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Abstract
Flux balance analysis (FBA) is currently the standard method to compute metabolic fluxes in genome-scale networks. 
Several FBA extensions employing diverse objective functions and/or constraints have been published. Here we propose a 
hybrid semi-parametric FBA extension that combines mechanistic-level constraints (parametric) with empirical constraints 
(non-parametric) in the same linear program. A CHO dataset with 27 measured exchange fluxes obtained from 21 reactor 
experiments served to evaluate the method. The mechanistic constraints were deduced from a reduced CHO-K1 genome-scale 
network with 686 metabolites, 788 reactions and 210 degrees of freedom. The non-parametric constraints were obtained by 
principal component analysis of the flux dataset. The two types of constraints were integrated in the same linear program 
showing comparable computational cost to standard FBA. The hybrid FBA is shown to significantly improve the specific 
growth rate prediction under different constraints scenarios. A metabolically efficient cell growth feed targeting minimal 
byproducts accumulation was designed by hybrid FBA. It is concluded that integrating parametric and nonparametric con-
straints in the same linear program may be an efficient approach to reduce the solution space and to improve the predictive 
power of FBA methods when critical mechanistic information is missing.

Keywords  Genome-scale modeling · CHO-K1 cells · Flux balance analysis · Hybrid semi-parametric systems · Machine 
learning · Culture media design

Introduction

Genome-scale models (GEMs) are systems-level repre-
sentations of the entirety of metabolic functions of a cell 
[1]. They are reconstructed from the full set of annotated 
gene-to-protein relationships (GPRs). GEMs undergo sev-
eral curation steps whereby reactions, metabolites and GPRs 
are reviewed using preferably standardized procedures [2]. 
After careful curation, GEM reactions eventually become 
mass-, charge- and energy-balanced with sufficient quality 
for stoichiometric balancing. GEMs give rise to typically 
large, sparse and rank deficient stoichiometric matrices. 
Assuming balanced intracellular metabolite pools, undeter-
mined systems of linear algebraic equations are obtained. 

Flux Balance Analysis (FBA) became the standard method 
to compute metabolic fluxes in GEMs under the hypothesis 
of a metabolic objective [3]. Standard FBA applies linear 
programming (LP) to compute metabolic fluxes under a 
pre-defined objective function, assuming reaction stoichi-
ometry constraints, balanced intracellular metabolite pools 
(steady-state hypothesis) and flux irreversibility constraints 
[4, 5]. Dynamic FBA (dFBA) extensions have been applied 
to GEMs to compute metabolic fluxes over time using mini-
mal kinetic information [6]. Due to the undetermined nature 
of the constraints, FBA solutions are typically not unique, 
with many alternative optima achieving the same objective. 
Flux Variability Analysis (FVA) is widely used for evaluat-
ing alternative optima. FVA computes the minimum and 
maximum range of each reaction flux that can still satisfy 
the constraints [7]. Many other FBA extensions employing 
different constraints, objective functions and LP implemen-
tations have been proposed (see review by Anand et al. [8]).

The first published consensus GEM of CHO cells is rela-
tively recent [9]. It comprehends 6663 reactions and 4456 
metabolites, particularized in 3 cell line variants (CHO-K1, 
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CHO-DG44 and CHO-S). Since the publication of this 
resource, a few studies have attempted to use GEMs to 
optimize CHO cell culture employing different FBA tech-
niques. Hong et al. applied standard FBA to study the effect 
of sparging conditions on CHO-DG44 [10]. The FBA was 
constrained by measured fluxes of amino acids, glucose, lac-
tate, specific growth rate and specific antibody productivity. 
It was found that mild and harsh sparging conditions lead to 
decreased cell growth, viability and productivity [10]. The 
authors concluded that sparging stress rewires amino acid 
metabolism towards H2O2 turnover, thus they hypothesized 
that increased amino acid uptake caused by sparging stress 
contributes to restoring the redox homeostasis against oxi-
dative stress.

Yeo et al. expanded the previously published CHO GEM 
(changes in pathways such as cholesterol metabolism, fatty 
acid activation, elongation and desaturation, glycerophos-
pholipid metabolism, and N- and O-glycan biosynthesis) and 
added enzyme capacity constraints within the flux balance 
analysis framework (ecFBA) to significantly reduce the flux 
variability in a biologically meaningful manner [11]. This 
allowed for good prediction of lactate metabolism for differ-
ent CHO clones grown on different media. They concluded 
that the lactate-pyruvate cycling could be beneficial for CHO 
cells to efficiently utilize the mitochondrial redox capacity 
and that ecFBA could be used to identify key engineering 
targets.

Calmels and co-authors manually curated and reduced the 
CHO-DG44 GEM by modifying 601 reactions [12]. These 
modifications were intended to simplify the model and to 
cope with missing constraints related to regulatory effects 
as well as thermodynamic and osmotic forces. The parsi-
monious enzyme usage FBA (pFBA) method was employed 
constrained by the uptake and secretion of 24 metabolites. 
The objective function was the maximization of cell growth. 
They showed that the reduced GEM allowed good predic-
tions of extracellular metabolites rates (r2 ≥ 0.8) and good 
prediction of cell growth rate (r2 = 0.91). This study high-
lights the adaption of a CHO GEM to an industrial process.

Recently, Schinn and co-authors combined a modified 
CHO GEM with a statistical learning method for time-
course prediction of individual amino acid concentrations 
in fed-batch cultivations of 10 CHO clones with different 
growth and productivity profiles [13]. The statistical learn-
ing feature of the model consisted in two empirically derived 
equations that ‘offsets’ flux predictions by FBA. Overall, this 
approach allowed for good approximation of most amino 
acid consumptions [excluding alanine (Ala) and glycine 
(Gly)], when the steady-state assumption holds true. They 
suggested the use of this approach to control nutrients feed-
ing to avoid premature nutrient depletion or to provide early 
predictions of failed bioreactor runs.

Metabolic models with different levels of detail have been 
extensively used for CHO culture media design [14]. Fou-
ladiha et al. [15] used the iCHO1766 GEM [9] to identify 
key medium components to increase monoclonal antibody 
production by CHO cells. Huang and co-authors performed 
culture medium optimization using the CHO-K1 full GEM 
targeting IgG production improvement [16]. Standard FBA 
was applied to calculate optimal flux scenarios in the pre-
induction phase (maximization of the specific growth rate) 
and in the post-induction phase (maximization IgG specific 
productivity) for two different media and the same cell line 
(CHO-K1 GS knockout). They analyzed the metabolic dif-
ferences between these two cell culture conditions by meta-
bolic pathway analysis. Through the comparison of pathway 
fold-change between high and low production cases, they 
have hypothesized culture medium enrichment scenarios. 
They successfully increased IgG productivity by 33% by 
enriching the feed with 3 amino acids [i.e., Leucine (Leu), 
Isoleucine (Ile) and Valine (Val)]. It should be noted that 
the CHO-K1 GEM was not used as a predictive tool in 
this study. It was rather used as a tool to generate rational 
hypothesis for culture media improvement.

As shown in the literature review, different FBA exten-
sions with diverse constraints were applied to CHO GEMs. 
Standard FBA uses limited fundamental assumptions, 
namely the reactions stoichiometry, the pseudo steady-state 
hypothesis and the thermodynamic reaction directionality. 
Adding “realistic” constraints may in principle reduce the 
solution space and improve FBA predictions. A few recent 
studies have proposed hybrid methods that combine FBA 
with empirical modeling techniques [17]. Vijayakumar and 
co-authors proposed a hybrid methodology that integrates 
FBA, GEMs, multi-omic data and machine learning to 
refine phenotypic predictions [18]. Sahu et al. have recently 
reviewed approaches to extend FBA with machine learn-
ing techniques [19]. Hong et al. developed a framework for 
media design based on a CHO-GEM, FBA and multivariate 
data analysis [20]. In previous studies, we have introduced 
hybrid metabolic flux analysis [21, 22] and hybrid elemen-
tary modes analysis [23, 24]. Following this line of devel-
opment, we propose here a hybrid semi-parametric FBA 
extension (HybridFBA). HybridFBA formally combines 
parametric constraints (derived from mechanistic knowl-
edge) with nonparametric constraints (derived from data) in 
the same LP. More specifically, HybridFBA extends stand-
ard FBA by adding flux correlation constraints deduced by 
Principal Component Analysis (PCA) of experimental flux 
data. HybridFBA computes simultaneously “mechanistic” 
decision variables (fluxes) and empirical decision variables 
(scores of principle components) in a single LP. Measured 
flux data typically contains valuable information of unknown 
regulatory mechanisms. As shown in the results section, the 
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inclusion of such empirical constraints in HybridFBA sig-
nificantly improves metabolic flux predictions.

Materials and methods

Cell culture and analytics

Pre-cultures of a GSK proprietary CHO-K1 cell line cod-
ing for a target antigen were grown in shake-flasks (Corn-
ing, NY, USA) at 37 °C. Cells were cultivated in a GSK 
proprietary chemically defined, protein-free and animal 
component-free medium.

In total, 21 cell cultures for antigen production were car-
ried out in in 5 or 10 L glass vessels (Sartorius, Göttingen, 
Germany), with an initial seed of 0.4–1.0 Mcell/mL. The pH 
was controlled at 7.0 with 0.5 M NaOH and sparged CO2 
together with overlay aeration. DO was controlled at 30% 
by sparging pure oxygen. Stirring was adjusted to around 
20 W/m3 in all scales of the culture vessel. Once a high 
enough viable cell density was reached, the temperature 
was decreased to 33 °C, causing growth to gradually stop 
and the antigen production to start (temperature-shift induc-
tion). Depending on the seeding density and on the target 
biomass at temperature shift, the whole cell culture lasted 
for 12–17 days.

The base medium was the same in all cultivations, but 
the feeding solutions changed from one culture to another 
during the fed-batch operation mode. The feeding solutions 
consisted in mixtures of amino acids, glucose and pyruvate. 
Feeding happened once a day and consisted in the quasi-
simultaneous addition of a bolus of all the feeding solutions 
involved.

Sampling was performed daily (with some exceptions). 
Viable cell density and viability were assayed using a Vi-Cell 
cell counter (Beckman, Indianapolis, USA). Glucose (Glc), 
lactate (Lac), pyruvate (Pyr), glutamine (Gln), ammonium 
(NH4), glycerol (Glyc) and lactate dehydrogenase (LDH) 
were assayed using a CedexBio-HT metabolite analyzer 
(Roche, Penzberg, Germany). The antigen quantification was 
performed off-line with an Octet HTX (Pall, NY, USA). The 
remaining metabolites and amino acids were assayed off-
line by Nuclear Magnetic Resonance spectroscopy (NMR) 
at Eurofins Spinnovation (Oss, The Netherlands).

Extracellular reaction rates estimation and analysis

Steady-state reaction rates of 27 extracellular species were 
estimated for the exponential growth phase (approximately 
0–70 cultivation hours) of 21 independent reactor experi-
ments. The reaction rates, with units mmol/(g-DW×h), 
were obtained by robust linear regression of formed quan-
tity (units of mmol) against the integral of viable cell mass 

(units of g-DW×h). Gln is chemically unstable decomposing 
with first-order kinetics into equimolar quantities of pyrro-
lidone carboxylic acid and NH4 [25, 26]. The total amounts 
of Gln and NH4 that resulted from extracellular decomposi-
tion were subtracted to the total formed quantity before the 
respective rates were estimated. Details of the rates estima-
tion method are provided in the supplementary material.

The resulting flux data, comprising 21 data points (rows) 
and 27 measured fluxes (columns), were auto-scaled col-
umn wise to zero mean and unit variance. The normalized 
data were subject to principal component analysis (PCA). 
PCA is a dimensionality-reduction technique that is used to 
transform a large set of highly correlated variables (in the 
present case the 27 measured fluxes) into a smaller set of 
uncorrelated variables [Principal Components (PCs)] while 
retaining most of the information of the original set. Mathe-
matically, PCA performs the following space transformation

with rexch the normalized rate data, Coeff the matrix of load-
ings and Scores the values of PCs in the transformed data 
space. The PCs are new transformed variables constructed as 
linear combinations of the original variables. The resulting 
PCs are orthogonal thus uncorrelated. The ith column of the 
Coeff matrix contains the coefficients that linearly trans-
form the original variables into the ith PC. For an effective 
dimensionality reduction, the number of PCs (NPC) should 
be much smaller than the number or original variables (27 
fluxes in the present problem). On the other hand, NPC 
should be large enough to capture most of the information 
of the original data. In the present study, NPC was chosen 
to capture at least 90% of explained variance of the original 
flux data. The standard singular value decomposition algo-
rithm was employed (MATLAB implementation, function 
pca, algorithm ‘svd’).

CHO genome‑scale model (GEM)

The consensus CHO-K1 GEM [9], accessible in www.​choge​
nome.​org [27], was adopted in this study. This model con-
tains 2773 metabolites, 4723 reactions and 2603 degrees of 
freedom (the number of degrees of freedom corresponds 
to the difference between the number of reactions and the 
rank of the stoichiometric matrix of intracellular species). 
A reduction was performed based on previously published 
methodologies [28–30]. Particularly, the CHO-K1 model 
transport reactions were reduced to match GSK proprietary 
medium composition. This implied the automatic elimina-
tion of 3935 intracellular reactions to maintain consistency. 
This process resulted in a reduced GEM, which is medium 
specific, containing 627 intracellular metabolites, 788 reac-
tions and all the required extracellular species to match GSK 

(1)rexch = Scores × CoeffT

http://www.chogenome.org
http://www.chogenome.org


1892	 Bioprocess and Biosystems Engineering (2022) 45:1889–1904

1 3

proprietary medium composition. Details of the reduction 
process are provided in the supplementary material. The 
reduced model is translated into the following system of 
linear algebraic equations:

with Sint the (627 × 788) intracellular stoichiometric matrix, 
v the (788 × 1) flux vector, LBv and UBv are the lower and 
upper bound limits of v (the reduced model has 478 irrevers-
ible reaction with LBv = 0), Sext is the (next × 788) extracel-
lular stoichiometric matrix (the variable next refers to the 
number of extracellular metabolites in the reduced model), 
r
exch

 the net exchange flux vector with dimension (nrexch × 1) 
(nrexch refers to the total number of exchange reactions in 
the reduced model). This system is highly undetermined 
with 210 degrees of freedom [difference between 788 and 
the rank(Sint ) ]. The validity of the model was confirmed by 
linear least squares regression of computed against measured 
extracellular fluxes for each experiment individually. The 
sum of squared residuals was negligible in all cases.

Hybrid semi‑parametric flux balance analysis 
(HybridFBA)

HybridFBA is an extension of FBA that incorporates mech-
anistic constraints (parametric) and empirical constraints 
(nonparametric) in the same LP (Fig. 1). The general prin-
ciple is to reduce the solution space by combining para-
metric and nonparametric constraints. The parametric con-
straints are set by the metabolic network [Eqs. (2a, b, c)]. 
This part is the same as standard FBA. The nonparametric 
constraints are obtained from the PCA of experimental flux 
data [Eq. (1)]. Each column of the Coeff matrix defines 

(2a)0 = Sintv

(2b)LBv
≤ v ≤ UBv

(2c)rexch = Sextv

a PC. Each PC imposes a hard constraint on the direction 
of variation of groups of fluxes. PC constraints need to be 
compatible with the stoichiometric constraints. Combining 
Eq. (2c) with Eq. (1) results in the following equation:

with �vPCA and �vPCA the mean and standard deviation vec-
tors used for the auto-scaling in the PCA and ◦ the Hadamard 
multiplication. Equation (3) states that the rexch vector calcu-
lated mechanistically and empirically must match each other. 
The PCA model [Eq. (1)] is typically corrupted by error with 
the explained variance of flux data < 100%. Depending on 
the PCA error, obeying to Eq. (3) might be infeasible. As 
such, Eq. (3) was relaxed to inequality constraints under the 
control of the relaxation factor (RF):

In practice, Eq. (4) constraints the direction of variation of 
exchange fluxes imposed by the columns of the Coeff matrix 
(e.g., the ith column of the Coeff matrix defines de fluxes 
direction of ith PC.

Upper and lower bounds on the exchange rates [Eq. (5)] 
were also defined to constraint the LP to a desired interval 
rmean ± k�

with rmean the mean measured rate among the 21 experiments 
(Table 1), � the standard deviation of measured rates among 
the 21 experiments (Table 1) and k > 0 a parameter set by 
the user to shrink/enlarge the design space. In the results 
section, k was varied between 1 and 6 to assess the predic-
tive power of HybridFBA in different test case scenarios.

(3)�vPCA =
[
Sext , −�vPCA◦Coeff

]
[

v

Scores

]

(4)
�vPCA − RF�vPCA ≤

[
Sext , −�vPCA◦Coeff

]
[

v

Scores

]

≤ �vPCA + RF�vPCA

(5)rmean − k� ≤
[
Sext , 0

]
[

v

Scores

]

≤ rmean + k�

Fig. 1   Schematic representation of Hybrid semi-parametric Flux Balance Analysis (HybridFBA)
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Putting all constraints together results in a LP with mecha-
nistic decision variables (metabolic fluxes, v ) and empirical 
decision variables (PCs Scores ) stated as follows:

Subject to (a) parametric (mechanistic) constraints:

(b) nonparametric (empirical) constraints:

(6)minimize
v,Scores

{J = c
T

v
v + c

T

Scores
Scores}

0 =
[
Sint , 0

]
[

v

Scores

]

LBv
≤ v ≤ UBv

(c) upper/lower bounds of exchange fluxes:

The vectors c
v
 and cScores (with the same dimension 

of v and Scores respectively) are used to set the objec-
tive function (+ 1/− 1 coefficients are chosen to mini-
mize/maximize a particular flux and/or score). Given the 
semiparametric nature of HybridFBA, a calibration step 
of the nonparametric constraints is always needed. The 
most important parameter is the number of PCs (NPC). 
The NPC corresponds to the number of scores that the 
LP optimizes and also to the number of columns of the 
Coeff matrix. The optimal NPC value should be chosen to 
maximize the predictive power of the HybridFBA (more 
to this in the results section). The other parameter is the 
relaxation factor (RF). The RF sets the maximum admis-
sible absolute error between the mechanistic and empirical 
exchange flux solution, ||�rexch||:

When RF = 0, Eq. (4) reduces to Eq. (3) thus the mechanistic 
and PCA constraints must exactly match each other. When 
RF = ∞, the PCA constraints have no effect in the LP, and 
HybridFBA becomes analogous to standard FBA. In prac-
tice, RF should be chosen as small as possible under the 
limit of a feasible LP.

This LP problem was solved by constrained linear pro-
gramming using the dual-simplex algorithm with arbitrar-
ily large number of iterations (MATLAB linprog function). 
The algorithm terminates when an optimal solution is 
reached. The linprog function also computes the Lagrange 
multipliers of all equality and inequality constraints at the 
optimal solution. The Lagrange multipliers were used 
for shadow price analysis [31]. The Lagrange multipli-
ers display the sensitivity of the objective function to the 
constraints. The Lagrange multiplier of a given constraint 
may be interpreted as the increase in the objective func-
tion value when the constraint is relaxed by 1 unit. The 
MATLAB code of the HybridFBA method together with 
a toy example are provided in the supplementary material.

�vPCA − RF ∙ �vPCA ≤
[
Sext , −�vPCA◦Coeff

]
[

v

Scores

]

≤ �vPCA + RF∙�vPCA

LBScores
≤ Scores ≤ UBScores

rmean − k� ≤
[
Sext , 0

]
[

v

Scores

]

≤ rmean + k�

(7)
||�rexch||
�vPCA

≤ RF

Table 1   Mean flux values along with their respective standard devia-
tion and coefficient of variation during exponential growth aggre-
gated from 21 independent cultivations

The literature flux values were obtained from (1) Carinhas et  al. 
(2013) and (2) Selvarasu et al. (2012). The fluxes units are in mmol/
gDW/h for all metabolites and h−1 for the cell growth rate

This study Literature data

Name Mean S.D CV (1) (2)

µ 2.82E–02 3.36E-03 11.9 3.06E–02 2.47E–02
Glc − 3.84E–01 1.05E–01 27.3 − 2.71E–01 − 1.98E–01
Lac 2.56E–01 1.41E–01 55.1 1.36E–01 1.21E–01
Gln − 7.37E–02 3.31E–02 44.9 2.77E–03 − 6.74E–02
Glu 8.90E–03 4.84E–03 54.4 − 1.24E–02 9.50E–03
NH4 5.92E–02 2.82E–02 47.6 4.38E–02 8.33E–02
Pyr 2.04E–03 2.00E–02 980 − 1.08E–02 NA
Glyc 5.63E–03 1.57E–03 27.9 1.51E–02 NA
Cit – 9.41E–04 1.96E–03 208 2.21E–03 NA
Ala 9.47E–02 1.21E–02 12.8 2.37E–02 1.13E–02
Arg − 1.09E–02 4.81E–03 44.1 − 1.10E–02 − 2.01E–02
Asn − 7.13E–02 1.19E–02 16.7 − 7.47E–02 − 4.06E–02
Asp 3.11E–03 5.30E–03 170 − 2.52E–02 − 9.76E–03
LCystin − 2.74E–03 2.64E–03 96.4 − 5.22E–03 − 5.39E–03
Gly 2.49E–02 4.37E–03 17.6 6.97E–03 2.09E–02
His − 5.62E–03 1.90E–03 33.8 − 6.46E–03 − 4.07E–03
Ile − 1.37E–02 5.42E–03 39.6 − 1.18E–02 − 1.06E–02
Leu − 2.13E–02 6.59E–03 30.9 − 2.02E–02 − 1.57E–02
Lys − 9.82E–03 6.15E–03 62.6 − 1.26E–02 − 1.40E–02
Met − 4.77E–03 4.28E–03 89.7 − 4.80E–03 − 6.32E–03
Phe − 6.41E–03 3.13E–03 48.8 − 6.46E–03 − 5.92E–03
Pro − 5.00E–03 6.36E–03 127 – 1.16E–02 –8.47E–03
Ser − 3.69E–02 9.66E–03 26.2 − 4.31E–02 − 4.81E–02
Thr − 1.03E–02 5.76E–03 55.9 − 1.53E–02 − 1.06E–02
Trp − 3.68E–03 4.96E–03 135 − 3.17E–03 − 3.20E–03
Tyr − 4.25E–03 3.59E–03 84.5 − 5.28E–03 − 9.82E–03
Val − 1.45E–02 6.64E–03 45.8 − 1.51E–02 − 1.25E–02
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Design of a cell growth feed

A feed composition and feed rate controller were designed 
from the HybridFBA fluxes and then validated in a 5 L 
reactor experiment. The design principle was to feed along 
time the computed substrates consumption by the Hybrid-
FBA method. More specifically, the following steady-state 
material balance was applied:

with F the feed rate in mL/h, C
F
 a vector of concentrations 

in the feed (mmol/mL), rexch the consumption rates of sub-
strates in mmol/(Mcell×h) (computed by HybridFBA), X

V
 

the viable cell count measured online in Mcell/mL and V the 
culture volume measured online in mL. The concentrations 
of substrates were computed in relation to glucose, cGlc,

The feeding rate controller is per mathematical equivalence 
given by the following equation.

(8a)FC
F
= rexchXV

V

(8b)C
F
= cGlc

rexch

rexch,Glc

(8c)F =
rexch,Glc

cGlc

X
V
V = aX

V
V

A feed solution was formulated according to Eq. (8b). 
The reference Glc concentration was chosen such that all 
compounds are below 75% of the solubility limit. The feed 
controller [Eq. (8c)] requires the on-line measurement of X

V
 

(VCD in Mcell/mL obtained online by the Vi-cell counter) 
and V  ((estimated) culture volume, mL). It is a feedforward 
controller whereby the feed of nutrients reacts to the “per-
turbation” of higher/lower VCD inside the reactor.

Results and discussion

Experimental flux data set

Experimental flux values of 27 extracellular species were 
estimated from time series data of 21 reactor experiments. 
Figure 2 shows the flux data dispersion among the 21 reac-
tor experiments during exponential growth (corresponding 
approximately to the initial 70 h of cultivation). The mean 
flux values and respective standard deviations are compared 
with literature data in Table 1. The literature data [32, 33] 
refer to the exponential growth of CHO-K1SV and CHO-K1 
cell lines respectively. The experimental fluxes obtained in 
this study are in range of literature data despite the differ-
ent cell lines and cultivation protocols. The maximum spe-
cific growth rate attained was 0.0282 h−1 with a coefficient 

Fig. 2   Box-plot of fluxes during exponential cell growth aggre-
gated from 21 independent CHO cultivations. The bar represents the 
median. the box is the first and third quartile, and the whisker the 

minimum and maximum of the fluxes. Blue axis: fluxes with higher 
values. Orange axis: fluxes with lower values)
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of variation (CV) of 11.9% (among the 21 reactor experi-
ments), on par with literature data (Table 1). The measured 
fluxes reveal signs of a “healthy” cell growth, as there is 
accumulation of Gly, from the serine (Ser) metabolism, and 
Glyc, which is an indication of high (NADH/NAD +) redox 
state [34]. All amino acids but Ala, Aspartate (Asp), Gly and 
Glutamate (Glu) were consumed during exponential growth. 
The amino acids with highest consumption rates were Gln, 
Ser and Leu, with rate values comparable to literature data 
(Table 1).

The CHO cells used in this study consumed more Glc 
compared to the literature and, consequently, more Lac was 
produced (Table 1). Nevertheless, the ratio of Lac to Glc was 
significantly lower than 1, similar to other studies ([32, 33], 
Table 1). Alternative fates of Glc are the pentose phosphate 
pathway or intracellular Pyr accumulation. The latter can 
be secreted or used to produce Ala, or proceed to the tricar-
boxylic acid cycle (TCA). High glycolytic activity with low 
Lac to Glc ratio is coherent with Pyr release to the medium 
(observed in this study in opposition to literature data) and 
also with a higher Ala release rate to the medium (Table 1).

Gln was consumed concomitantly with Glu, NH4 and 
Asp accumulation. Glu is typically found in excess intracel-
lularly due to its numerous sources, namely Ala, Gln, Lysine 
(Lys) and proline (Pro) [35]. The NH4 accumulation flux is 
comparable to other studies ([32, 33], Table 1), linked to 
amino acids catabolism and to direct degradation of Gln in 
the medium. Asp may accumulate from asparagine (Asn) via 
L-asparaginase [36] or via aspartate transaminase (AspTA), 
a reversible reaction that produces Asp and α-ketoglutarate 
(Keto) from Glu and OAA [37].

Principal component analysis

The estimated maximum specific growth rate has a CV of 
11.9% among the 21 reactor experiments. The other fluxes 
show, however, a higher dispersion. The Glc uptake has a 
CV of 27.3%. Lac, Gln, Glu and NH4 have CVs close to 
50%. The observed dispersion may be caused by experimen-
tal error or by multiple physical processes such as reactor 
operation variability, inoculum variability and different feed 
programs. Metabolic switches between by-product release 
or uptake may occur in CHO cells, for example for lactate 
[38], which may lead to large variations especially in cultiva-
tions with different cell growth conditions. The flux data set 
was subject to PCA for a better understanding of potential 
variation causes (Fig. 3). The 27 process descriptors (the 
measured rates) could be compressed to 6 orthogonal PCs 
with explained variance higher than 90%. The cumulative 
explained variance by PC 1-to-6 was 45.5, 64.0, 74.3, 82.6, 
88.7 and 93.7% as shown in Fig. 3A. A significant part of 
fluxes variances is therefore dictated by metabolic mecha-
nisms rather than by random error.

Figure 3B shows the biplot of PC-2 over PC-1 (the 2nd 
column of the Coeff matrix is plotted against the 1st column) 
evidencing strong correlations between groups of fluxes. It 
stands out that the coefficients of the cell growth rate are low 
in comparison to the other descriptors, indicating that the 
cell growth rate is less sensitive to process variation. Also, 
Gln and Glu have moderate contributions to data variance 
(low coefficients in matrix Coeff ). On the contrary, the Glc 
flux appears strongly correlated with Lac and NH4 along 
the direction of PC-2. The consumption of most amino acids 

Fig. 3   Explained variance captured by PCA of flux data obtained 
from 21 reactor experiments and 27 extracellular rates (process 
descriptors) during exponential growth. A Explained variance of flux 
data by each PC (left axis) and cumulative explained variance (right 
axis). B Biplot of Principal Component 2 (18.5% explained variance) 
over Principal Component 1 (45.5% explained variance). Red dots 
represent score values of the 21 reactor experiments. Blue vectors 
represent the coefficients of process descriptors
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appears highly correlated with each other (along the direc-
tion of PC-1). Some amino acids fluxes are positively cor-
related with Lac and NH4 fluxes, while others are negatively 
correlated. These observations are compatible with high and 
variable glycolytic activity with minor impact on the cell 
growth rate. It seems to be theoretically possible to modu-
late metabolism to minimize the accumulation of byproducts 
while maintaining exponential growth.

Flux balance analysis

Standard FBA was performed assuming metabolic optimal-
ity towards the production of biomass during exponential 
growth [12, 16, 39, 40]. More specifically, HybridFBA was 
applied to maximize the specific growth rate with NPC = 0 
for different test case scenarios. Making NPC = 0 removes 

the inequality constraints [Eq. (4)] and transforms Hybrid-
FBA into a standard FBA. In each test case scenario, the spe-
cific cell growth rate was both maximized and minimized to 
obtain a minmax solution interval, to better display the sen-
sitivity of the FBA solution within the constraints domain. 
The overall results are shown in Fig. 4.

In test case 1, FBA was applied with all exchange 
fluxes but the specific growth rate constrained to the ±1� 
domain (Eq.  (5) with k=1). In other words, no bounda-
ries were set for the specific growth rate whereas all other 
measured exchange fluxes were free to move within the 
rmean − 1� ≤ rexch ≤ rmean + 1� space (the rmean and � are 
given in Table 1). This amounts to 26 inequality constraints 
defined by exchange flux measurements. This analysis 
resulted in the specific growth rate interval of [0, 0.0393] h−1 
with mean value of 0.0196 h−1. This interval comprehends 

Fig. 4   Predicted specific growth rate by standard FBA for 8 test case 
scenarios. The light blue bar represents the mean experimental value. 
The horizontal dashed lines represents the experimental + 1σ, + 2σ 
and + 3σ boundaries. The dark blue bars represent the computed spe-
cific growth rate interval by the model. The middle blue dash rep-
resents the predicted half-interval value Case 1 All exchange fluxes 
except the specific growth rate were constrained to the ±1� domain. 
Case 2 All exchange fluxes except the specific growth rate were con-
strained to the ±2� domain. Case 3 All exchange fluxes except the 
specific growth rate were constrained to the ±3� domain. Case 4 

All exchange fluxes except the specific growth rate were constrained 
to the ±4� domain. Case 5 All exchange fluxes except the specific 
growth rate were constrained to the ±6� domain. Case 6 The same 
as case 1 for substrates only. All substrates are constrained to the ±1� 
domain. The products have unlimited lower/upper bounds. Case 7 
Only Glc and Gln are constrained to the mean ±1� domain. All other 
compounds had unlimited bounds. Case 8 Only Glc and Gln are fixed 
to the mean ±3� domain. All other compounds had unlimited bounds. 
The sum of squares of residuals (difference between the experimental 
mean and predicted half-interval value) was 1.68
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the measured value but the predicted mean is 70% lower than 
the measured mean (0.0282 ± 0.0034 h−1).

Test cases 2–5 are similar to test case 1 except that the 
design interval (Eq. (5)) was progressively enlarged from 
the ±1� domain (k = 1 in test case 1) up to the ±6� (k = 6 
in test case 5). As a result, the specific growth rate minmax 
interval also increased to [0, 0.0649] h−1. In test case 6, 
only the substrates were constrained to the ±1� domain. All 
products including biomass were unbounded. The resulting 
specific growth rate interval was the same as in test case 1 
(where only biomass was unbounded).

Finally, in test case 7 and 8, only Glc and Gln were 
bounded in the design intervals of ±1� and ±3� respectively. 
This very flexible scenario resulted in a substantial enlarge-
ment of the FBA specific growth rate minmax interval [0, 
0.125] h−1 (8.6 fold increase in relation to the mean meas-
ured value).

All in all, these results show that the FBA solution inter-
val always contains the measured mean value. The minmax 
solution tends to be much wider than the measurement vari-
ance. In some cases (test case 7 and 8) there is a significant 
offset between the predicted and measured mean values. The 
sum of squared residuals was 1.68 for the 8 test cases.

Hybrid semi‑parametric flux balance analysis

The HybridFBA method was applied for the same test cases 
1–8 with the inclusion of the PCA constraints by making 
NPC > 0. Since the PCA was applied to the measured extra-
cellular rates, Eq. (4) adds 27 inequality constraints. On the 
other hand, HybridFBA has more decision variables than 
standard FBA. It optimizes the flux values of all GEM reac-
tions (as in standard FBA) and additionally the score values 
associated to the NPC PCs (NPC is a calibration param-
eter). The number of additional constraints is however higher 
than the number of additional decision variables. As such, 
HybridFBA has (27–NPC) less degrees of freedom than 
standard FBA. This reduction is always effective as long 
as the PCA compresses the measured rate data into a lower 
dimension PCs space (e.g., NPC ≪27).

The HybridFBA method was firstly calibrated using the 
test case 5 as base scenario because it has the widest ±6� 
domain. Figure 5A shows the predicted maximum specific 
growth rate as function of the NPC for arbitrarily small 
relaxation factor (RF = 0.5). The first column (light blue 
column) is the reference (experimental) mean value. The 
second column (NPC = 0) is the previously discussed stand-
ard FBA solution for test case 5, which predicted a 2.18 
fold increase in relation to the experimental mean value. 
All other solutions were obtained with NPC between 1 and 
10. Indeed, the predicted specific growth rate depends on 
the number of PCs chosen. The closest prediction to the 

measured specific growth rate was obtained with NPC = 4. 
Figure 5B shows the effect of RF on the HybridFBA solution 
when fixing NPC = 4. As expected, when the RF increases 
the PCA constraints [Eq. (4)] are relaxed with the Hybrid-
FBA solution eventually converging to the standard FBA 
solution.

After calibration, HybridFBA with NPC = 4 and RF = 1.0 
was applied to minimize/maximize the specific growth rate 
under the same constraint scenarios previously adopted for 
standard FBA (It should be noted that RF = 1.0 was the low-
est value that complied with the constraints of all test cases 
1–8). The overall results are shown in Fig. 6. The specific 
growth rate interval contains the experimental mean value in 
every test case. Contrary to standard FBA, the predicted spe-
cific growth rate half interval is within the ± 2σ experimental 

Fig. 5   Calibration of the HybridFBA method. A Predicted maximum 
specific growth rate as function of the number of principal compo-
nents in the hybrid model [Eq. (4)] for a relaxation factor RF = 0.5. B 
Predicted maximum specific growth rate as function of the relaxation 
factor value for number of principal components NPC = 4
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bounds in all test cases. HybridFBA showed a significant 
improvement particularly for the more flexible test cases 7 
and 8 (only Glc and Gln were constrained whereas all other 
compounds were unbounded). While HybridFBA slightly 
overpredicted the specific growth rate (1.05 fold and 1.10 
fold of the mean) standard FBA showed a four fold plus off-
set in relation to the experimental mean. The HybridFBA 
sum of squared residuals (SSR) was 0.0016 for the 8 test 
cases, which is 3 orders of magnitude lower than the SSR 
obtained by standard FBA (1.68). The HybridFBA solution 
interval is also much narrower when compared to the FBA 
solution interval. The standard FBA always found a feasi-
ble null growth solution in all scenarios (when the objec-
tive function was set to minimize the specific growth rate). 
On the contrary, the HybridFBA always found a positive 

minimal growth solution with a minmax interval close to 
symmetry in relation to the mean experimental value.

Figure 7 shows in more detail the specific growth rate 
maximization solution for test case 6 (this test case will the 
basis for the design of an optimal feed in the next section). 
In test case 6, only substrates were constrained to the ± 1σ 
domain whereas the rates of products (specific growth rate) 
and byproducts (Lac, NH4, Ala, Glu, Pyr, Glyc, Asp and 
Gly) were unbounded. The HybridFBA predicted a maxi-
mum specific growth rate, which is 1.12fold of the mean 
experimental value. The pink bars show the calculated 
substrate fluxes. With few exceptions, the substrate fluxes 
converged very close to the lower bound ( rmean − 1σ) (pink 
bars in Fig. 7), which is consistent with the biomass pro-
duction maximization objective. Noteworthy, the fluxes of 

Fig. 6   Predicted specific growth rate by HybridFBA with number 
of principal components NPC = 4 and relaxation factor RF = 1.0 for 
8 test case scenarios. The light blue bar represents the mean experi-
mental value. The horizontal dashed lines represents the experimen-
tal + 1σ, + 2σ and + 3σ boundaries. The dark blue bars represent the 
computed specific growth rate interval by the model. The middle blue 
dash represents the predicted half-interval value Case 1 All exchange 
fluxes except the specific growth rate were constrained to the ±1� 
domain. Case 2 All exchange fluxes except the specific growth rate 
were constrained to the ±2� domain. Case 3 All exchange fluxes 
except the specific growth rate were constrained to the ±3� domain. 

Case 4 All exchange fluxes except the specific growth rate were con-
strained to the ±4� domain. Case 5 All exchange fluxes except the 
specific growth rate were constrained to the ±6� domain. Case 6 The 
same as case 1 for substrates only. All substrates are constrained to 
the ±1� domain. The products have unlimited lower/upper bounds. 
Case 7 Only Glc and Gln are constrained to the mean ±1� domain. 
All other compounds had unlimited bounds. Case 8 Only Glc and 
Gln are fixed to the mean ±3� domain. All other compounds had 
unlimited bounds. The sum of squares of residuals (difference 
between the experimental mean and predicted half-interval value) 
was 0.0016
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the unconstrained products (open blue bars in Fig. 7) are 
all within the experimental domain. For example, the pre-
dicted accumulation rates of Lac (0.234 mmol/gDW/h), NH4 
(0.082 mmol/gDW/h) and Ala (0.105 mmol/gDW/h) are very 
close to the respective experimental values (0.208 mmol/
gDW/h, 0.050  mmol/gDW/h and 0.094  mmol/gDW/h 
respectively). This is in deep contrast with the standard 
FBA solution, which predicted unrealistic byproduct fluxes 
(for example, Lac, 2.167 mmol/gDW/h, NH4, 1.993 mmol/
gDW/h, Ala, − 1.883 mmol/gDW/h) far off the experimental 
bounds.

Design of a metabolically efficient cell growth feed 
(OptCHO)

Given the relative success of HybridFBA to predict (by) 
products fluxes from substrates fluxes, a culture medium 
feed was designed in silico. The objective was to extend the 
cell growth phase targeting a higher VCD at the time of 
induction with minimal byproducts accumulation. The 
HybridFBA was set to minimize the sum of byproducts 
secretion rates (Lac, NH4, Ala, Glu, Pyr and Asp; Gly and 
Glyc were excluded as they are associated with a healthy 
growth phenotype [34]) whereas the substrates fluxes were 
constrained to the ± 3σ domain (Eq. (5) with k = 3; rmean and 
σ given in Table 1). Additionally, the specific growth was 

fixed to the target 0.0282 h−1 (mean experimental value ± 5% 
variation to introduce some flexibility in the optimization). 
Table 2 summarizes the design results obtained by Hybrid-
FBA. The f inal objective function value was 
JOptCHO = −0.013

mmol

gDW.h
 . A generic decrease in substrates 

fluxes (with exception of Gln) is forecasted concomitantly 
with a generic decrease of byproducts accumulation. It 
should be noted that Lac, Pyr, Glu and Asp inverted their 
role as byproducts in the reference scenario to become sub-
strates in OptCHO. The scores of principal components 1 
and 2 calculated by HybridFBA were − 0.78 and − 4.71 
respectively, thus scoring OptCHO in the left/lower quadrant 
in the biplot of Fig. 3B. This is coherent with the maximiza-
tion of the growth rate simultaneously with the minimization 
of substrates and byproducts. Table  2 also shows the 
Lagrange multipliers at the optimal solution for the sub-
strates and products exchange flux constraints. The Lagrange 
multipliers display the sensitivity of the objective function 
to the constraints and are interpreted as shadow prices in LP 
[31]. These data suggest that relaxing the boundaries of the 
cell growth rate (µ) and of the exchange fluxes of Phenyla-
lanine (Phe), Tyrosine (Tyr), Arginine (Arg), NH4 and Glu 
could further improve the objective function value. We have 
further investigated the influence of biomass composition in 
the OptCHO solution (details given the supplementary mate-
rial). This analysis showed that biomass composition 

Fig. 7   Comparison between experimentally measured fluxes and 
HybridFBA predictions for test case 6 (All substrates were con-
strained to the ± 1 � domain whereas all products had unlimited 
lower/upper bounds). A Specific growth rate (objective). Light blue 
bar is the measured specific growth rate. Dark blue is the respec-

tive model prediction. B, C Predicted (bars) versus measured mean 
(square) with 1 � , 2 � and 3 � experimental bounds. Pink bars refer 
to the prediction of the substrate rates that were constrained to 
mean ± 1� . The open blue bars represent the prediction of the uncon-
strained product fluxes
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uncertainty does not significantly affect the estimation of the 
specific growth rate and that it mostly impacts the low range 
flux values.

To gain a better understanding of the metabolic patterns 
underlying OptCHO, the activities of the GEM subsystems 
were analyzed relatively to the reference condition (Table 2). 
For this analysis, FVA was applied for evaluating alternative 
optima that can still satisfy the OptCHO constraints within 
a ± 5% objective function tolerance. More specifically, the 
minimum and maximum flux range of each reaction were 
calculated with the previously described HybridFBA method 
using the additional constraint:

Figure 8 shows the change of GEM subsystems activity of 
the FVA half interval fluxes relatively to the reference condi-
tion. The TCA activity in OptCHO is significantly increased 
mainly fueled by the higher Gln and Asp consumption rates 
(e.g., [41]) and to a less extent by Pyr uptake (instead of 
secretion). Increased TCA activity indicates a more effi-
cient metabolism [42], which is consistent with the increase 
of oxidative phosphorylation, nucleotide interconversion, 
and urea cycle/amino group metabolism subsystems. Lac 
consumption indicates that the Warburg effect is avoided 

(9)0.95JOptCHO≤ c
T

v
v + c

T

Scores
Scores ≤ 1.05JOptCHO

Table 2   OptCHO fluxes designed by HybridFBA in comparison to the reference fluxes (experimental data and respective standard deviation), 
along with the shadow prices (SP) of the OptCHO solution

Substrates Products
Names Reference OptCHO SP Names Reference OptCHO SP
Glc − 3.84E–

01 ±
1.05E–01

− 3.30E–
01 (−

14.1%)

0 µ 2.82E–02 ±
3.36E–03

2.95E–0 
(+4.6%)

− 3.91

Gln − 7.37E− 
02 ±

3.31E–02
− 1.02E–01 
(+38.2%)

0 Lac 2.56E–01 ±
1.41E–01

− 5.19E–03 
(− 102.0%)

− 1.00

Arg − 1.09E–02 
± 4.81E–03

− 7.28E–03 
(− 33.3%)

− 4.99 Pyr 2.04E–03 ±
2.00E–02

− 5.29E–03 
(− 359.7%)

0

Asn − 7.13E–02 
± 1.19E–02

− 5.50E–02 
(− 22.8%)

0 NH4 5.92E–02 ±
2.82E–02

6.83E–03 (−
88.5%)

4.21

Lcystin − 2.74E–03 
± 2.64E–03

− 1.89E–03 
(− 30.8%)

0 Glu 8.90E–03 ±
4.84E–03

− 3.98E–03 
(− 144.8%)

1.24

His − 5.62E–03 
± 1.90E–03

− 3.48E–03 
(− 38.1%)

0 Ala 9.47E–02 ±
1.21E–02

8.60E–02 (−
9.2%)

0

Ile − 1.37E–02 
± 5.42E–03

− 1.22E–02 
(− 10.8%)

0 Asp 3.11E–03 ±
5.30E–03

− 5.35E–03 
(− 271.7%)

0

Leu − 2.13E–02 
± 6.59E–03

− 2.36E–02 
(+11.2%)

0 Gly 2.49E–02 ±
4.37E–03

1.63E–02 (−
34.7%)

0

Lys − 9.82E–03 
± 6.15E–03

− 1.32E–02 
(+34.7%)

0 Glyc 5.63E–03 ±
1.57E–03

5.07E–03 (−
9.9%)

0

Met − 4.77E–03 
± 4.28E–03

− 3.40E–03 
(− 28.6%)

0

Phe − 6.41E–03 
± 3.13E–03

− 5.66E–03 
(− 11.8%)

− 8.43

Pro − 5.00E–03 
± 6.36E–03

− 7.04E–03 
(+40.6%)

0

Ser − 3.69E–02 
± 9.66E–03

− 2.45E–02 
(− 33.7%)

0

Thr − 1.03E–02 
± 5.76E–03

− 7.57E–03 
(− 26.4%)

0

Trp − 3.68E–03 
± 4.96E–03

− 1.31E–03 
(− 64.2%)

0

Tyr − 4.25E–03 
± 3.59E–03

− 3.72E–03 
(− 12.4%)

− 8.43

Val − 1.45E–02 
± 6.64E–03

− 1.36E–02 
(− 6.4%)

0

Cit − 9.41E–04 
± 1.96E–03

3.61E–03 
(− 483.9%)

0

In blue the metabolites that are byproducts in the reference condition and substrates in the OptCHO design. The fluxes units are in mmol/gDW/h 
for all metabolites and h−1 for the cell growth rate. The percentual variation in parenthesis refers to the OptCHO compared to the reference fluxes
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(Glc mainly used for Lac production, [43]), suggesting a 
more efficient metabolism. The OptCHO solution relatively 
increased glycolysis/gluconeogenesis activity despite the 
significant reduction in Lac secretion. Higher glycolytic 
rates with lower Glc consumption are explained by TCA 
intermediates recycling in the glycolysis. The increase of 
the mitochondrial transport activity further sustains the 
exchange of intermediates between glycolysis and other sub-
systems such as TCA. This exchange subsystem also con-
tributes to the increase in pyruvate metabolism (transport to 
mitochondria and conversion of pyruvate to TCA intermedi-
ates). The increase in Pyr metabolism is also due to the Pyr 
and Lac uptake (flux inversions in relation to the reference).

Example of process implementation

Here we illustrate how the hybrid FBA exchange flux solu-
tions can be quasi-automatically translated into culture 
media feeds. A feed composition and feed rate controller 
were implemented in a 5 L reactor experiment based on 
the OptCHO exchange fluxes (Table 2). A concentrated 
feed solution was formulated obeying to the mol/mol 
stoichiometric ratios of the OptCHO solution (see meth-
ods section). A feedforward controller was designed that 

adjusts the feeding rate based on the VCD online meas-
urement by the Vi-Cell counter (see methods section). 
Figure 9 shows the dynamics of the OptCHO experiment 
until the temperature-shift induction (black line and sym-
bols). Figure 9 also shows the dynamics of the 21 histori-
cal reactor experiments until the induction point (colored 
lines and symbols). The 21 historical experiments were 
inoculated with different cell concentrations and were 
induced at different time points. Thus the resulting cell 
growth and metabolic footprint dynamics are very diverse 
and difficult to compare. As for the OptCHO experiment, 
the dynamic profiles changed considerably before and after 
the controller started operation. The OptCHO feed con-
troller automatically started at a VCD of 9.87 Mcell/ml. 
The VCD increased to 22.48 Mcell/ml after 48 h opera-
tion (gray shadow of Fig. 9A). The CHO culture tolerated 
well the in silico OptCHO feed. As expected, the LDH 
essay suggests an increase of the number of dead cells 
with the increase of VCD (Fig. 9B). The LDH essay does 
not show an increase in the cell death rate during Opt-
CHO operation. Moreover, a high cell viability > 98% was 
maintained during OptCHO operation (Fig. 9A). The aver-
age growth rate was 0.015 h−1 thus lower than the design. 

Fig. 8   GEM subsystems activity variation of the OptCHO flux solu-
tion (half-interval flux solution obtained by FVA) in relation to the 
reference condition. Blue bars represent the subsystem activity varia-
tion in mmol/gDW × h in relation to the reference condition. The sub-
system activity is computed as the sum of the absolute value of in/

out fluxes to the subsystem. A value of 0 means that OptCHO activity 
is equal to the reference condition activity. A value ≫ 1 means that 
the subsystem is up-regulated in relation to the reference condition. 
A value ≪1 means that the subsystem is down-regulated in relation to 
the reference condition
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This may be partially explained by the feedforward control 
strategy, which does not necessarily enforce exponential 
growth. Moreover, OptCHO predicted Lac, Pyr, Glu and 
Asp as substrates (rather than byproducts), but they were 
not included in the feed. The Glc concentration was kept 
within the 40–60 mM interval (Fig. 9C). Lac decayed from 
18.32 to 7.22 mM in conformity with the design (Fig. 9D). 
The Gln concentration is kept low within the 0–4 mM 
interval (Fig. 9E). There is a buildup of Glu (Fig. 9F) and 
NH4 (Fig. 9G) partially in conflict with the design. The 
NH4/biomass yield was however lower during OptCHO 
operation (0.42 micromol/Mcell) than in the preceding 
exponential growth phase (0.56 micromol/Mcell). This is 
qualitatively in agreement with the design since a reduc-
tion in the NH4 accumulation was predicted but not its 
inversion. Pyr was consumed during OptCHO operation 
in accordance with the design. The buildup of Glyc (and 
Gly) is associated with a healthy growth phenotype [34] 
and was not part of the objective function. The byproducts 
(Lac + Glu + NH4 + Pyr) yield was + 2.54 micromol/Mcell 

prior to OptCHO and then inverted to − 0.40 micomol/
Mcell during OptCHO operation. These data suggests that 
the OptCHO partially succeeded to expand VCD concomi-
tantly to the decrease of total byproducts accumulation. 
All in all, these results suggest that hybrid FBA exchange 
flux solutions can be translated into feasible culture media 
feeds, following a quasi-automatic standard procedure of 
process implementation.

Conclusions

This study developed the concept of hybrid semi-parametric 
flux balance analysis with proof-of-principle the modeling and 
optimization of a CHO cultivation. Firstly, experimental fluxes 
were collected from 21 reactor experiments. The experimental 
fluxes portrayed a healthy cell growth phenotype with marked 
glycolytic activity and significant byproducts build-up dur-
ing exponential growth. The flux data were analyzed by PCA 
and it was concluded that more than 90% of data variance 

Fig. 9   Validation of the OptCHO feed in a 5  L reactor experiment. 
The colored lines and symbols represent the concentrations ± SD for 
the batch phase of 21 historical experiments. The black line and sym-
bols refer to the design experiment where OptCHO feed was applied. 
Time 0  h corresponds to the onset of the OptCHO feeding in the 

design experiment and to the induction in the 21 historical experi-
ments. The gray shadow marks the time window (48 h) for the Opt-
CHO controller operation. A, B, C, D, E, F, G, H, I Measured con-
centrations of VCC, LDH, Glc, Lac, Gln, Glu, NH4, Pyr, and Glyc 
over process time
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could be explained by 6 PCs, evidencing strong correlations 
between measured fluxes. A hybrid semi-parametric flux bal-
ance analysis method (HybridFBA) was then developed that 
combines a reduced genome-scale model (GEM) with flux 
correlation constraints deduced from PCA. It was hypothe-
sized that PCA derived constraints reflect the cellular regula-
tory mechanisms that control the uptake of nutrients and that 
the inclusion of this information could significantly increase 
the predictive power of standard FBA. This was confirmed in 
several specific growth rate prediction scenarios, showing that 
HybridFBA always predicted much closer to the experimen-
tal value than standard FBA. These results do not disqualify 
standard FBA as valid a design method as FBA can be fur-
ther improved through the inclusion of additional constraints 
regarding enzyme kinetics, thermodynamics and/or regulatory 
processes, if such knowledge is available. The key message 
is that the inclusion of additional empirical constraints in a 
hybrid construct is likely to further improve the predictive 
power. Using this novel tool, a cell growth feed was designed 
in silico and tested in a lab experiment, showing that the viable 
cell count could be increase from 9.87 to 22.48 Mcell/ml with 
lower byproducts build-up with exception of Glu, which con-
tradicted the design. One key advantage of the HybridFBA 
is the ability to learn from experience. While the GEM is a 
fixed part of the model, the PCA (and the hybrid ensemble 
per inherency) will improve with each new cultivation per-
formed. This is aligned with the machine learning philosophy 
with the advantage of better interpretability through the GEM 
component. Lastly, the HybridFBA could be extended to the 
post-induction phase of different molecules. Other PCA con-
straints could be added to the GEM representing the unknown 
regulatory processes that control the assembly of the target 
molecule. In theory, with enough validation cycles across dif-
ferent molecules, the extended HybridFBA could be applied as 
a tool to design ab initio custom feeds for every new molecule.
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