–48]. Plasmids of selected strains 
were cured. The selected evolutionary strains have emerged 
from natural mutations without artificial genetic manipula-
tion. Therefore, upon confirmation that the plasmid did not 
affect the genomic DNA,  EvolCspA,  EvolPth, and  EvolRamA 

hold the potential to be classified as a non-genetically modi-
fied organism (non-GMO).

Influence of GATE on hemoprotein content

Since the evolution trajectory of evolved strains probably 
varied due to their prior possessed plasmids, hemoprotein 
levels could be different. To evaluate the genetic combina-
tion that facilitated the most effective evolution in improv-
ing hemoprotein levels, we compared the specific growth 
rate, oxidative stress resistance, heme synthesis amount, 
and heme concentration among the evolved strains. In the 
mid-log phase (4–5 h of culture), the ROS level in  EvolCspA 
was not significantly different from that in WT, and the 
specific growth rate decreased. On the other hand, the 
ROS levels in  EvolWT,  EvolPth, and  EvolRamA were approxi-
mately 20% lower than that in WT, accompanied by an 

Fig. 2  Schematic diagram 
of GATE. The red neon sign 
means activation of PhemA. The 
gray arrow indicates the one 
direction of normal evolution. 
The blue arrow is a positive 
feedback loop formed by the 
specific plasmid is present

Fig. 3  Schematic diagram of 
chemostat culture and evolution 
selection. The chemostat culture 
was conducted for 15 days. The 
PhemA-SBP-containing strain 
was eliminated. After plasmid 
curing,  EvolCspA,  EvolPth, and 
 EvolRamA were selected
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increase in the specific growth rate from 0.59  h−1–0.62  h−1 
(Fig. 4). This is presumed to be an adaptation to oxidative 
stress induced by the increased growth rate, leading to an 
improved ability to manage ROS. The heme concentration 
of EvolCspA was similar to the WT. However,  EvolWT, 
 EvolCspA, and  EvolRamA showed increased heme concentra-
tions from 12.95 µg/g-DCW to 14.22–15.24 µg/g-DCW 
(Fig. 5). Considering the tendency of enhanced resistance 
to oxidative stress within these strains (Fig. 4), this dem-
onstrates an increase in hemoprotein content. In particular, 

 EvolPth showed the highest heme concentration, with heme 
synthesis amount showing a distinct increase (30%) rela-
tive to the WT strain (Fig. 5).

We presumed that the functional mechanism, rather than 
the performance of the growth-accelerating factor, signifi-
cantly influenced the enhancement of hemoprotein levels 
during evolution. RamA is a global regulator crucial for 
governing acetate metabolism, glycolysis, TCA cycle, ana-
plerosis, gluconeogenesis, and glucose uptake [49]. Thus, 
pathways unrelated to growth acceleration may occur in 
positive feedback loops. Cold shock proteins have multiple 
functions, including transcriptional and translational regula-
tion, adaptation to cold conditions, RNA chaperone activity, 
cell growth, and response to oxidative stress [50, 51]. These 
could bring about CspA-dependent oxidative stress resist-
ance, in addition to the potential of inducing unintended 
pathways in the positive feedback loop. Thus, it is speculated 
that the results observed in  EvolCspA are caused by evolution 
independent of hemoprotein. Meanwhile, considering that 
the function of Pth is limited to the translation support part 
[52, 53], the positive feedback probably circulates without 
substantial variables. Therefore, the PhemA-Pth combination 
is the most effective tool for GATE to improve hemoprotein 
levels.

Conclusion

Corynebacterium glutamicum heme-SCP displayed the 
potential as an alternative hemoprotein source with a favora-
ble effect on blood fat levels. C. glutamicum SCP with a 
high hemoprotein concentration can be obtained from cells 
with a faster growth rate. A plasmid combining PhemA and 
a growth-accelerating gene could form positive feedback in 
which an increase in hemoprotein also enhances the growth 
during adaptive evolution. Notably, the PhemA-Pth com-
bination proved most effective in improving hemoprotein 
levels. We presumed that the effective positive feedback 
was attributed to the limited function of Pth. Insights into 
the positive feedback mechanisms will aid adaptive evolu-
tion for increasing bioproducts associated with growth. In 
conclusion, we propose that the GATE is a potent strategy 
for developing non-GMO industrial strains with increased 
bio-productivity.
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