Skip to main content
Log in

Biodegradation of anionic polyacrylamide by manganese peroxidase: docking, virtual mutation based on affinity, QM/MM calculation and molecular dynamics simulation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Manganese peroxidase (Mn P) is capable of effectively degrading anionic polyacrylamide (HPAM). However, the interaction of Mn P with HPAM at molecular level is lacking until now. Here, the HPAM model compounds, HPAM-2, HPAM-3, HPAM-4, and HPAM-5, were selected to reveal their binding mechanisms with Mn P. The results showed that the most suitable substrate for Mn P was HPAM-5, and the main reason for MnP-HPAM-5 with maximal affinity was strong hydrogen bond. LYS96 was the important key residue in all complexes, and the number of key residue was largest in MnP-HPAM-5. The optimal THR27ILE mutant may enhance the affinity of Mn P to HPAM-4. The stability of Mn P binding to HPAM-4 was the optimal. These results were helpful in designing highly efficient Mn P against HPAM to protect the ecological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen J, Min F, Liu L et al (2019) The interactions between fine particles of coal and kaolinite in aqueous, insights from experiments and molecular simulations. Appl Surf Sci 467–468:12–21

    Article  CAS  Google Scholar 

  2. Lin Z, Li P, Hou D et al (2017) Aggregation mechanism of particles: effect of Ca2+ and polyacrylamide on coagulation and flocculation of coal slime water containing illite. Minerals 7:1–10

    Google Scholar 

  3. Castro S, Laskowski JS (2015) Depressing effect of flocculants on molybdenite flotation. Miner Eng 74:13–19

    Article  CAS  Google Scholar 

  4. Zhang L, Su F, Wang N et al (2019) Biodegradability enhancement of hydrolyzed polyacrylamide wastewater by a combined Fenton-SBR treatment process. Bioresour Technol 278:99–107

    Article  CAS  PubMed  Google Scholar 

  5. Wen Q, Chen Z, Ye Z et al (2011) Performance and microbial characteristics of bioaugmentation systems for polyacrylamide degradation. J Polym Environ 19(1):125–132

    Article  CAS  Google Scholar 

  6. Xiong B, Purswani P, Pawlik T et al (2020) Mechanical degradation of poly-acrylamide at ultra high deformation rates during hydraulic fracturing. Environ Sci Water Res Technol 6:166–172

    Article  CAS  Google Scholar 

  7. Pi Y, Zheng Z, Bao M et al (2015) Treatment of partially hydrolyzed polyacrylamide wastewater by combined Fenton oxidation and anaerobic biological processes. Chem Eng J 273:1–6

    Article  CAS  Google Scholar 

  8. Alias NH, Jaafar J, Samitsu S et al (2020) Efficient removal of partially hydrolyzed polyacrylamide in polymer-flooding produced water using photocatalytic graphitic carbon nitride nanofibres. Arab J Chem 13(2):4341–4349

    Article  CAS  Google Scholar 

  9. Zhao L, Bao M, Yan M et al (2016) Kinetics and thermodynamics of biodegradation of hydrolyzed poly-acrylamide under anaerobic and aerobic conditions. Bioresour Technol 216:95–104

    Article  CAS  PubMed  Google Scholar 

  10. Takigami H, Taniguchi N, Shimizu Y et al (1998) Toxicity assays and their evaluation on organic polymer flocculants used for municipal sludge dewatering. Water Sci Technol 38(7):207–215

    Article  CAS  Google Scholar 

  11. Caulfield M, Hao X, Qiao G et al (2003) Degradation on polyacrylamides. Part I. linear polyacrylamide. Polymer 44(5):1331–1337

    Article  CAS  Google Scholar 

  12. Matsuoka H, Ishimura F, Takeda T et al (2002) Isolation of polyacrylamide-degrading microorganisms from soil. Biotechnol Bioprocess Eng 7:327–330

    Article  CAS  Google Scholar 

  13. Wen Q, Chen Z, Zhao Y et al (2010) Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil. J Hazard Mater 175(1–3):955–959

    Article  CAS  PubMed  Google Scholar 

  14. Yu F, Fu R, Xie Y et al (2015) Isolation and characterization of polyacrylamide-degrading bacteria from dewatered sludge. Int J Environ Res Public Health 12:4214–4230

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li C, Zhang D, Li X et al (2016) The biofilm property and its correlationship with high-molecular-weight polyacrylamide degradation in a water injection pipeline of Daqing oilfield. J Hazard Mater 304:388–399

    Article  CAS  PubMed  Google Scholar 

  16. Bumpus J, Tien M, Wright D et al (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1437

    Article  CAS  PubMed  Google Scholar 

  17. Huang D, Zeng G, Feng C et al (2008) Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environ Sci Technol 42(13):4946–4951

    Article  CAS  PubMed  Google Scholar 

  18. Kües U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278

    Article  PubMed  CAS  Google Scholar 

  19. Abed RMM, Al-Fori M, Al-Sabahi J et al (2021) Impacts of partially hydrolyzed polyacrylamide (HPAM) on microbial mats from a constructed wetland treating oilfield produced water. Chemosphere 285:131421

    Article  CAS  PubMed  Google Scholar 

  20. Nyyssölä A, Ahlgren J (2019) Microbial degradation of polyacrylamide and the deamination product polyacrylate. Int Biodeter Biodegr 139:24–33

    Article  CAS  Google Scholar 

  21. Sutherland GRJ, Haselbach J, Aust SD (1997) Biodegradation of crosslinked acrylic polymers by a white-rot fungus. Environ Sci Pollut Res 4:16–20

    Article  CAS  Google Scholar 

  22. Chen M, Zeng G, Tan Z et al (2011) Understanding lignin-degrading reactions of ligninolytic enzymes: binding affinity and interactional profile. PLoS ONE 6(9):e25647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44(2):77–87

    Article  CAS  PubMed  Google Scholar 

  24. Martinez D, Larrondo L, Putnam N et al (2004) Corrigendum: Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22(7):899–899

    Google Scholar 

  25. Han C, Zheng A, Li D (2006) Study on biodegradation of polyacrylamide. Environ Sci 27(1):151–153 (in Chinese)

    CAS  Google Scholar 

  26. Ding Y, Cui K, Guo Z et al (2021) Manganese peroxidase mediated oxidation of sulfamethoxazole: integrating the computational analysis to reveal the reaction kinetics, mechanistic insights, and oxidation pathway. J Hazard Mater 415:125719

    Article  CAS  PubMed  Google Scholar 

  27. Guo F, Chai L, Zhang S et al (2020) Computational biotransformation profile of emerging phenolic pollutants by cytochromes P450: phenol coupling mechanism. Environ Sci Technol 54(5):2902–2912

    Article  CAS  PubMed  Google Scholar 

  28. Liu Z, Shao B, Zeng G et al (2018) Effects of rhamnolipids on the removal of 2,4,2,4-terabrominated biphenyl ether (BDE-47) by Phanerochaete chrysosporium analyzed with a combined approach of experiments and molecular docking. Chemosphere 210:922–930

    Article  CAS  PubMed  Google Scholar 

  29. Yang X, Xie H, Chen J et al (2013) Anionic phenolic compounds bind stronger with transthyretin than their neutral forms: nonnegligible mechanisms in virtual screening of endocrine disrupting chemicals. Chem Res Toxicol 26(9):1340–1347

    Article  CAS  PubMed  Google Scholar 

  30. Chen M, Zeng G, Lai C et al (2015) Molecular basis of laccase bound to lignin: insight from comparative studies on the interaction of Trametes versicolor laccase with various lignin model compounds. RSC Adv 5(65):52307–52313

    Article  CAS  Google Scholar 

  31. Liu Y, Liu Z, Zeng G et al (2018) Effect of surfactants on the interaction of phenol with laccase: molecular docking and molecular dynamics simulation studies. J Hazard Mater 357:10–18

    Article  CAS  PubMed  Google Scholar 

  32. Sundaramoorthy M, Gold MH, Poulos TL (2010) Ultrahigh (0.93 Å) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism. J Inorg Biochem 104(6):683–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tu M, Wang C, Chen C et al (2018) Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms. Food Chem 256:98–104

    Article  CAS  PubMed  Google Scholar 

  34. Ren B, Min F, Liu L et al (2019) Adsorption of different PAM structural units on kaolinite (001) surface: density functional theory study. Appl Surf Sci 504:144324

    Article  CAS  Google Scholar 

  35. Zhao X, Song L, Jie F et al (2011) Experimental and DFT investigation of surface degradation of polyvinylidene fluoride membrane in alkaline solution. Surf Sci 605(11–12):1005–1015

    Article  CAS  Google Scholar 

  36. Wang X, Ji G, Han X et al (2022) Thiazolidinedione derivatives as novel GPR120 agonists for the treatment of type 2 diabetes. RSC Adv 12(10):5732–5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang F, Zhang D, Wu X et al (2021) Biodegradation of anionic polyacrylamide mediated by laccase and amidase: docking, virtual mutation based on affinity and DFT study. New J Chem 45(32):14554–14562

    Article  CAS  Google Scholar 

  38. Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X 1–2:19–25

    Google Scholar 

  39. Essmann U, Perera L, Berkowitz M et al (1995) A smooth Particle Mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  40. Lu Z, Wu L (2002) Spectrophotometric determination of substrate-borne polyacrylamide. J Agric Food Chem 50(18):5038–5041

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Yang H, Hu X et al (2013) Effects of HO-/MeO-PBDEs on androgen receptor: in vitro investigation and helix 12-involved MD simulation. Environ Sci Technol 47(20):11802–11809

    Article  CAS  PubMed  Google Scholar 

  42. Jayakumar J, Anishetty S et al (2014) Molecular dynamics simulations of inhibitor of apoptosis proteins and identification of potential small molecule inhibitors. Bioorg Med Chem Lett 24(9):2098–2104

    Article  CAS  PubMed  Google Scholar 

  43. Xiong B, Loss RD, Shields D et al (2018) Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water 1(1):17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial supports for this work from the National Natural Science Foundation of China under Grant No. 51274012, the National Natural Science Foundation of China under Grant No. 31601465, and the Stable Talent Fund of Huainan Normal University (BSKYQDJ) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Designed and performed the experiments, analyzed the data, and wrote the paper: Fanglue Wang. Provided funding and guidance: Dongchen Zhang. Modified grammar, and drew parts of figures and tables: Liwen Zhang. Contributed simulation software (Discovery Studio 2020) and provided helpful discussion: Xuefeng Wu and Shengsong Deng. Performed part experiments: Xinyu Yuan.

Corresponding author

Correspondence to Fanglue Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2469 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhang, D., Zhang, L. et al. Biodegradation of anionic polyacrylamide by manganese peroxidase: docking, virtual mutation based on affinity, QM/MM calculation and molecular dynamics simulation. Bioprocess Biosyst Eng 45, 1349–1358 (2022). https://doi.org/10.1007/s00449-022-02750-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02750-8

Keywords

Navigation