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Abstract
Zinc oxide nanoparticles (ZnONPs) have become the widely used metal oxide nanoparticles and drawn the interest of global 
researchers due to their biocompatibility, low toxicity, sustainability and cost-effective properties. Due to their unique opti-
cal and chemical properties, it emerges as a potential candidate in the fields of optical, electrical, food packaging and bio-
medical applications. Biological methods using green or natural routes are more environmentally friendly, simple and less 
use of hazardous techniques than chemical and/or physical methods in the long run. In addition, ZnONPs are less harmful 
and biodegradable while having the ability to greatly boost pharmacophore bioactivity. They play an important role in cell 
apoptosis because they enhance the generation of reactive oxygen species (ROS) and release zinc ions (Zn2+), causing cell 
death. Furthermore, these ZnONPs work well in conjunction with components that aid in wound healing and biosensing to 
track minute amounts of biomarkers connected to a variety of illnesses. Overall, the present review discusses the synthesis 
and most recent developments of ZnONPs from green sources including leaves, stems, bark, roots, fruits, flowers, bacteria, 
fungi, algae and protein, as well as put lights on their biomedical applications such as antimicrobial, antioxidant, antidiabetic, 
anticancer, anti-inflammatory, antiviral, wound healing, and drug delivery, and modes of action associated. Finally, the future 
perspectives of biosynthesized ZnONPs in research and biomedical applications are discussed.
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Introduction

During the last few decades, the interdisciplinary science 
“Nanotechnology” has revolutionized science and industrial 
technologies due to the presence of superior physicochemi-
cal or biological properties of nanoparticles (NPs) that are 
not present in their bulk form [1]. The greatest theoretical 
physicist at Caltech, Richard Feynman 1959, spread the idea 
of nanotechnology [2]. Nanoparticles have distinct key prop-
erties, such as a large surface area-to-volume ratio, enhanced 
thermal conductivity and electrochemical reactivity, and are 
regarded as a significant state of matter [3]. Recently, metal 
and metal oxide nanoparticles gained tremendous attention 
due to their promising applications in electronics, biosen-
sors, photocatalyst, agriculture and biomedical fields [4]. 
The widespread use of NPs in biomedicine is due to their 
ability to interact with biological membranes, receptors, 
proteins and nucleic acids due to their small size [5]. The 

nanostructures exhibited targeted and long-term drug deliv-
ery with regulated drug-related toxicity. This technology 
has shown promise in the treatment of cancer, AIDS and an 
array of other ailments [6].

Our previous studies demonstrated the biological synthe-
sis of selenium, silver, titanium dioxide and zinc oxide nano-
particles (ZnONPs) using cyanobacterial cell free extract 
[7–15]. Over various metal NPs, the inorganic metal oxide 
NPs exhibited remarkable biological applications even at 
low concentration, highly stable at high temperature and 
pressure due to their unique physicochemical properties 
[16]. Among the various metal oxide NPs like iron oxide 
(Fe3O4), copper oxide (CuO), titanium dioxide (TiO2) and 
cerium dioxide (CeO2), zinc oxide nanoparticles (ZnONPs) 
have gained scientific attention due to their biocompatibility, 
long shelf life and cost-effective nature [4]. ZnONPs possess 
distinctive optical and chemical properties with wide band-
gap (3.37 eV) and high excitation binding energy (60 meV) 
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that enables its use in various biomedical, pharmaceutical 
and photocatalytic applications [17]. Moreover, Zn is an 
essential trace element present in human physiological sys-
tem that confers its biocompatibility being less toxic and are 
highly biodegradable due to the soluble nature of Zn+2 ions 
[18]. It is abundant in many bodily tissues, including the 
brain, muscle, bone, skin and integral part of many enzyme 
systems. Zinc participates in the body's metabolic pathways 
and plays critical roles in protein and nucleic acid synthesis, 
hematopoiesis and neurogenesis [4]. Another property that 
makes ZnONPs as the potential candidate for biomedical 
applications is the presence of –OH group that allows it to 
dissolve slowly in acidic (e.g., cancer cells) and basic micro-
environments [19]. However, due to its small particle size, 
nano-ZnO facilitates zinc absorption by the body and widely 
utilized as a food additive. Moreover, the US Food and Drug 
Administration (FDA) has approved ZnONPs as a generally-
recognized-as-safe (GRAS) substance and nonhemolytic 
against human red blood [20]. In comparison with other 
metal oxide NPs, ZnONPs are more economical as well as 
less toxic and exhibit excellent biomedical applications. It 
has been reported that majority of pharmaceutically active 
compounds do not interact with zinc [4]. However, ZnONPs, 
both alone and doped with other metals, appear as a novel 
candidate used for tissue regeneration, implant coatings, bio-
imaging, wound healing, development of cancer therapies, 
targeted drug delivery, antimicrobials coatings or bandages, 
biosensors and gene delivery [21–23]. Rahman et al. [24, 
25] demonstrated that ZnO and Mg/Cu-dual-doped ZnO 
exhibit good antibacterial activity against Staphylococcus 
aureus and E. coli, as well as radical scavenging properties 
when exposed to visible light. Ahmad et al. [26] synthesized 
gold-decorated hetero-nanostructured Au-ZnONPs utilizing 
Carya illinoinensis extract, which demonstrated maximal 
photocatalytic degradation of rhodamine-B dye (95%) within 
180 min when compared to bare ZnONPs. Furthermore, 
Rahman et al. [27] also synthesized ZnONPs from aqueous 
leaf extract of Ziziphus mauritiana Lam., which demon-
strated antibacterial efficacy against Staphylococcus aureus 
as well as antioxidant characteristics.

Use of ZnONPs in biomedicine is widespread due to 
their excellent biocompatibility, low toxicity (especially 
as anticancer and antibacterial), potent ability to trigger 
excess reactive oxygen species (ROS) production, release 
of zinc ions and induction of cell apoptosis [19]. Due to 
excellent luminescent properties, ZnONPs are one of the 
main candidates for bio-imaging [28]. Numerous studies 
support ZnONPs as the most advantageous metal NPs, with 
low toxicity and superior biocompatibility as the structural 
atom allocation being the most bioactive region highlights 
its pharmacological potency against a range of diseases [2, 
4]. Taken together, the purpose of this review is to examine 
the processes used to synthesize ZnONPs while thoroughly 

comprehending their biological function. Even though 
ZnONPs have been the focus of an increasing number of 
studies, this review provides a detailed compilation of cur-
rent advancements with simple examples to help readers bet-
ter comprehend the significance of ZnONPs in biomedical 
research.

Approaches for synthesis 
and characterization of ZnONPs

Several synthesis approaches have been developed for 
ZnONPs and the choice of preparation depends on the 
specificity of application. Generally, two types of strate-
gies were used—top-down and bottom-up approach, which 
comprises physical, chemical, and biological (green) syn-
thesis of ZnONPs. The non-conventional methods include 
micro-fluidic reactor-based synthesis of nanomaterials. The 
top-down approach involves cutting or physically slicing the 
bulk materials into nano-sized materials [29]. On the other 
hand, bottom-up approach uses atoms or molecules for the 
fabrication of nanomaterials through chemical and biologi-
cal synthesis. It is less expensive and quicker than the top-
down strategy [30]. Different approaches for the synthesis 
of ZnONPs with their merits and demerits of these synthesis 
techniques are listed in Table 1. It is crucial to keep in mind 
that these procedures often require the use of harmful reduc-
ing agents and organic solvents, which are extremely reac-
tive and hazardous to the environment [31]. However, green 
synthesis utilizes a range of biotic resources for the synthesis 
of ZnONPs, such as plants, bacteria, other biological ele-
ments including egg albumin, starch, proteins, gelatin and 
micro- or macroalgae that are listed in Tables 2 and 3 [32, 
33]. Green sources are bio-molecules that act as capping and 
reducing agents during the synthesis of NPs, further stabiliz-
ing and influencing their characteristics [34]. Plants include 
several secondary metabolites and phytoconstituents that aid 
in the bio-reduction process during nanoparticle formation. 
It also played an important role in nanoparticle capping, 
which was essential for their stability and biocompatibil-
ity, and because of these molecules, no additional chemical 
reducing and capping agents were needed [2]. Microbial-
mediated ZnONPs synthesis, on the other hand, offers an 
advantage over plant-mediated synthesis because microor-
ganisms are easily replicated. The presence of numerous 
enzymes and biomolecules produced in the suspension or 
growth medium by microorganisms plays an important role 
in the bioreduction of NPs and contributes to the develop-
ment of varied morphologies with mono- and polydispersed 
NPs [35]. However, there are numerous disadvantages asso-
ciated with the isolation or screening of potential microor-
ganisms, the usage of chemicals for growth medium, and 
the cost-effectiveness of synthesis procedures due to their 
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time-consuming nature. Consequently, plants are regarded 
as the most promising candidates for green synthesis, as they 
create more stable forms of the same than microbes.

Several biomolecules from plants or other green sources 
are combined throughout the green synthesis process to cre-
ate stable and nontoxic ZnONPs. The overall procedure to 
produce ZnONPs using green sources is summarized sche-
matically in Fig. 1.

The phytochemicals present in the cell extract function 
both as a stabilizing and as a capping agent for NPs to confer 
biocompatibility to NPs. High temperatures, high pressures, 
expensive equipment or hazardous materials are not needed 
for the process. The current, inexpensive and safe green syn-
thesis of ZnONPs is preferable to the prior, expensive and 
hazardous techniques [102].

Following synthesis, nanomaterial characterization is 
necessary to learn about the physicochemical characteris-
tics of the synthesized NPs, including their shape, crystal 
structure, defects, ionic strength, content and dielectric prop-
erties. Numerous studies imply that the form and surface 
chemistry of nanoparticles affect how safely and effectively 
they are distributed throughout biological systems (Fig. 2). 
With this, the polydispersity of materials makes it difficult 

to characterize NPs size, but it is crucial to understand the 
morphology because it is believed that the NPs size confers 
many of the unique properties for their use in nanomedicines 
[31].

Nanostructures cannot be resolved by optical microscopy; 
hence, electron microscopy is utilized to describe the nano-
particles. SEM (scanning electron microscopy) and TEM 
(transmission electron microscopy) are used to determine the 
morphology and size of NPs [104]. However, TEM is more 
frequently employed since it employs more potent elec-
trons and provides high-resolution and informative image 
data about the shape, aggregation state, and distribution on 
an atomic scale. Energy-dispersive X-ray (EDX) analysis 
helps to determine the elemental composition and makes 
it easier to evaluate how synthesized nanoparticles are dis-
tributed in living tissues [105]. The 3D topography (height 
and volume) of NPs can be determined through atomic 
force microscopy (AFM) analysis [106]. Through the syn-
thesis and capping of NPs, the simple and nondestructive 
Fourier transform infrared spectroscopy (FTIR) identifies 
the various metabolites and compounds [107]. The optical 
properties of colored samples are studied using UV–visible 
spectroscopy (UV–Vis), where reflectance data are used to 

Table 1   Different methodologies used for the synthesis of ZnONPs

Synthesis Techniques Merits Demerits

Physical Thermal evaporation
Physical vapor deposition
Ultrasonic irradiation
Thermal/Laser ablation
Arc plasma
Sputtering
Explosion processes
Mechanical/Ball milling

Catalyst free
Simple
Industrial scale production

Parameter control
Robust equipment
High energy input
Hampers crystallinity
High cost
Discharge instability

Chemical Solgel processes
Micro-emulsion
Precipitation
Atomic/molecular condensation
Solvothermal method
Chemical vapor deposition
Spray pyrolysis
Laser pyrolysis
Aerosol pyrolysis

Low energy input
Easy to handle chemical reagents
Use of equipment
Easy parameter handling
Industrial scale production

Extensive use of 
surfactant

High cost of precur-
sors

Toxic
Low yield
Low rate of deposi-

tion
Low penetration
Low solubility and 

mechanical instabil-
ity

Biological Microorganisms
Plant extracts
Biotechnology methods
Biochemistry methods

Promising alternatives to both physical and 
chemical methods

Environment friendly
Non-toxic
Use of inexpensive organic solvents
Cost-effective
Reproducible

Unclear mechanism
Nanoparticle stability

Microfluidic reactor Segmental flow
Continuous flow
Co-flow

High value-added products
Reproducible

Parameter control
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Table 2   List of biological sources used for the synthesis of ZnONPs

Biological source Size (nm) Morphology Applications References

Bacteria
Bacillus megaterium (NCIM2326) 45–95 Rod and cubic Antimicrobial [36]
Halomonas elongate IBRC-M 10214 18.11–89.3 Multiform Antimicrobial [37]
Lactobacillus johnsonii 4–9 Spherical – [38]
Lactobacillus paracasei LB3 1179 ± 137 Spherical Antimicrobial [39]
Sphingobacterium thalpophilum 40 Triangular Antimicrobial [40]
Staphylococcus aureus 10–50 Acicular Antimicrobial [41]
Streptomyces sp. 20–50 Spherical Antimicrobial [42]
Acinetobacter schindleri S1Z1 20–100 Spherical Antimicrobial [43]
Bacillus licheniformis MTCC9555 250 Flower Photocatalytic dye degradation [44]
Psedomonas aeruginosa 35–80 Spherical Antioxidant [45]
Serratia ureilytica 170–600 Varied Antibacterial [46]
Lactobacillus plantarum VITES07 7–9 Spherical – [47]
Lactobacillus sporogens 145.7 Hexagonal Antimicrobial [48]
Aeromonas hydrophila 57.7 Spherical Antimicrobial [49]
Marinobacter sp. 2C8 and
Vibrio sp. VLA

20.2 4.4 Hexagonal wurtzite Antibiofilm, antioxidant [50]

Fungi
Aspargillusniger 40 Hexagonal – [51]
Phanerochaete chrysosporium 50 Hexagonal wurtzite Antimicrobial cellulosic fabric [52]
Dictyota dichotoma 80–100 µm Spherical Antibacterial and photocatalytic degrada-

tion
[53]

Candida albicans 25 Quasi-spherical Synthesis of steroidal pyrazolines [54]
Aspergillus fumigatus JCF 60–80 Spherical Antimicrobial [55]
Alternaria alternate 45–150 Spherical, triangular and hexagonal – [56]
Xylaria acuta 30–50 Rod and hexagonal Antibiotic [57]
Aspergillus fumigates 1.2–6.8 Oblate spherical and hexagonal Agriculture [58]
Aspergillus terreus 54.8–82.6 Spherical Antifungal [59]
Fusarium spp.  > 100 Triangular – [60]
Yeast
Pichia kudriavzevii 10–61 Hexagonal wurtzite Antimicrobial and antioxidant [61]
Xylaria acuta 34–55 Hexagonal Antimicrobial and anticancer [57]
Pichia fermentas JA2 – Smooth and elongated Antimicrobial [62]
Plants
Deverra tortuosa 9.26–31.18 Hexagonal wurtzite Cytotoxicity [63]
Calliandra haematocephala 49.45 Nanoflowers Photocatalytic dye degradation [64]
Cassia fistulia 2.7 Spherical Antibacterial [65]
Citrus limon 37–40 Spherical Antibacterial [66]
Couroupita guianensis – Nanoflakes Antibacterial [67]
Melia azedarach 33–96 Hexagonal and spherical Antioxidant and antibacterial [68]
Citrus aurantifolia 50 Pyramid – [69]
Pongamia pinnata 30.4–40.8 Spherical wurtzite Antimicrobial and cytotoxicity [70]
Rosa canina 11–14 Spherical Antibacterial [71]
Lycopersicon esculentum 40–100 Spherical Photovoltaic application [72]
Ceropegia candelabrum 12–35 Hexagonal wurtzite Antioxidant and antibacterial [3]
Eclipta alba 3–9 Spherical Antimicrobial [73]
Crotalaria verrucosa 27–30 Hexagonal wurtzite Antimicrobial and anticancer [74]
Menta pulegium L 38–49 Spherical Antibacterial [75]
Moringa oleifera 12–30 Spherical and rod – [76]
Oak fruit hull 34 Spherical Photocatalytic degradation [77]
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investigate the surface plasmon resonance of metals and 
hypersensitive biological analysis [108]. The effects of the 
oxidative and reductive environments, phase transitions and 
thermal stability are determined by thermal gravimetric–dif-
ferential thermal analysis (TG–DTA) [109]. To obtain size 
distribution information of molecules and particles majorly 
in the submicron region, DLS (dynamic light scattering) is 
very useful [110]. XPS (X-ray photoelectron microscopy) 
is a technique to analyze the surface chemistry of NPs that 
measures the empirical formula, chemical state and elec-
tronic state of the elements within the NPs. XRD (X-ray dif-
fractometer) provides the information regarding the crystal-
line structure, phase identification and crystallite size [111].

Biomedical applications and mechanism 
of action of zinc oxide nanoparticles

ZnONPs have gained a lot of interest in a variety of biologi-
cal sectors, including anticancer, antibacterial, antioxidant, 
antidiabetic, anti-inflammatory, drug delivery and many 
more.

Antibacterial activity

Due to the extensive use of antibiotics in human, animals 
and food, microorganisms develop antibiotic resistance. It is 
a worldwide phenomenon that is leading to the public health 
crisis. World Health Organization in 2001 had declared the 
antimicrobial resistance as international serious and urgent 
threats. Biogenic ZnONPs showed the rays of hopes for their 
use with standard antibiotics against multidrug-resistant bac-
teria [4]. Antibacterial activity of ZnONPs lies in their abil-
ity to induce oxidative stress. When bacterial cells encounter 
ZnONPs, they absorb Zn+, interact with the thiol group of 
respiratory enzymes, inhibiting their action, affect the cell 

membrane and lead to ROS formation that damages the 
bacterial membranes, DNA and mitochondria, resulting in 
the death of bacterial cells (Fig. 3) [15]. Biogenic ZnONPs 
synthesized using different biological material showed var-
ied antibacterial activity, e.g., Nur et al. [112], synthesized 
spherical-shaped ZnONPs (33 nm) by Punica granatum 
plant extract and showed a significant antibacterial activity 
against E. coli and E. faecalis.

ZnONPs derived from cyanobacteria Oscillatoria sp. 
extract exhibited dose-dependent inhibition in multidrug-
resistant (MDR) bacterial strains (S. aureus, B. cereus, 
E. coli and K. pneumoniae) with lower MIC values of 
62.5–125 µg ml−1 in comparison with commercially syn-
thesized ZnONPs [14]. Jayabalan et al. [113] synthesized 
spherical-shaped ZnONPs (44.5 nm) using Pseudomona 
putida and presented antimicrobial activity against Pseu-
domonas otitidis, Pseudomonas oleovorans, Acinetobacter 
baumannii, Bacillus cereus, and Enterococcus faecalis. 
Fadwa et al. [114] showed the combination effect of colistin 
and ZnONPs (2 µg ml−1) against P. aeruginosa. Tyagi et al. 
[115] showed that ZnONPs chemically conjugated with cip-
rofloxacin exhibited a 2.9-fold increase in antibacterial activ-
ity against E. coli and a 2.8-fold increase for Streptococcus 
spp. as compared to ciprofloxacin alone. ZnONPs conju-
gated with ceftriaxone and ampicillin exhibited significant 
antibacterial activity against gram-positive (Staphylococ-
cus aureus, Streptococcus pneumoniae and Streptococcus 
pyogenes) and gram-negative (Escherichia coli K1, Serratia 
marcescens and Pseudomonas aeruginosa) bacteria [116].

ZnONPs synthesized using cyanobacteria Gleocapsa 
gelatinosa cell extract exhibited enhanced antibiofilm 
activity against MDR strains (S. aureus, B. cereus, E. coli 
and K. pneumoniae) with lower minimum biofilm inhibi-
tory concentration (MBIC) values of 46.8  µg  ml−1and 
93.7 µg ml−1[15]. Flow cytometry analysis and confocal 
microscopy highlighted the strong interaction of ZnONPs 

Table 2   (continued)

Biological source Size (nm) Morphology Applications References

Punica granatum 10–30 Spherical Photocatalytic degradation [78]
Myristica fragrans 66–70 Spherical Antioxidant, antibacterial, antiparasitic 

and antidiabetic
[79]

Ocimum americanum 21 Spherical Antioxidant and antimicrobial [80]
Other biomolecules
L-alanine 50–110 Spherical –

Antimicrobial
[81, 82]

Egg albumin 10–20 Spherical hexagonal wurtzite – [83]
Soluble starch 50 Spherical Antimicrobial

Antiviral
[84, 85]

Plasmid-DNA 32 Tetrapod – [86]
Alanine (Ala), threonine (Thr) and 

glutamine (Gln)
16 hexagonal wurtzite Antimicrobial [87]
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with intracellular components leading to biofilm destruction 
due to increased permeability, reduced exopolysaccharides 
secretion, altered bacterial growth and enhanced generation 
of intracellular ROS [15]. According to Badigera et al. [117] 
and Shkodenko et al. [118], smaller-sized NPs accumulate 
on the outer surface of the plasma membrane leading to 
increased surface tension and membrane depolarization by 
neutralizing surface potential for easier penetration into the 
cell. With the increasing concentration of ZnONPs, the pen-
etration rate into the bacterial cell wall increased. ZnONPs 
after penetration into the cell through electrostatic interac-
tions release Zn+2 ions, causing the conformational changes 
in enzymes that lead to the distortion of active sites, resulting 

in the inhibition of membrane proteins that disrupt the bacte-
rial vital functions. In another study, Senthamarai et al. [119] 
synthesized ZnONPs (19.8 nm) from A. marmelos unripe 
fruit extract that showed enhanced antibacterial, antibiofilm 
and antioxidant agent. Furthermore Kappa-carrageenan-
wrapped ZnONPs (KC-ZNONPs) exhibited antibacterial 
activity against MRSA strains, enhanced anti-inflammatory 
activity and were biocompatible with human RBCs [120]. 
The findings suggest that ZnONPs have a better antibacterial 
potential which is influenced by its dosage, treatment time 
and synthesis approaches. Additionally, increased antibacte-
rial activity is caused by the surface area and size of parti-
cle variation, which are notable in biosynthesized ZnONPs. 

Table 3   Algal-mediated synthesis of ZnONPs

Algal strains Size
(nm)

Morphology Applications References

Cyanobacteria or blue 
green algae

Nostoc sp. EA03 (Cyanobac-
teriaceae)

50–80 Star Enhanced antibacterial, anti-
biofilm and anticancer

[88]

Desertifilum sp. EAZ03 80–88 Rod Antibacterial, antibiofilm 
and anticancer

[89]

Anabaena strain L31 
(Cyanobacteriaceae)

20–80 Spherical Nontoxic sunscreen formula-
tions

[1]

Arthrospira platensis 
(Cyanophyceae)

30–55 Spherical Antibacterial and anticancer [90]

Green algae (Chlorophyta) Chlorella (Chlorellaceae) 20 ± 2.2 Hexagonal wurtzite Enhanced photocatalytic 
degradation of organosul-
fur pollutants

[91]

Ulva lactuca (Ulvaceae) 10–50 Hexagonal, rod and triangle Enhanced photocatalytic, 
antibiofilm and insecticidal

activity

[92]

Chlamydomonas reinhardtii 
(Chlamydomonadaceae)

55–80 Nanorod, nanoflower, 
porous nanosheet

Enhanced photocatalytic dye 
degradation

[93]

Ulva lactuca (Ulvaceae)  ~ 12 Nanocubes Promising catalyst for pro-
duction of biodiesel

[94]

Brown algae (Pheophyceae) Padina tetrastromatica (Dic-
tyotaceae)

16–30 Hexagonal wurtzite, rod, 
plate, star

Enhanced photocatalytic and 
high antibacterial activity

[95]

Sargassum muticum (Sargas-
saceae)

42 Hexagonal wurtzite None [32]

Alginate 20–40 Cubical or rod Sensor—with high sensi-
tivity and antibacterial 
activity

[96]

Sargassum muticum (Sargas-
saceae)

30–57 Hexagonal Antiangiogenic and antia-
poptotic activity

[97]

Sargassum wightii (Sargas-
saceae)

40–50 Spherical Enhanced biofilm and immu-
nosuppressant activity

[92]

Sargassum wightii (Sargas-
saceae)

20–62 Spherical Enhanced larvicidal and 
pupicidal toxicity on A. 
stephensi and H. armigera

[98]

Sargassum myriocystum 
(Sargassaceae)

36 Spherical, radial, triangle, 
hexagonal, rod

Enhanced antibacterial activ-
ity against gram-negative 
bacteria

[99]

Padina tetrastromatica (Dic-
tyotaceae)

24–28 Varied Enhanced antibacterial and 
UV protection activity

[100]

Red algae (Rhodophyta) Gracilariaedulis (Gracilari-
aceae)

66–95 Rod-shaped Effective anti-cancer activity 
against PC3cell lines

[101]
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Fig. 1   Generalized pathway for 
the biosynthesis of ZnONPs 
using various green sources
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Fig. 2   Different morphology of ZnONPs: a needles and wires; b hexagonal; c spherical; d flower; e nanopellets or nanocapsules; f snowflake 
and dandelion; g square or rod; h helixes and springs. (Reprinted from [14, 103])
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Applications of biogenic ZnONPs in food safety and agricul-
ture have not yet been explored for future use [121].

Antifungal activity

ZnONPs have a promising antifungal activity that depends 
on their morphology, size, dose as well as source utilized in 
their biogenic synthesis. The antifungal potential of ZnONPs 
synthesized from leaf extract of Crinum latifolium inhib-
ited the hyphal development and germ tube formation up 
to (34%) in Candida albicans [122]. On clinical isolates of 
Candida sp., the antifungal resistance of a 2% ZnONPs-
based cold cream was greater than its antifungal efficacy 
[123]. ZnONPs from Moringa oleifera were toxic against 
two plant pathogens, Alternaria saloni and Sclerrotium rolfii 
[124]. ZnONPs synthesized using Ziziphus nummularia and 
Prosopis farcta extract exhibited antifungal activity against 
C. albicans, C. glabrata and C. neoformans with the lowest 
MIC values of 1.25 mg ml−1[125, 126]. For ZnONPs that 
can enter fungal (conidial) cells by diffusion and endocy-
tosis, the potential mechanisms of their antifungal activity 
begin with interference in mitochondrial function, encour-
agement of ROS generation and release of Zn2+ ions into the 
cytoplasm. ZnONPs can penetrate the nuclear membrane 

and produce excessive amounts of ROS and Zn2+ ions, 
which can lead to permanent DNA damage and cell death 
[127]. According to Lipovsky et al. [128], free radicals gen-
erated by ZnONPs are directly correlated with increased 
ROS productions, as well as a reduction in cell viability in 
C. albicans cells. Two mechanisms have been proposed for 
the antifungal action of ZnONPs. First is that ZnO in aque-
ous solution generates hydrogen peroxide (H2O2) from its 
surface, that can penetrate the cell membrane and kill them, 
inducing oxidative stress. Second is the release of zinc ions 
in medium with effects on active transport as well as on the 
amino acid metabolism [129]. Hajar et al. [130] showed the 
synergistic effect of ZnONPs with fluconazole against C. 
albicans, and Xue et al. [131] demonstrated the synergistic 
inhibition of Phytophthora growth by 0.25 g/L ZnONPs with 
0.01 g/L thiram.

Antioxidant activity

Cell viability depends critically on oxidative metabolism as 
the generation of ROS and free radicals during this pro-
cess may be able to overwhelm some enzymes, such as 
catalase, peroxidase and superoxide dismutase, leading to 
deadly effects on cells by damaging proteins, membrane 

6. Increased ROS 
Production

4.Damage of bacteria 
cell membrane

5. Leakage of intracellular 
components

8. Distorted cell 
morphology

7. Inhibition of cellular 
respiration

3.Release of Zn2+

9. Release of 
nucleic acids

1. Attachment 
of ZnO NPs

2. Uptake of . 
ZnO NPs

ZnO NPs 10. Inhibition of biofilm
formation

Fig. 3   A proposed schematic illustration of the various mechanisms induced by ZnONPs in bacterial cell inhibition



1386	 Bioprocess and Biosystems Engineering (2023) 46:1377–1398

1 3

lipids, DNA enzymes, and interfering with cell signaling 
pathways [132]. Because they can produce lipid peroxides 
and other harmful free radicals, some oxidized foods are 
now linked to several serious illnesses, including hepato-
megaly and necrosis of epithelial tissues, and a range of 
natural or synthetic antioxidants are used to combat these 
harmful free radicals but have disadvantages compared to 
today's biosynthesized NPs, such as high reactivity and tox-
icity [133]. According to Das et al. [134], the antioxidant 
potential of ZnONPs was caused by the transfer of electron 
density from oxygen to the odd electron situated at the nitro-
gen atom, in DPPH (2,2-diphenyl-1-picrylhydrazyl), with 
decreased strength of the n–π* transition at 517 nm. Many 
plants-derived ZnONPs are studied for antioxidant potential, 
e.g., Umar et al. [135] showed the hydrogen peroxide scav-
enging activity of ZnONPs in Albizia lebbeck. Mahendiran 
et al. [136] showed the (2,2′-azino-bis (3-ethylbenzothiazo-
line-6-sulfonic acid) ABTS, 2,2-diphenyl-1-picrylhydrazyl 
(DPPH), superoxide and hydrogen peroxide scavenging 
activities of ZnONPs derived from Aloe vera and Hibiscus 
sabdariffa. In our previous investigation, we observed that 
Oscillatoria-derived ZnONPs had much higher antioxidant 
potential than commercially synthesized ZnONPs, with 
ABTS free radical scavenging activity ranging from 0 to 
90% with an IC50 value of 54.2 µg ml−1 in comparison with 
ascorbic acid at 54.2 µg ml−1 that provides inhibition. It 
was observed that ZnONPs exhibited dose-dependent inhi-
bition and the order of antioxidant activity was as follows: 
ABTS > DPPH > SOR > H2O2 [14]. Rehana et al. [137] also 
reported these scavenging activities in Azadirachta indica 
and Murraya koenigii. Hafez et al. [138] showed the in vivo 
antioxidant potential of ZnONPs (39.2 nm) supplemented 
with meal in broiler chickens at concentrations of 40 and 
80 ppm that greatly boosted the activity of enzymes catalase 
and superoxide dismutase, which in turn decreased the levels 
of malondialdehyde (MDA).

The ZnONPs synthesized using Azadirachta indica leaf 
extract were investigated for their antioxidant potential 
by ferric reduction (FRAP) and DPPH radical scavenging 
assays. When ZnONPs (20 nm) were administered intrave-
nously for 14 days at a dose of 100 ug, major bodily organs 
did not exhibit any discernible toxicity [139]. ZnONPs 
derived from Camellia sinensis leaf extract showed the 
antioxidant capacity in adipocytes, where ZnONPs exhib-
ited cytoprotective efficacy against H2O2-induced oxidative 
damage (3T3L1) [140]. Japanese quails (Coturnix japonica) 
were fed dietary ZnONPs (40 nm) at a dose of 15–60 mg/
kg for 60 days to examine its effects. It was observed that 
ZnONPs supplementation increased the cellular levels of 
GSH and mRNA levels of several antioxidant enzymes 
(SOD1, CAT, GPX1 and GPX7) in brain and liver tissues, 
which in turn reduced the lipid peroxidation. Aspartate ami-
notransferase and serum alanine aminotransferase activities, 

as well as the quantities of globulin, albumin and total pro-
teins in the serum, were not significantly altered by the 
ZnONPs in comparison with the control group [141].

Anti‑inflammatory activity

Inflammation is a part of body’s defense mechanism by 
which the immune system defends body from harmful 
agents like bacteria, viruses, injuries and toxins to heal 
itself. An over-reactive inflammatory response is what trig-
gers allergies and some autoimmune disease like arthritis. 
It has been demonstrated that the ZnONPs have anti-inflam-
matory properties because they suppress the expression 
of myeloperoxidase, the NF-pathway, the release of pro-
inflammatory cytokines and mast cell degranulation [142]. 
Ilves et al. [143] investigated that ZnONPs were able to 
reach into the deep layers of the allergic skin and exerted 
higher anti-inflammatory properties by decreasing drasti-
cally pro-inflammatory cytokines (IL-10, IL-13, IFN-c and 
Th2 cytokines) in the mouse model of AD. Nagajyothi et al. 
[144] synthesized ZnONPs using the root extract of P. ten-
uifolia that exhibited significant anti-inflammatory activity 
by suppressing nitric oxide (NO) production as well as the 
related protein expressions of iNOS, COX-2, IL-1β, IL-6 
and TNF-α in LPS-stimulated RAW 264.7 macrophages. 
However, aluminum-doped ZnONPs have been demon-
strated to lower mast cell caspase-1 activation and thymic 
stromal lymphopoietin (TSLP) secretion, which in turn 
reduces the expression of pro-inflammatory cytokines such 
IL-1, IL-6 and TNF-α [145]. The capping of flavones such 
as isoorientin, orientin, isovitexin and vitexin by ZnONPs 
has been found to have a potent anti-inflammatory response 
in a myriad of areas, including by inhibiting cyclooxygenase, 
phospholipase A2 and lipoxygenases (enzymes that produce 
eicosanoids), which causes a decrease in leukotriene and 
prostanoids [146]. ZnONPs synthesized using two mangrove 
plants, Heritiera fomes and Sonneratia apetala, showed 
higher potential for anti-inflammatory (79%) in comparison 
with silver nanoparticles (69.1%) [147].

Anti‑diabetic activity

Persistent hyperglycemia is a hallmark of the physiological 
condition known as diabetes. It has been found that zinc 
plays a significant role in the creation, retention and release 
of insulin. Additionally, it enhances insulin signaling by 
enhancing PI3K activity, tyrosine phosphorylation of insulin 
receptor, and suppression of glycogen synthase kinase [148]. 
The antidiabetic activity of ZnONPs has been explored 
because zinc has important role in insulin synthesis, storage, 
and secretion through mechanisms which increased PI3K 
activity, insulin receptor tyrosine phosphorylation, and inhi-
bition of glycogen synthase kinase [149]. When compared 
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to other metal nanoparticles, ZnONPs are preferred for 
their antidiabetic benefits because of their higher cellular 
penetration, encouragement of glycolysis through hepatic 
glycogenesis, and increased insulin levels. These variables 
all work together to boost the expression of the GLUT-4 
and INS genes. Additionally, it has synergistic effects on 
enhanced glucokinase expression and activity as well as IRA 
and GLUT-2 expression levels [150]. The potential benefits 
of ZnONPs (40 nm) were studied for 28 days at a dose of 
10 mg/kg of ZnONPs orally in STZ-induced type-2 diabetic 
rats and observed dramatically reduced blood glucose levels 
while raising plasma insulin and pancreatic interleukin-10 
(IL-10) levels. Additionally, ZnONPs reduced oxidative 
stress-related pancreatic damage by restoring the pancreas' 
total antioxidant capacity (TAC) and antioxidant defense 
system [151]. Similarly, in alloxan-induced diabetic rats, 
Bayrami et al. [152] investigated the anti-diabetic effects 
of biosynthesized ZnONPs with chemically synthesized 
ZnONPs utilizing Urtica dioica leaf extract. For 16 days, 
the diabetic rats were subcutaneously treated either with 
ZnONPs at a dose of 10 mg/dL or ZnO-extract at a dose of 
8 mg/dL. By raising the level of insulin, biogenic ZnONPs 
exhibited superior antidiabetic potential in comparison with 
chemically synthesized and showed the reduced total cho-
lesterol levels and elevated high-density lipoprotein cho-
lesterol (HDLC) levels in diabetic rats. Wahba et al. [153] 
observed that ZnONPs effectively reversed diabetes-induced 
pancreatic injury by biochemical normalization of blood glu-
cose and serum insulin. Further, El-Gharbawy et al. [154] 
and Kitture et al. [155] ZnONPs exhibited enhanced effi-
ciency when tested in combination with the antidiabetic 
drugs, red sandalwood and vildagliptin. Furthermore, the 
α-amylase inhibitory activity of ZnONPs synthesized from 
floral extract of Senna auriculata [156] and leaf extract of 
Andrographis paniculata [157] was investigated for their 
antidiabetic potential that showed the lower IC50 value of 
121.42 µg ml−1&149.65 µg ml−1. In addition, ZnONPs syn-
thesized from M. fragrans and Withanias omnifera extracts 
were shown to have an excellent α-amylase (73%; 90%) and 
α-glucosidase (65%; 95%) inhibition, suggesting that they 
have potential antidiabetic action [79, 158].

Anticancer activity

Cancer is the deadliest disease that develops due to the 
uncontrolled growth of cells. By 2040, it is anticipated that 
there will be 29.5 million new instances of cancer diagnosed 
each year and 16.4 million cancer-related deaths [159]. 
Cancer persists despite long-run traditional therapeutic 
approaches and technological developments and has exten-
sive drawbacks, e.g., reduced bioavailability, adverse health 
effects and high cost make their use limited [2]. It is well 
renowned that anticancer drugs disrupt the mitochondrial 

electron transport chain causing increased generation of 
ROS leading to the impaired mitochondrial and protein 
activity causing cell death [160]. Due to their capacity to 
release dissolved zinc ions into the cells, ZnONPs promote 
ROS generation and activate the apoptotic signaling pathway 
[161]. Zinc is crucial for the expression of the oncogene 
p53, which regulates apoptosis by controlling the activity of 
Caspase-6 enzyme [4]. In addition, the unique electrostatic 
feature of ZnONPs enables them for selective targeting of 
cancer cells. An abundance of anionic phospholipids causes 
electrostatic attraction between ZnONPs and cancer cells, 
which promotes cancer cells to take up ZnONPs causing 
cytotoxicity [162]. According to Sana et al. [74], small size 
of ZnONPs facilitates their permeation and retention inside 
tumor cells, where they can act. The potential mechanisms 
underlying the targeted cytotoxicity of ZnONPs against 
cancer cells are, when exposed to an alkaline intracellular 
condition, ZnONPs dissolve release Zn2+ ions leading to an 
increased generation of ROS in cancer cells compared to 
normal cells initiates the intrinsic mitochondrial apoptotic 
pathway causing cell death in cancer cells. The molecular 
mechanism underlying ZnONPs cytotoxicity comprises 
the generation of ROS to significantly increase oxidative 
stress, DNA damage and disruptions on cellular lipids and 
proteins are summarized in Fig. 4. Moghaddam et al. [61] 
synthesized ZnONPs using Pichia kudriavzevii GY1 that 
exhibited cytotoxicity against breast cancer MCF-7 cells by 
apoptosis. ZnONPs-induced apoptosis was mainly through 
extrinsic/intrinsic apoptotic pathways and down-regulation 
of antiapoptotic genes of Bcl-2, AKT1, and JERK/2 with up-
regulation of proapoptotic genes of p21, p53, JNK, and Bax. 
ZnONPs synthesized from leaf extract of Raphanus sativus 
exhibited the higher anticancer potential on treated A549 
cell lines [163]. It has been extremely difficult for a drug to 
be classified as anticancer without being able to distinguish 
between cancerous and normal cells, as lack of selectivity 
can cause harmful effects.

Numerous studies have shown ZnONPs preference toward 
malignant cells. According to Chandrasekaran et al. [164], 
ZnONPs selectively induce apoptosis in C2C12 myoblas-
toma cancer cell with increased caspase-3 (CASP3) enzyme 
activity and ROS generation in comparison with 3T3-L1 
adipocytes. In another study, ZnONPs (47.2 nm) synthe-
sized from aqueous leaf extract of Laurus nobilis exhibited 
the cytotoxicity against human A549 lung cancer cells at 
concentrations of 80 μg ml−1 and showed no effect on nor-
mal murine RAW264.7 macrophage cells [165]. Along this 
line, Wahab et al. [166] showed that ZnONPs were most 
toxic against T98G cancer cells, moderately toxic against 
KB epithermoids cells and least effective against normal 
human HEK cells.

Even though many of treatments have a poor therapeutic 
index, several routinely given medications can slow down 
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the rate at which cells divide. Sharma et al. [167] and Hack-
enberg et al. [168] showed that the cytotoxicity of chemo-
therapeutic agents like doxorubicin (DOX), cisplatin (CPT) 
and paclitaxel (PTX) increased significantly in combina-
tion with ZnONPs. ZnONPs in combination with sorafenib 
exhibited significant anticancer activity against Ehrlich car-
cinoma cells in mice with an effective decrease in tumor 
weight/tumor cell viability and a significant increase in DNA 
fragmentation, generation of reactive oxygen species and 
expression of the apoptotic gene caspase-3 in the tumor tis-
sues [169]. ZnONPs conjugated with L-asparaginase from 
Aspergillus terreus exhibited significant anticancer activ-
ity against MCF-7 cell line that decreased 35% viability of 
cancer cells [170].

Wound healing activity

The largest organ in the body, the skin, shields us from out-
side threats and develops wounds when damaged. Healing 
from a wound takes patience, and microbial infection (P. 
aeruginosa and S. aureus) may slow down the process [171]. 
Metal oxide nanoparticles have the potential to get rid of 
pathogenic species and hasten wound healing. Biogenic 
ZnONPs showed huge potential as a wound-healing agent 
for the treatment of normal injuries and open wounds [172]. 
Owing to the strong antimicrobial properties, ZnONPs have 

been successfully used in wound dressings. ZnONPs synthe-
sized using Aloe barbadensis leaf extract showed the heal-
ing efficiency of ZnONPs/silica gel dressings (30 ppm) in 
mouse wounds within 11 days in comparison with control 
[173]. Biosynthesized ZnONPs using Prosophisfracta and 
coffee can penetrate cotton wound bandages, resulting in 
patches with a potent antibacterial action. As a result, they 
may be used to treat and cover wounds that are prone to 
infection, like burns or diabetic sores [174]. According to 
Raguvaran et al. [175], ZnONPs-loaded sodium alginate-
gum “Acacia hydrogels” (SAGA-ZnONPs) showed the 
wound healing effects in sheep fibroblast cells. Rayyif et al. 
[176] demonstrated the fabrication of nano-coated wound 
dressing containing ZnONPs that impair bacteria viability 
of chronic wounds after 6 h of contact in a dose-depend-
ent manner and maintained for up to 3 days. Karahaliloglu 
et al. [177] combined chitosan/ silk sericin scaffolds with 
lauric acid and ZnONPs. The diameter of zone of inhibition 
increased from 2 to 7 mm for E. coli, and 2.5 to 6 mm for S. 
aureus after treatment of ZnONPs. According to Soubhagya 
et al. [178], bio-nanocomposite-based 3D chitosan/pectin/
ZnONPs porous films showed nil cytotoxicity, cell growth 
and migration, or adverse effects on primary human dermal 
fibroblast cells (HFCs), referring to a safe biomaterial for 
accelerating wound healing. In addition, azithromycin-doped 
ZnONPs impregnated into an HPMC gel by Saddik et al. 
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[179] exhibited the improved bacterial eradication and epi-
dermal repair, which in turn stimulated tissue development 
and expedited the healing of the infected lesion. Manuja 
et al. [180] demonstrated similar potential for accelerating 
healing by ZnONPs hydrogels synthesized from sodium 
alginate gum acacia that left no scar at the rabbit skin exci-
sion wound.

Antiviral activity

Numerous viruses, including hepatitis C and E virus (HCV, 
HEV), herpes simplex virus (HSV), human papillomavirus 
(HPV), human immunodeficiency virus (HIV) and severe 
acute respiratory syndrome coronavirus (SARS-CoV), have 
been shown to be significantly inhibited by ZnONPs. The 
antiviral evaluation of ZnONPs synthesized from Plumbago 
indica leaf extract revealed that they showed remarkable 
activity against herpes simplex virus type 1 (HSV-1), with 
CC50 and IC50 values of 43.9 and 23 µg ml−1, respectively, 
in comparison with acyclovir, which at 1 µg ml−1 offered 
100% complete immunity against HSV-1 [181]. A study by 
Ghaffari et al. [182] reported that PEGylated ZnONPs and 
ZnONPs exhibited higher inhibition rates of 94.6% and 52.2%, 
against H1N1 influenza virus. It caused a remarkable reduc-
tion in fluorescence emission intensity in PEGylated ZnONPs-
treated cells with lower cytotoxicity on MDCK-SIAT1 cells 
and concluded that PEGylated ZnONPs may be an efficient 
and promising antiviral treatment for H1N1 influenza virus 
infection. According to TeVelthuis et al. [183] and Erk et al. 

[184], the toll-like receptor signaling pathways and proteins 
downstreaming are the action mechanisms underpinning the 
antiviral efficacy of ZnONPs, which in turn promote the innate 
and adaptive immune response leading to the generation of 
pro-inflammatory cytokines that impede the virus. Zn2+ ions 
have antiviral capabilities by inhibiting virus proliferation, 
packaging and expulsion during its life cycle, causing reac-
tive oxygen species generation, and preventing infection. In 
addition to blocking viral RNA-dependent RNA polymerase 
activity, zinc also alters the host immune response to prevent 
viral invasion and inhibits viral replication and the translation 
of viral polyproteins [183]. However, ZnONPs have the abil-
ity to dissolve water molecules, release Zn2+ ions and absorb 
UV–Vis light, producing ROS like H2O2 and OH− free radicals 
[185, 186]. ZnONPs have been shown to inhibit both SARS-
COV and retrovirus in vitro RNA polymerase activity, and zinc 
ions inhibit virus replication in cell culture [183]. The molecu-
lar mechanism underlying ZnONPs toxicity against SARS-
CoV-2 virus involves the generation of ROS that significantly 
increase oxidative stress; RNA degradation and disruptions on 
cellular proteolysis are summarized in Fig. 5. ZnONPs impede 
SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) via 
altering template binding during the elongation stage of RNA 
translation. Furthermore, ZnONPs inhibit membrane fusion by 
interacting with the histidine residue of viral E1 protein, which 
obstructs the viral polyprotein proteolytic mechanism in turn 
inhibiting the viral integration [187]. Collectively, ZnONPs 
serve as a prospective candidate for their use in nanomedi-
cal viral-targeting therapy for the SARS-COV virus owing to 

Fig. 5   Mechanism of action 
of ZnONPs antiviral activity 
against SARS-CoV-2 virus
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its inertness to an array of medicines and persistent visible 
fluorescence. Recently, El-Megharbel et al. [188] observed 
that ZnONPs had remarkable antiviral activity against SARS-
CoV-2 with an IC50 value of 526 ng ml−1and cytotoxic levels 
with a CC50 value of 292.2 ng ml−1 against VERO-E6 cells. 
Additionally, it was found that ZnONPs-enhanced generation 
of ROS causes damage to the SARS-CoV-2 membrane pro-
teins. Jana et al. [189] showed that polysaccharide-encapsu-
lated ZnONPs exhibited remarkable antiviral activity against 
human cytomegalovirus (HCMV), with cell survival rates of 
93.6% and 92.4% at 400 µg ml−1. Gupta et al. [190] inves-
tigated the antiviral efficacy of both ZnONPs and tetrapod-
shaped ZnO(TP) against hepatitis E and hepatitis C viruses. 
Both showed significant antiviral activity, but ZnO(TP) were 
more effective and showed no cytotoxicity even at higher doses 
as compared to control.

Application of ZnONPs in drug delivery

Drug delivery using ZnONPs has emerged as an incredibly 
efficient approach for treating various illnesses, such as can-
cers. Because of their cheap fabrication from inexpensive 
metal precursors, biocompatibility and efficient cellular 
absorption via endosomes, ZnONPs have been suggested 
as a feasible prospect for targeted drug delivery. The pH-
dependent release of the targeted drug and ZnONPs into the 
cytoplasm that occurs through receptor-mediated endocy-
tosis is the underpinning mechanism behind the increased 
cytotoxic potential of anticancer drug-loaded ZnONPs 
[191]. Additionally, the excessive generation of ROS and 
Zn2+ ions from ZnONPs results in the apoptosis of can-
cer cells [2]. Biologically synthesized doxorubicin-loaded 
ZnONPs using Borassus flabellifer extract exhibited dose-
dependent cytotoxicity against human breast cancer (MCF-
7) and colon cancer (HT-29) cell lines with an IC50 value of 
0.125 µg ml−1and displayed low cytotoxicity in the murine 
model system, according to the in vivo toxicity evaluation 
[192]. Using chitosan-coated ZnONPs synthesized from 
ethanolic leaf extract of Camellia sinensis, Akbarian et al. 
[191] fortunately loaded paclitaxel (PTX) and observed the 
enhanced cytotoxicity against malignant MCF-7 cell lines 
without being nontoxic on healthy fibroblast cell lines. 
According to Yuan et al. [193], ZnO quantum dots loaded 
with chitosan were used to deliver anticancer drug doxoru-
bicin to HeLa cells.

Applications of ZnONPs in bioimaging

The inherent photoluminescence properties of ZnONPs 
make them a suitable candidate for biosensing applications. 
Their chemical structure consists of hydroxyl (− OH) groups, 
which makes it easier to dissolve in a basic and acidic 

environment especially in a tumor microenvironment for 
efficient imaging [4]. Jiang et al. [28] used ZnO nanosheets 
for imaging the leukemia K562 cells and observed the clear 
yellow orange light emission around or inside the cells under 
UV excitation, suggesting the successful penetration of the 
cells by these ZnO nanosheets. Pan et al. [194] used photo-
luminescent ZnO@polymer core–shell NPs for mouse imag-
ing via intradermal and intravenous injections. According 
to Sudhagar et al. [195], green, fluorescent ZnONPs con-
jugated with transferrin were involved in cancer cell imag-
ing with lower cytotoxicity. Singh et al. [196] doped zinc 
oxide quantum dots (QDs) with Gd and observed an increase 
in the emission intensity and lower toxicity to HeLa can-
cer cells, imaged with confocal microscopy. Furthermore, 
many studies had reported the use of ZnONPs in bioimag-
ing like., use of ZnONPs for skin tissue architecture [197], 
ZnO nanocrystals in KB cells [198], CdSe(S)/ZnO-QDs in 
S. oneidensis [199], ZnONPs in human skin and rat liver 
cells [200], ZnONPs in plant tissue cell implosion [201] 
and ZnONPs in blood cells of zebrafish and roots/shoots of 
Arabidopsis [202].

Application of ZnONPs in tissue engineering

Due to their antineoplastic, angiogenic, UV scattering, 
antioxidant, collagen production, bio-mineralization and 
wound-healing characteristics, ZnONPs have become alter-
native biomaterial for tissue engineering and regenerative 
medicine applications [203]. They can aid in promoting tis-
sue repair while lowering immunogenicity and preventing 
illness. For tissue engineering and regenerative medicine 
applications, ZnONPs are reported to stimulate cell growth, 
proliferation, transformation and metabolic functions in 
a numerous cell line [204]. As evidenced by in vitro and 
in vivo approach, the application of biogenic ZnONPs in 
tissue engineering has grown even more specific due to its 
proangiogenic features that may be incredibly beneficial in 
improving the integration of sophisticated biomaterials into 
host tissue. Yousefi et al. [205] investigated the ZnONPs/
chitosan tubular scaffold for tendon restoration in a rab-
bit model and observed complete absorption of scaffold at 
repair site after eight weeks of treatment. It also prevented 
the formation of adhesions and infections around the tendon 
with enhanced angiogenesis and collagen fibril rearrange-
ment, pointing to its promising use in the treatment of ten-
don acute injuries. Shubha et al. [206] showed that biosyn-
thesized ZnONPs using gallic acid isolated from the aqueous 
extract of Phyllanthus emblica exhibited less toxicity than 
clinically recommended ZnONPs and observed noticeable 
results in 3T3 fibroblasts from Balb mice, which suggested 
its use near connective tissue cells because they are benign 
to cells. Using the stem extract Artemisia annua-derived 
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ZnONPs, Wang et al. [207] showed the impact of ZnONPs 
on bone regeneration inMG-63 Cells. Without significantly 
increasing cytotoxicity, biogenic ZnONPs demonstrated 
improved osteoblast proliferation, differentiation, collagen 
production and calcium mineralization. According to a study 
by Shafique et al. [208], Cymbopogon citratus leaf extract 
derived ZnONPs exhibited the promising callogenesis and 
regeneration frequency in Panicum virgatum nodes and 
internodes. It was confidently expected that this exploration 
would advance tissue culture technology by increasing the 
rate of plant in vitro regeneration in various species. Heidari 
et al. [209] and Harikrishnan and Sivasamy [210] reported 
the efficacy of nanohydroxyapatite/ZnO (HA/ZnO) scaffolds 
and polycaprolactone/ZnO(PCL-ZnO) scaffolds for bone tis-
sue regeneration in human osteoblast cells. Improved bio-
compatibility and biosorption properties were demonstrated 
by the HA/ZnO scaffold, whereas PCL/ZnO scaffolds offer a 
nano-porous matrix for improved cell adherence and higher 
cell proliferation. Furthermore, Forero et al. [211] showed 
the potential efficacy of nano-copper-zinc alloy (nCuZn) 
containing chitosan/gelatin/nano-hydroxyapatite (Ch/G/
nHAp) scaffold in bone tissue regeneration and observed 
scaffolds-induced osteogenesis and increased mouse embry-
onic fibroblast proliferation and adhesion (MEFs). The scaf-
fold promoted the growth of the surrounding tissues after 
in vivo implant, encouraging the formation of granulation 
tissue.

Future perspectives

ZnONPs demonstrate superior attributes to bulk materials 
because of its small size and high surface area-to-volume 
ratio, due to which they are being investigated in a variety 
of disciplines, including the biosensor, agriculture, cosmetic 
and food industries. Biologically synthesized ZnONPs have 
gained significant attention due to their eco-friendly, sim-
ple, and economical nature, which allows producing NPs on 
a big scale. Biomolecules present in cell extract facilitates 
the reduction and stabilization of synthesized ZnONPs and 
exhibited enhanced antimicrobial, anticancer, anti-inflamma-
tory, drug delivery, bioimaging along with other biomedi-
cal applications. The capacity of the ZnONPs to increase 
the bioavailability of therapeutic drugs while acting as drug 
carriers to increase therapeutic efficacy has also long been 
acknowledged. Many critical variables must be dealt with 
in the future for the reliable and efficient production of 
ZnONPs for innovative applications. Modulation of various 
variables such as pH, temperature, salt precursor and extract 
concentration should be explored for efficient regulation of 
particle size distribution and morphology for economically 
feasible ZnONPs fabrication on a large scale in order to meet 
future demands. With the growing prevalence of ZnONPs, 

researchers should examine their buildup in the surround-
ings and possible long-term impacts on humans and animals. 
Furthermore, ZnONPs may be modified by biomolecules 
such as polysaccharides and proteins to boost persistence 
and their biocompatibility as these organic compounds have 
properties similar to human tissue.

Conclusion

The ZnONPs are promising candidates for biological appli-
cations due to their intrinsic toxicity of ROS generation, 
activating apoptotic signals within the cells to hinder both 
microbial pathogens and malignant cells. The present review 
highlighted the green synthesis of ZnONPs, to get over the 
limits of traditional chemical and physical techniques and 
its use in various biomedical applications. It emphasizes 
how the use of biogenic ZnONPs in drug administration, 
nanomedicine and cure can open up new avenues for giving 
more customized, safer and efficient therapeutic options for 
tumors and HIV/AIDS, as well as noninvasive diagnostics 
and nutraceutical delivery. Researchers will eventually be 
able to deliver medications for a greater duration of time 
with enhanced accuracy and penetration by manipulating 
size of NPs and surface characteristics. Furthermore, in vitro 
and in vivo studies are anticipated to explain the cellular 
level mechanism of action, with significance in numerous 
biomedical diagnostics and therapeutic disciplines. As a 
result, rapid progress in the application of biologically syn-
thesized ZnONPs is expected in the future decades.
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