Skip to main content
Log in

Application of nanopesticides and its toxicity evaluation through Drosophila model

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Insects feed on plants and cause the growth of plants to be restricted. Moreover, the application of traditional pesticides causes harmful effects on non-target organisms and poses serious threats to the environment. The use of conventional pesticides has negative impacts on creatures that are not the intended targets. It also presents significant risks to the surrounding ecosystem. Insects that are exposed to these chemicals eventually develop resistance to them. This review could benefit researcher for future development of nanopesticides research. This is because a holistic approach has been taken to describe the multidimensional properties of nanopesticides, health and environmental concerns and its possible harmful effects on non-target organisms and physiochemical entities. The assessment of effects of the nanopesticides is also being discussed through the drosophotoxicology. The future outlooks have been suggested to take a critical analysis before commercialization or formulation of the nanopesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on the request.

Abbreviations

DNA:

Deoxyribonucleic Acid

nm:

Nanometer

IPMS:

Integrated Pest Management Strategies

CDS:

Controlled Delivery System

EC:

Emulsion Concentrate

O/W:

Oil in Water

W/W:

Water in Water

TEM:

Transmission Electron Micrograph

ATR-FTIR:

Attenuated Total Reflectance-Fourier Transform Infrared

PEG:

Polyethylene Glycol

SLN:

Solid Lipid Nanoparticle

PE:

Pickering Emulsion

AcI:

Active Ingredient

UV:

Ultraviolet

EPA:

Environment Protection Act

USDA:

United States Department of Agriculture

WHO:

World Health Organization

OECD:

Organization for Economic Cooperation and Development

References

  1. Singh SB (2014) Nanotechnology in agri-food production: An overview. Nanotechnol Sci Appl 7(2):31–53. https://doi.org/10.2147/NSA.S39406

    Article  Google Scholar 

  2. E. Birch AN, Begg GS, Squire GR. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. J Exp Bot. 2011;62(10):3251–3261. doi:https://doi.org/10.1093/jxb/err064

  3. Dhaliwal G, Jindal V, Dhawan A (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7. https://doi.org/10.13140/RG.2.2.25753.47201

    Article  Google Scholar 

  4. Brunner J, Talbott K, Elkin C. Logging Burma’s Frontier Forests: Resources and the Regime. World Resousces Inst. Published online 1998:62.

  5. Aspelin AL, Grube AH. Pesticides Industry Sales and Usage: 1994 and 1995 Market Estimates. Off Pestic Programs, US Environ Prot Agency. 1997;(August):39.

  6. Ippolito A, Kattwinkel M, Rasmussen JJ, Schäfer RB, Fornaroli R, Liess M (2015) Modeling global distribution of agricultural insecticides in surface waters. Environ Pollut 198:54–60. https://doi.org/10.1016/j.envpol.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  7. Wilson C. Cost and policy implications of agricultural pollution, with special reference to pesticides. Dep Econ. 1999;PhD:233.

  8. Ruiz-Suárez N, Boada LD, Henríquez-Hernández LA et al (2015) Continued implication of the banned pesticides carbofuran and aldicarb in the poisoning of domestic and wild animals of the Canary Islands (Spain). Sci Total Environ 505:1093–1099. https://doi.org/10.1016/j.scitotenv.2014.10.093

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Chen W, Jing M et al (2019) Self-assembled mixed micelle loaded with natural pyrethrins as an intelligent nano-insecticide with a novel temperature-responsive release mode. Chem Eng J 361:1381–1391. https://doi.org/10.1016/j.cej.2018.10.132

    Article  CAS  Google Scholar 

  10. Parween T, Jan S, Mahmooduzzafar S, Fatma T, Siddiqui ZH (2016) Selective effect of pesticides on plant—a review. Crit Rev Food Sci Nutr 56(1):160–179. https://doi.org/10.1080/10408398.2013.787969

    Article  CAS  PubMed  Google Scholar 

  11. Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111. https://doi.org/10.1016/j.taap.2017.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm Res 28(5):978–985. https://doi.org/10.1007/s11095-010-0309-1

    Article  CAS  PubMed  Google Scholar 

  13. Senior JH (2008) Nanoparticulate drug delivery systems. Drug Dev Ind Pharm 34(1):116. https://doi.org/10.1080/03639040701877119

  14. Torchilin V (2006) Introduction. Nanocarriers for Drug Delivery: Needs and Requirements. Nanoparticulates as Drug Carriers, pp 1–8. https://doi.org/10.1142/9781860949074_0001

  15. Elibol OH, Morisette D, Akin D, Denton JP, Bashir R (2003) Integrated nanoscale silicon sensors using top-down fabrication. Appl Phys Lett 83(22):4613–4615. https://doi.org/10.1063/1.1630853

    Article  CAS  Google Scholar 

  16. Soloviev M (2007) Nanobiotechnology today: focus on nanoparticles. J Nanobiotechnol 5(11):3–5. https://doi.org/10.1186/1477-3155-5-11

  17. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867. https://doi.org/10.1080/10643389.2012.671750

    Article  CAS  Google Scholar 

  18. Kah M, Hofmann T (2014) Nanopesticide research: Current trends and future priorities. Environ Int 63:224–235. https://doi.org/10.1016/j.envint.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  19. Kalpana Sastry R, Anshul S, Rao NH (2013) Nanotechnology in food processing sector—an assessment of emerging trends. J Food Sci Technol 50(5):831–841. https://doi.org/10.1007/s13197-012-0873-y

    Article  CAS  PubMed  Google Scholar 

  20. Wibowo D, Zhao CX, Peters BC, Middelberg APJ (2014) Sustained release of fipronil insecticide in Vitro and in Vivo from biocompatible silica nanocapsules. J Agric Food Chem 62(52):12504–12511. https://doi.org/10.1021/jf504455x

    Article  CAS  PubMed  Google Scholar 

  21. Nishisaka C, Grillo R, Sanches G, Fraceto L, Lima R (2014) Analysis of the effects of pesticides and nanopesticides on the environment. BMC Proc 8(S4):6561. https://doi.org/10.1186/1753-6561-8-s4-p100

    Article  Google Scholar 

  22. Kapinder, Dangi K, Verma AK. Efficient & eco-friendly smart nano-pesticides: Emerging prospects for agriculture. Mater Today Proc. 2021;45:3819–3824. https://doi.org/10.1016/j.matpr.2021.03.211

  23. Huang B, Chen F, Shen Y et al (2018) Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials. https://doi.org/10.3390/nano8020102

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xu Z, Tang T, Lin Q et al (2022) Environmental risks and the potential benefits of nanopesticides: a review. Environ Chem Lett 20(3):2097–2108. https://doi.org/10.1007/s10311-021-01338-0

    Article  CAS  Google Scholar 

  25. Coa F, Bortolozzo L, Petry R et al (2020). Environmental toxicity of nanopesticides against non-target organisms: the State of the Art. https://doi.org/10.1007/978-3-030-44873-8_8

    Article  Google Scholar 

  26. Yan S, Cheng WY, Han ZH et al (2020) Nanometerization of thiamethoxam by a cationic star polymer nanocarrier efficiently enhances the contact and plant-uptake dependent stomach toxicity against green peach aphids. Pest Manag Sci 77(4):1954–1962. https://doi.org/10.1002/ps.6223

    Article  CAS  Google Scholar 

  27. Zhao X, Zhu Y, Zhang C, Lei J, Ma Y, Du F (2017) Positive charge pesticide nanoemulsions prepared by the phase inversion composition method with ionic liquids. RSC Adv 7(77):48586–48596. https://doi.org/10.1039/c7ra08653a

    Article  CAS  Google Scholar 

  28. Abdollahdokht D, Gao Y, Faramarz S et al (2022) Conventional agrochemicals towards nano-biopesticides: an overview on recent advances. Chem Biol Technol Agric 9:1–19. https://doi.org/10.1186/s40538-021-00281-0

    Article  Google Scholar 

  29. Margulis-Goshen K, Magdassi S. Nanotechnology: an advanced approach to the development of potent insecticides bt - advanced technologies for managing insect pests. In: Ishaaya I, Palli SR, Horowitz AR, eds. Springer, Netherlands; 2013:295–314. https://doi.org/10.1007/978-94-007-4497-4_15

  30. Shahid M, Naeem-Ullah U, Khan W, Saeed DS, Razzaq K (2021) Application of nanotechnology for insect pests management: a review. J Innov Sci 7(1):28–39. https://doi.org/10.17582/journal.jis/2021/7.1.28.39

    Article  CAS  Google Scholar 

  31. Keshavarz MH, Shirazi Z, Eskandari P (2022) A simple assessment of toxicity towards Chlorella vulgaris of organic aromatic compounds in environmental protection. Process Saf Environ Prot 163:669–678. https://doi.org/10.1016/j.psep.2022.05.074

    Article  CAS  Google Scholar 

  32. Divya K, Divyasree R, Vamsidhar M et al (2021) Emulsion, micro emulsion and nano emulsion: a review. Published Online. https://doi.org/10.20959/wjpps20214-18643

    Article  Google Scholar 

  33. Mujahid A, Dickert FL. (2016) 5 - Molecularly Imprinted Polymers: Principle, Design, and Enzyme-Like Catalysis. In: Li S, Cao S, Piletsky SA, Turner APFBTMIC, eds. Elsevier, Amsterdam. 2016:79–101. https://doi.org/10.1016/B978-0-12-801301-4.00005-0

  34. Khan MM, Cho MH (2018) Positively charged gold nanoparticles for hydrogen peroxide detection. Bionanoscience 8(2):537–543. https://doi.org/10.1007/s12668-018-0503-x

    Article  Google Scholar 

  35. Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science (80- ). 1998;281(5385):2016–2018. https://doi.org/10.1126/science.281.5385.2016

  36. De JWH, Paul JB (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149. https://doi.org/10.2147/ijn.s596

    Article  Google Scholar 

  37. Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nanosci Technol A Collect Rev from Nat Journals. 2009:278–287. https://doi.org/10.1142/9789814287005_0029

  38. Chin CP, Wu HS, Wang SS (2011) New approach to pesticide delivery using nanosuspensions: research and applications. Ind Eng Chem Res 50(12):7637–7643. https://doi.org/10.1021/ie2001007

    Article  CAS  Google Scholar 

  39. Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloids Surfaces A Physicochem Eng Asp 372(1–3):66–72. https://doi.org/10.1016/j.colsurfa.2010.09.034

    Article  CAS  Google Scholar 

  40. Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep. https://doi.org/10.1038/srep01294

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20(4):433–441. https://doi.org/10.1080/0265204021000058410

    Article  CAS  PubMed  Google Scholar 

  42. Israelachvili J. The science and applications of emulsions - an overview. Colloids Surfaces A Physicochem Eng Asp. 1994;91(C):1–8. https://doi.org/10.1016/0927-7757(94)02743-9

  43. Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J (2008) Nano-emulsions: New applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13(4):245–251. https://doi.org/10.1016/j.cocis.2008.01.005

    Article  CAS  Google Scholar 

  44. Review B (1996) Lat Am Perspect 23(4):50

    Google Scholar 

  45. Katagi T (2008) Surfactant effects on environmental behavior of pesticides. Rev Environ Contam Toxicol 194:71–177. https://doi.org/10.1007/978-0-387-74816-0_4

    Article  CAS  PubMed  Google Scholar 

  46. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/18/41/R01

    Article  PubMed  Google Scholar 

  47. Song S, Liu X, Jiang J, Qian Y, Zhang N, Wu Q (2009) Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf A Physicochem Eng Asp 350(1–3):57–62. https://doi.org/10.1016/j.colsurfa.2009.08.034

    Article  CAS  Google Scholar 

  48. McClements DJ (2012) Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 8(6):1719–1729. https://doi.org/10.1039/c2sm06903b

    Article  CAS  Google Scholar 

  49. Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release 128(3):185–199. https://doi.org/10.1016/j.jconrel.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  50. Balaji APB, Sastry TP, Manigandan S, Mukherjee A, Chandrasekaran N (2017) Environmental benignity of a pesticide in soft colloidal hydrodispersive nanometric form with improved toxic precision towards the target organisms than non-target organisms. Sci Total Environ 579:190–201. https://doi.org/10.1016/j.scitotenv.2016.10.240

    Article  CAS  PubMed  Google Scholar 

  51. Feng J, Shi Y, Yu Q, Sun C, Yang G (2016) Effect of emulsifying process on stability of pesticide nanoemulsions. Colloids Surf A Physicochem Eng Asp 497:286–292. https://doi.org/10.1016/j.colsurfa.2016.03.024

    Article  CAS  Google Scholar 

  52. Nenaah GE, Ibrahim SIA, Al-Assiuty BA (2015) Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus maculatus (F.). J Stored Prod Res 61:9–16. https://doi.org/10.1016/j.jspr.2014.12.007

    Article  Google Scholar 

  53. Balaji APB, Mishra P, Suresh Kumar RS, Mukherjee A, Chandrasekaran N (2015) Nanoformulation of poly(ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control. Colloids Surf B Biointerfaces 128:370–378. https://doi.org/10.1016/j.colsurfb.2015.02.034

    Article  CAS  PubMed  Google Scholar 

  54. Pant M, Dubey S, Patanjali PK, Naik SN, Sharma S (2014) Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int Biodeterior Biodegrad 91:119–127. https://doi.org/10.1016/j.ibiod.2013.11.019

    Article  CAS  Google Scholar 

  55. Zhang X, Liu J, Fan Z (2013) Stability of etofenprox in water emulsion induced by block copolymer and surfactant. Colloids Surf A Physicochem Eng Asp 422:191–198. https://doi.org/10.1016/j.colsurfa.2013.01.046

    Article  CAS  Google Scholar 

  56. Lim CJ, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ. Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Manag Sci. 2013;69(1):104–111. https://doi.org/10.1002/ps.3371

  57. Chaw Jiang L, Basri M, Omar D, et al. Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic Biochem Physiol. 2012;102(1):19–29. https://doi.org/10.1016/j.pestbp.2011.10.004

  58. Liu Y, Wei F, Wang Y, Zhu G (2011) Studies on the formation of bifenthrin oil-in-water nano-emulsions prepared with mixed surfactants. Colloids Surf A Physicochem Eng Asp 389(1–3):90–96. https://doi.org/10.1016/j.colsurfa.2011.08.045

    Article  CAS  Google Scholar 

  59. Zhang X, Liu J (2011) Effect of arabic gum and xanthan gum on the stability of pesticide in water emulsion. J Agric Food Chem 59(4):1308–1315. https://doi.org/10.1021/jf1034459

    Article  CAS  PubMed  Google Scholar 

  60. Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372(1–2):105–111. https://doi.org/10.1016/j.ijpharm.2008.12.029

    Article  CAS  PubMed  Google Scholar 

  61. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235. https://doi.org/10.1016/j.jcis.2007.04.079

    Article  CAS  PubMed  Google Scholar 

  62. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14(1):3–15. https://doi.org/10.1016/j.cocis.2008.01.002

    Article  CAS  Google Scholar 

  63. Müller RH, Junghanns JUAH. Drug nanocrystals/nanosuspensions for the delivery of poorly soluble drugs. Nanoparticulates as Drug Carriers 2006:307–328. https://doi.org/10.1142/9781860949074_0014

  64. Hancock BC, Parks M (2000) What is the true solubility advantage of amorphous Pharmaceuticals? Pharm Res 17(4):397–404. https://doi.org/10.1023/A:1007516718048

  65. Zhang H, Wang D, Butler R et al (2008) Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 3(8):506–511. https://doi.org/10.1038/nnano.2008.188

    Article  CAS  PubMed  Google Scholar 

  66. Ciolkosz D, Albright L (1999) Project Final. Report 44(212966):1–62

    Google Scholar 

  67. Al Annu, Ort Rep, Isi D. S U S Tain in G Growth. Published online 2000:195–205.

  68. Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Management Science 64(4):319–325. https://doi.org/10.1002/ps.1518

  69. Shakil NA, Singh MK, Pandey A et al (2010) Development of poly(ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. J Macromol Sci Part A Pure Appl Chem 47(3):241–247. https://doi.org/10.1080/10601320903527038

    Article  CAS  Google Scholar 

  70. Kumar J, Shakil NA, Singh MK, Singh MK, Pandey A, Pandey RP (2010) Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers. J Environ Sci Health B 45(4):310–314. https://doi.org/10.1080/03601231003704457

    Article  CAS  PubMed  Google Scholar 

  71. Liu Y, Laks P, Heiden P. Controlled release of biocides in solid wood. I. Efficacy against brown rot wood decay fungus (Gloeophyllum trabeum). J Appl Polym Sci. 2002;86(3):596–607. https://doi.org/10.1002/app.10896

  72. Liu Y, Laks P, Heiden P. Controlled release of biocides in solid wood. II. Efficacy against Trametes versicolor and Gloeophyllum trabeum wood decay fungi. J Appl Polym Sci. 2002;86(3):608–614. https://doi.org/10.1002/app.10897

  73. Liu Y, Laks P, Heiden P. Controlled release of biocides in solid wood. III. Preparation and characterization of surfactant-free nanoparticles. J Appl Polym Sci. 2002;86(3):615–621. https://doi.org/10.1002/app.10898

  74. Liu Y, Yan L, Heiden P, Laks P (2001) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79(3):458–465. https://doi.org/10.1002/1097-4628(20010118)79:3%3c458::AID-APP80%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  75. Salma U, Chen N, Richter DL et al (2010) Amphiphilic core/shell nanoparticles to reduce biocide leaching from treated wood, 1 - leaching and biological efficacy. Macromol Mater Eng 295(5):442–450. https://doi.org/10.1002/mame.200900250

    Article  CAS  Google Scholar 

  76. Chang PR, Jian R, Zheng P, Yu J, Ma X (2010) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 79(2):301–305. https://doi.org/10.1016/j.carbpol.2009.08.007

    Article  CAS  Google Scholar 

  77. Bhan S, Mohan L, Srivastava CN (2014) Relative larvicidal potentiality of nano-encapsulated Temephos and Imidacloprid against Culex quinquefasciatus. J Asia Pac Entomol 17(4):787–791. https://doi.org/10.1016/j.aspen.2014.07.006

    Article  CAS  Google Scholar 

  78. Roy A, Bajpai J, Bajpai AK (2009) Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr Polym 76(2):222–231. https://doi.org/10.1016/j.carbpol.2008.10.013

    Article  CAS  Google Scholar 

  79. Kang MA, Seo MJ, Hwang IC et al (2012) Insecticidal activity and feeding behavior of the green peach aphid, Myzus persicae, after treatment with nano types of pyrifluquinazon. J Asia Pac Entomol 15(4):533–541. https://doi.org/10.1016/j.aspen.2012.05.015

    Article  CAS  Google Scholar 

  80. Suresh Kumar RS, Shiny PJ, Anjali CH et al (2013) Distinctive effects of nano-sized permethrin in the environment. Environ Sci Pollut Res 20(4):2593–2602. https://doi.org/10.1007/s11356-012-1161-0

    Article  CAS  Google Scholar 

  81. Frederiksen HK, Kristensen HG, Pedersen M (2003) Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin - Incompatibility of the lipid and the pyrethroid and biological properties of the formulations. J Control Release 86(2–3):243–252. https://doi.org/10.1016/S0168-3659(02)00406-6

    Article  CAS  PubMed  Google Scholar 

  82. Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech. https://doi.org/10.1208/pt070102

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bang SH, Yu YM, Hwang IC, Park HJ (2009) Formation of size-controlled nano carrier systems by self-assembly. J Microencapsul 26(8):722–733. https://doi.org/10.3109/02652040902726994

    Article  CAS  PubMed  Google Scholar 

  84. Hwang IC, Kim TH, Bang SH et al (2011) Insecticidal effect of controlled release formulations of etofenprox based on nano-bio technique. J Fac Agric Kyushu Univ 56(1):33–40. https://doi.org/10.5109/19633

    Article  CAS  Google Scholar 

  85. Nguyen HM, Hwang IC, Park JW, Park HJ (2012) Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid. J Microencapsul 29(6):596–604. https://doi.org/10.3109/02652048.2012.668960

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen HM, Hwang IC, Park JW, Park HJ (2012) Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles. Pest Manag Sci 68(7):1062–1068. https://doi.org/10.1002/ps.3268

    Article  CAS  PubMed  Google Scholar 

  87. Paula HCB, Sombra FM, Cavalcante RDF, Abreu FOMS, De Paula RCM (2011) Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Mater Sci Eng C 31(2):173–178. https://doi.org/10.1016/j.msec.2010.08.013

    Article  CAS  Google Scholar 

  88. Brunel F, El Gueddari NE, Moerschbacher BM (2013) Complexation of copper(II) with chitosan nanogels: toward control of microbial growth. Carbohydr Polym 92(2):1348–1356. https://doi.org/10.1016/j.carbpol.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  89. Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298(5):504–520. https://doi.org/10.1002/mame.201200290

    Article  CAS  Google Scholar 

  90. Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86. https://doi.org/10.1002/app.36943

    Article  CAS  Google Scholar 

  91. Adak T, Kumar J, Shakil NA, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 47(3):217–225. https://doi.org/10.1080/03601234.2012.634365

    Article  CAS  Google Scholar 

  92. Sarkar DJ, Kumar J, Shakil NA, Walia S (2012) Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 47(11):1701–1712. https://doi.org/10.1080/10934529.2012.687294

    Article  CAS  Google Scholar 

  93. Pankaj, Shakil NA, Kumar J, Singh MK, Singh K. Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes. 2012;47(6):520–528. https://doi.org/10.1080/03601234.2012.665667

  94. Kaushik P, Shakil NA, Kumar J, Singh MK, Singh MK, Yadav SK (2013) Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 48(8):677–685. https://doi.org/10.1080/03601234.2013.778614

    Article  CAS  Google Scholar 

  95. Loha KM, Shakil NA, Kumar J, Singh MK, Adak T, Jain S (2011) Release kinetics of β-cyfluthrin from its encapsulated formulations in water. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 46(3):201–206. https://doi.org/10.1080/03601234.2011.540200

    Article  CAS  Google Scholar 

  96. Choudhury SR, Pradhan S, Goswami A (2012) Preparation and characterisation of acephate nano-encapsulated complex. Nanosci Methods 1(1):9–15. https://doi.org/10.1080/17458080.2010.533443

    Article  CAS  Google Scholar 

  97. Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol 51(1):86–93. https://doi.org/10.1016/j.lwt.2012.11.011

    Article  CAS  Google Scholar 

  98. Abreu FOMS, Oliveira EF, Paula HCB, De Paula RCM (2012) Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym 89(4):1277–1282. https://doi.org/10.1016/j.carbpol.2012.04.048

    Article  CAS  PubMed  Google Scholar 

  99. Mustafa IF, Hussein MZ (2020) Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials 10(8):1–26. https://doi.org/10.3390/nano10081608

    Article  CAS  Google Scholar 

  100. Hazra DKPA (2019) Role of pesticide formulations for sustainable crop protection and environment management: A review. J Pharmacogn Phytochem 8(2):686–693

    CAS  Google Scholar 

  101. M. Surendhiran et al., MS et al. . Nano Emulsion Seed Invigouration for Improved Germination and Seedling Vigour in Maize. Int J Agric Sci Res. 2019;9(3):333–340. https://doi.org/10.24247/ijasrjun201946

  102. Chen K, Yu G, He F et al (2017) A pH-responsive emulsion stabilized by alginate-grafted anisotropic silica and its application in the controlled release of λ-cyhalothrin. Carbohydr Polym 176:203–213. https://doi.org/10.1016/j.carbpol.2017.07.046

    Article  CAS  PubMed  Google Scholar 

  103. Hou R, Zhou J, Song Z et al (2023) pH-responsive λ-cyhalothrin nanopesticides for effective pest control and reduced toxicity to Harmonia axyridis. Carbohydr Polym 302:120373. https://doi.org/10.1016/j.carbpol.2022.120373

    Article  CAS  PubMed  Google Scholar 

  104. Osman Mohamed Ali E, Shakil NA, Rana VS, et al. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind Crops Prod. 2017;108(December 2016):379–387. https://doi.org/10.1016/j.indcrop.2017.06.061

  105. de Souza JF, da Silva PK, Alves TFR et al (2020) Structural comparison, physicochemical properties, and in vitro release profile of curcumin-loaded lyotropic liquid crystalline nanoparticle: Influence of hydrotrope as interface stabilizers. J Mol Liq 306:112861. https://doi.org/10.1016/j.molliq.2020.112861

    Article  CAS  Google Scholar 

  106. Bisset NB, Webster GR, Da DY, Boyd BJ (2019) Understanding the kinetic mixing between liquid crystalline nanoparticles and agrochemical actives. Colloids Surfaces B Biointerfaces 175:324–332. https://doi.org/10.1016/j.colsurfb.2018.11.063

    Article  CAS  PubMed  Google Scholar 

  107. Bhowmik M, Gupta MK. Biology of Cabbage Butterfly Pieris Brassicae Linn. (Lepidoptera: Pieridae). Vol 6.; 2017. https://doi.org/10.20546/ijcmas.2017.612.420

  108. Bang SH, Hwang IC, Yu YM, Kwon HR, Kim DH, Park HJ (2011) Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. J Microencapsul 28(7):595–604. https://doi.org/10.3109/02652048.2011.557748

    Article  CAS  PubMed  Google Scholar 

  109. Nowack B, Krug H, Height M. Erratum: 120 years of nanosilver history: Implications for policy makers (Environmental Science and Technology (2011) 45 (1177–1183). https://doi.org/10.1021/es103316q. Environ Sci Technol. 2011;45(7):3189. https://doi.org/10.1021/es200435m

  110. Jung JH, Kim SW, Min JS et al (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 38(1):39. https://doi.org/10.4489/myco.2010.38.1.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043. https://doi.org/10.1094/PDIS-93-10-1037

    Article  CAS  PubMed  Google Scholar 

  112. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32. https://doi.org/10.4489/MYCO.2011.39.1.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199. https://doi.org/10.5941/MYCO.2011.39.3.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Abduz Zahir A, Bagavan A, Kamaraj C, Elango G, Abdul Rahuman A. Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopestic. 2012;5(SUPPL.):95–102.

  115. Suman TY, Elumalai D, Kaleena PK, Rajasree RSR (2013) GC-MS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and filariasis vectors. Ind Crops Prod 47:239–245. https://doi.org/10.1016/j.indcrop.2013.03.010

    Article  CAS  Google Scholar 

  116. Ding Y, Xiao Z, Chen F et al (2023) A mesoporous silica nanocarrier pesticide delivery system for loading acetamiprid: effectively manage aphids and reduce plant pesticide residue. Sci Total Environ 863:160900. https://doi.org/10.1016/j.scitotenv.2022.160900

    Article  CAS  PubMed  Google Scholar 

  117. Shah MA, Khan AA (2014) Use of diatomaceous earth for the management of stored-product pests. Int J Pest Manag 60(2):100–113. https://doi.org/10.1080/09670874.2014.918674

    Article  Google Scholar 

  118. Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579. https://doi.org/10.1002/ps.1915

    Article  CAS  PubMed  Google Scholar 

  119. Stadler T, Buteler M, Weaver DK, Sofie S. Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Prod Res. 2012;48:81–90. https://doi.org/10.1016/j.jspr.2011.09.004

  120. Buteler M, Sofie SW, Weaver DK, Driscoll D, Muretta J, Stadler T (2015) Development of nanoalumina dust as insecticide against Sitophilus oryzae and Rhyzopertha dominica. Int J Pest Manag 61(1):80–89. https://doi.org/10.1080/09670874.2014.1001008

    Article  CAS  Google Scholar 

  121. Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249(1):1–6. https://doi.org/10.1016/j.femsle.2005.06.034

    Article  CAS  PubMed  Google Scholar 

  122. Majeed Zargar S, Nazir M, Kumar Agrawal G, Kim DW, Rakwal R (2010) Silicon in Plant Tolerance Against Environmental Stressors: Towards Crop Improvement Using Omics Approaches. Curr Proteomics 7(2):135–143. https://doi.org/10.2174/157016410791330507

    Article  Google Scholar 

  123. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163. https://doi.org/10.1016/j.plantsci.2010.04.012

    Article  CAS  Google Scholar 

  124. Barik TK, Sahu B, Swain V (2008) Nanosilica - From medicine to pest control. Parasitol Res 103(2):253–258. https://doi.org/10.1007/s00436-008-0975-7

    Article  CAS  PubMed  Google Scholar 

  125. Hae-Jun P et al (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J. https://doi.org/10.5423/PPJ.2006.22.3.295

  126. Debnath N, Mitra S, Das S, Goswami A (2012) Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol 221:252–256. https://doi.org/10.1016/j.powtec.2012.01.009

    Article  CAS  Google Scholar 

  127. Rouhani M, Samih M (2013) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). J Entomol Res 4:297–305. https://doi.org/10.1007/s13204-015-0446-2

  128. Jeer M. Chapter 17 - Recent developments in silica-nanoparticles mediated insect pest management in agricultural crops. In: Etesami H, Al Saeedi AH, El-Ramady H, Fujita M, Pessarakli M, Anwar Hossain M, eds. Silicon and Nano-Silicon in Environmental Stress Management and Crop Quality Improvement. Academic Press; 2022:229–240. https://doi.org/10.1016/B978-0-323-91225-9.00016-9

  129. Faliagka S, Katsoulas N (2022) Silica coated insect proof screens for effective insect control in greenhouses. Biosyst Eng 215:21–31. https://doi.org/10.1016/j.biosystemseng.2022.01.003

    Article  CAS  Google Scholar 

  130. Norman DJ, Chen J (2011) Effect of foliar application of titanium dioxide on bacterial blight of geranium and xanthomonas leaf spot of poinsettia 46(3):426–428. https://doi.org/10.21273/HORTSCI.46.3.426

    Article  CAS  Google Scholar 

  131. Paret, Mathews L et al (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO(2) on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103(3):228–236. https://doi.org/10.1094/PHYTO-08-12-0183-R

  132. Paret ML, Palmateer AJ, Knox GW (2013) Evaluation of a light-activated nanoparticle formulation of Titanium Dioxide with Zinc for management of bacterial leaf spot on rosa ‘Noare’ 48(2):189–192. https://doi.org/10.21273/HORTSCI.48.2.189

  133. Mondal KK, Mani C (2011) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 2012:889–893. https://doi.org/10.1007/s13213-011-0382-7

  134. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792. https://doi.org/10.1021/jf302154y

  135. Khater H (2012) Ecosmart biorational insecticides: alternative insect control strategies. IntechOpen. https://doi.org/10.5772/27852

  136. Paper O (2009) Development of a controlled release neem capsule with a sodium alginate matrix, crosslinked by glutaraldehyde and coated with natural rubber 2009:609–622. https://doi.org/10.1007/s00289-009-0126-z

  137. Jerobin J, Sureshkumar RS, Anjali CH, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90(4):1750–1756. https://doi.org/10.1016/j.carbpol.2012.07.064

    Article  CAS  PubMed  Google Scholar 

  138. Forim MR et al (2013) Development of a new method to prepare nano-/microparticles loaded with extracts of azadirachta indica, their characterization and use in controlling plutella xylostella. J Agric Food Chem 61(38):9131–9139. https://doi.org/10.1021/jf403187y

  139. Tonielo J, Rossi M, Soares E et al (2014) Effects of different formulations of neem oil-based products on control Zabrotes subfasciatus ( Boheman, 1833) ( Coleoptera : Bruchidae ) on beans. J Stored Prod Res 56:49–53. https://doi.org/10.1016/j.jspr.2013.10.004

    Article  Google Scholar 

  140. Chen X jun, Xu H hong, Yang W, Liu S zi. Journal of Photochemistry and Photobiology B : Biology Research on the effect of photoprotectants on photostabilization of rotenone. J Photochem Photobiol B Biol. 2009;95(2):93–100. https://doi.org/10.1016/j.jphotobiol.2009.01.003

  141. Isman MB (2005) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51(1):45–66. https://doi.org/10.1146/annurev.ento.51.110104.151146

  142. Lao S bing, Zhang Z xiang, Xu H hong, Jiang G biao. Novel amphiphilic chitosan derivatives : Synthesis , characterization and micellar solubilization of rotenone. Carbohydr Polym. 2010;82(4):1136–1142. https://doi.org/10.1016/j.carbpol.2010.06.044

  143. Luiz J, Oliveira D, Vangelie E et al (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture : Prospects and promises. Biotechnol Adv 32(8):1550–1561. https://doi.org/10.1016/j.biotechadv.2014.10.010

    Article  CAS  Google Scholar 

  144. Amiri A, Dugas R, Pichot AL, Bompeix G. International Journal of Food Microbiology In vitro and in vitro activity of eugenol oil ( Eugenia caryophylata ) against four important postharvest apple pathogens. 2008;126:13–19. https://doi.org/10.1016/j.ijfoodmicro.2008.04.022

  145. Garg A, Singh S (2011) Colloids and Surfaces B : Biointerfaces Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surfaces B Biointerfaces 87(2):280–288. https://doi.org/10.1016/j.colsurfb.2011.05.030

    Article  CAS  PubMed  Google Scholar 

  146. Sajomsang W, Nuchuchua O, Gonil P et al (2012) Water-soluble β-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydr Polym Published online. https://doi.org/10.1016/j.carbpol.2012.03.060

    Article  Google Scholar 

  147. Woranuch S, Yoksan R. Eugenol-loaded chitosan nanoparticles : I . Thermal stability improvement of eugenol through encapsulation. Carbohydr Polym. 2013;96(2):578–585. https://doi.org/10.1016/j.carbpol.2012.08.117

  148. Balaguer MP, Gavara R (2012) Food Hydrocolloids Formation of zein nanoparticles by electrohydrodynamic atomization : Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll 28(1):82–91. https://doi.org/10.1016/j.foodhyd.2011.11.013

    Article  CAS  Google Scholar 

  149. Bielska D, Karewicz A, Kamiński K et al (2013) Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery. Eur Polym J 49(9):2485–2494. https://doi.org/10.1016/j.eurpolymj.2013.02.012

    Article  CAS  Google Scholar 

  150. Holmberg BA, Wang H, Norbeck JM, Yan Y (2003) Controlling size and yield of zeolite Y nanocrystals using tetramethylammonium bromide. Microporous Mesoporous Mater 59(1):13–28. https://doi.org/10.1016/S1387-1811(03)00271-3

    Article  CAS  Google Scholar 

  151. Holmberg B, Wang H, Yan Y (2004) High silica zeolite Y nanocrystals by dealumination and direct synthesis. Microporous Mesoporous Mater 74:189–198. https://doi.org/10.1016/j.micromeso.2004.06.018

    Article  CAS  Google Scholar 

  152. Li Q, Creaser D, Sterte J (2002) An Investigation of the Nucleation/Crystallization Kinetics of Nanosized Colloidal Faujasite Zeolites. Chem Mater 14(3):1319–1324. https://doi.org/10.1021/cm011242g

    Article  CAS  Google Scholar 

  153. Madsen C, Madsen C, J. H. Jacobsen C. Nanosized zeolite crystals—convenient control of crystal size distribution by confined space synthesis. Chem Commun. 1999;(8):673–674. https://doi.org/10.1039/A901228A

  154. Schmidt I, Madsen C, Jacobsen CJ (2000) Confined space synthesis. A novel route to nanosized zeolites. Inorg Chem 39(11):2279–2283. https://doi.org/10.1021/ic991280q

  155. Jacobsen CJH, Madsen CG, Janssens TVW, Jakobsen HJ, Skibsted J (2000) Zeolites by confined space synthesis – characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy. Microporous Mesoporous Mater 39:393–401. https://api.semanticscholar.org/CorpusID:97617168

  156. Kim SS, Shah J, Pinnavaia T (2003) Colloid-Imprinted Carbons as Templates for the Nanocasting Synthesis of Mesoporous ZSM-5 Zeolite. Chem Mater - CHEM MATER 15(8) https://doi.org/10.1021/cm021762r

  157. Martens RM, Verduijn JP. United States Patent (19). 2000;(19):6–11.

  158. Mohr GD, City L, Verduijn JP et al (2000) United States Patent 19:19

    Google Scholar 

  159. City L, Verduijn JP. (12) United States Patent. 2004;(12).

  160. Larlus O, Mintova S, Valtchev V, Jean B, Metzger TH, Bein T (2004) Silicalite-1/polymer films with low-k dielectric constants. Appl Surf Sci 226(1–3):155–160. https://doi.org/10.1016/j.apsusc.2003.11.062

    Article  CAS  Google Scholar 

  161. Mitra A, Cao, WangWang, et al. Synthesis and Evaluation of Pure-Silica-Zeolite BEA as Low Dielectric Constant Material for Microprocessors. Ind Eng Chem Res. 2004;43(12):2946–2949. https://doi.org/10.1021/ie034062k

  162. Jennings B (2011) Drosophila – a versatile model in biology & medicine. Mater Today - MATER TODAY 14:190–195. https://doi.org/10.1016/S1369-7021(11)70113-4

    Article  Google Scholar 

  163. Rubin GM, Lewis EB (2000) A brief history of Drosophila’s contributions to genome research. Science 287(5461):2216–2218. https://doi.org/10.1126/science.287.5461.2216

    Article  CAS  PubMed  Google Scholar 

  164. Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32(1):74–83. https://doi.org/10.1016/j.ntt.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  165. Hsu T, Schulz RA (2000) Sequence and functional properties of Ets genes in the model organism Drosophila. Oncogene 19(55):6409–6416. https://doi.org/10.1038/sj.onc.1204033

    Article  CAS  PubMed  Google Scholar 

  166. Posgai RT. Development of a Drosophila Melanogaster Model System for Nanoparticle Development of a Drosophila Melanogaster Model System for Nanoparticle. Grad Theses Diss. Published online 2012:574.

  167. Posgai R, Ahamed M, Hussain SM, Rowe JJ, Nielsen MG (2009) Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing. Sci Total Environ 408(2):439–443. https://doi.org/10.1016/j.scitotenv.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  168. Roeder T, Isermann K, Kallsen K, Uliczka K, Wagner C (2012) A Drosophila asthma model - what the fly tells us about inflammatory diseases of the lung. Adv Exp Med Biol 710:37–47. https://doi.org/10.1007/978-1-4419-5638-5_5

    Article  CAS  PubMed  Google Scholar 

  169. Araj SEA, Salem NM, Ghabeish IH, Awwad AM. Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). J Nanomater. 2015;2015. https://doi.org/10.1155/2015/758132

  170. Demir E (2020) Drosophila as a model for assessing nanopesticide toxicity. Nanotoxicology 14(9):1271–1279. https://doi.org/10.1080/17435390.2020.1815886

    Article  CAS  PubMed  Google Scholar 

  171. Demir E, Vales G, Kaya B, Creus A, Marcos R (2011) Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 5(3):417–424. https://doi.org/10.3109/17435390.2010.529176

    Article  CAS  PubMed  Google Scholar 

  172. Vecchio G, Galeone A, Brunetti V, et al. Concentration-dependent, size-independent toxicity of citrate capped AuNPs in drosophila melanogaster. PLoS One. 2012;7(1). https://doi.org/10.1371/journal.pone.0029980

  173. Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of Silver Nanoparticles Action on Insect Pigmentation Reveals Intervention of Copper Homeostasis. PLoS ONE 8(1):19–21. https://doi.org/10.1371/journal.pone.0053186

    Article  CAS  Google Scholar 

  174. Pandey A, Chandra S, Chauhan LKS, Narayan G, Chowdhuri DK (2013) Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. Biochim Biophys Acta - Gen Subj 1830(1):2256–2266. https://doi.org/10.1016/j.bbagen.2012.10.001

    Article  CAS  Google Scholar 

  175. Vales G, Demir E, Kaya B, Creus A, Marcos R (2013) Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology 7(4):462–468. https://doi.org/10.3109/17435390.2012.689882

    Article  CAS  PubMed  Google Scholar 

  176. Lloyd TE, Taylor JP (2010) Flightless flies: Drosophila models of neuromuscular disease. Ann N Y Acad Sci 1184:1–20. https://doi.org/10.1111/j.1749-6632.2010.05432.x

    Article  Google Scholar 

  177. Perry T, Batterham P (2018) Harnessing model organisms to study insecticide resistance. Curr Opin Insect Sci 27:61–67. https://doi.org/10.1016/j.cois.2018.03.005

    Article  PubMed  Google Scholar 

  178. Douris V, Denecke S, Van Leeuwen T, Bass C, Nauen R, Vontas J (2020) Using CRISPR/Cas9 genome modification to understand the genetic basis of insecticide resistance: Drosophila and beyond. Pestic Biochem Physiol 167(April):104595. https://doi.org/10.1016/j.pestbp.2020.104595

    Article  CAS  PubMed  Google Scholar 

  179. Ibrahim SS, Riveron JM, Bibby J et al (2015) Allelic Variation of Cytochrome P450s Drives Resistance to Bednet Insecticides in a Major Malaria Vector. PLoS Genet 11(10):1–25. https://doi.org/10.1371/journal.pgen.1005618

    Article  CAS  Google Scholar 

  180. Fenner K, Canonica S, Wackett LP, Elsner M. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science (80- ). 2013;341(6147):752–758. https://doi.org/10.1126/science.1236281

  181. Hassellöv M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17(5):344–361. https://doi.org/10.1007/s10646-008-0225-x

    Article  CAS  PubMed  Google Scholar 

  182. Siddiqui M, Al-whaibi M, Mohammad F, Al-Khaishany M. Role of Nanoparticles in Plants. In: Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants. ; 2015:19–35. https://doi.org/10.1007/978-3-319-14502-0_2

  183. Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. ScientificWorldJournal 2014:641759. https://doi.org/10.1155/2014/641759

    Article  PubMed  PubMed Central  Google Scholar 

  184. Hermes PH et al (2020) Carbon nanotubes as plant growth regulators: prospects. In: Patra J, Fraceto L, Das G, Campos E (eds) Green Nanoparticles. Nanotechnology in the Life Sciences. Springer, Cham, pp 77–115. https://doi.org/10.1007/978-3-030-39246-8_4

    Google Scholar 

  185. Zhang X, Xu Z, Wu M et al (2019) Potential environmental risks of nanopesticides: application of Cu(OH)(2) nanopesticides to soil mitigates the degradation of neonicotinoid thiacloprid. Environ Int 129:42–50. https://doi.org/10.1016/j.envint.2019.05.022

    Article  CAS  PubMed  Google Scholar 

  186. Zhao L, Huang Y, Adeleye AS, Keller AA (2017) Metabolomics reveals Cu(OH)(2) nanopesticide-activated anti-oxidative pathways and decreased beneficial antioxidants in spinach leaves. Environ Sci Technol 51(17):10184–10194. https://doi.org/10.1021/acs.est.7b02163

    Article  CAS  PubMed  Google Scholar 

  187. Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483. https://doi.org/10.1021/acs.jafc.5b05214

    Article  CAS  PubMed  Google Scholar 

  188. Venugopal NVS, Sainadh NVS (2016) Novel polymeric nanoformulation of mancozeb—an eco-friendly nanomaterial. Int J Nanosci 15(4):1–6. https://doi.org/10.1142/S0219581X16500162

    Article  CAS  Google Scholar 

  189. Ocsoy I, Paret ML, Ocsoy MA et al (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980. https://doi.org/10.1021/nn4034794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MMK would like to acknowledge the FIC block grant (UBD/RSCH/1.4/FICBF(b)/2022/046) received from Universiti Brunei Darussalam, Brunei Darussalam.

Funding

Universiti Brunei Darussalam, UBD/RSCH/1.4/FICBF(b)/2022/046.

Author information

Authors and Affiliations

Authors

Contributions

MFUR: Methodology, data curation and writing – original draft preparation. MMK: Supervision, conceptualization, funding acquisition and writing – review and editing.

Corresponding author

Correspondence to Mohammad Mansoob Khan.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, M.F.U., Khan, M.M. Application of nanopesticides and its toxicity evaluation through Drosophila model. Bioprocess Biosyst Eng 47, 1–22 (2024). https://doi.org/10.1007/s00449-023-02932-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02932-y

Keywords

Navigation