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Abstract
The great potential of zinc oxide nanoparticles (ZnO NPs) for biomedical applications is attributed to their physicochemi-
cal properties. In this work, pure and Ag and Ce dual-doped ZnO NPs were synthesized through a facile and green route to 
examine their cytotoxicity in breast cancer and normal cells. The initial preparation of dual-doped nanoparticles was com-
pleted by the usage of taranjabin. The synthesis of Ag and Ce dual-doped ZnO NPs was started with preparing the Ce:Ag 
ratios of 1:1, 1:2, and 1:4. The cytotoxicity effects of synthesized nanoparticles against breast normal cells (MCF-10A) and 
breast cancer cells (MDA-MB-231) were examined. The hexagonal structure of synthesized nanoparticles was observed 
through the results of X-ray diffraction (XRD). Scanning electron microscopy (SEM) images exhibited the spherical shape 
and smooth surfaces of prepared particles along with the homogeneous distribution of Ag and Ce in ZnO with high-quality 
lattice fringes without any distortions. According to the cytotoxic results, the effects of Ag/Ce dual-doped ZnO NPs on 
breast cancer (MDA-MB-231) cells were significantly more than of pure ZnO NPs, while dual-doped and pure nanoparticles 
remained indifferent towards breast normal (MCF-10A) cells. In addition, we investigated the antimicrobial activity against 
harmful bacteria.
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Introduction

As a novel type of widely used mineral particles [1], 
metal–organic framework [2] and metallic nanoparticles 
[3–5] such as zinc oxide were noticed and explored by 
researchers due to their suitable mechanical [6, 7], physical 
[8, 9] and chemical properties [10–13] that are combined 
with a higher adsorption power than other zinc-containing 
compounds [14, 15]. Zinc oxide is one of the compounds 
of zinc that was recognized as a safe substance by the US 
Department of Food and Drug Administration [16]. The 
properties of nanostructures led to their various applications 
such as anticancer [17, 18], tissue engineering [19–21], anti-
microbial [22, 23], degradation [24], photocatalyst [25–29], 
antioxidant [30], sensor [31–36], sensing [37–39], agricul-
ture [40–42], absorption [43], purification [44, 45], energy 
[46–49], anti-inflammatory therapy [50], food analysis [51], 
and drug carriers [52–54]. Among the notable properties of 
zinc oxide nanoparticles, one can point out their high chemi-
cal stability, low dielectric constant, high catalytic activ-
ity, absorption of infrared and ultraviolet light, and most 
importantly their antibacterial properties [55]. Confirming 
the therapeutic and toxic effects of these compounds can 

stand as a significant step throughout the advancements 
of cancer [56–63] and fungal/bacterial infection disease 
[64–66] treatments [67–69] such as COVID 19 [70, 71]. The 
primary prevention of infection [72–74] and cancers’ dis-
eases [75–77], new development in research [78–80] and 
innovation [81–84], such as nanotechnology [85, 86], mate-
rials [87–89] and digital technologies [90], have the need 
to improve our understanding of diseases [91–93] such as 
cancer [94–97]. In fact, recent developments [98] in all field 
of science [99–101] and technology [102–104] have impact 
on human health [105–108] and life [109–112].

Although the main action mechanism of nanoparticles 
remains unknown[113–115], yet the results of various 
studies on in in vivo and in vitro environments [116, 117] 
were indicative of their ability to produce reactive oxygen 
species (ROS) [118–120], which consequently points out 
their potent functionality in intracellular calcium concen-
tration, activation of transcription factors, and alterations 
in cytokines [121–123]. The various approaches of ROS in 
damaging cells include DNA damage [124–126], interfer-
ence with cellular signaling pathways, changes in gene tran-
scription, etc. [127–129].
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There are different physical [130], chemical [61, 131], 
and biological methods [132–137] for synthesizing nano-
structures, while the exertion of each technique is depend-
ent on the available conditions and purpose of the synthesis 
[138]. The most common synthesizing methods for the pre-
pare of zinc oxide nanoparticles are observed in the form 
of sol–gel [139], microemulsion, mechanical–chemical pro-
cess, direct solvent evaporation, hydrothermal, and spark 
deposition, which is selected depending on certain factors 
such as surface chemistry, size distribution, particle mor-
phology, and particle reaction in solution [140]. Next to the 
advantages of these procedures, there are disadvantages as 
well since the involved substances are toxic and their usage 
in medical research is limited [141, 142]. In addition, some 
of the applied materials remain insoluble and can cause envi-
ronmental pollution [143–146]. Therefore, in recent years, 
the application of biological or green methods was notice-
ably highlighted in order to overcome the disadvantages 
[147–151]. Green synthesis is defined as the exertion of 
biological organisms, such as microorganisms, for complet-
ing the synthesizing processes that are composed of different 
bacteria species, actinomycetes [152], algae, fungi, bacte-
ria [153], and biomass [154] or plant extracts [155–159]. 
Green synthesizing techniques lack the hazardous aspects 
of physical and chemical methods, and on the other hand, 
they were confirmed to be environmentally friendly [160] 
and cost-effective [161] without requiring the usage of high 
pressure, high energy, high temperature, and toxic chemicals 
[162–165]. The application of plant extracts for the synthesis 
of nanoparticles may be a better option than other biological 
methods since it is suitable for conducting large-scale syn-
thesis while being more cost-effective, as well as capable of 
accurately preserving the cellular environment [166–168].

Alhagi persarum is a shrub with thin, branched, and 
prickly stems with an average height of 50 cm. The leaves 
of this plant are small, oval, pointed, and simple that grows 
at intervals from the stems. This plant mainly grows in hot 
and deserted areas (deserts) of Iran, especially in southern 
regions. A sugary substance is secreted from the stems of 
this plant that is known as taranjabin in Iran, which turns 
into white, yellow, or brownish-yellow droplets upon being 
exposed to air. The chemical composition of taranjabin 
includes 47.7% of melezitose, 26.44% of sucrose, 11.64% 
of fructose reducing sugar, 12.4% of gum, and mucilage 
and 5.1% of ash. Taranjabin is recognized as a laxative 
that can relieve rheumatic, chest, cough, fever, and biliary 
pains, which is used in traditional medicine for the treatment 
of jaundice in infants, as well as children with rubella and 
infectious fevers.

In order to discover fast and effective treatment pathways 
or to produce materials with high therapeutic effects for the 
treatment of cancer, this study attempted to synthesize Ag 
and Ce dual-doped ZnO NPs by the usage of taranjabin for 

the very first time and evaluated the cytotoxic activity of 
synthesized nanoparticles on human breast cancer (MDA-
MB-231) and breast normal (MCF-10A) cells lines. In addi-
tion, we investigated the antimicrobial activity against harm-
ful bacteria.

Materials and methods

Synthesis of pure and dual‑doped ZnO NPs

The synthesis of Ag and Ce dual-doped ZnO NPs was started 
with preparing the Ce:Ag ratios of 1:1, 1:2, and 1:4. Then, 
0.3 gr of taranjabin was dissolved in 50 mL of distilled 
water within four Erlenmeyer flasks to arrange one sample 
of un-doped and three samples of dual-doped nanoparticles, 
respectively. In the following, subsequent to the addition of 
zinc nitrate hexahydrate (0.02 M, Zn(NO3)2.6H2O, Merck) 
to all the four taranjabin solutions, silver nitrate (AgNO3, 
Merck) and cerium nitrate hexahydrate (Ce(NO3)3.6H2O, 
Merck) were appended in accordance with the specified 
ratios, respectively. Once the solutions were mixed by a 
heater stirrer at 70 °C for 3 h, they were dried in an oven at 
80 °C for 24 h. The resulting raw material was calcined at 
600 °C for 2 h. The un-doped and cerium and silver dual-
doped ZnO NPs were labeled as ZnO, Ag1/Ce–ZnO, Ag2/
Ce–ZnO, and Ag4/Ce–ZnO, respectively (Fig. 1).

Characterization

The size, morphology, and other physical–chemical prop-
erties of synthesized nanoparticles were examined through 
the performance of PXRD (Netherlands, PANalyticalX’Pert 
PRO MPD system, Cu Kα), UV–Vis (Rayleigh: UV-2100, 
China), Raman spectra that were captured by a Raman 
Takram P50C0R10 device at the laser wavelength of 532 nm, 

Fig. 1   Images of biosynthesized pure ZnO, Ag1/Ce–ZnO, Ag2/Ce–
ZnO, and Ag4/Ce–ZnO nanoparticles using taranjabin 
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FESEM (MIRA3 TESCAN, Czech), and UV–visible spec-
troscopy (UV–Vis, UV-1800, SHIMADZU) analyses.

Cytotoxic

Cells’ culture

In this study, human breast cancer (MDA-MB-231) and 
breast normal (MCF-10A) cells were used to evaluate the 
cytotoxicity of synthesized nanoparticles. MCF-10A and 
MDA-MB-231 cells were obtained from the Pasteur Institute 
of Iran and thawed in prior to being cultured. The cells were 
transferred to Falcon tubes and centrifuged at 833 rpm for 
9 min. Once the supernatant was removed, a complete cul-
ture medium was added to the cells to have the prepared sus-
pensions poured into flasks. High-glucose DMEM culture 
medium was exerted for the process of cells culturing and 
the next step required the addition of 10% fetal bovine serum 
(FBS), 100 μg/mL of streptomycin, and 100 international 
units/mL of penicillin to each culture medium to prevent 
the inducement of microbial growth. In order to proliferate 
and grow the cells, the culture medium was incubated under 
5% CO2 at 37 °C.

MTT assay

Human breast cancer (MDA-MB-231) and breast normal 
(MCF-10A) cells were cultured in an incubator with a high 
glucose DMEM that was supplemented with 10% fetal 
bovine serum and 1% penicillin/streptomycin solution (37 
◦C, 5% CO2) until the cells count of each well of 96-well 
plate reached 10,000. The culture medium was replaced with 
100 μL of the DMEM that contained the formulations at 
different concentrations (1, 10, 50, 100, and 500 μg/mL) to 
be seeded for another 24 h. Three duplications were con-
sidered for each concentration. In the following, the culture 
medium was changed after 24 h along with the replacement 
of fresh high glucose DMEM. Then, 20 μL of 5 mg/mL 3-(4, 
5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide 
(MTT) solution was added to each well and another course 
of incubation was performed for 4 h. Once 100 µL of DMSO 
was added to each well of 96-well plate, the resulting mix-
ture was shaken for about 15 min at room temperature to 
dissolve the formazan. A microplate reader was exerted to 
measure the optical density (OD) at 570 nm. In addition, 
the cells viability rate (VR) was calculated according to the 
following equation:

in which A represents the absorbance of the cells that 
were treated with formulations and A0 refers to the absorb-
ance of control group.

VR = A∕A
0
× 100%

Antibacterial assay

The antibacterial test was studied on Pseudomonas aerugi-
nosa using macrodilution method. The P. aeruginosa were 
cultured on these culture media in contact with nanopar-
ticles. The concentrations of 1–250 mg/mL of nanoparti-
cles were prepared in the Mueller Hinton culture medium. 
Then, the samples were placed in an incubator at 37 °C for 
24 h. Finally, bacterial turbidity in the culture media was 
observed. The turbidity was a sign of the growth of the 
microbial strain in that concentration of nanoparticles.

IC50

The conduction of probit test was completed through the 
exertion of SPSS software for two purposes including 
the calculation of drug and nanoparticles concentrations 
that could limit the growth of 50% of cells (IC50) and to 
measure the restriction percentage of cells growth against 
concentration.

Results and discussion

XRD analysis

Figure 2 presents the XRD pattern of biosynthesized pure 
ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, and Ag4/Ce–ZnO nano-
particles. The observed peaks in pure ZnO nanoparticles and 
Ag and Ce dual-doped ZnO nanoparticles were indexed to 
(100), (002), (101), (102), (110), (103), (200), (112), and 
(201), which is comparable with the hexagonal structure of 
ZnO (JCPDS-36–1451). In conformity to Fig. 2, increasing 
the ratio of Ag resulted in the appearance of peaks related 
to the silver-doped nanoparticles throughout the PXRD pat-
tern. The purity and high crystalline form of synthesized 
nanoparticles was confirmed by the lack of observing any 
other additional peaks. The crystalline size of synthesized 
nanoparticles was calculated through the Debye–Scherer 
formula as given in the following equation:

where D refers to the crystallite size of nanoparticles, K 
represents the shape factor, λ is the wavelength of applied 
radiation, β would be full width at half maxima (FWHM) in 
radians, and θ stands for the diffraction angle. The average 
crystallite size of synthesized nanoparticles was estimated 
by considering the full width at half maxima (FWHM) of 
XRD peak (101) through the usage of Debye–Scherer for-
mula, which was obtained to be 19.14, 19.73, 22.05, and 
22.20 nm for ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, and Ag4/

(2)D = K�∕� cos �
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Ce–ZnO nanoparticles, respectively. The data in Fig. 2 indi-
cate that the doping of Ce and Ag metals to the crystalline 
network of ZnO nanoparticles caused an increasing in the 
crystalline size of synthesized doped nanoparticles due to 
the difference in ionic radius of zinc atom (1.38 Å) when 
compared to silver (1.26 Å) and cerium (1.037 Å).

FESEM and EDX analyses

Figure 3 presents the FESEM images of biosynthesized 
pure ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, and Ag4/Ce–ZnO 
nanoparticles obtained by the usage of taranjabin, which 
displays the approximately spherical shape of ZnO particles. 
The recorded doped nanoparticles throughout the FESEM 
images were also spherical, while observations indicated the 
inducement of an increasing in the size of synthesized parti-
cles due to the doping of Ag and Ce metals into the structure 
of ZnO. The mean particle size distribution of synthesized 
ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, and Ag4/Ce–ZnO nano-
particles, which were estimated to be 31.59, 31.93, 36.89, 
and 38.44 nm, exhibits the satisfying growth of particles as 
a result of increasing the percentage of doped metals. In con-
formity to the provided EDX profiles of biosynthesized ZnO 
and Ag4/Ce–ZnO nanoparticles in Fig. 4, the synthesized 

nanoparticles contained a high-purity content with the com-
position of Zn and O elements for ZnO and Zn, as well as 
O, Ag, and Ce elements for Ag4/Ce–ZnO nanoparticles. The 
table form of elemental composition is inserted in Fig. 4.

Raman analysis

Raman spectroscopy is a non-destructive chemical analysis 
technique for providing detailed information about chemical 
structure, phase and polymorphy, crystallinity, and molecu-
lar interactions, which is based upon the interaction of light 
with chemical bonds within a material. According to group 
theory, ZnO nanoparticles contain a hexagonal wurtzite 
structure with a space group of P63mc. The optical modes 
of A1 + 2B2 + E1 + 2E2 imply the wurtzite structure of ZnO, 
which includes A1 + E1 + 2E2 as the active Raman mode, 
A1 + E1 as the active infrared mode, and 2B1 as the silent 
Raman mode. The A1 and E1 modes are two polar branches 
that are divided into longitudinal optical (LO) and transverse 
optical (TO). The A1, E1, and E2 modes are recognized as 
the first-order Raman active and based on Raman law, B1 
modes are usually inactive throughout the Raman spectrum 
and are known as the silent modes. The Raman spectra of 

Fig. 2   PXRD pattern of biosynthesized pure ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, and Ag4/Ce–ZnO nanoparticles using taranjabin 
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biosynthesized pure ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, and 
Ag4/Ce–ZnO nanoparticles are represented in Fig. 5.

The main phonon states of ZnO nanoparticles with 
a hexagonal structure appeared in the regions of 583, 
441, 345, 91 cm−1, which were in correspondence to the 
A1(LO)–E1(LO), E2H, A1(TO), and E2H modes, respec-
tively. The 2E2L mode was in correlation to the second-
order phonon mode that appeared in the region of 132 cm−1. 
Moreover, the modes of 3E2H-E2L, E1(TO) + E2L, 2(E2H-
E2L), and A1(TO) + E1(TO) + E2L were related to the poly-
phonon scattering that was detected in the points of 324, 
475, 658, and 1105 cm−1, respectively.

As it is displayed in Fig. 5, the doping factor (both Ag and 
Ce) of ZnO matrix caused significant changes in the polar 
and non-polar states. The E2H state involves the oxygen 
motion, while being sensitive to internal stress, and contain-
ing the characteristics of hexagonal structure of zinc oxide 
nanoparticles. Due to the decomposition of impurities and 
defects, the E2H mode faced a sharp decrease in the peak 
intensities of doped samples. In addition, this mode was 
observed to be steadily decreased and expanded as the dop-
ing concentrations of silver and cerium were increased. The 
detected polarity of A1(LO)–E1(LO) at around 583 cm−1 
was related to the doping of silver and cerium that can 
expand a peak and also force its shifting towards lower 

energies. All the variations and extensions of phonon modes 
were obtained by scattering contributions outside the center 
of Brillouin area. The phonon state of A1 (LO)–E1 (LO) is 
usually attributed to the interfacial defect of zinc and oxygen 
vacancy throughout the network of ZnO. Due to the combi-
nation of Ag and Ce ions with ZnO nanoparticles, the inten-
sity of ZnO Raman peaks can be greatly increased through 
the doping of silver and cerium. In addition, further results 
confirmed the crystallization of ZnO nanoparticles with few 
defects due to the presence of Ag and Ce ions.

UV–Vis analysis

Electron spectroscopy is a technique for investigating the 
energy distribution of ejected electrons from a material as a 
result of being irradiated by a source of ionizing irradiation. 
Figure 6 presents the electronic spectra of biosynthesized 
pure ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, and Ag4/Ce–ZnO 
nanoparticles obtained by the usage of taranjabin. The max-
imum wavelength of pure ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, 
and Ag4/Ce–ZnO nanoparticles were observed at the regions 
of 396, 372, 383, and 385 nm, respectively.

An increase in the concentration of Ce and Ag through-
out the structure of ZnO causes a shifting in the absorption 
spectra towards higher wavelengths (red shift) due to the 

Fig. 3   FESEM images and particle size distribution of biosynthesized pure ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, and Ag4/Ce–ZnO nanoparticles 
using taranjabin 
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induced alteration in the amount of optical bandgap. This red 
shift represents the increasing crystallization and the effects 
of quantum confinement. An enlargement in the electron 
population during the doping of Ce and Ag into ZnO can 
lead to quantum constraints and finally cause a red shift in 
optical absorption behavior.

Cytotoxic performance

In this study, we examined the cytotoxicity effects of bio-
synthesized ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, and Ag4/
Ce–ZnO nanoparticles obtained by the usage of taranjabin 
against breast normal cells (MCF-10A) and breast cancer 
cells (MDA-MB-231). For this purpose, the cells were 
exposed for 24 h at different concentrations (1–500 μg/mL) 
of un-doped and dual-doped ZnO nanoparticles through 
the means of MTT assay (Fig. 7). In conformity to Fig. 6, 
the pure and Ag and Ce dual-doped ZnO nanoparticles did 
not cause any significant toxicity effects on the normal cell 
line (MCF-10A), while the doped nanoparticles resulted in 

almost similar toxicity impacts to that of un-doped nano-
particles. Furthermore, increasing the concentrations of 
doped and un-doped nanoparticles did not cause any sig-
nificant toxicity effects. The assessment results of cytotoxic 
activity of synthesized nanoparticles on breast cancer cell 
line (MDA-MB-231) are presented in Fig. 7. According to 
observations, increasing the applied concentration intensi-
fied the effects of cytotoxicity, which reached a significant 
point at the concentration of 500 µg/mL. The cytotoxic 
effect of doped nanoparticles was more that of un-doped 
nanoparticles. As, 80% of the cells were killed from being 
treated with Ag4/Ce–ZnO nanoparticles at the concentration 
of 500 µg/mL. In addition, IC50 data strongly confirmed the 
obtained results (Table 1), which less IC50 was attributed to 
Ag4/Ce–ZnO nanoparticles. Hence, Ag4/Ce–ZnO nanopar-
ticles show the greatest effect of toxicity. Figure 8 depicts the 
effect of synthesized nanoparticles being treated with breast 
normal cell and breast cancer cell lines. This figure clearly 
displays the difference in the cytotoxic activity of synthe-
sized pure and dual-doped ZnO nanoparticles against these 

Fig. 4   EDX profiles of biosyn-
thesized pure ZnO and Ag4/
Ce–ZnO nanoparticles using 
taranjabin 



96	 Bioprocess and Biosystems Engineering (2023) 46:89–103

1 3

Fig. 5   Raman spectra of biosynthesized (A) pure ZnO nanoparticles, and (B) ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, and Ag4/Ce–ZnO nanoparticles 
using taranjabin 
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two cell lines. These results suggested that the synthesized 
nanoparticles induced cytotoxicity in cancer cells without 
affecting the normal cells.

The cytotoxic effects of green synthesized doped ZnO 
NPs on cancer cells were mentioned in the work of many 
authors. For example, MJ Akhtar et al. studied the oxida-
tive stress-mediated cytotoxicity of Al-doped ZnO nano-
particles against MCF-7 cells. According to their report, 
Al-doping was able to enhance the cytotoxicity and oxida-
tive stress responses of ZnO nanoparticles against MCF-7 
cells. In addition, they obtained an IC50 of 44 μg/mL for 
un-doped ZnO nanoparticles and 31 μg/ml for the Al-doped 
ZnO counterparts. It was suggested by their results that Al-
doped ZnO nanoparticles can induce apoptosis in MCF-7 
cells through the mitochondrial pathway [169]. In another 
work, G. Vijayakumar et al. investigated the cells viability, 
ROS generation, and nanoparticle cells penetration rate of 
PEG encapsulated bare and Mn-doped ZnO nanoparticles 
against human liver carcinoma Huh7 cell lines. Based on 
their findings, un-doped the Mn-doped ZnO nanoparticles 
exhibited a higher cells annihilation effect, which may be 
due to the combined effects of Zn2+ ion release and intracel-
lular ROS generation; therefore, the inducement of apopto-
sis can be expected due to oxidative stress and ROS gen-
eration [170]. Considering these facts, doped metal oxide 

nanoparticles can stand as an attractive research topic for 
biomedical applications. Nano-sized materials have enabled 
many developments in biomedicine and other biological 
applications such as drug delivery, anticancer activity, gene 
delivery, fluorescent biological labels, protein detection, 
MRI contrast enhancement, probing of DNA, tissue engi-
neering, phagokinetic studies, hyperthermia, and filtration 
of biological based molecular cell.

The antibacterial test of doped and non-doped nanoparti-
cles was on P. aeruginosa and E.coli. The IC50 was at 50 μg/
mL.

Conclusion

Un-doped and Ag and Ce dual-doped ZnO NPs were synthe-
sized through a facile green method by exerting the extract 
of taranjabin. The obtained PXRD spectra displayed the 
hexagonal phase of un-doped and dual-doped ZnO NPs. 
SEM mapping demonstrated the homogeneous distribution 
of Ag and Ce in ZnO with high-quality lattice fringes while 
lacking any distortions. According to cytotoxicity results, 
the un-doped ZnO NPs displayed a similar toxicity effect 
on breast cancer cells (MDA-MB-231) to that of dual-doped 
ZnO NPs. Considering the comparable toxicity effect of 

Fig. 6   Electronic graph of biosynthesized pure ZnO, Ag1/Ce–ZnO, Ag2/Ce–ZnO, and Ag4/Ce–ZnO nanoparticles using taranjabin 
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doped nanoparticles with the un-doped nanoparticles, it can 
be stated that the simultaneous doping of cerium and silver 
did cause significant alterations in the cytotoxic properties 
of zinc oxide nanoparticles. However, this discovery requires 
further investigation since it may affect certain physical and 
biological properties such as luminescence, UV absorp-
tion, or antibacterial features of zinc oxide nanoparticles. 
Therefore, this attempt can stand as a useful approach due to 
the cosmetic and even industrial applications of zinc oxide 
nanoparticles.

Fig. 7   The cytotoxic activity 
of biosynthesized pure ZnO, 
Ag1/Ce–ZnO, Ag2/Ce–ZnO, 
and Ag4/Ce–ZnO nanoparticles 
using taranjabin 

Table 1   IC50 values of biosynthesized pure ZnO, Ag1/Ce–ZnO, Ag2/
Ce–ZnO, and Ag4/Ce–ZnO nanoparticles using taranjabin 

Cell lines IC50 values (µg/mL)

ZnO Ag1/Ce–
ZnO

Ag2/Ce–
ZnO

Ag4/Ce–ZnO

MCF-10A 604.2647 799.8132 778.4796 878.4803
MDA-

MB-231
447.3 418.113 325.833 220.461
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