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Abstract
In recent years, the ability to create intricate, live tissues and organs has been made possible thanks to three-dimensional (3D) 
bioprinting. Although tissue engineering has received a lot of attention, there is growing interest in the use of 3D bioprinting 
for microorganisms. Microorganisms like bacteria, fungi, and algae, are essential to many industrial bioprocesses, such as 
bioremediation as well as the manufacture of chemicals, biomaterials, and pharmaceuticals. This review covers current devel-
opments in 3D bioprinting methods for microorganisms. We go over the bioink compositions designed to promote microbial 
viability and growth, taking into account factors like nutrient delivery, oxygen supply, and waste elimination. Additionally, 
we investigate the most important bioprinting techniques, including extrusion-based, inkjet, and laser-assisted approaches, as 
well as their suitability with various kinds of microorganisms. We also investigate the possible applications of 3D bioprinted 
microbes. These range from constructing synthetic microbial consortia for improved metabolic pathway combinations to 
designing spatially patterned microbial communities for enhanced bioremediation and bioprocessing. We also look at the 
potential for 3D bioprinting to advance microbial research, including the creation of defined microenvironments to observe 
microbial behavior. In conclusion, the 3D bioprinting of microorganisms marks a paradigm leap in microbial bioprocess 
engineering and has the potential to transform many application areas. The ability to design the spatial arrangement of vari-
ous microorganisms in functional structures offers unprecedented possibilities and ultimately will drive innovation.
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Abbreviations
3D  Three dimensional
DA  Diels–Alder
GelMA  Gelatin methacryloyl
GFP  Green fluorescent protein
H-bonds  Hydrogen bonds
LAB  Laser-assisted bioprinting
LIFT  Laser induced forward transfer
PEG  Polyethylen glycol
PUR/PLA  Polyurethane-polylactide
RF  Red fluorescent
SLA  Stereolithography

SLAM  Stereolithographic apparatus for microbial 
bioprinting

TPUs  Thermo plastic polyurethanes

Introduction

3D bioprinting emerged from 3D printing as its own research 
area, by combining biological manufacturing, additive man-
ufacturing and other fields [1, 2]. Applications for mamma-
lian cells include regenerative medicine, such as engineering 
of organs and tissues, drug discovery and drug development, 
and disease modelling, as well as bio-hybrid robotics [2–4]. 
Next to the continuously increasing relevance of bioprinting 
of mammalian cells, there is another topic that is currently 
gaining more and more relevance: bioprinting of microor-
ganisms [5, 6].

More recently, 3D bioprinting has also been used to 
produce functional materials in which microorganisms are 
cultured. The advancement and integration of bioprinting 
techniques specifically for the printing of microorganisms 
offers the potential for a completely new generation of 
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biologically produced functional materials [7–9]. Utiliz-
ing and further developing 3D bioprinting to create func-
tional bacteria-laden structures can help to solve various 
challenges in diverse application fields, such as therapeutic 
devices, environmental engineering, and industrial biomanu-
facturing [10].

Furthermore, bacterial bioprinting exhibits several advan-
tages over traditional 3D bioprinting methods applied to 
mammalian cells. It is more adaptable and compatible with 
various printing technologies due to the unique character-
istics of bacteria [6]: Bacteria have cell walls and can, for 
example, by forming spores, withstand adverse conditions 
such as high temperature, freezing, oxidation, high pres-
sure, X-rays, and UV-rays [8]. Moreover, bacteria’s ability 
to grow and reproduce rapidly lowers the process require-
ments for bacterial bioprinting [6]. In terms of printing 
parameters, bacterial bioprinting allows for a wider range 
of printing temperatures and speeds while maintaining print-
ing resolution. For instance, using bacterial spores as the 
active ingredient enables molten deposition printing tech-
nology with a temperature of up to 75 °C [7]. Additionally, 
researchers have explored the use of freeze-dried microbial 
cells for bioprinting and discovered that they exhibit unique 
shear thinning characteristics with high cell loads, leading 
to the development of novel living material systems with 
enhanced catalytic activity and long-term viability [11]. 
This overcomes the limitation of low cell load in extrusion 
bioprinting.

The advantages, variety of different applications and mul-
titude of possible microorganisms to be used, make 3D bio-
printing of microorganisms an increasingly studied research 
field. Therefore, within this review, we summarize current 
bioprinting techniques and bioinks for microbial bioprint-
ing, including the different ways of crosslinking polymeric 
networks, that are the basis for 3D bioprinted constructs. 
Bioinks are specialized biomaterials used in 3D bioprint-
ing, composed of biocompatible polymers and engineered 
to create precise structures. Furthermore, the current state 
of research is compiled concerning applications and micro-
organisms printed so far.

Bioprinting techniques

It is important to note that different printing processes have 
varying effects on microorganisms, so it remains neces-
sary to consider specific advantages and disadvantages 
when selecting a printing method [6]. Therefore, the most 
important printing techniques are reviewed in detail in the 
following.

Based on their underlying principle, the printing tech-
nologies used in 3D bioprinting can be categorized into four 
groups: material extrusion (pneumatic, piston and screw 

driven), inkjet bioprinting, laser-assisted bioprinting and 
stereolithographic bioprinting [5, 8, 12]. The most com-
monly used techniques are depicted in Fig. 1 and explained 
in detail in this chapter.

Extrusion bioprinting

While micro-extrusion is commonly used in non-biological 
3D printing, it serves as a foundation for the extrusion-based 
approach used in bioprinting. The principles of controlled 
deposition and layer-by-layer fabrication in micro-extrusion 
can be adapted to the specific requirements of bioprinting to 
precisely place bioink. Mechanical [14] or pneumatic [15] 
pressure extrudes the bioink through a nozzle onto a plat-
form, either or both of which can be moved along x-, y- and 
z-axis.

An important advantage of extrusion bioprinting is that 
bioinks can be used that are high in cell density and viscos-
ity [16]. It is also affordable and versatile as commercial 
fused deposition modeling 3D printers can be modified into 
bioprinters and therefore customized regarding the specific 
bioink or structure [17].

Apart from its advantages, extrusion-based bioprinting 
also has disadvantages. The most important limitation is 
the low strand resolution of more than 100 μm [18]. Strand 
resolution refers to the thinnest, but still consistent, filament 
that extrusion of a particular bioink through the nozzle can 
provide [19]. This is a problem if certain applications require 
higher precision when placing the bioink and therefore, in 
such cases other additive manufacturing techniques with 
higher resolution are used such as laser-assisted bioprinting 
[12, 20].

Additionally, extrusion exposes the cells to high shear 
forces at the nozzle, which can cause mechanical damage. 
Therefore, numerous bioinks are specifically designed to 
exhibit shear-thinning behavior [21, 22]. This means that 
when subjected to an applied shear rate, the apparent vis-
cosity of the bioink decreases. As a result, less pressure 
is required to extrude the bioink during the printing pro-
cess, and the shear stress experienced by the bioink is also 
reduced [23]. The maximum wall shear stress is at its low-
est within cylindrical nozzles, compared to tapered conical 
and conical nozzles, but, because of the longer persistence 
of this stress alongside the cylindrical nozzle, and because 
of a lower mass flow rate at the same diameter and inlet 
pressure, the cell viability is reduced [24]. The versatility 
in extrusion-based bioprinting also leads to a large range in 
terms of cell viability (40–80%), which overall is worse than 
those of other printing principles [15].
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Inkjet bioprinting

The first printers used for bioprinting were adapted versions 
of commercially available 2D inkjet-based printers [2]. In 
these modifications, the ink in the cartridge was replaced 
with biological material, and the paper was replaced with 
substrates or scaffolds on electronically controlled eleva-
tor stages [25, 26]. Nowadays, there are custom-designed 
inkjet-based bioprinters available, which are optimized for 
bioprinting, exhibiting increasing resolution, precision, 
and speed [27]. Inkjet bioprinters are also called drop-on-
demand printers because they use thermal or acoustic forces 
to eject drops of bioink onto a substrate [2].

Thermal-based inkjet bioprinters use heaters, which 
create bubbles and thus increase pressure in the print-
head, ultimately forcing droplets out. During the develop-
ment of this technique for bioprinting, it was of concern 

that the thermal element, which reaches temperatures of 
200–300 °C, does not damage the cells [28, 29]. This was 
addressed by several studies which show no impact on the 
stability of biological molecules such as DNA, as well 
as an overall temperature increase of only 4–10 °C in the 
printer head because of the brief heating time of around 
2 μs [30, 31]. Several studies have shown that cell viabil-
ity after printing is about 90% when using thermal inkjet 
bioprinting with reasonable configurations [29–32], while 
controlling of the droplet impact velocity and droplet vol-
ume in this approach is critical for the viability and pro-
liferation of printed cells [33]. Additionally, higher bio-
ink viscoelasticity stabilizes filaments, facilitates precise 
deposition, improves cell viability, and sustains prolifera-
tion by providing added protection to cells within printed 
droplets even at higher impact velocities [34].

Fig. 1  Illustration of the commonly used bioprinting techniques 
extrusion (A), inkjet (B), VAT photopolymerization (C), and laser-
assisted bioprinting (D). While, according to the ASTM classifica-
tion for standards in additive manufacturing, the methods of inkjet 
and laser-assisted bioprinting are grouped together under the term 
jetting-based bioprinting, for illustrative purposes, both techniques 
are considered separately here. A Bioink is extruded using pneumatic 

or mechanical pressure. B Thermal inkjet uses heat-induced bubble 
that pushes the bioink through the nozzle. Piezoelectric actuator pro-
duces acoustic waves that propel the bioink through the nozzle. C 
Photopolymerization occurs on the bioinks surface, where light-sensi-
tive bioink is exposed to light energy. D Bubble formed by laser pulse 
propels droplet of bioink. Figure illustration on the basis of Kačarević 
et al. [13] and Liu et al. [119]
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Printers with piezoelectric actuators use rapidly induced 
changes in shape after applying voltage to eject the bioink 
[35]. Other inkjet printers use an acoustic radiation force to 
discharge liquid droplets from an air–liquid interface. This 
mechanism hinders the use of highly concentrated bioinks, 
as their viscosity interferes with the ability of acoustic waves 
to eject droplets smoothly during the printing process [36].

The main disadvantage of both, thermal and piezoelec-
tric-based material jet technologies, is that they are suscep-
tible to frequent nozzle clogging when dealing with highly 
viscous bioinks as the diameter of the nozzle can be as small 
as 18 μm [37]. The high viscosity and low concentration of 
the bioink can hinder the even distribution and deposition 
of bacteria, resulting in uneven patterns [29].

Inkjet-based bioprinting produces droplets less than 
50 μm in diameter. Regarding resolution, it therefore ranks 
between the less precise extrusion bioprinting and the most 
precise laser-assisted bioprinting [38].

VAT photopolymerization bioprinting

Stereolithography (SLA), the additive manufacturing 
technique that uses VAT Photopolymerization, utilizes 
either ultraviolet or visible light to solidify photosensitive 
polymers. In bioprinting, this approach can be adapted by 
employing photosensitive bioinks. As depicted in Fig. 1C, a 
laser is used to selectively harden a small amount of bioink. 
The scaffold forms on a platform that is moved away from 
the laser afterwards, allowing fresh bioink to flow and coat 
the structure. This is repeated until a solid 3D structure is 
formed, and any remaining liquid bioink can be washed 
away [39, 40].

This technique eliminates the issues caused by shear 
stress through high pressure in nozzle-based techniques such 
as extrusion and inkjet bioprinting [41]. Stereolithographic 
bioprinting enables fast and precise fabrication. Especially 
detailed structures can be fabricated with resolutions as high 
as 5 μm [42] and as low as 300 μm [43]. In terms of cell 
viability, this method can, with a mean microbial viability of 
85%, keep up with inkjet bioprinting [41]. The cell viability 
within this printing technique is mostly influenced by light 
intensity, wavelength, and photo-initiator concentration [42].

Stereolithographic techniques have become increasingly 
available in laboratory settings [44] even though they were 
not usually applied in the context of microbial bioprint-
ing. The group of Dubbin et al. [5] expanded previous SLA 
techniques and applied them for the first time to microbial 
bioprinting, as they report a new bioprinting technique to 
pattern microbial constructs: stereolithographic apparatus 
for microbial bioprinting (SLAM Bioprinting). With SLAM 
they were capable of rapidly patterning engineered biofilms 
with areas of > 48  mm2, micrometer-scale X–Y resolution, 
and thicknesses ranging from 10 μm to > 5 mm [5]. This 

represents an advantage of stereolithographic bioprinting, 
as larger surface areas can be crosslinked at the same time, 
compared to other printing technique.

Laser‑assisted bioprinting

Laser-assisted bioprinting (LAB) is rapidly progressing with 
microbial cells and holds great promise in addressing vari-
ous challenges in microbiology and biotechnology [12]. It 
is also found in literature under the name laser-induced for-
ward transfer (LIFT), which is its underlying principle [20, 
45]. LIFT was presented over 30 years ago by Bohandy et al. 
[46]. LAB operates as follows: First, a glass plate is coated 
with a layer of metal or oxide that efficiently absorbs laser 
radiation. Then, a layer of cells suspended in substances 
such as water, nutrient medium, or gel (bioink) is applied 
on top. Subsequently, a laser is fired, causing the metal or 
oxide layer to rapidly heat up and absorb the laser energy. 
This intense heat generates a vapor bubble within the bioink, 
which becomes highly pressurized. As the bubble expands, 
it propels a forceful jet that transports a small droplet bioink 
onto an acceptor surface [45].

LIFT-based techniques enable precise placement of mam-
malian cells, especially human cells, with high viability 
[47, 48]. This breakthrough makes it possible to construct 
intricate tissues, and paves the path for developing artificial 
organs [49]. Researchers have found that utilizing LIFT for 
transferring living cells is rapidly advancing, particularly in 
the field of biomedicine [50]. However, recently researchers 
have also proposed the application of LIFT for analyzing 
microbial cells. This innovative approach offers promis-
ing prospects for several valuable outcomes. Firstly, it ena-
bles the isolation of novel microorganism species, thereby 
expanding the knowledge of microbial diversity [47, 51]. 
Secondly, LIFT-based techniques facilitate the study of the 
interaction between different microorganisms [12] and their 
metabolism at the individual cell level [52]. Therefore, uti-
lization of LIFT in the bioprinting of microorganisms holds 
significant potential for advancing the understanding of 
microbial systems.

The main advantage of laser-assisted bioprinting is that it 
has the highest resolution among the different printing prin-
ciples, which can reach the micrometer level [20]. Further-
more, it is possible to print within a wide range of viscosity 
(1–300 mPa  s−1) without the danger of clogging the nozzle, 
as it is a nozzle-free technique [53, 54]. LAB can print with 
highly dense bioinks (up to  108 cells per ml) with microscale 
resolution of a single cell per drop using a laser pulse repeti-
tion rate of 5 kHz, with speeds up to 1600 mm  s−1 [55]. This 
can be translated to 5000 droplets deposited on the substrate 
per second [54, 55], which makes LAB the most precise 
technique among the different bioprinting methods.
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One risk of LIFT arises if the energy-absorbing layer 
consists of harmful substances, as residues of this layer can 
be transferred during printing [56–58]. However, this disad-
vantage can be overcome by choosing a non-toxic material 
to form the absorbing layer [12]. It must be pointed out that 
using LAB is much more expensive compared to other bio-
printing technologies [59].

A comparison of the printing principles extrusion, inkjet, 
laser-assisted bioprinting and stereolithography can be 
found in Table 1. It also includes the different biomateri-
als commonly used for each printing method, which will be 
described in detail in the following.

Bioink

The ideal composition of the bioink is highly dependent on 
what microorganisms are being used and what environment 
should be provided for them [6, 73]. Also, the bioprinting 
application has an impact on what biomaterials work best 
for the printing process [6, 74]. The most important mate-
rials suitable for each printing method are summarized in 
Table 1. The biomaterials applied in the bioprinting process 
are either natural or synthetic polymers or natural biological 
macromolecules and need to have good physical properties 
for printability and biocompatibility to provide a stable, non-
toxic environment for cell function and -growth [6, 75, 76].

The stability of the 3D bioprinted constructs can be 
achieved by crosslinking the polymers [77, 78]. Due to the 
many opportunities to choose for the material, the way of 
crosslinking and the printing method, there is no universal 
bioink formula [6, 79, 80]. However, extracellular matrix 
(ECM) polymers are often used for this purpose [81].

Crosslinking significantly influences the properties of 3D 
bioprinted constructs, especially the stability and biocompat-
ibility of the environment of the microorganisms [82, 83]. 
As shown in Fig. 2, crosslinking can be divided into physi-
cal and chemical crosslinking, which can also be combined 
[83, 84]. The most important physical crosslinking strategies 
include crosslinking via hydrogen bonds or ionic interac-
tions. For the chemical strategies, the crosslinking can be 
achieved via enzymes, redox reactions, photo-radiation and 
the reaction of complementary groups [6, 84–89].

The goal for the bioink used in the 3D bioprinting process 
of microorganisms, is to find a crosslinking method that pro-
vides fast gelation and stability of the hydrogel while provid-
ing physiological conditions and a non-toxic environment 
for cell encapsulation [86]. In the following, the crosslink-
ing strategies are explained in detail while elaborating their 
advantages and disadvantages.

Physical crosslinking

Gel formation and therefore the stabilization via physical 
crosslinking can be induced via environmental changes to 
a specific pH or temperature and result in the formation of 
reversible intermolecular reactions or H-bonds [77, 78, 85].

Crosslinking of hydrogels via ionic interactions is based 
on the interaction of two molecules with opposite electro-
static charges [77]. Therefore, positive charged metal ions, 
like  Mg2+ or  Ca2+, interact with the negatively charged acid 
residues of the polymer that builds the main 3D bioprinted 
construct, for example alginate [85, 90]. The addition of the 
metal ions to the polymer solution has a significant impact 
on the cell viability of the microorganisms and the printabil-
ity of the bioink [91]. Bath-assisted bioprinting, for example, 
where the 3D construct is directly printed into a bath with 

Table 1  Comparison of the different bioprinting principles

Metric Extrusion Inkjet VAT photo-polymerization Laser-assisted

Advantages Versatility Low cost, modifica-
tion of 2D inkjet 
printers

Nozzle free, high resolution, crosslinking 
larger surface area at the same time

Nozzle free, high resolution

Disadvantages Mechanical damage 
at the nozzle, low 
resolution

Mechanical damage 
at the nozzle

Not versatile Metallic residues from 
energy absorbing layer

Speed Slow Fast Fast Medium
Resolution, µm  > 100 50 5 1–10
Cell viability, % 40–80  > 85 85  > 90
Viscosity, mPa  s−1 30 − 6 ×  107 3.5–12 No limitation 1–3001

Biomaterials Alginate, gellangum, 
hyaluronic acid, 
agarose, PEG

Alginate, PEG Hyaluronic acid Collagen

Cost Low to medium Low Low High
References [2, 17, 18, 60–65] [29, 38, 66–69] [5, 41, 42, 70] [12, 20, 54, 59, 71, 72]
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an ionic solution, displays high stability, due to fast gelation. 
A major drawback of this method is the complex prepara-
tion of the crosslinking agent, which needs to be executed 
very accurately [92]. The major advantage of crosslinking 
by spraying an aerosol of metal ions on the 3D construct 
while printing, is the maintenance of high cell viability and 
reproducibility [92]. The crosslinking agent can also be 
added before the printing process, where the gelation then 
is induced via thermal gelation [23].

Hydrogels can be anionic, cationic, and neutrally charged 
[93]. The backbone of the polymer has naturally ion-groups 
that can form bonds due to electrostatic interactions when 
oppositely charged polymers are printed together. This natu-
ral way of crosslinking is non-toxic for cells and no addi-
tional agents need to be provided and added to the printing 
process, which also results in a safe environment for micro-
organisms [94].

This most frequently used method of crosslinking hydro-
gels has good mechanical properties and biocompatibility 
but is limited to the electrostatic interactions [78]. The 
advantages of this method are fast gelation, and mild, physi-
ological reaction conditions, that provide a stable environ-
ment for cell encapsulation [84].

A cell-friendly crosslinking method includes non-cova-
lent reactions, like the formation of H-bonds. Song et al. 
[87] analyzed strategies for high-performance crosslinking 
of polymers via H-bond crosslinkers and via self-associated 
H-bonds, which show self-healing properties and high elas-
ticity, and therefore great stability. H-bond crosslinkers are 
for example small molecules with high amounts of amino-
groups, nanoparticles with oxygen-rich surfaces, or poly-
meric aggregates that have itself high affinity to form many 
H-bonds. This method has thermostability, self-healing 
properties and robustness, but a challenge in synthesizing 

and the current limitation to thermoplastic elastomers. As 
an example, these hydrogels come to use for self-healing 
concrete using microorganisms [88].

The advantages of physical crosslinking in general are, 
that normally no organic crosslinking agents need to be used, 
and therefore the risk of contaminations and rising toxic-
ity levels due to chemicals can be avoided [83]. Further-
more, the crosslinking process can be achieved under mild, 
physiological conditions [77]. In the Freeform Reversible 
Embedding of Suspended Hydrogels (FRESH) printing tech-
nique, an example of particular interest within the physical 
crosslinking methods, a bio-ink is directly printed into a 
gelatin microparticle carrier bath, undergoes cross-linking, 
and subsequently incubates at physiological temperature, 
while this incubation liquefies the gelatin carrier bath, ena-
bling the release of the printed construct [89].

Chemical crosslinking

Chemical crosslinking is either achieved via crosslinking 
agents or via naturally formed covalent bonds. The forma-
tion of these bonds can be induced by free radical polymeri-
zation, enzymatically or by the reaction of complementary 
groups [78, 91].

The basis of catalytic crosslinking is the linkage of pro-
tein-based polymers via enzymes. This method provides 
mild reaction conditions and, therefore, results in higher 
cell viability [95]. Wei et al. [96] investigated the swelling 
behavior of an enzymatically crosslinked hydrogel in rela-
tion to a pH-shift. Therefore, they linked poly(γ-glutamic 
acid) altered with tyramine via horseradish peroxidase in 
the presence of hydrogen peroxide. They discovered that 
the pH is corresponsive with the biodegradation rate of the 

Fig. 2  Schematic overview over 
the most important crosslink-
ing methods, which can be 
divided into physical crosslink-
ing, chemical crosslinking, 
and combined crosslinking. 
The most relevant physical 
crosslinking methods are via 
H-bonds and via ionic interac-
tions and the most relevant 
chemical crosslinking methods 
are via enzymes, redox reaction, 
photo-radiation and the reaction 
of complementary groups
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polymer network and the gel is responsive in solutions with 
pH 2 and pH 7.

Photo crosslinking is a relatively simple and frequently 
used method and can either be initiated via chain-growth, 
step-growth or redox reactions [84]. UV-light radiation is the 
most commonly used photo crosslinking method, thus it can 
harm microorganisms [78, 89, 97]. To avoid a non-suitable 
environment, wavelengths of visible light should be used 
for photo-radiation, in combination with a photo-initiator in 
low concentrations to provide good cell viability [98, 99]. 
All light-specific parameters need to be optimized in rela-
tion to the materials used, such as intensity, wavelength and 
exposure time [84]. Wu et al. [100], for example, created a 
polymeric network of gellan gum, photo-crosslinked with 
polyethylene glycol diacrylate, to provide a stable hydrogel 
with healing properties.

Free radicals are produced via photo-radiation, in the 
chain-growth crosslinking method. These radicals interact 
with functional groups of the polymers and create an irre-
versible network between the chains [78, 101]. The three 
steps of step-growth crosslinking include initiation, propaga-
tion, and termination. This method is based on alkyl-sulfide 
crosslinking, therefore, the functional -SH groups of thiols 
bind to C–C double bonds, triple bonds, or epoxy-groups. 
The advantage of this method is very fast gelation within up 
to 1–3 s, but the stability of these constructs is not very high, 
due to the oxidation of the disulfide bonds [102].

De Grave et al. [103] compared the step-growth and the 
chain-growth crosslinking method and discovered that there 
is an influence on the kinetics and stiffness of the polymeric 
network. Step-growth showed faster kinetics and greater 
swelling behavior, while chain-growth showed higher stor-
age modulus.

Crosslinking of hydrogels via the reaction of complemen-
tary groups can be achieved by Diels–Alder (DA) reaction. 
This method provides high stability but is limited to slow 
gelation rates [86]. The DA-reaction is based on a cyclohex-
ene-building mechanism, with which thermostable, smart 
and self-healing polymers can be synthesized [104]. Madl 
et al. [86] discovered a method for chemical crosslinking via 
DA-reaction that showed an increase in gelation rates and 
hydrolytic stability that provides good cell encapsulation, 
compared to other DA-crosslinking methods. Therefore, they 
paired fulvene, which is an electron-rich cyclic diene, with 
maleimide dienophiles, to form a stable and improved cell-
encapsulating polyethylene-glycol hydrogel.

Redox-based crosslinking is a relatively new method 
and currently not well established in 3D bioprinting. This 
strategy involves oxidation reactions, that are induced by 
light, and therefore form reactive radicals that further bind 
the polymers to networks with high stability [84, 105]. 
This method is mostly described in secondary crosslinked 
polymer networks [97], because of the relatively simple 

controlling of the crosslinking process, due to redox reac-
tions and the changing of the oxidation state of the ionic 
crosslinker to a higher or lower level [106].

The advantage of chemical crosslinking is the creation 
of permanent and strong linkages [78], but radiation or 
crosslinking agents need to be deliberately considered 
because of their potential to damage the microorganisms 
[84].

Combined crosslinking (secondary crosslinking)

Secondary crosslinking is the combination of two 
crosslinking methods, to achieve, for example, higher sta-
bility or improved cell protection, by overcoming the limi-
tations of one crosslinking strategy [6, 76, 97, 107, 108]. 
Roh et al. [107] combined covalent crosslinking for self-
healing properties, and ionic crosslinking for mechanic 
stability, to fabricate a polymeric network that has the 
ability to restore stress-induced breakage of the gel, that 
emerged during the printing process, without the use of 
organic crosslinking agents.

Seto et al. [108] discovered that an increased density 
of cross-linked collagen, in combination with free radical 
scavengers, protects the microorganisms from damage due 
to photo-radiation, and therefore displays a radio-protec-
tive method of crosslinking with increased stability.

Sun et al. [97] investigated “smart materials” that can 
respond to environmental changes, like pH or temperature, 
and therefore designed a hydrogel with a thermo-respon-
sive switch. The hydrogel is based on secondary crosslink-
ing, where the first crosslinking method is via chemical 
crosslinking of 1-vinyl-3-(carboxyethyl)imidazolium 
chloride to a poly(N-isopropylacrylamide) network. The 
second crosslinking is executed via electrostatic interac-
tions of iron ions with the carboxyl groups of the polymer 
network. The thermo-responsive switch is based on the 
thermosensitivity of poly(N-isopropylacrylamide), and the 
crosslinking process is initiated due to heat-induced water 
loss of the polymer network. Therefore, the density of the 
construct increases due to shrinkage.

Combined crosslinking methods are promising for bio-
printing, because of the possibility of induced crosslink-
ing via environmental changes, a significant improvement 
in stability, cell protective properties and self-healing fea-
tures. The main drawbacks are dependent on the crosslink-
ing methods used in the secondary crosslinking process [97, 
107, 108]. An overview of the advantages and disadvantages 
of all crosslinking methods is shown in Table 2.
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Applications

With the study of 3D bioprinting technology, the application 
areas of microorganisms for 3D printing have been explored. 
Within the scope of this field, scientists combine the physi-
ological characteristics of microorganisms and 3D printing 
technology to functionalize experimental materials [6]. Bac-
teria, in particular, can be mixed with biocompatible aque-
ous solutions that normally contain nutrients and chemicals 
to form self-supporting hydrogels [6]. In this way, bacteria 
can be engineered into complex 3D structures with a wide 
range of potential uses. Figure 3 shows the most important 
application fields which are the production of bioproducts 
[113, 114], artificial biofilms [115, 116], biomedicine [117, 
118] and responsive devices [119, 120].

Production of bioproducts

Microorganisms in nature do not work in isolation but 
rather function in a highly dynamic system of cooperation 
and competition in which the spatial distribution of micro-
bial communities influences this dynamic. The benefit of 
3D bioprinting is the ease with which two or more biologi-
cal sinks can be quickly printed at predetermined points in 
space, allowing the development of microbial communities 
that take into account spatial closeness and the functional 
complementarity of embedded microbes. Biological sinks 
in the context of 3D bioprinting refer to designated spatial 
locations within a printed structure where microorganisms 

or biological components can be strategically placed. For 
research in biomolecule production, the construction of spa-
tial combinations of whole-cell biocatalysts can uniquely 
facilitate the study of microorganisms’ combinations. [6] 
Microorganisms’ combinations can have a huge impact since 
co-cultures tend to play an increasingly important role in 
future production processes [121].

Connell et al. [113] proved the co-culture about sharing 
of antibiotic resistance within a polymicrobial community 
containing Pseudomonas aeruginosa and Staphylococ-
cus aureus, by arranging these two bacterial species’ cells 
at micrometer length-scales in gelatin using multiphoton 
lithography. They were inspired by the micro-3D printing 
technique to build designer ecosystems made for looking at 
the interactions and integration of various bacterial popula-
tions in any 3D structure. In their method, bacteria were 
added to a warm gelatin manufacturing solution of 37 °C, 
and by allowing the solution to cool to room temperature, 
bacteria got suspended at various 3D places throughout 
the thermally formed gel. After the construction of the co-
culture system, they used micro 3D bioprinting to print the 
co-culture system for further investigations. This 3D print-
ing technique offers the ability to create complex micro-
bial consortia arranged at micrometer resolution in any 3D 
geometry. A narrowly concentrated pulsed laser beam was 
scanned in three dimensions to create enclosures around one 
or more bacteria that meet certain geometric requirements. 
By combining two or more bacterial species in a single fab-
rication gel or by progressively bioprinting various cell types 

Table 2  Overview of the advantages and the disadvantages of the individual crosslinking methods and the biomaterials that are suitable

Crosslinking method Biomaterials Advantages Disadvantages References

Physical crosslinking
 H-bonds Hyaluronic acid Naturally formed bonds: cell 

friendly, thermostable, self-
healing

Challenging in synthesis, use 
of organic solvents

[87, 109]

 Ionic interactions Alginate Fast gelation, high cell viabil-
ity, reproducibility, thermal 
induction possible

Complex preparation, limited 
to electrostatic interactions

[23, 85, 91, 92]

Chemical crosslinking
 Enzymes Hyaluronic acid Mild reaction conditions, 

responsible to environmen-
tal changes

Slow crosslinking reaction [95, 96, 110]

 Redox reactions Hyaluronic acid High stability, simple control-
ling

Radical formation [105, 106]

 Complementary groups PEG, hyaluronic acid, agarose High hydrolytic stability Slow gelation rate [86, 110, 111]
 Photo-radiation Gellan-gum, PEG, hyaluronic 

acid, collagen
Inducible crosslinking via 

photo-initiators
UV-light harms microor-

ganisms, optimal condi-
tions highly dependent on 
materials

[78, 84, 99, 112, 137]

 Combined crosslinking Collagen, PEG Self-healing properties, 
improved stability, inducible 
crosslinking, cell protective 
properties

Dependent on the individual 
crosslinking methods used

[97, 107, 108]
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using different fabrication gels, communities with multiple 
populations of segregated bacteria could be created. This 
study showed that the amount of P. aeruginosa needed to 
surround a S. aureus microcolony was sufficient to shield it 
from antibiotics leaking into the larger community because 
P. aeruginosa is able to produce an enzyme that degrades the 
antibiotics, allowing S. aureus to survive [113].

Building more complicated bacterial catalytic systems 
has sparked interest due to the site-specific control of bacte-
rial bioprinting on various bacterial distributions. A crucial 
action was taken by Johnston et al. [122] using a bacte-
rial co-culture system. They created a platform with good 
mechanical properties that was simple to process and imper-
vious to the biological elements in the media. To create a 
co-cultured microbial community that was used for the pro-
duction of high-value-added products, the bioink contain-
ing engineered Saccharomyces cerevisiae and E. coli was 
printed in a spatially isolated hydrogel. They established a 
co-culture system using E. coli and yeast, wherein red flu-
orescent (RF) yeast within distinct gel compartments and 
green fluorescent protein (GFP) bacteria within a combined 
gel were employed. The two microorganisms were in physi-
cal proximity but maintained spatial separation, resulting in 

a distinct spatial pattern. This spatial patterning enabled to 
use the benefits of co-culturing, along with enhanced preser-
vation capabilities during freeze drying before fermentation. 
This co-cultured microbial community performed better than 
the conventional liquid mixed culture [122].

Lehner et al. [114] first combined alginate and E. coli to 
create a bioink for patterned bioprinting using independently 
invented extrusion 3D bioprinting. Ionic crosslinking took 
place by bioprinting on an agar medium containing  Ca2+ to 
create a hydrogel. Although significant cell damage occurred 
during the printing process, activity was recovered within 
24 h. Recombinant E. coli cells were printed in layers with 
varying amounts of fluorescent protein expression. Using 
confocal laser microscopy, good bacterial stratification was 
seen, and the level of stratification correlated with the level 
of solidification. This research demonstrated that the two 
strains were properly constrained in their own areas, laying 
the groundwork for the development of a bacterial co-culture 
system [114].

Researchers also considered the production of high-
valued bioproducts through the creation of symmetrical 3D 
printed structures that favor cell growing conditions and 
bioproduct’s yield. Cui et al. [123] proposed Streptococcus 

Fig. 3  Schematic illustration of the main applications of bacterial 
bioprinting. A Production of bioproducts by 3D printed microorgan-
isms. B Construction of artificial biofilms by 3D bioprinting. C Pro-

duction of biomedical materials and medicine. D Design of respon-
sive biodevices by 3D bioprinting. Figure illustration on the basis of 
Liu et al. [6]
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zooepidemicus as a bioink model microorganism for the pro-
duction of bacterial communities in a 3D-printed biofilm 
bioreactor for the production of hyaluronic acid. The experi-
ment considered the feasibility of the production of macro-
molecules and how the 3D scaffold orientation impacted the 
yield. They tested four different layers’ orientations finding 
that 90 degrees angle layers and an intermediate filament 
distance produced the highest yield. They used gelatin/meth-
acryloyl bioinks which exhibited good rheological charac-
teristics maintaining an acceptable shape and fidelity [123].

Novel applications of biomolecule production from cell 
cultures also reach fields such as the construction industry. 
Reinhardt et al. [124] utilized cyanobacterium Synechoc-
occus sp. for its capacity of producing calcium carbonate 
 (CaCO3) biomolecules, combined with construction mate-
rials like cement. They were able to develop a new type of 
biocement with self-healing properties. The study describes 
the creation of living building materials (LBM) through 3D 
bioprinting techniques. The advantage of using this cyano-
bacterium is that it can produce a biocement with self-
healing properties to be used as a sustainable alternative 
construction material, reducing the significant impact of the 
construction industry on global  CO2 emissions. Calcium car-
bonate serves as a filling when micro fractures in the cement 
start to appear. The calcium carbonate present in the cement 
reacts with water preventing cracks to extend and cause 
structural weakness. Additionally, the cyanobacterium was 
able to withstand shear stress and pressure during the extru-
sion process and remained viable in the immobilized state, 
making it suitable for use in bioprinted scaffolds. During 
prolonged cultivation, Synechococcus sp. increasingly grew 
out of the scaffolds with incorporated sand particles into the 
surrounding cell culture medium. This effect increased with 
higher sand concentrations. Additionally, alternative support 
materials to sea sand could be used to further improve the 
environmental sustainability of the ink, but further research 
is needed to optimize the bioprinting process and to prevent 
cell outgrowth [124].

Fungal composites bioink in 3D bioprinting can offer 
novel topics of research for more sustainable materials and 
production methods in industries like construction and pack-
aging, replacing traditional materials such as plastics and 
cements [125]. Fungi poses a high concentration of chitin, an 
abundant biomolecule with similar properties to cellulose. 
This creates a final product with similar characteristics to 
wood or cork. One of the advantages is using very low-cost 
raw materials from agricultural waste sources such as corn 
stover and rice straw as candidates to grow fungi biomass, 
which transforms these raw materials into a network of 
hyphae [125]. The process consists of 6 stages: (1) the recol-
lection of biomass and fungi from the basidiomycete group, 
(2) colonization of the material, (3) mixing, (4) 3D bioprint-
ing, (5) secondary colonization and (6) finally drying. The 

technique preferred by researchers is 3D extrusion in which 
the most important parameters are extrusion pressure, time 
of fungi colonization for the hardness between layers and 
mixing ratio of the bioink. The mixture of the primary colo-
nized fungi-biomass composite is composed of water and 
wheat flour [126].

Artificial biofilm

Due to their adaptability and diverse metabolic activities, 
bacteria can flourish in almost any ecological niche [127]. 
Because this metabolic diversity is more abundant than in 
any other type of organism, bacteria produce physical mate-
rial in the form of biofilms that ensure survival even in harsh 
environments [128, 129], such as changes in temperature, 
pH, and others. Biofilms adjust their mechanical properties 
under pressure to match the conditions imposed by the sur-
rounding environment with a wide range of biopolymers. 
Biofilms also could provide a stable structure and suitable 
environment [130, 131]. During the growth of biofilms, 
bacteria can also form and degrade a large number of com-
pounds and, in addition, bacteria are able to form calcium 
carbonate [132], magnetite [133] and biopolymers [134]. 
Figure 4 shows an overview of applications for 3D bio-
printing of artificial biofilms. After engineering the micro-
organisms’ genetics, they could be printed through the 3D 
bioprinting technology into artificial biofilms. This offers a 
wide range of functional properties, providing potential for 
a wide variety of applications, including the most important 
applications such as environmental detoxification [135, 136], 
biomedical production [118, 138, 139], material production 
[136, 140, 141], responsive materials [119, 120], and fun-
damental research [138].

Lehner et al. [114] showed how to manufacture germs 
using basic alginate chemistry with transformed commercial 
3D printers or construction toys [114, 132, 137]. Their print-
ing tools used a modified commercially available extrusion 
3D printer. The extruded material was a custom bioink that 
mixed the living bacteria with dissolved alginate. It would 
enable suspended bacteria and chemical substrates for mak-
ing materials to pass through the print head and quickly 
solidify into a stable pattern when it comes into touch with 
the printing surface. With the aid of simple chemistry and 
user-friendly technology, they were able to print high-res-
olution three-dimensional samples that were reproducible 
[114].

Schmieden et al. [116] combined biofilm-forming bac-
teria with 3D bioprinting, which resulted in the creation of 
repeatable, standardized biofilms for scientific studies. They 
showed a new technique for 3D bioprinting materials made 
from modified E. coli cells that were inspired by biofilms. 
The bioink was engineered to induce cells expressing the 
CsgA protein after printing. The CsgA protein functions as 
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a major building block for bacterial curli fibers, contribut-
ing to biofilm formation, surface adhesion, and protection 
of cells within the biofilm structure. A synthetic biofilm was 
formed that protected cells from being rubbed off by sub-
stances that dissolve the gel. The authors created a prototype 
of a cheap 3D printer for bacteria using K’NEX (K’Nex 
Industries, Inc, Hatfield, Pennsylvania) components that 
could print bacteria in layered, stable 3D structures [116].

Since artificial biofilms could be applied in many fields, 
there are lots of applications that could make the contribu-
tion to people’s life. For medical and food production, the 
best high-water habitat is established for bacterial survival, 
nutritional inflow, and waste dispersion by encapsulating 
the bacteria in hydrogels [118]. Bacteria produce hydrogels 
on their own in the form of barrier biofilms with a vari-
ety of mechanical properties. For example, using amyloid 
fibers, Bacillus subtilis creates biofilms at the water–air 
interface that have rather robust mechanical qualities and 
are cohesive, making them ideal for use as wound patches. 

Bacillus subtilis bacterium senses signals from S. aureus and 
responds by releasing antibiotics against S. aureus [118, 138, 
139]. At the water–air interface, other microbes, such Aceto-
bacter xylinum, also known as Gluconacetobacter xylinus, 
are able to produce nanocellulose hydrogels with astounding 
tensile strength [118, 142, 143].

For material production, Clostridium acetobutylicum is 
a well-researched bacterium with a lengthy industrial his-
tory that has been suggested as a potential substitute for 
the production of biofuels [141]. Schmeckebier et al. [144] 
successfully used C. acetobutylicum in artificial biofilms in 
a laboratory unsaturated flow reactor to produce alterna-
tive biofuels like butanol and hydrogen [144, 145]. Napoli 
et al. [141] used immobilized C. acetobotylicum on Tygon 
(Saint-Gobain Corporation, Courbevoie, France) as a carrier 
in a continuous packed bed reactor (PBR). The reactor was 
employed for the production of butanol to demonstrate the 
potential for sustainable bioprocessing using immobilized 
cells in a continuous reactor configuration [141].

Fig. 4  Possible applications for 3D bioprinting of synthetic biofilms: Environmental detoxification, biomedical applications, production of bio-
products, manufacturing of responsive materials and fundamental research. Figure illustration on the basis of Balasubramanian et al. [115]
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However, with immobilized cells in bioproduction, there 
are drawbacks to be taken into account, such as limiting 
mass transfer in the biofilm and managing biofilm growth 
[144]. The use of 3D-printed engineered biofilms are prom-
ising for environmental purification processes, such as biore-
mediation, heavy metal and rare earth element extraction, 
organic carbon removal, and wastewater treatment facilities 
[118, 146]. Patterned-designed biofilms operate as sinks able 
to absorb and degrade pollutants by combining the enhanced 
metabolic potential and particular catabolic features of 
active bacteria with the increased surface area and chemical 
flexibility of biofilm matrices [115].

For fundamental research, the unidentified interactions 
between various bacterial biofilms or between bacterial 
biofilms and the eukaryotic hosts which they dwell can be 
discovered using 3D-printed artificial biofilms. The bioink 
contains various bacteria, and it can be printed in the nearby 
sharing interface or on existing, tested 3D-printed biofilms. 
After a sufficient exposure time, imaging tools and histology 
methods can then be used to understand the communication 
and social behavior of bacteria and their hosts [115].

The management of viral diseases or the development 
of new antibiofilm medications might benefit from these 
foundational studies. As an example, Bacillus subtilis was 
employed because of its ability to produce strong biofilms, 
its ability to secrete proteins that can alter cell activity, and 
its genetic tractability [147]. Because of its genetic tractabil-
ity, Bacillus subtilis has also demonstrated efficacious utili-
zation in the fabrication of synthetic biofilms and engineered 
materials [115].

Biomedical applications

Bacteria can produce and breakdown a wide range of com-
pounds that are frequently used in the production of chemi-
cals, biopolymers, enzymes, and proteins relevant to the 
medical sectors. [117]. Compared to free culture, microbial 
immobilization has a number of advantages, including high 
production efficiency, resistance to potentially harmful envi-
ronmental chemicals, and ongoing usage and recycling. 3D 
bioprinting technology, as a new immobilization technology, 
unquestionably has greater potential in the production of 
medical materials because it can produce more customized 
products based on improved microbial living environments 
in accordance with preferences and practical application sce-
narios. This results in additional application domains for 
immobilization technologies in this field [6].

Szarlej et al. [148] used the efficacy of a 3D composite 
polyurethane-polylactide (PUR/PLA) flexible filaments scaf-
fold as a potential wound dressing by assessing cell growth 
and improving antimicrobial effects for skin regeneration 
and bone graft using Staphylococcus aureus bacteria as a 
model microorganism. S. aureus is a common bacterium 

found on human skin that can be easily cultured in the lab-
oratory. Researchers combined the extrusion of PLA and 
thermoplastic polyurethanes (TPUs) with the antibacterial 
activity of amikacin to test the release profile and its effec-
tiveness on bacterial cultures. Results showed that amikacin 
survived the extrusion process and reduced bacterial growth 
over PLA and TPUs 3D printed structures [148].

3D cellulosic structures using the cellulose-producing 
bacteria Acetobacter xylinum were shown to be very helpful 
in the medical field due to the biocompatibility of bacterial 
cellulose [118, 149]. Bacterial cellulose has been produced 
in situ as wound dressings [118, 148], prospective blood 
arteries [142, 150], and surface-patterned implants [149].

Schaffner et al. [118] developed a novel type of compos-
ite bioink called “functional living ink (flink)”, which uses 
hyaluronic acid, k-carrageenan, and fumed silica to mix in 
a certain proportion to maintain good viscoelasticity while 
having the ability of shear thinning for extrusion-based 
printing. Pseudomonas putida and A. xylum were used as 
model organisms for the creation of functional and com-
plex hydrogels. P. putida is a well-studied bacterium that is 
known to have a high metabolic versatility and can grow on 
a wide range of substrates such as phenols [118]. Figure 5 
depicts the workflow of “flink,” which displays its bioreme-
diation and biomedical applications.

To make hydrogels with sufficient mechanical strength, 
hyaluronic acid (HA) can be substituted with glycidyl meth-
acrylate HA (GMHA) [6]. The substitution of HA with 
GMHA does not induce notable changes in viscosity but 
enables the hydrogel to undergo UV-cross-linking at a low 
exposure dose and harmless wavelengths (365 nm for 60 s at 
90 mW). Environmentally hazardous phenols were broken 
down using P. putida immobilized in a 3D printed “flink”-
GMHA grid [118].

Schaffner et al. [118] also presented a methodological 
innovation utilizing 3D bioprinting techniques to fabricate 
functional materials derived from bacteria, leveraging their 
diverse natural metabolism. This approach seamlessly inte-
grates the intrinsic metabolic capabilities of bacteria with 
the design flexibility offered by additive manufacturing 
processes. To realize this amalgamation, they encapsulated 
Pseudomonas putida and Acetobacter xylinum, among oth-
ers, within a biocompatible and functionalized 3D printing 
ink called functional living ink (flink), enabling the pro-
duction of two distinct categories of living materials. These 
materials exhibited efficient degradation of environmental 
pollutants and the synthesis of medically pertinent bacterial 
cellulose. The versatility of this bacterial printing platform 
enabled the construction of complex materials with precise 
spatial configurations, compositions, and properties. Thus, 
they were able to print a face mask made of “flink” for a doll, 
which perfectly fit the doll’s facial contours. This opened up 
further possibilities for biomedical applications [118].
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Responsive devices

Biocompatible aqueous solutions that typically include 
nutrients and chemicals can be combined with bacteria to 
create self-supporting hydrogels. This enables the produc-
tion of complicated 3D structures with a wide range of pos-
sible applications [151].

Liu et al. [119] presented living sensors by modifying 
E. coli and patterning hydrogels. Through genetic modifi-
cation of E. coli within the hydrogel structure, specifically 
engineered to sense chemical inducers present in human skin 
(N-acyl homoserine lactone, isopropyl-D-1-thiogalactopyra-
noside, and rhamnose), the researchers facilitated the 3D 
printing of wearable materials. The development of ingest-
ible or implanted sensors have the potential to modulate the 
gut microbiota and address micro-mediated diseases such as 
obesity and diabetes, which would be an intriguing applica-
tion of this technology [119].

Mcbee et al. [120] described a live tattoo out of regenera-
tive fungal–bacterial biocomposite structures for chemical 
detection, where a small layer of elastomer was used to print 
the tattoo as a tree-like design, which was then applied to the 
human skin. The tattoo was manufactured using 3D printing. 
They utilized food dyes to enhance the visualization of the 
hydrogel pattern. The different cell types encapsulated were 
differentiated by hydrogels in distinct colours. Additionally, 
the tattoo-responsive devices were coated with different acti-
vated small biological molecules like Rham, IPTG, or AHL. 
Due to the fact that the living sensors contained different 
molecules in the tattoo, they could generate fluorescence in 
response to certain substances. For instance, alterations in 
the skin’s state through compression, stretching, or twisting 
demonstrated discernible responses in the optical proper-
ties of the living tattoo, manifesting as variations in light-
ness or darkness. These mechanisms may assist individuals 
in perceiving distinct conditions, as the responsive devices 
manifest diverse visual expressions [120].

Table 3 gives a summary of the most important applica-
tions for 3D bioprinting in different areas covered in this 
review.

Conclusion and future perspectives

This review gives an overview of the state-of-the-art of 3D 
bioprinting-methods and applications, as well as microor-
ganisms that are used for bioprinting, and about crosslinking 
methods for polymeric networks. The combination of the 
printing technology used, the choice of the microorganisms 
and the bioinks, depends highly on the application and the 
aimed product. Bioinks need to have good printability, have 
to be suitable for the chosen printing device, and have to 
display mechanical integrity, stability, and biocompatibility. 
The way of crosslinking of the polymeric network of the 
bioink is dependent on the microorganism and the printing 
method, and what physical and physiological properties are 
aspired and needed, to provide a stable environment for cell 
encapsulation. The most important encapsulation character-
istics are elasticity, stability, and physiological conditions.

Applications of 3D bioprinting rapidly increased dur-
ing the last years and are being constantly improved for 
the production of bioproducts, responsive devices, bio-
medicine, and many others. For example, tissue repair 
and regeneration, as well as biosensors designed to 
detect early signs of diseases or infections, showcase this 
potential. In the future, we believe that with the develop-
ment of microorganisms’ 3D printing techniques, there 
will be more applications waiting for people to discover. 
For example, solar-driven air recycling systems may be 
achieved by bioprinting photoautotrophic microorgan-
isms (microalgae, cyanobacteria) into transparent facade 
elements of buildings to exchange  CO2 for  O2 by pass-
ing consumed  CO2-enriched air through these elements 
to produce  O2-enriched air for recycling. The variety of 
microorganisms available for bioprinting also promotes 
future development in the production of fine chemicals 

Fig. 5  Schematics of the 3D bacteria-printing platform for the crea-
tion of functional living materials (flink). The incorporation of par-
ticular bacterial strains results in the development of a dynamic and 

responsive hydrogel, representing a new class of material termed 
“flink”. Figure illustration on the basis of Schaffner et al. [118]
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in bioreactors because the diverse array of microorgan-
isms available for 3D bioprinting facilitates precise con-
trol over biochemical cascade production, allowing for 
specialized syntheses, activation of synergistic effects by 
tailored microbial consortia, enabling customizable bio-
reactor designs, and resource-efficient scalability. Another 
interesting perspective is the inclusion of machine learning 
techniques into the bioprinting of microorganisms. They 
could help for example with design optimization, print-
ing process improvement, quality control or bioprinting 
customization.

In conclusion, 3D bioprinting of microorganisms is an 
emerging technology with wide applications and promising 
prospects. Although it is still in the exploratory stage, its 
potential value has attracted extensive attention in the fields 
of medical treatment, biomanufacturing, and environmen-
tal protection. With further research and development, 3D 
printing of microorganisms is expected to bring significant 
advances to industry and society.
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Table 3  Overview of the most important applications, the microorganisms and the immobilization techniques used

Application Objective Microorganisms Immobilization technique References

Production of bioproducts Production with co-cultures Pseudomonas aeruginosa and 
Staphylococcus aureus

Multiphoton lithography [113]

Saccharomyces cerevisiae and 
E. coli

Direct-write extrusion printing [122]

Basic research E. coli Extrusion based bioprinting [114]
Undefined biomass-fungi mixture Extrusion based bioprinting [126]

Hyaluronic acid production Streptococcus zooepidemicus Photocuring [123]
Calcium carbonate production Synechococcus sp. Extrusion based bioprinting [124]

Artificial biofilm Basic research E. coli Extrusion based bioprinting [114, 116]
E. coli, Pseudomonas fluorescens 

and Bacillus subtilis
Self-growing biofilms [138]

Development of novel printing 
technique

Pseudomonas putida and Aceto-
bacter xylinum

Novel printing technique [118]

E. coli Novel printing technique [115]
Development of a novel reactor Clostridium acetobutylicum Growing on carrier material [141]

Biomedical application Production of antibacterial wound 
dressings

E. coli, P. fluorescens, S. aureus 
and S. epidermidis

Fused filament fabrication [148]

Basic research A. xylinum Cell adhesion [142]
Responsive devices Development of wearble materials E. coli Direct writing and UV curing [119]

Basic research Different fungi and bacteria in 
composites

Different types [120]
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