Skip to main content
Log in

Enhanced refractory organics removal by sponge iron-coupled microbe technology: performance and underlying mechanism analysis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Sponge iron (SFe) is a zero-valent iron (Fe0) composite with a high-purity and porous structure. In this study, SFe was coupled with microorganisms that were gradually domesticated to form a Fe0/iron-oxidizing bacteria system (Fe0-FeOB system). The enhancement effect of the Fe0-FeOB system on refractory organics was verified, the mechanism of its strengthening action was investigated, and the relationship and influencing factors between the Fe0 and microorganisms were revealed. The average removal rates of the Fe0-FeOB system were 8.98%, 5.69%, and 40.67% higher than those of the SBR system for AF, AN, and NB wastewater treatment, respectively. With the addition of SFe, the microbial community structure was gradually enhanced with a large number of FeOB were detected. Moreover, the bacteria with strong iron corrosion and Fe(II) oxidation abilities plays a critical role in improving the Fenton-like effect. Interestingly, the variation trend of ⋅OH was fairly consistent with that of Fe(II). Thus, the main drivers of the Fenton-like effect are biological corrosion and metabolism. Consequently, microbial degradation and Fenton-like effect contributed to the degradation performance of the Fe0-FeOB system. Among them, the microbial degradation accounted for 96.09%, of which the biogenic Fenton effect accounted for 8.9%, and the microbial metabolic activity accounted for 87.19%. However, the augmentation of the Fe0-FeOB system was strongly dependent on SFe for the strengthening effect of microorganisms disappeared after leaving the SFe 35 days.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Fe0 :

Zero-valent iron

SFe:

Sponge iron

FeOB:

Iron-oxidizing bacteria

Fe0-FeOB system:

Fe0/iron-oxidizing bacteria system

TFe:

Total iron

Fe(II):

Ferrous iron

Fe(III):

Ferric iron

Fe(II)-M:

Fe(II)/biological iron method through submerging Fe(II) into the SBR reactor

Fe(III)-M:

Fe(III)/biological iron method through submerging Fe(III) into the SBR reactor

Fe0/O2 :

Fe0 can reductively activate molecular oxygen

H2O2 :

Hydrogen peroxide

OH:

Hydroxyl radicals

Na2S2O3 :

Sodium thiosulfate

COD:

Chemical oxygen demand

NB:

Nitrobenzene

AN:

Aniline

AF:

Acrylic fiber

TN:

Total nitrogen

CIP:

Ciprofloxacin

NC:

Nitrogen-containing

SBR:

Sequencing batch reactor

DO:

Dissolved oxygen

TOC:

Total organic carbon

References

  1. Hao X, Wei J, van Loosdrecht MCM, Cao D (2017) Analysing the mechanisms of sludge digestion enhanced by iron. Water Res 117:58–67

    Article  CAS  PubMed  Google Scholar 

  2. Noradoun CE, Cheng IF (2005) EDTA Degradation induced by oxygen activation in a zerovalent iron/air/water system. Environ Sci Technol 39:7158–7163

    Article  CAS  PubMed  Google Scholar 

  3. Li Q, Chen ZS, Wang HH, Yang H, Wen T, Wang SQ, Hu BW, Wang XK (2021) Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci Total Environ 792:148546

    Article  CAS  PubMed  Google Scholar 

  4. Zou HY, Xi DL (2005) Studies on the performance of Bioferric SMBR (in Chinese). Environ Sci 26:65–70

    CAS  Google Scholar 

  5. Sun TH, Ling SN, Yu ZM, Chen L (1991) Study on treatment of high-concentration refractory printing and dyeing wastewater by biological iron process (in Chinese). China Environ Sci 11:138–142

    CAS  Google Scholar 

  6. Ma LM, Zhang WX (2008) Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron. Environ Sci Technol 42:5384–5389

    Article  CAS  PubMed  Google Scholar 

  7. Wang SF, Zhou AJ, Zhang JG, Liu ZH, Zheng JR, Zhao XC, Yue XP (2019) Enhanced quinoline removal by zero-valent iron-coupled novel anaerobic processes: performance and underlying function analysis. RSC Adv 9:1176–1186

    Article  CAS  Google Scholar 

  8. Yin WZ, Wu JH, Li P, Lin GH, Wang XD, Zhu B, Yang B (2012) Reductive transformation of pentachloro nitrobenzene by zero-valent iron and mixed anaerobic culture. Chem Eng J 210:309–315

    Article  CAS  Google Scholar 

  9. Wang DX, Ma WC, Han HJ, Li K, Hao XK (2017) Enhanced treatment of Fischer-Tropsch (F-T) wastewater by novel anaerobic biofilm system with scrap zero valent iron (SZVI) assisted. Biochem Eng J 117:66–76

    Article  CAS  Google Scholar 

  10. Liu YW, Zhang YB, Ni BJ (2015) Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors. Water Res 75:292–300

    Article  CAS  PubMed  Google Scholar 

  11. Zhang YP, Douglas GB, Kaksonen AH, Cui LL, Ye ZF (2019) Microbial reduction of nitrate in the presence of zero-valent iron. Sci Total Environ 646:1195–1203

    Article  CAS  PubMed  Google Scholar 

  12. Waclawek S, Nosek J, Cadrova L, Antos V, Cernik M (2015) Use of various zero valent irons for degradation of chlorinated ethenes and ethanes. Ecol Chem Eng S 22:577–587

    CAS  Google Scholar 

  13. Zhang YB, Jing YW, Zhang JX, Sun LF, Quan X (2011) Performance of a ZVI-UASB reactor for azo dye wastewater treatment. J Chem Technol Biotechnol 86:199–204

    Article  Google Scholar 

  14. Yao L, Yang H, Chen ZS, Qiu MQ, Hu BW, Wang XX (2021) Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 273:128576

    Article  CAS  Google Scholar 

  15. Hao MJ, Qiu MQ, Yang H, Hu BW, Wang XX (2021) Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci Total Environ 760:143333

    Article  CAS  PubMed  Google Scholar 

  16. Kumar N, Chaurand P, Rose J, Diels L, Bastiaens L (2015) Synergistic effects of sulfate reducing bacteria and zero valent iron on zinc removal and stability in aquifer sediment. Chem Eng J 260:83–89

    Article  CAS  Google Scholar 

  17. Liang LP, Xi FF, Tan WS, Meng X, Hu BW, Wang XK (2021) Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 3:255–281

    Article  Google Scholar 

  18. Zhang JX, Zhang YB, Quan X, Liu YW, An XL, Chen S, Zhao HM (2011) Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate-containing wastewater treatment. Chem Eng J 174:159–165

    Article  CAS  Google Scholar 

  19. Feitz AJ, Joo SH, Guan J, Sun Q, Sedlak DL, Waite TD (2005) Oxidative transformation of contaminants using colloidal zero-valent iron. Colloids Surf A Physicochem Eng Asp 265:88–94

    Article  CAS  Google Scholar 

  20. Sh JOO, Feitz AJ, Sedlak DL, Waite TD (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39:1263–1268

    Article  Google Scholar 

  21. Ghiorse WC (1984) Biology of iron and manganese depositing bacteria. Annu Rev Microbiol 38:515–550

    Article  CAS  PubMed  Google Scholar 

  22. Voegelin A, Stephan JH (2003) Catalyzed oxidation of arsenic (III) by hydrogen peroxide on the surface of ferrihydrite : an in situ ATR-FTIR study. Environ Sci Technol 37:972–978

    Article  CAS  PubMed  Google Scholar 

  23. Wang XM, Waite TD (2010) Iron speciation and iron species transformation in activated sludge membrane bioreactors. Water Res 44:3511–3521

    Article  CAS  PubMed  Google Scholar 

  24. Deng SH, Li DS, Yang X, Xing W, Li JL, Zhang Q (2016) Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition. Bioresour Technol 219:677–686

    Article  CAS  PubMed  Google Scholar 

  25. You GX, Wang PF, Hou J, Wang C, Xu Y, Miao LZ, Lv BW, Yang YY, Zhang F (2017) The use of zero-valent iron (ZVI)–microbe technology for wastewater treatment with special attention to the factors influencing performance: a critical review. Crit Rev Environ Sci Technol 47:877–907

    Article  CAS  Google Scholar 

  26. An Y, Li TL, Jin ZH, Dong MY, Xia HC, Wang X (2010) Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification. Bioresour Technol 101:9825–9828

    Article  CAS  PubMed  Google Scholar 

  27. Hu YS, Zang Y, Yang Y, Duan A, Wang XC, Ngo HH, Li YY, Du RD (2020) Zero-valent iron addition in anaerobic dynamic membrane bioreactors for preconcentrated wastewater treatment: performance and impact. Sci Total Environ 742:140687

    Article  CAS  PubMed  Google Scholar 

  28. Liu HB, Chen ZH, Guan YN, Xu SY (2018) Role and application of iron in water treatment for nitrogen removal: a review. Chemosphere 204:51–62

    Article  CAS  PubMed  Google Scholar 

  29. Luo HP, Jin S, Fallgren PH, Colberg PJS, Johnson PA (2010) Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation. Chem Eng J 160:185–189

    Article  CAS  Google Scholar 

  30. Xu XY, Lin HZ, Zhu L, Yang YN, Feng JQ (2011) Enhanced biodegradation of 2-chloronitro-benzene using a coupled zero-valent iron column and sequencing batch reactor system. J Chem Technol Biotechnol 86:993–1000

    Article  CAS  Google Scholar 

  31. Yin WZ, Wu JH, Huang WL, Li YT, Jiang GB (2016) The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns. Sci Total Environ 560–561:12–18

    Article  PubMed  Google Scholar 

  32. Wang YE, Li J, Zhai SY, Wei ZY, Feng JJ (2015) Enhanced phosphorus removal by microbial-collaborating sponge iron. Water Sci Technol 72:1257–1265

    Article  CAS  PubMed  Google Scholar 

  33. Yang X, Zhan MJ, Kong LR, Wang LS (2004) Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions. J Environ Sci 16:687–689

    CAS  Google Scholar 

  34. Sellers RM (1980) Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst 105:950–954

    Article  CAS  Google Scholar 

  35. Chinese NEPA (2012) Water and wastewater monitoring methods (Fourthed). Chinese Environmental Science Publishing House, Beijing

    Google Scholar 

  36. Ju YZM, Yu YJ, Wang XY, Xiang MD, Li LZ, Deng DY, Dionysiou DD (2017) Environmental application of millimetre-scale sponge iron (s-Fe(0)) particles (IV): New insights into visible light photo-Fenton-like process with optimum dosage of H2O2 and RhB photosensitizers. J Hazard Mater 323:611–620

    Article  CAS  PubMed  Google Scholar 

  37. Zhou XH, Tian Y, Liu X, Huang LP, Wen Y (2018) Reduction of imidacloprid by sponge iron and identification of its degradation products. Water Environ Res 90:2049–2055

    Article  CAS  PubMed  Google Scholar 

  38. Fu FL, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    Article  CAS  PubMed  Google Scholar 

  39. Mu Y, Jia FL, Ai ZH, Zhang LZ (2017) Molecular oxygen activation with nano zero-valent iron for aerobic degradation of organic contaminants and the performance enhancement. Acta Chim Sinica 75:538–543

    Article  CAS  Google Scholar 

  40. Xu JJ, Guo J, Xu MY, Chen XJ (2020) Enhancement of microbial redox cycling of iron in zero-valent iron oxidation coupling with deca-brominated diphenyl ether removal. Sci Total Environ 748:141328

    Article  CAS  PubMed  Google Scholar 

  41. Wang S, Yu ZC, Ma D, Zhang XJ, Zhang L (2013) Acrylic fiber wastewater treatment in a nested biofilm airlift suspension reactor. Int J Appl Environ Sci 8:2379

    Google Scholar 

  42. Li Y, Zhang Q, Li M, Sang WJ, Wang Y, Wu LF, Yang YQ (2020) Bioaugmentation of sequencing batch reactor for aniline treatment during start-up period: investigation of microbial community structure of activated sludge. Chemosphere 243:125426

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Xu X, Pan YW, Xu LT, Zhou MH (2019) Pre-magnetized Fe0 activated persulphate for the degradation of nitrobenzene in groundwater. Sep Purif Technol 212:555–562

    Article  CAS  Google Scholar 

  44. Keenan CR, Sedlak DL (2008) Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 42:1262–1267

    Article  CAS  PubMed  Google Scholar 

  45. Keenan CR, Sedlak DL (2008) Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ Sci Technol 42:6936–6941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ona-Nguema G, Morin G, Wang Y, Foster AL, Juillot F, Calas G, Brown GE (2010) XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environ Sci Technol 44:5416–5422

    Article  CAS  PubMed  Google Scholar 

  47. Gonzalez-Flecha B, Demple B (1995) Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 270:13681–13687

    Article  CAS  PubMed  Google Scholar 

  48. Korshunov S, Imlay JA (2006) Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J Bacteriol 188:6326–6334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Technology 38:2242–2247

    Article  CAS  Google Scholar 

  50. Huang S, Jaffe PR (2015) Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions. Biogeosciences 12:769–779

    Article  Google Scholar 

  51. Bagge E, Persson M, Johansson KE (2010) Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants. J Appl Microbiol 109:1549–1565

    CAS  PubMed  Google Scholar 

  52. Pulkra S, Sara HO, Glo ́ria MV, Ladimir JC, Osmar SB, Severino LUF, Maria Alice GAL, (2021) Tetrakis hydroxymethyl phosphonium sulfate (THPS) with biopolymer as strategy for the control of microbiologically influenced corrosion in a dynamic system. Chem Eng Process Process Intensif 160:108272

    Article  Google Scholar 

  53. Liu HW, Gu TY, Asif M, Zhang GA, Liu HF (2017) The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria. Corros Sci 114:102–111

    Article  CAS  Google Scholar 

  54. Kim DK, Rathnasingh C, Song H, Lee HJ, Seung D, Chang YK (2013) Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production. J Biosci Bioeng 116:186–192

    Article  CAS  PubMed  Google Scholar 

  55. Kong X, Wei YH, Xu S, Liu JG, Li H, Liu YL, Yu SY (2016) Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates. Bioresour Technol 211:65–71

    Article  CAS  PubMed  Google Scholar 

  56. Noubactep C (2011) Metallic iron for safe drinking water production. Doctoral dissertation Techn Univ Bergakad 27

  57. Liu YW, Zhang YB, Quan X, Zhang JX, Zhao HM, Chen S (2011) Effects of an electric field and zero valent iron on anaerobic treatment of azo dye wastewater and microbial community structures. Bioresour Technol 102:2578–2584

    Article  CAS  PubMed  Google Scholar 

  58. Ou CJ, Shen JY, Zhang SA, Mu Y, Han WQ, Sun XY, Li JS, Wang LJ (2016) Coupling of iron shavings into the anaerobic system for enhanced 2,4-dinitroanisole reduction in wastewater. Water Res 101:457–466

    Article  CAS  PubMed  Google Scholar 

  59. Zhang JX, Zhang YB, Quan X (2015) Bio-electrochemical enhancement of anaerobic reduction of nitrobenzene and its effects on microbial community. Biochem Eng J 94:85–91

    Article  CAS  Google Scholar 

  60. Wang XH, Wen XH, Yan HJ, Ding K, Zhao F, Hu M (2011) Bacterial community dynamics in a functionally stable pilot-scale wastewater treatment plant. Bioresour Technol 102:2352–2357

    Article  CAS  PubMed  Google Scholar 

  61. Wong MT, Mino T, Seviour RJ, Onuki M, Liu WT (2005) In situidentification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res 39:2901–2914

    Article  CAS  PubMed  Google Scholar 

  62. Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2:1–16

    Article  Google Scholar 

  63. Wang Y, Zhu GB, van der Erwin B, Yin CQ (2013) Microbial diversity of planctomycetes and related bacteria in wetlands with different anthropogenic disturbances. Wet Land Sci 11:158–166

    Google Scholar 

  64. Ju YM, Liu XW, Li ZY, Kang J, Wang XY, Zhang YK, Fang JD, Dionysiou DD (2015) Environmental application of millimetre-scale sponge iron (s-Fe(0)) particles (I): pretreatment of cationic triphenylmethane dyes. J Hazard Mater 283:469–479

    Article  CAS  PubMed  Google Scholar 

  65. Zhu GL, Song JD, Dong WH, Lu JF, Wang Y, Jiang WN, Guo P (2018) Removal of hexavalent chromium from water by modified sponge iron particles and insights into mechanism. Environ Sci Pollut Res Int 25:26173–26181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 51768032).

Funding

This project was supported by the National Natural Science Foundation of China (No. 51768032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 975 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Y., Xie, H. et al. Enhanced refractory organics removal by sponge iron-coupled microbe technology: performance and underlying mechanism analysis. Bioprocess Biosyst Eng 45, 117–130 (2022). https://doi.org/10.1007/s00449-021-02645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02645-0

Keywords

Navigation